DATA SHEET

TZA3019
 2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Preliminary specification
File under Integrated Circuits, IC19

2.5 Gbits/s dual postamplifier with level

 detectors and 2×2 switch
FEATURES

- Dual postamplifier
- Single 3.3 V power supply
- Wideband operation from 50 kHz to 2.5 GHz (typical value)
- Fully differential
- Channels are delay matched
- On-chip DC-offset compensations without external capacitor
- Interfacing with positive or negative supplied logic
- Switching possibility between channels
- Positive Emitter Coupled Logic (PECL) or Current-Mode Logic (CML) compatible data outputs adjustable from 200 to 800 mV (p-p) single-ended
- Power-down capability for unused outputs and detectors
- Rise and fall times 80 ps (typical value)
- Possibility to invert the output of each channel separately
- Input level-detection circuits for Received Signal Strength Indicator (RSSI) or Loss Of Signal (LOS) detection, programmable from 0.4 to 400 mV ($p-\mathrm{p}$) single-ended, with open-drain comparator output for direct interfacing with positive or negative logic
- Reference voltage for output level and LOS adjustment
- Automatic strongest input signal switch possibility (TZA3019 version B)
- HTQFP32 or HBCC32 plastic package with exposed pad.

APPLICATIONS

- Postamplifier for Synchronous Digital Hierarchy and Synchronous Optical Network (SDH/SONET) transponder
- SDH/SONET wavelength converter
- Crosspoint or channel switch
- PECL driver
- Fibre channel arbitrated loop
- Protection ring
- Monitoring
- Signal level detectors
- Swing converter CML 200 mV (p-p) to PECL 800 mV (p-p)
- Port bypass circuit
- 2.5 GHz clock amplification.

GENERAL DESCRIPTION

The TZA3019 is a low gain postamplifier multiplexer with a dual RSSI and/or LOS detector that is designed for use in critical signal path control applications, such as loop-through, redundant channel switching or Wavelength Division Multiplexing (WDM). The signal path is unregistered, so no clock is required for the data inputs. The signal path is fully differential and delay matched. It is capable of operating from 50 kHz to 2.5 GHz .

The TZA3019 HTQFP32 and HBCC32 packages can be delivered in three versions:

- TZA3019AHT and TZA3019AV with two RSSI signals
- TZA3019BHT and TZA3019BV with one RSSI and one LOS signal
- TZA3019CHT and TZA3019CV with two LOS signals.

ORDERING INFORMATION

| TYPE
 NUMBER | PACKAGE | | |
| :--- | :---: | :--- | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| TZA3019AHT | HTQFP32 | plastic, heatsink thin quad flat package; 32 leads; body $5 \times 5 \times 1 \mathrm{~mm}$ | SOT547-2 |
| TZA3019BHT | HTQFP32 | plastic, heatsink thin quad flat package; 32 leads; body $5 \times 5 \times 1 \mathrm{~mm}$ | SOT547-2 |
| TZA3019CHT | HTQFP32 | plastic, heatsink thin quad flat package; 32 leads; body $5 \times 5 \times 1 \mathrm{~mm}$ | SOT547-2 |
| TZA3019AV | HBCC32 | plastic, heatsink bottom chip carrier; 32 terminals; body $5 \times 5 \times 0.65 \mathrm{~mm}$ | SOT560-1 |
| TZA3019BV | HBCC32 | plastic, heatsink bottom chip carrier; 32 terminals; body $5 \times 5 \times 0.65 \mathrm{~mm}$ | SOT560-1 |
| TZA3019CV | HBCC32 | plastic, heatsink bottom chip carrier; 32 terminals; body $5 \times 5 \times 0.65 \mathrm{~mm}$ | SOT560-1 |
| TZA3019U | - | bare die; $2.22 \times 2.22 \times 0.28 \mathrm{~mm}$ | - |

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

BLOCK DIAGRAM

Fig. 1 Block diagram (TZA3019AHT and TZA3019AV).

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Fig. 2 Block diagram (TZA3019BHT and TZA3019AV).

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Fig. 3 Block diagram (TZA3019CHT and TZA3019CV).

