DATHA SHEET

PCF1175C 4-digit duplex LCD car clock

Product specification
Supersedes data of September 1993
File under Integrated Circuits, IC16

4-digit duplex LCD car clock

FEATURES

- Internal voltage regulator is electrically programmable for various LCD voltages
- Time calibration is electrically programmable (no trimming capacitor required)
- LCD voltage adjusts with temperature for good contrast
- 4.19 MHz oscillator
- 12-hour or 24 -hour mode
- Operating ambient temperature: -40 to $+85^{\circ} \mathrm{C}$
- 28-lead plastic SMD (SO28)
- 1 Hz set mode.

GENERAL DESCRIPTION

The PCF1175C is a single chip, 4.19 MHz CMOS car clock circuit providing hours, minutes and seconds functions. It is designed to drive a 4-digit duplex liquid crystal display (LCD).

Two external single-pole, single-throw switches will accomplish all time setting functions. Time calibration and voltage regulator are electrically programmable via an on-chip EEPROM. The circuit is battery-operated via an internal voltage regulator and an external resistor.

ORDERING INFORMATION

TYPE NUMBER	NAME	PACKAGE	
	SO28	plastic small outline package; 28 leads; body width $7.5 \mathrm{~mm}^{(1)}$	VOT136-1
PCF1175CU	-	uncased chip in tray ${ }^{(2)}$	-
PCF1175CU/10	-	chip-on-film frame carrier (FFC) ${ }^{(2)}$	-

Notes

1. See Fig. 1 and Chapter "Package outline" for pin layout and package details.
2. See Chapter "Chip dimensions and bonding pad locations" for pad layout and package details.

PINNING

SYMBOL	PIN	DESCRIPTION
S1	1	hour adjustment input
DATA	2	EEPROM data input
OSC IN	3	oscillator input
OSC OUT	4	oscillator output
V $_{\text {SS }}$	5	negative supply voltage
MODE	6	12/24-hour mode select input
V PP $^{\text {TS }}$	7	programming voltage input
ENABLE	8	test speed-up mode input
V $_{\text {DD }}$	9	enable input (for S1 and S2)
FLASH	10	positive supply voltage
SEL	12	colon option input
S2	13	minute adjustment input
B4/C4	14	segment driver
G4/D4	15	segment driver
F4/E4	16	segment driver
B3/C3	17	segment driver
G3/AD3	18	segment driver
F3/E3	19	segment driver
A4/COL	20	segment driver
B2/C2	21	segment driver
G2/D2	22	segment driver
F2/E2	23	segment driver
B1/C1	24	segment driver
A2/ADEG1	25	segment driver
AM/PM	26	segment driver
BP2	27	backplane 2
BP1	28	backplane 1

Fig. 1 Pin configuration, PCF1175CT, (SO28).

FUNCTIONAL DESCRIPTION AND TESTING

Outputs

The circuit outputs 1:2 multiplexed data (duplex) to the LCD. Generation of BP1 and BP2 (three-level backplane signals) and the output signals are shown in Fig.4.

The average voltages across the segments are:

1. $\mathrm{V}_{\mathrm{ON}(\mathrm{RMS})}=0.79 \mathrm{~V}_{\mathrm{DD}}$
2. $\mathrm{V}_{\mathrm{OFF}(\mathrm{RMS})}=0.35 \mathrm{~V}_{\mathrm{DD}}$.

Fig. 2 Segment designation of LCD.

4-digit duplex LCD car clock

LCD voltage (see Fig.5)

The adjustable voltage regulator controls the supply voltage (see Section "LCD voltage programming") in relation to temperature for good contrast, for example when $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ at $+25^{\circ} \mathrm{C}$, then:
$V_{D D}=3$ to 4 V at $+85^{\circ} \mathrm{C}$.
$V_{D D}=5$ to 6 V at $-40^{\circ} \mathrm{C}$.

(1) Programmed to 4.0 V at $25^{\circ} \mathrm{C}$ (value within the specified operating range).
(2) Programmed to 4.5 V at $25^{\circ} \mathrm{C}$ (value within the specified operating range).
(3) Programmed to 5.0 V at $25^{\circ} \mathrm{C}$ (value within the specified operating range).

Fig. 5 Regulated voltage as a function of temperature (typical).

4-digit duplex LCD car clock

12/24-hour mode

Operation in 12-hour or 24-hour mode is selected by connecting MODE to $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ respectively. If MODE is left open-circuit and a reset occurs, the mode will change from 12 -hour to 24 -hour mode or vice versa.

Power-on

After connecting the supply, the start-up mode is:
MODE connected to V_{DD} : 12-hour mode, 1:00 AM.
MODE connected to V_{SS} : 12-hour mode, 0:00.
MODE left open-circuit: 24-hour mode, 0:00 or 1:00.

Colon

If FLASH is connected to $V_{D D}$ the colon pulses at 1 Hz . If FLASH is connected to $\mathrm{V}_{S S}$ the colon is static.

