

General Description

The LM2574 family is a series of easy to use fixed and adjustable switching voltage regulators. The LM2574 contains all of the active circuitry necessary to construct a stepdown (buck) switching regulator and requires a minimum of external components.
The LM2574 is available in 3.3 V and 5 V fixed output versions, or an adjustable version with an output voltage range of 1.23 V to 37 V . Output voltage is guaranteed to $\pm 4 \%$ for specified input and load conditions.
The LM 2574 can supply 0.5 A while maintaining excellent line and load regulation. The output switch includes cycle-bycycle current limiting, as well as thermal shutdown for full protection under fault conditions.
An external shutdown connection selects operating or standby modes. Standby current is less than $200 \mu \mathrm{~A}$.
Heat sinks are generally unnecessary due the regulator's high efficiency. Adequate heat transfer is usually provided by soldering all package pins to a printed circuit board.
The LM2574 includes internal frequency compensation and an internal 52 kHz fixed frequency oscillator guaranteed to $\pm 10 \%$ of the frequency.
Circuits constructed around the LM2574 use a standard series of inductors which are available from several different manufacturers.
All support documentation can be found on Micrel's web site at www.micrel.com.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable output versions
- Adjustable version output 1.23 V to $37 \mathrm{~V} \pm 4 \%$ max. over line and load conditions.
- Guaranteed 0.5 A output current
- Wide input voltage, up to 40 V
- Thermal shutdown and current limit protection
- Requires only 4 external components.
- Shutdown capability (standby mode)
- Low power standby mode < 200 $\mu \mathrm{A}$ Typical
- High-efficiency
- 52 kHz fixed frequency internal oscillator
- Uses standard inductors

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (buck-boost)

Ordering Information

Part Number	Junction Temp. Range	Package
LM2574BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin Plastic DIP
LM2574-3.3BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin Plastic DIP
LM2574-5.0BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin Plastic DIP

Typical Application

Figure 1. Fixed Output Regulator Circuit

Pin Configuration

8-Pin DIP (N)

Absolute Maximum Ratings ${ }^{(1)}$

Operating Ratings ${ }^{(1)}$

Supply VoltageLM257440V
Temperature Range LM2574Maximum Junction Temperature $\left(T_{J}\right.$$150^{\circ} \mathrm{C}$

Electrical Characteristics ${ }^{(2)}$

Specifications with standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, and $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
System Parameters, Adjustable Regulators ${ }^{(3)}$, Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	1.217	1.230	1.243	V
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage (LM2574)	$\begin{aligned} & 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}, 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.193 \\ & 1.180 \end{aligned}$	1.230	$\begin{aligned} & 1.267 \\ & 1.280 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		78		\%

System Parameters, 3.3V Regulators ${ }^{(3)}$, Test Circuit Figure 3

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$	3.234	3.3	3.366	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$,	3.168	3.3	3.432	V
	(LM2574-3.3)	$\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}$	3.135		3.465	V
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}$		73		$\%$

System Parameters, 5V Regulators ${ }^{(3)}$, Test Circuit Figure 3

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	4.900	5.0	5.100	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}, 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$,	4.800	5.0	5.200	V
	$($ LM2574-5.0 $)$	$\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$	4.750		5.250	V
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		78		$\%$

Notes:

1. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. "Operating Ratings" indicate for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see "Electrical Characteristics."
2. All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via testing.
3. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in Figure 1 test circuit, system performance will be shown in system parameters section of "Electrical Characteristics."

Electrical Characteristics

Symbol	Parameter	Condition	Min	Typ	Max	Units
Device Parameters, Adjustable Regulator						
I_{B}	Feedback Bias Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		50	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

Device Parameters, Fixed and Adjustable Regulators

f_{0}	Oscillator Frequency	Note 8	$\begin{aligned} & 47 \\ & 42 \end{aligned}$	52	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}^{(4)}$		0.8	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
DC	Max Duty Cycle (ON)	Note 5	93	98		\%
I_{CL}	Current Limit	Peak Current, $\mathrm{t}_{\mathrm{ON}} \leq 3 \mu \mathrm{~s}^{(4)}$	$\begin{gathered} 0.7 \\ 0.65 \end{gathered}$	1.0	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	A
I_{L}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text {, Note 6, Output }=0 \mathrm{~V} \\ & \text { Note 6, Output }=-1 \mathrm{~V} \end{aligned}$		7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	mA
I_{Q}	Quiescent Current	Note 6		5	10	mA
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)		50	200	$\mu \mathrm{A}$
$\theta_{\text {JA }}$	Thermal Resistance	N Package, Junction to Ambient ${ }^{(7)}$		85		${ }^{\circ} \mathrm{C} / \mathrm{W}$

On/Off Control, Fixed and Adjustable Regulators Test Circuit Figures 2, 3

V_{IH}	ON/OFF Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	2.2	1.4	
$\mathrm{~V}_{\mathrm{IL}}$	ON/OFF Input Level	$\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$		1.2	1.0
			V		
I_{IH}	ON/OFF Logic Current	ON/OFF $=5 \mathrm{~V}(\mathrm{OFF})$		4	30
I_{IL}	ON/OFF Logic Current	ON/OFF $=0 \mathrm{~V}(\mathrm{ON})$	$\mu \mathrm{A}$		

Notes:
4. Output (pin 2) sourcing current. No diode, inductor, or capacitor connected to input.
5. Feedback (pin 4) removed from output and connected to OV.
6. Feedback (pin 4) removed from output and connected to 12 V to force the output transistor OFF.
7. Junction-to-ambient thermal resistance with approximately 1 square inches of PC board copper surrounding the leads.

Test Circuit

Figure 2. Adjustable Regulator Test Circuit

Figure 3. Fixed Regulator Test Circuit

Typical Characteristics (Circuit of Figure 1)

Current Limit

JUNCTION TEMPERATURE (${ }^{\circ}$ C)

Minimum Operating
 Voltage

Switch
Saturation Voltage

Line Regulation

Oscillator Frequency

Standby
Quiescent Current

Efficiency

Feedback Pin Current

Typical Performance Characteristics (continued)

Block Diagrams

Note: Pin numbers are for the TO-220 package
Fixed Regulator

Adjustable Regulator

Package Information

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
tel + 1 (408) 944-0800 FAX + 1 (408) 944-0970 web http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a proAØkt can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.