PINNING

SYMBOL	PIN			PAD	TYPE ${ }^{(2)}$	DESCRIPTION
	TZA3019xHT/xV ${ }^{(1)}$					
	A	B	C			
GND1A	1	1	1	1	S	ground for input 1 and LOS1 circuits
IN1	2	2	2	2	1	differential circuit 1 input; complimentary to pin IN1Q; DC bias level is set internally at approximately -0.33 V
IN1Q	3	3	3	3	I	differential circuit 1 input; complimentary to pin IN1; DC bias level is set internally at approximately -0.33 V
GND1A	4	4	4	4	S	ground for input 1 and LOS1 circuits
n.c	-	-	-	5	-	not connected
n.c	-	-	-	6	-	not connected
GND2A	5	5	5	7	S	ground for input 2 and LOS2 circuits
IN2	6	6	6	8	I	differential circuit 2 input; complimentary to pin IN2Q; DC bias level is set internally at approximately -0.33 V
IN2Q	7	7	7	9	I	differential circuit 2 input; complimentary to pin IN2; DC bias level is set internally at approximately -0.33 V
GND2A	8	8	8	10	S	ground for input 2 and LOS2 circuits
$\mathrm{V}_{\text {EE2 }} \mathrm{A}$	9	9	9	11	S	negative supply voltage for input 2 and LOS2 circuits
LOSTH1	10	10	10	12	I	Input for level detector programming of input 1 circuit; threshold level is set by connecting external resistors between pins GND1A and $\mathrm{V}_{\text {ref. }}$. When forced to $\mathrm{V}_{\text {EE2A }}$ or not connected, the LOS1 circuit will be switched off.
LOSTH2	11	11	11	13	I	Input for level detector programming of input 2 circuit; threshold level is set by connecting external resistors between pins GND2A and $\mathrm{V}_{\text {ref. }}$. When forced to $\mathrm{V}_{\text {EE2A }}$ or not connected, the LOS2 circuit will be switched off.
n.c	-	-	-	14	-	not connected
LEVEL1	12	12	12	15	I	Input for programming output level of output 1 circuit; output level is set by connecting external resistors between pins GND1A and $\mathrm{V}_{\text {ref }}$. When forced to GND1A or not connected, pins OUT1 and OUT1Q will be switched off.
LEVEL2	13	13	13	16	I	Input for programming output level of output 2 circuit; output level is set by connecting external resistors between pins GND2A and $\mathrm{V}_{\text {ref }}$. When forced to GND2A or not connected, pins OUT2 and OUT2Q will be switched off.
$\mathrm{V}_{\text {ref }}$	14	14	14	17	0	reference voltage for level circuit and LOS threshold programming; typical value is -1.6 V ; no external capacitor allowed
n.c	-	-	-	18	-	
TEST	15	15	15	19	I	for test purposes only; to be left open-circuit in the application
$\mathrm{V}_{\text {EE2B }}$	16	16	16	20	S	negative supply voltage for output 2 circuit
GND2B	17	17	17	21	S	ground for output 2 circuit
OUT2Q	18	18	18	22	0	PECL or CML compatible differential circuit 2 output; complimentary to pin OUT2

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

SYMBOL	PIN			PAD	TYPE ${ }^{(2)}$	DESCRIPTION
	TZA3019xHT/xV ${ }^{(1)}$					
	A	B	C			
OUT2	19	19	19	23	0	PECL or CML compatible differential circuit 2 output; complimentary to pin OUT2Q
GND2B	20	20	20	24	S	ground for output 2 circuit
n.c	-	-	-	25	-	not connected
n.c	-	-	-	26	-	not connected
GND1B	21	21	21	27	S	ground for output 1 circuit
OUT1Q	22	22	22	28	0	PECL or CML compatible differential circuit 1 output; complimentary to pin OUT1
OUT1	23	23	23	29	0	PECL or CML compatible differential circuit 1 output; complimentary to pin OUT1Q
GND1B	24	24	24	30	S	ground for output 1 circuit
$\mathrm{V}_{\text {EE1B }}$	25	25	25	31	S	negative supply voltage for output 1 circuit
RSSI2	26	26	-	32	O	output of received signal strength indicator of detector
LOS2	-	-	26	33	O-DRN	output loss of signal detector 2; detection of input 2 signal; direct drive of positive or negative supplied logic via internal $5 \mathrm{k} \Omega$ resistor
RSSI1	27	-	-	34	0	output of received signal strength indicator of detector
LOS1	-	27	27	35	O-DRN	output loss of signal detector 2; detection of input 2 signal; direct drive of positive or negative supplied logic via internal $5 \mathrm{k} \Omega$ resistor
INV2	28	28	28	36	TTL	input to invert the signal of pins OUT2 and OUT2Q; directly positive (inverted) or negative supplied logic driven
INV1	29	29	29	37	TTL	input to invert the signal of pins OUT1 and OUT1Q; directly of positive (inverted) or negative supplied logic driven
S2	30	30	30	38	TTL	input selector output 2 circuit; directly positive (inverted) or negative supplied logic driven
S1	31	31	31	39	TTL	input selector output 1 circuit; directly positive (inverted) or negative supplied logic driven
$\mathrm{V}_{\text {EE1A }}$	32	32	32	40	S	negative supply voltage for input 1 and LOS1 circuits
$\mathrm{V}_{\text {EEP }}$	pad	pad	pad	-	S	negative supply voltage pad (exposed die pad)

Notes

1. The ' x ' in TZA3019xHT/xV represents versions A, B and C.
2. Pin type abbreviations: $O=$ output, $I=$ input, $S=$ power supply, $T T L=$ logic input and $O-D R N=$ open-drain output.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Fig. 4 Pin configuration HTQFP32.