Time setting

Switch inputs S1 and S2 have a pull-up resistor to facilitate the use of single-pole, single-throw contacts. A debounce circuit is incorporated to protect against contact bounce and parasitic voltages.

Set enable

Inputs S1 and S2 are enabled by connecting ENABLE to V_{DD} or disabled by connecting to V_{SS}.

Set hours

When S 1 is connected to V_{SS} the hours displayed advances by one and after one second continues with one advance per second until S1 is released (auto-increment).

Set minutes

When S 2 is connected to V_{SS} the time displayed in minutes advances by one and after one second continues with one advance per second until S2 is released (auto-increment). In addition to minute correction, the seconds counter is reset to zero.

Segment test/reset

When S 1 and S 2 are connected to V_{SS}, all LCD segments are switched ON. Releasing switches S1 and S2 resets the display. No reset occurs when DATA is connected to V_{SS} (overlapping S1 and S2).

Test mode

When TS is connected to $V_{D D}$, the device is in normal operating mode. When connecting TS to $\mathrm{V}_{\text {SS }}$ all counters (seconds, minutes and hours) are stopped, allowing quick testing of the display via S1 and S2 (debounce and auto-increment times are 64 times faster). TS has a pull-up resistor but for reasons of safety it should be connected to V_{DD}.

EEPROM

$V_{\text {PP }}$ has a pull-up resistor but for reasons of safety it should be connected to V_{DD}.

LCD voltage programming

To enable LCD voltage programming, SEL is set to open-circuit and a level of $\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$ is applied to V_{PP} (see Fig.6). The first pulse (t_{E}) applied to the DATA input clears the EEPROM to give the lowest voltage output. Further pulses (t_{L}) will increment the output voltage by steps of typically 150 mV ($\left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$. For programming, measure $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ and apply a store pulse (t_{W}) when the required value is reached. If the maximum number of steps ($\mathrm{n}=31$) is reached and an additional pulse is applied the voltage will return to the lowest value.

Time calibration

To compensate for the tolerance in the quartz crystal frequency which has been positively offset (nominal deviation $+60 \times 10^{-6}$) by capacitors at the oscillator input and output, a number (n) of 262144 Hz are inhibited every second of operation.

4-digit duplex LCD car clock

The number (n) is stored in a non-volatile memory which is achieved by the following steps (see Fig.6):

1. Set $S E L$ to $V_{S S}$ and a level of $V_{D D}-5 V$ to $V_{P P}$
2. The quartz-frequency deviation $\Delta f / f$ is measured and (n) is calculated (see Table 1)
3. A first pulse t_{E} is applied to the DATA input clears the EEPROM to give the highest backplane frequency
4. The calculated pulses (n) are entered in ($\mathrm{t}_{\mathrm{H}}, \mathrm{t}_{\mathrm{L}}$). If the maximum backplane period is reached and an additional pulse is applied the period will return to the lowest value.
5. The backplane period is controlled and when correct fixed by applying the store pulse t_{w}
6. Release SEL and VPP.

Table 1 Time calibration ($\Delta \mathrm{t}=7.63 \mu \mathrm{~s}$; SEL at V_{SS})

OSCILLATOR-FREQUENCY DEVIATION $\Delta \mathbf{f} / \mathbf{f}$ $\left(\times \mathbf{1 0}^{-6}\right)$NUMBER OF PULSES $\mathbf{(n)}$	BACKPLANE PERIOD $(\mathbf{m s})$	
0	0	15.625
+3.8	1	15.633
+7.6	2	15.641
+11.4	3	15.648
\cdot	\cdot	.
\cdot	\cdot	.
+	.	.
+117.8	31	15.861

4-digit duplex LCD car clock

${ }^{t}{ }_{E}, t_{W}=4$ to 6 ms
${ }^{t_{H}}=\geqslant 1 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{L}}=1$ to $1.5 \mu \mathrm{~s}$

Fig. 6 Programming diagram.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage	with respect to V_{SS}	-	8	V
I_{DD}	supply current	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ;$ note 1	-	3	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	all pins except V_{PP} and DATA	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
		pins $\mathrm{V}_{\text {PP }}$ and DATA	-3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+125	${ }^{\circ} \mathrm{C}$

Note

1. Connecting the supply voltage with reverse polarity, will not harm the circuit, provided the current is limited to 10 mA by an external resistor.

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is advisable to take handling precautions appropriate to handling MOS devices. Advice can be found in "Data Handbook IC16, General, Handling MOS Devices".