Fig. 5 Pin configuration HBCC32.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

FUNCTIONAL DESCRIPTION

The TZA3019 is a dual postamplifier with multiplexer and loss of signal detection see Figs 1, 2 and 3. The RF path starts with the multiplexer, which connects an amplifier to one of the two inputs. It is possible to invert the output for easy layout of the Printed-Circuit Board (PCB). The signal is amplified to a certain level. To guarantee this level with minimum distortion over the temperature range and level range, an active control part is added. The offset compensation circuit following the inverter minimizes the offset.

The Received Signal Strength Indicator (RSSI) or the Loss Of Signal (LOS) detection uses a 7 -stage 'successive detection' circuit. It provides a logarithmic output. The LOS is followed by a comparator with a programmable threshold. The input signal level-detection is implemented to check if the input signal voltage is above the user programmed level. This can insure that data will only be transmitted when the input signal-to-noise ratio is sufficient for low bit error rate system operation. A second offset compensation circuit minimizes the offset of the logarithmic amplifier.

RF input circuit

The input circuit contains internal 50Ω resistors decoupled to ground via an internal common mode 12 pF capacitor (see Fig.6).

The input pins are DC-biased at approximately -0.33 V by an internal reference generator. The TZA3019 can be DC-coupled, but AC-coupling is preferred. In case of DC-coupling, the driving source must operate within the allowable input range (-1.0 to +0.3 V). A DC-offset voltage of more than a few millivolts should be avoided, since the internal DC-offset compensation circuit has a limited correction range. When AC-coupling is used, if no DC-compatibility is required, the values of the coupling capacitors must be large enough to pass the lowest input frequency of interest. Capacitor tolerance and resistor variation must be included for an accurate calculation. Do not use signal frequencies around the low cut-off circuit frequencies ($\mathrm{f}_{-3 \mathrm{~dB}(\mathrm{I})}=50 \mathrm{kHz}$ for the postamplifiers and $f_{-3 d B(I)}=1 \mathrm{MHz}$ for the LOS circuits).

RF output circuit

Matching the main amplifier outputs (see Fig.7) is not mandatory. In most applications, the transmission line receiving end will be properly matched, while very little reflections occur.

Matching the transmitting end to absorb reflections is only recommended for very sensitive applications.

In such cases, pull-up resistors of 100Ω should be connected as close as possible to the IC from pins OUT1 and OUT1Q, and pins OUT2 and OUT2Q to $\mathrm{V}_{\mathrm{EE} 1 \mathrm{~B}}$ and $\mathrm{V}_{\mathrm{EE} 2 \mathrm{~B}}$ respectively. These matching resistors are not needed in most applications.

Fig. 6 RF input circuit.

Postamplifier level adjustment

The postamplifier boosts the signal up to PECL levels. The output can be either CML- or PECL-level compatible, adjusted by means of the voltage on pins LEVEL1 and LEVEL2. The DC voltages of pins OUT1 and OUT1Q, and pins OUT2 and OUT2Q match with the DC-levels on pins LEVEL1 and LEVEL2, respectively. Due to the receiving end 50Ω load resistance, it means that at the same level of $\mathrm{V}_{\mathrm{o}(\mathrm{p}-\mathrm{p})}, \mathrm{V}_{\mathrm{LEVEL} 1}$ and $\mathrm{V}_{\text {LEVEL2 }}$ with AC-coupling are not equal to $\mathrm{V}_{\text {LEVEL1 }}$ and $\mathrm{V}_{\text {LEVEL2 }}$ with DC-coupling (see Figs 7 and 8).
The postamplifier is in power-down state when pin LEVEL1 or LEVEL2 is connected to ground or not connected (see Fig.8).

Postamplifier DC offset cancellation loop

Offset control loops connected between the inputs of the buffers A1A and A2A and the outputs of the amplifiers A1B and A2B (see Figs 1, 2 and 3) will keep the input of both buffers at their toggle point during the absence of an input signal. The active offset compensation circuit is integrated, so no external capacitor is required. The loop time constant determines the lower cut-off frequency of the amplifier chain. The cut-off frequency of the offset compensations is fixed internally at approximately 5 kHz .

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

$\mathrm{V}_{\text {level }}=0.5 \times \mathrm{V}_{0(\text { se)(p-p) }}$.
$V_{\text {level }}=V_{\text {ref }} \times \frac{R 1}{R 1+R 2}$
Level detector in power-down mode: $\mathrm{V}_{\mathrm{LEVEL} 1}$ or $\mathrm{V}_{\mathrm{LEVEL} 2}=\mathrm{V}_{\mathrm{GND}}$.
a. DC-coupling.

$\mathrm{V}_{\text {level }}=1.5 \times \mathrm{V}_{0(\mathrm{se})(\mathrm{p}-\mathrm{p})}$.
$V_{\text {level }}=V_{\text {ref }} \times \frac{R 1}{R 1+R 2}$
Level detector in power-down mode: $\mathrm{V}_{\mathrm{LEVEL} 1}$ or $\mathrm{V}_{\mathrm{LEVEL} 2}=\mathrm{V}_{\mathrm{GND}}$
b. AC-coupling.

Fig. 7 RF output configurations.

2.5 Gbits/s dual postamplifier with level

Fig. 8 Output signal as a function of $\mathrm{V}_{\text {level }}$.

TTL logic input of selector and inverter

The logic levels are differently defined for positive or negative logic (see Fig.9). It should be noted that positive logic levels are inverted if a negative supply voltage is used.

Outputs as a function of switch input pins S1, S2, INV1 and INV2

See Tables 1, 2, 3 and 4.
The default values for the switch input pins S1, S2, INV1 and INV2 if not connected, is zero.

Table 1 OUT1 and OUT1Q as function of input S1

S1	OUT1	OUT1Q
0	IN1	IN1Q
1	IN2	IN2Q

Table 2 OUT2 and OUT2Q as function of input S2

S2	OUT2	OUT2Q
0	IN2	IN2Q
1	IN1	IN1Q

Table 3 OUT1 and OUT1Q as function of INV1

INV1	OUT1	OUT1Q
0	IN1 or IN2	IN1Q or IN2Q
1	IN1Q or IN2Q	IN1 or IN2

Table 4 OUT2 and OUT2Q as function of INV2

INV2	OUT2	OUT2Q
0	IN1 or IN2	IN1Q or IN2Q
1	IN1Q or IN2Q	IN1 or IN2

2.5 Gbits/s dual postamplifier with level

a. Negative circuit supply voltage V_{EE} and negative logic supply voltage V_{EE}.

b. Negative circuit supply voltage V_{EE} and positive logic supply voltage V_{CC}.

c. Positive circuit supply voltage V_{CC} and positive logic supply voltage V_{Cc}.
(1) Level not defined

Fig. 9 Logic levels on pins S1, S2, INV1 and INV2 as a function of the input voltages.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

RSSI and LOS detection

The TZA3019 allows AC-signal level detection. This can prevent the outputs from reacting to noise during the absence of a valid input signal, and can insure that data only will be transmitted when the signal-to-noise ratio of the input signal is sufficient to insure low bit error rate system operation.

The RSSI detection circuit uses seven limiting amplifiers in a 'successive detection' topology to closely approximate logarithmic response over a total range of 70 dB . The detectors provide full-wave rectification of the AC signals presented at each previous amplifier stage. Their outputs are current drivers. Each cell incorporates a low-pass filter, being the first step in recovering the average value of the demodulated signal of the input frequency. The summed detector output currents are converted to a voltage by an internal load resistor. This voltage is buffered and available in the A and B versions of the TZA3019. When $\mathrm{V}_{\mathrm{RSSI}}$ is used $\mathrm{V}_{\text {LOSTH }}$ must be connected to $G N D$ to prevent the LOS comparator from switching to the standby mode. The LOS comparator detects an input signal above a fixed threshold, resulting in a LOW-level at the LOS circuit output. The threshold level is determined by the voltage on pins LOSTH1 or LOSTH2 (see Fig.10). A filter with a time constant of $1 \mu \mathrm{~s}$ nominal is included to prevent noise spikes from triggering the level detector.
The comparator (with internal 3 dB hysteresis) drives an open-drain circuit with an internal resistor ($5 \mathrm{k} \Omega$) for direct interfacing to positive or negative logic (see Fig.11). Only available in the B and C versions of the TZA3019.

The response is independent of the sign of the input signal because of the particular way the circuit has been built. This is part of the demodulating nature of the detector, which results in an alternating input voltage being transformed to a rectified and filtered quasi DC-output signal. For the TZA3019 the logarithmic voltage slope is $\varphi=1 / 13 \mathrm{~dB} / \mathrm{mV}$ and is essentially temperature and supply independent through four feedback loops in the reference circuit. The internal LOS detector output voltage is based on $\mathrm{V}_{\text {ref. }}$. The demodulator characteristic depends on the waveform and the response depends roughly on the input signal RMS value. This influences high frequencies, a square wave input of 2.4 GHz (LOS circuit bandwidth of 2.4 GHz) offsets the intercept voltage by 20%. V LOSTH can be calculated using the following formulae:
$\mathrm{V}_{\text {LOSTH }}=\mathrm{V}_{\text {RSSI }}=\mathrm{S} \times 20 \log { }^{(\mathrm{Vi} / 18 \mu \mathrm{~V})}$
where $S=$ sensitivity.
Example: a 200 mV ($p-p$) single-ended 1.2 GB/s PRBS signal has an RSSI from 1003 mV .

Fig. 10 Loss of signal assert level.

A full understanding of the offset control loop is useful. The primary purpose of the loop is to extend the lower end of the dynamic range in any case where the offset voltage of the first stage might be high enough to cause later stages to prematurely enter limiting, caused by the high DC-gain of the amplifier system. The offset is automatically and continuously compensated via a feedback path from the last stage. An offset at the output of the logarithmic converter is equivalent to a change of amplitude at the input. Consequently, with DC-coupling, signal absence, either LOW-level or HIGH-level is detected as a full signal, only signals with an average value equal to zero give zero output.