4-digit duplex LCD car clock

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; crystal: $\mathrm{f}=4.194304 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$; maximum frequency tolerance $= \pm 30 \times 10^{-6}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
VDD	supply voltage	voltage regulator programmed to 4.5 V at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	3	-	6	V
$\Delta \mathrm{V}_{\mathrm{DD}}$	supply voltage variation	S1 or S2 closed	-	-	50	mV
TC	supply voltage variation due to temperature		-	-0.35	-	\%/K
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-16	-	mV / K
I_{DD}	supply current	note 1	700	950	-	$\mu \mathrm{A}$
$\mathrm{C}_{\text {EXT }}$	capacitance	external capacitor	47	-	-	$\mu \mathrm{F}$
Oscillator						
$\mathrm{t}_{\text {osc }}$	start time		-	-	200	ms
$\Delta \mathrm{f} / \mathrm{f}$	frequency deviation	nominal $\mathrm{n}=0$	0	60×10^{-6}	110×10^{-6}	
$\Delta \mathrm{f} / \mathrm{f}$	frequency stability	$\Delta \mathrm{V}_{\mathrm{DD}}=100 \mathrm{mV}$	-	-	1×10^{-6}	
R_{fb}	feedback resistance		300	1000	3000	$\mathrm{k} \Omega$
C_{i}	input capacitance		-	16	-	pF
C_{0}	output capacitance		-	27	-	pF
Inputs						
R_{O}	pull-up resistance	S1, S2, TS, SEL and DATA	45	90	180	$\mathrm{k} \Omega$
R_{O}	pull-up/pull-down resistance	MODE	100	300	1000	$\mathrm{k} \Omega$
$\mathrm{I}_{\text {IL }}$	leakage current	ENABLE, FLASH	-	-	2	$\mu \mathrm{A}$
$\mathrm{t}_{\text {d }}$	debounce time	S1 and S2 only	30	65	100	ms
V_{PP} programming voltage						
$\mathrm{l}_{\mathrm{O} 2}$	output current	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$	70	-	700	$\mu \mathrm{A}$
		during programming	-	500	-	$\mu \mathrm{A}$
Backplane (high and low levels)						
R_{BP}	output resistance	$\pm 100 \mu \mathrm{~A}$	-	-	3	$\mathrm{k} \Omega$
Segment						
$\mathrm{R}_{\text {SEG }}$	output resistance	$\pm 100 \mu \mathrm{~A}$	-	-	5	$\mathrm{k} \Omega$
LCD						
$\mathrm{V}_{\text {offset(DC) }}$	DC offset voltage	$200 \mathrm{k} \Omega / 1 \mathrm{nF}$	-	-	50	mV

Note

1. A suitable resistor (R) must be selected (example):
a) $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; $R \max .(12 \mathrm{~V}-5 \mathrm{~V}) / 700 \mu \mathrm{~A}=10 \mathrm{k} \Omega$.
b) $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; R typ. $(12 \mathrm{~V}-5 \mathrm{~V}) / 900 \mu \mathrm{~A}=7.8 \mathrm{k} \Omega$ (more reserve).
c) $I_{D D}$ must not exceed 3 mA .

CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Chip area: $5.61 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $110 \mu \mathrm{~m} \times 110 \mu \mathrm{~m}$.
Chip thickness: $381 \pm 25 \mu \mathrm{~m}$.

Fig. 7 Bonding pad locations, PCF1175CU; 28 terminals.

4-digit duplex LCD car clock

Table 2 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to the bottom left pad $\left(\mathrm{V}_{\mathrm{SS}}\right)$, see Fig.7.

PAD	\mathbf{x}	\mathbf{y}	PAD	\mathbf{x}	\mathbf{y}
S1	-138	881	G4/D4	1438	1588
DATA	-138	639	F4/E4	1438	1808
OSC IN	-138	408	B3/C3	1438	2028
OSC OUT	-138	188	G3/AD3	1438	2248
V $_{\text {SS }}$	0	0	F3/E3	1400	2476
MODE	383	0	A4/COL	1000	2476
VPP $^{\text {PP }}$	583	0	B2/C2	800	2476
TS	846	0	G2/D2	600	2476
ENABLE	1046	0	F2/E2	400	2476
VDD $^{\text {FLASH }}$	1352	0	B1/C1	0	2476
SEL	1438	188	A2/ADEG1	-138	2248
S2	1438	408	AM/PM	-138	2028
B4/C4	1438	628	BP2	-138	1808
Chip corner (max. value)	-355	-175		-138	1588

4-digit duplex LCD car clock

APPLICATION INFORMATION

(1) To be placed close to the IC.

Fig. 8 Typical application diagram.

PACKAGE OUTLINE

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 17.7 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.69 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT136-1	075E06	MS-013AE		\bigcirc	$\begin{aligned} & \hline 91-08-13 \\ & 95-01-24 \end{aligned}$

4-digit duplex LCD car clock

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within
6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

4-digit duplex LCD car clock

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the e limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +453288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +603750 5214, Fax. +6037574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327

Portugal: see Spain

Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
Internet: http://www.semiconductors.philips.com

SCA54
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands 417087/1200/02/pp20
Date of release: 1997 Apr 16
Document order number: 939775001529

Philips
Semiconductors

PHILIPS