Version B can be used for an auto function, which switches the strongest input signal to output 1 and the weakest to output 2. To achieve this output $\mathrm{V}_{\text {RSSI2 }}$ must be used as the reference voltage for input $\mathrm{V}_{\text {LOsth }}$. Then the output LOS1 can switch S1 and S2.

2.5 Gbits/s dual postamplifier with level

Fig. 11 Loss of signal outputs, pins LOS1 and LOS2.

Supply current

For the supply currents $\mathrm{I}_{\mathrm{EE} 1 \mathrm{~B}}$ and $\mathrm{I}_{\mathrm{EE} 2 \mathrm{~B}}$, see Fig. 12.

Using a positive supply voltage

Although the TZA3019 has been designed to use a single -3.3 V supply voltage (see Fig.13), a +3.3 V supply (see Fig.14) can also be used. However, care should be taken with respect to RF transmission lines. The on-chip signals refer to the various ground pins as being positive supply pins in a +3.3 V application. The external transmission lines will most likely be referred to the pins $\mathrm{V}_{\mathrm{EE} 1 \mathrm{~A}}, \mathrm{~V}_{\mathrm{EE} 2 \mathrm{~A}}, \mathrm{~V}_{\mathrm{EE} 1 \mathrm{~B}}$ and $\mathrm{V}_{\mathrm{EE} 2 \mathrm{~B}}$, being the system ground. The RF signals will change from one reference plane to another when interfacing the RF inputs and outputs. A positive supply application is very vulnerable to interference with respect to this point. For a successful +3.3 V application, special care should be taken when designing the PCB layout in order to reduce the influence of interference and to keep the positive supply voltage as clean as possible.

(1) $I_{E E 1 B}$ and $I_{\text {EE2B }}$ at $25^{\circ} \mathrm{C}$.

Fig. 12 Supply current as a function of output voltage

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {EE }}$	negative supply voltage	-5.5	+0.5	V
V_{n}	DC voltage pins IN1, IN1Q, IN2, IN2Q, LOSTH1, LOSTH2, LEVEL1, LEVEL2, $\mathrm{V}_{\text {ref }}$, TEST, OUT2Q, OUT2, OUT1Q, OUT1, $\mathrm{V}_{\text {EEP }}$, GND1A, GND2A, GND1B and GND2B pins LOS1, LOS2, INV1, INV2, S1 and S2	$\mathrm{V}_{\mathrm{EE}}-0.5$ $\mathrm{V}_{\mathrm{EE}}-0.5$	0.5 $V_{E E}+7$	
I_{n}	DC current pins IN1, IN1Q, IN2 and IN2Q pins LOSTH1, LOSTH2, LEVEL1 and LEVEL2 pins $\mathrm{V}_{\text {ref, }}$ TEST, LOS1 and LOS2 pins OUT1, OUT1Q, OUT2 and OUT2Q pins INV1, INV2, S1 and S2	$\left\lvert\, \begin{aligned} & -20 \\ & 0 \\ & -1 \\ & -30 \\ & 0 \end{aligned}\right.$	$\begin{array}{\|l} +20 \\ 14 \\ +1 \\ +30 \\ 20 \end{array}$	mA $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	1.2	W
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{s})}$	thermal resistance from junction to solder point (exposed die pad); note 1		15	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient; note 1	1s2p multi-layer test board	33	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{s}-\mathrm{a})}$	thermal resistance from solder point to ambient (exposed die pad); note 1	1s2p multi-layer test board	18	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{s}-\mathrm{a})(\mathrm{req})}$	required thermal resistance from solder point to ambient	LOS circuits switched on $V_{0}=200 \mathrm{mV}(p-p)$ single-ended; both output circuits $\mathrm{V}_{\mathrm{o}}=800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; both output circuits	60 30	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Note

1. JEDEC standard.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

CHARACTERISTICS

Typical values at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$; minimum and maximum values are valid over the entire ambient temperature range and supply voltage range; all voltages referenced to ground; unless otherwise specified; note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
Supply pins $\mathrm{V}_{\text {EE1A }}$, $\mathrm{V}_{\text {EE1B }}$, $\mathrm{V}_{\text {EE2A }}$ AND $\mathrm{V}_{\text {EE2B }}$						
$\mathrm{V}_{\text {EE }}$	negative supply voltage		-3.13	-3.3	-3.47	V
$\mathrm{I}_{\text {EE1A, }}$ lee2a	negative supply current	LOS circuit power-down	14	24	34	mA
		LOS circuit switched on	24	40	56	mA
$\mathrm{I}_{\text {EE1B }}$, $l_{\text {EE2B }}$	negative supply current	amplifier power-down	2	6	10	mA
		$\mathrm{V}_{\mathrm{o}}=200 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; one output circuit	11	17	24	mA
		$\mathrm{V}_{\mathrm{o}}=800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; one output circuit	47	60	77	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	power-down	100	200	300	mW
		both LOS circuits switched on $\mathrm{V}_{\mathrm{o}}=200 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; both output circuits $\mathrm{V}_{\mathrm{o}}=800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; both output circuits	$\begin{aligned} & 220 \\ & 450 \end{aligned}$	$\begin{aligned} & 380 \\ & 660 \end{aligned}$	$\begin{aligned} & 555 \\ & 925 \end{aligned}$	mW mW
TC	temperature coefficient	LOS circuit switched on; $\mathrm{I}_{\mathrm{EE} 1 \mathrm{~A}}$; lee2A	30	50	80	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
		$\begin{aligned} & \mathrm{V}_{0}=800 \mathrm{mV}(\mathrm{p}-\mathrm{p}) \\ & \text { single-ended; } \mathrm{I}_{\mathrm{EE} 1 \mathrm{~A}} ; \mathrm{I}_{\mathrm{EE} 2 \mathrm{~A}} \end{aligned}$	15	30	50	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+85	${ }^{\circ} \mathrm{C}$
Inputs multiplexer and loss of signal detector						
PECL OR CML InPUT PINS IN1, IN1Q, IN2 AND IN2Q						
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	input voltage swing (peak-to-peak value)	single-ended; note 2	50	-	500	mV
$\mathrm{V}_{\text {i(bias) }}$	DC input bias voltage		-0.28	-0.33	-0.4	V
V_{1}	DC and AC input window voltage	note 3	-1.0	-	+0.3	V
R_{i}	input resistance	single-ended	35	50	70	Ω
C_{i}	input capacitance	single-ended; note 3	0.6	0.8	1.2	pF

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Postamplifier						
Amplifiers A1A, A1B, A2A and A2B						
G_{v}	small signal voltage gain	$\mathrm{V}_{\mathrm{o}}=200 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; note 4	10	15	19	dB
		$\mathrm{V}_{\mathrm{o}}=800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; note 4	22	29	34	dB
f_{D}	signal path data rate	notes 5 and 9	-	2500	-	Mbits/s
$\mathrm{f}_{-3 \mathrm{~dB}(1)}$	low -3 dB cut-off frequency DC compensation	note 3	2	5	10	kHz
$\mathrm{f}_{-3 \mathrm{~dB}(\mathrm{~h})}$	high -3 dB cut-off frequency		-	2.0	-	GHz
$t_{\text {PD }}$	propagation delay	note 3	150	200	250	ps
$\Delta \mathrm{t}_{\text {PD }}$	propagation delay difference	at the same signal levels; note 3	-	0	5	ps
J	total jitter	20 bits of the 28.5 kbits pattern; notes 3 and 6	-	8	-	ps
$\alpha_{\text {ct }}$	crosstalk	crosstalk of IC only	90	110	-	dB
PECL OR CML output pins OUT1, OUT1Q, OUT2 AND OUT2Q						
$\mathrm{V}_{\text {o(se)(p-p) }}$	single-ended output voltage (peak-to-peak value)	50Ω load	200	-	800	mV
TC	temperature coefficient output level		-1	0	-1	mV / K
tr_{r}	rise time	20\% to 80\%; note 5	-	80	-	ps
t_{f}	fall time	80\% to 20\%; note 5	-	80	-	ps
R_{0}	output resistance	single-ended	70	100	130	Ω
C_{0}	output capacitance	single-ended; note 3	0.6	0.8	1.2	pF
Level control input pins LEVEL1 and LEVEL2						
V_{i}	input voltage		$\mathrm{V}_{\text {ref }}$	-	0	V
R_{i}	input resistance	measured to GND1A or GND2A	150	350	600	k Ω
Multiplexer and inverter switch						
PECL or CML Input Pins IN1, IN1Q, IN2 AND IN2Q						
$\alpha_{\text {OS(red) }}$	input offset reduction	$\mathrm{V}_{\mathrm{o}}=200 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ $\text { single-ended; note } 7$	4	9	13	dB
		$\mathrm{V}_{\mathrm{o}}=800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ single-ended; note 7	10	14	20	dB
$\mathrm{V}_{\text {io(cor) }}$	input offset voltage correction range	peak-to-peak value single-ended	-10	-	+10	mV
$\mathrm{V}_{\mathrm{n} \text { (i)(eq)(rms) }}$	equivalent input noise voltage (RMS value)	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=800 \mathrm{mV}(\mathrm{p-p}) \\ & \text { single-ended; note } 3 \end{aligned}$	-	75	170	$\mu \mathrm{V}$
Fn	noise factor	note 3	-	5	12	dB

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Switch Circuit						
t_{a}	assert time	multiplexer and inverter	70	100	200	ns
t_{d}	de-assert time	multiplexer and inverter	55	80	160	ns
TTL InPUT PINS S1, S2, INV1 AND INV2						
V_{IL}	LOW-level input voltage	positive logic	2.0	-	$\mathrm{V}_{\mathrm{EE}}+7.3$	V
		negative logic	$\mathrm{V}_{\mathrm{EE}}-0.3$	-	-2.5	V
V_{IH}	HIGH-level input voltage	negative logic	-1.3	-	+0.3	V
		positive logic	-0.3	-	+0.8	V
R_{i}	input resistance	measured to $\mathrm{V}_{\text {EE1A }}$ or $\mathrm{V}_{\text {EE2 }}$	100	180	400	k Ω
I_{i}	input current		-10	-	+10	$\mu \mathrm{A}$
Received Signal Strength Indicator and Loss Of Signal detector						
RSSI AND LOS CIRCUIT						
$\mathrm{V}_{\mathrm{i} \text { (se)(p-p) }}$	single-ended input voltage swing (peak-to-peak value)		0.4	-	400	mV
DR	dynamic range		57	60	63	dB
$\mathrm{S}_{\text {LOS }}$	LOS sensitivity	50 MHz , square; note 8	11	12.5	14	$\mathrm{mV} / \mathrm{dB}$
		620 MHz , square; note 8	10.7	11.9	13	$\mathrm{mV} / \mathrm{dB}$
		1.2 GHz, square; note 8	10	11.1	12.2	$\mathrm{mV} / \mathrm{dB}$
		$100 \mathrm{MB} / \mathrm{s} \text { PRBS }\left(2^{31}-1\right) ;$ note 8	11.2	12.7	14.2	$\mathrm{mV} / \mathrm{dB}$
		1.2 GB/s PRBS ($2^{31}-1$); note 8	10.9	12.4	13.9	$\mathrm{mV} / \mathrm{dB}$
		100 GB/s PRBS (2 $2^{31}-1$); note 8	10.7	11.9	13	$\mathrm{mV} / \mathrm{dB}$
TC sens	temperature coefficient sensitivity		-2	0	-2	$\mu \mathrm{V} / \mathrm{dbK}$
LE	linearity error	see Fig. 10	-	0.5	1	dB
$\alpha_{\text {OS(red) }}$	input offset reduction	notes 3 and 7	25	35	45	dB
$\mathrm{V}_{\text {io(cor) }}$	input offset voltage correction range	peak-to-peak value single-ended	-5	-	+5	mV
$\mathrm{f}_{-3 \mathrm{~dB}}(1)$	low -3 dB cut-off frequency		0.5	1	2	MHz
$\mathrm{f}_{-3 \mathrm{~dB}(\mathrm{~h})}$	high -3 dB cut-off frequency	note 8	1.5	2	2.5	GHz
LOS CIRCUIT						
hys LOS	LOS hysteresis	input signal waveform dependency	2.0	3.0	4.0	dB
t_{a}	assert time	note 3	-	-	5	$\mu \mathrm{S}$
t_{d}	de-assert time	note 3	-	-	5	$\mu \mathrm{S}$
InPUT PINS LOSTH1 AND LOSTH2						
V_{i}	input voltage		V_{EE}	-	0	V
R_{i}	input resistance	measured to $\mathrm{V}_{\text {EE1A }}$ or $\mathrm{V}_{\text {EE2A }}$	150	350	600	$\mathrm{k} \Omega$

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
OUTPUT PINS LOS1 and LOS2						
V	output voltage		V_{EE}	-	3.5	V
$\mathrm{I}_{0 \text { (sink) }}$	output sink current		-	-	1	mA
R_{0}	output resistance	internal output series resistance	3.5	5	6.5	$\mathrm{k} \Omega$
Output pins RSSI1 and RSSI2						
V_{0}	output voltage		-1	-	0	V
I_{0}	output current		-1	-	+1	mA
Band gap reference circuit						
OUTPUT PIN $\mathrm{V}_{\text {REF }}$						
$\mathrm{V}_{\text {ref }}$	reference voltage		-1.45	-1.6	-1.8	V
$\mathrm{C}_{\text {ext }}$	allowed external capacitance		-	-	10	pF
$\mathrm{I}_{0 \text { (sink) }}$	output sink current		-	-	500	$\mu \mathrm{A}$

Notes

1. It is assumed that both CML inputs carry a complementary signal with the specified peak-to-peak value (true differential excitation).
2. Minimum signal with limiting output.
3. Guaranteed by design.
4. $G_{V}=\frac{V_{0}}{V_{i}}$
5. Based on -3 dB cut-off frequency.
6. $V_{i}=100 \mathrm{mV}(p-p)$ single-ended and $V_{0}=200 \mathrm{mV}(p-p)$ single-ended.
7. Input offset reduction $=\frac{G_{A C}}{G_{D C}}$
8. Sensitivity depends on the waveform and is therefore a function of -3 dB cut-off frequency see equation (1).
9. Low limit can go as low as DC if input signal overrides input offset voltage correction range.

APPLICATION INFORMATION

RF input and output connections

Striplines, or microstrips, with an odd mode characteristic impedance of $Z_{o}=50 \Omega$ must be used for the differential RF connections on the PCB. This applies to both the signal inputs and the signal outputs. The two lines in each pair should have the same length.

Grounding and power supply decoupling

The ground connection on the PCB needs to be a large copper filled area connected to a common ground plane with an inductance as low as possible.

All V_{EE} pins (one at each corner and the exposed die pad) need to be connected to a common supply plane with an inductance as low as possible. This plane should be decoupled to ground. To avoid high frequency resonance, multiple bypass capacitors should not be mounted at the same location. To minimize low frequency switching noise in the vicinity of the TZA3019, the power supply line should be filtered once using a beaded capacitor circuit with a low cut-off frequency (see Figs 13 and 14).

The V_{EE} connection on the PCB also needs to be a large copper area to improve heat transfer to the PCB and thus support IC cooling.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

\longrightarrow

Fig. 13 PCB layout for negative supply voltage.

2.5 Gbits/s dual postamplifier with level

 detectors and 2×2 switch

Fig. 14 PCB layout for positive supply voltage.
2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

BONDING PAD LOCATIONS

SYMBOL	PAD	COORDINATES ${ }^{(1)}$	
		\mathbf{x}	
\mathbf{y}	\mathbf{y}		
GND1A	1	-928	+710
IN1	2	-928	+553
IN1Q	3	-928	+396
GND1A	4	-928	+239
n.c.	5	-928	+81
n.c.	6	-928	-81
GND2A	7	-928	-239
IN2	8	-928	-396
IN2Q	9	-928	-553
GND2A	10	-928	-710
V $_{\text {EE2A }}$	11	-707	-928
LOSTH1	12	-550	-928
LOSTH2	13	-393	-928
n.c.	14	-236	-928
LEVEL1	15	-79	-928
LEVEL2	16	+79	-928
VREF	17	+236	-928
n.c.	18	+393	-928
TEST	19	+550	-928
V $_{\text {EE2B }}$	20	+707	-928
GND2B	21	+928	-710
OUT2Q	22	+928	-553

SYMBOL	PAD	COORDINATES ${ }^{(1)}$	
		\mathbf{x}	\mathbf{y}
OUT2	23	+928	-396
GND2B	24	+928	-239
n.c.	25	+928	-81
n.c.	26	+928	+81
GND1B	27	+928	+239
OUT1Q	28	+928	+396
OUT1	29	+928	+553
GND1B	30	+928	+710
V $_{\text {EE1B }}$	31	+707	+928
RSSI2	32	+550	+928
LOS2	33	+393	+928
RSSI1	34	+236	+928
LOS1	35	+79	+928
INV2	36	-79	+928
INV1	37	-236	+928
S2	38	-393	+928
S1	39	-550	+928
VEE1A	40	-707	+928

Note

1. All x and y coordinates represent the position of the centre of the pad in $\mu \mathrm{m}$ with respect to the centre of the die (see Fig.15)

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Fig. 15 Bonding pad locations TZA3019U.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

PACKAGE OUTLINE

HTQFP32: plastic, heatsink thin quad flat package; 32 leads; body $5 \times 5 \times 1.0 \mathrm{~mm}$
SOT547-2

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	D_{h}	$E^{(1)}$	E_{h}	e	H_{D}	H_{E}	L	L_{p}	v	w	y	$Z_{\text {D }}{ }^{(1)}$	$\mathrm{Z}_{\mathrm{E}}{ }^{(1)}$	θ
mm	1.2	0.15	1.05	0.25	0.27	0.20	5.1	3.1	5.1	3.1	0.5	7.1	7.1	1.0	0.75	0.2	0.08	0.08	0.89	0.89	7°
		0.05	0.95		0.17	0.09	4.9	2.7	4.9	2.7		6.9	6.9		0.45				0.61	0.61	0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
					$99-06-15$	

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	b	b_{1}	b_{2}	b_{3}	D	D_{1}	E	E_{1}	e	e_{1}	e_{2}	e_{3}	e_{4}	v	w	x	y
mm	0.80	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 49 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	0.5	4.2	4.2	4.15	4.15	0.2	0.15	0.15	0.05

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW ${ }^{(1)}$
BGA, SQFP HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS PLCC ${ }^{(3)}$, SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO	not suitable not suitable ${ }^{(2)}$ suitable not recommended ${ }^{(3)(4)}$ not recommended ${ }^{(5)}$	suitable suitable suitable suitable suitable

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS ${ }^{(1)}$
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch
2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

NOTES

2.5 Gbits/s dual postamplifier with level detectors and 2×2 switch

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160101 1248, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 268 9211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 3329 3333, Fax. +45 33293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9615 800, Fax. +358 961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI),
Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050,5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SAO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 14882741 Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2886, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +1 8009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands
403510/50/01/pp32
Date of release: 2000 Apr 10

PHILIPS

