LT3024

Low Dropout, Low Noise, Micropower Regulator

feATURES

- Low Noise: $20 \mu V_{\text {RMS }}$ (10 Hz to 100 kHz)
- Low Quiescent Current: 30 $\mathrm{A} /$ /Output
- Wide Input Voltage Range: 1.8V to 20V
- Output Current: $100 \mathrm{~mA} / 500 \mathrm{~mA}$
- Very Low Shutdown Current: <0.1 $\mu \mathrm{A}$
- Low Dropout Voltage: 300 mV at $100 \mathrm{~mA} / 500 \mathrm{~mA}$
- Adjustable Outputs from 1.22V to 20V
- Stable with $1 \mu \mathrm{~F} / 3.3 \mu \mathrm{~F}$ Output Capacitor
- Stable with Aluminum, Tantalum or

Ceramic Capacitors

- Reverse-Battery Protected
- No Reverse Current
- No Protection Diodes Needed
- Overcurrent and Overtemperature Protected
- Thermally Enhanced 16-Lead TSSOP and 12-Lead ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$) DFN Packages

APPLICATIONS

- Cellular Phones
- Pagers
- Battery-Powered Systems
- Frequency Synthesizers
- Wireless Modems
$\overline{\mathbf{1 Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTION

The LT ${ }^{\circledR} 3024$ is a dual, micropower, low noise, low dropout regulator. With an external $0.01 \mu \mathrm{~F}$ bypass capacitor, output noise drops to $20 \mu \mathrm{~V}_{\text {RMS }}$ over a 10 Hz to 100 kHz bandwidth. Designed for use in battery-powered systems, the low $30 \mu \mathrm{~A}$ quiescent current per output makes it an ideal choice. In shutdown, quiescent current drops to less than $0.1 \mu \mathrm{~A}$. Shutdown control is independent for each output, allowing for flexibility in power management. The device is capable of operating over an input voltage range of 1.8 V to 20 V . The device can supply 100 mA of output current from Output 2 with a dropout voltage of 300 mV . Output 1 can supply 500 mA of output current with a dropout voltage of 300 mV . Quiescent current is well controlled in dropout.
The LT3024 regulator is stable with output capacitors as low as $1 \mu \mathrm{~F}$ for the 100 mA output and $3.3 \mu \mathrm{~F}$ for the 500 mA output. Small ceramic capacitors can be used without the series resistance required by other regulators.
Internal protection circuitry includes reverse-battery protection, current limiting, thermal limiting and reverse current protection. The device is available as an adjustable device with a 1.22 V reference voltage. The LT3024 regulator is available in the thermally enhanced 16-lead TSSOP and 12 -lead, low profile $(4 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm})$ DFN packages.

TYPICAL APPLICATION

3.3V/2.5V Low Noise Regulators

10Hz to 100kHz Output Noise

ABSOLUTG MAXIMUM RATINGS
 (Note 1)

IN Pin Voltage

\qquad $\pm 20 \mathrm{~V}$
OUT1, OUT2 Pin Voltage $\pm 20 \mathrm{~V}$
Input-to-Output Differential Voltage $\pm 20 \mathrm{~V}$
ADJ1, ADJ2 Pin Voltage $\pm 7 \mathrm{~V}$
BYP1, BYP2 Pin Voltage $\pm 0.6 \mathrm{~V}$
SHDN1, SHDN2 Pin Voltage $\pm 20 \mathrm{~V}$
Output Short-Circut Duration

\qquad
Indefinite

Operating Junction Temperature Range (Note 2) \qquad $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range

FE Package
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
DE Package $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for parts specified with wider operating temperature ranges.

electrical characteristics

The © denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Input Voltage (Notes 3, 11)	$\begin{aligned} & \text { Output 2, } \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \\ & \text { Output 1, } \mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	V
ADJ1, ADJ2 Pin Voltage (Notes 3, 4)	$\begin{aligned} & V_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \text { Output } 2,2.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<100 \mathrm{~mA} \\ & \text { Output } 1,2.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<l_{\text {LOAD }}<500 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 1.205 \\ & 1.190 \\ & 1.190 \end{aligned}$	$\begin{aligned} & 1.220 \\ & 1.220 \\ & 1.220 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.235 \\ & 1.250 \\ & 1.250 \end{aligned}$	V V V
Line Regulation (Note 3)	$\Delta \mathrm{V}_{\text {IN }}=2 \mathrm{~V}$ to 20V, $\mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA}$	\bullet		1	10	mV
Load Regulation (Note 3)	$\begin{aligned} \text { Output 2, } \mathrm{V}_{\text {IN }} & =2.3 \mathrm{~V}, \Delta \mathrm{l}_{\text {LOAD }} \end{aligned}=1 \mathrm{~mA} \text { to } 100 \mathrm{~mA}$	\bullet		1	$\begin{aligned} & 12 \\ & 25 \end{aligned}$	mV mV
	$\begin{aligned} \text { Output 1, } \mathrm{V}_{\text {IN }} & =2.3 \mathrm{~V}, \Delta \mathrm{l}_{\text {LOAD }} \end{aligned}=1 \mathrm{~mA} \text { to } 500 \mathrm{~mA}$	\bullet		1	$\begin{aligned} & 12 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

eLECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Dropout Voltage (Output 2) $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL) }}$ (Notes 5, 6, 11)	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \end{aligned}$	\bullet		0.10	$\begin{aligned} & 0.15 \\ & 0.19 \end{aligned}$	V
	$\begin{aligned} & I_{\text {LOAD }}=10 \mathrm{~mA} \\ & I_{\text {OAD }}=10 \mathrm{~mA} \end{aligned}$	\bullet		0.17	$\begin{aligned} & 0.22 \\ & 0.29 \end{aligned}$	V
	$\begin{aligned} & I_{\text {LOAD }}=50 \mathrm{~mA} \\ & I_{\text {LOAD }}=50 \mathrm{~mA} \end{aligned}$	\bullet		0.24	$\begin{aligned} & 0.31 \\ & 0.40 \end{aligned}$	V
	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$	\bullet		0.30	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	V
Dropout Voltage (Output 1) $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL }}$ (Notes 5, 6, 11)	$\begin{aligned} & I_{\text {LOAD }}=10 \mathrm{~mA} \\ & I_{\text {LOAD }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		0.13	$\begin{aligned} & 0.19 \\ & 0.25 \end{aligned}$	V
	$\begin{aligned} & I_{\text {LOAD }}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LOAD}}=50 \mathrm{~mA} \end{aligned}$	\bullet		0.17	$\begin{aligned} & 0.22 \\ & 0.32 \end{aligned}$	V
	$\begin{aligned} & I_{\text {LOAD }}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LOAD}}=100 \mathrm{~mA} \end{aligned}$	\bullet		0.20	$\begin{aligned} & 0.34 \\ & 0.44 \end{aligned}$	V
	$\begin{array}{\|l\|} \hline I_{\text {LOAD }}=500 \mathrm{~mA} \\ I_{\text {LOAD }}=500 \mathrm{~mA} \end{array}$	\bullet		0.30	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	V
GND Pin Current (Output 2) $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$ (NOMINAL) (Notes 5, 7)	$\begin{aligned} & I_{\text {LOAD }}=0 \mathrm{~mA} \\ & I_{\text {LOAD }}=1 \mathrm{~mA} \\ & \left.\right\|_{\text {LOAD }}=10 \mathrm{~mA} \\ & \left.\right\|_{\text {LOAD }}=50 \mathrm{~mA} \\ & I_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 20 \\ 55 \\ 230 \\ 1 \\ 2.2 \end{gathered}$	$\begin{gathered} \hline 45 \\ 90 \\ 400 \\ 2 \\ 4 \end{gathered}$	μA μA μA $m A$ $m A$
GND Pin Current (Output 1) $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$ (NOMINAL) (Notes 5, 7)	$\begin{aligned} & l_{\text {LOAD }}=0 \mathrm{~mA} \\ & I_{\text {LOAD }}=1 \mathrm{~mA} \\ & I_{\text {LOAD }}=50 \mathrm{~mA} \\ & I_{\text {LOAD }}=100 \mathrm{~mA} \\ & I_{\text {LOAD }}=250 \mathrm{~mA} \\ & I_{\text {LOAD }}=500 \mathrm{~mA} \\ & \hline \end{aligned}$			$\begin{gathered} 30 \\ 65 \\ 1.1 \\ 2 \\ 5 \\ 11 \end{gathered}$	$\begin{gathered} 75 \\ 120 \\ 1.6 \\ 3 \\ 8 \\ 16 \end{gathered}$	μA μA $m A$ $m A$ $m A$ $m A$
Output Voltage Noise	$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{BYP}}=0.01 \mu \mathrm{~F}, \mathrm{I}_{\text {LOAD }}=\text { Full Current, }$ $B W=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}$			20		$\mu \mathrm{V}_{\text {RMS }}$
ADJ Pin Bias Current	ADJ1, ADJ2 (Notes 3, 8)			30	100	nA
Shutdown Threshold	$\begin{aligned} & V_{\text {OUT }}=\text { Off to On } \\ & V_{\text {OUT }}=\text { On to Off } \end{aligned}$	\bullet	0.2	$\begin{aligned} & 0.80 \\ & 0.65 \end{aligned}$	1.4	V
$\overline{\text { SHDN1 }} / \overline{\text { SHDN2 }}$ Pin Current (Note 9)	$\begin{aligned} & V \overline{V_{H D N 1}}, V \overline{V_{S H D N 2}}=0 \mathrm{~V} \\ & V \overline{\text { SHDN1 } 1}, V \overline{\text { SHDN2 }}=20 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 3.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Current in Shutdown	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN1 }}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN2 }}=0 \mathrm{~V}$			0.01	0.1	$\mu \mathrm{A}$
Ripple Rejection	$\mathrm{V}_{\text {IN }}=2.72 \mathrm{~V}(\mathrm{Avg}), \mathrm{V}_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P, }}, \mathrm{f}_{\text {RIPPLE }}=120 \mathrm{~Hz}$ $\mathrm{I}_{\text {LOAD }}=$ Full Current		55	65		dB
Current Limit	$\begin{aligned} \text { Output 2, } \mathrm{V}_{\text {IN }} & =7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.3 \mathrm{~V}, \Delta \mathrm{~V}_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$	\bullet	110	200		mA mA
	$\begin{aligned} \text { Output } 1, \mathrm{~V}_{\text {IN }} & =7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.3 \mathrm{~V}, \Delta \mathrm{~V}_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$	\bullet	520	700		mA mA
Input Reverse Leakage Current	$\mathrm{V}_{\text {IN }}=-20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet			1	mA
Reverse Output Current (Notes 3,10)	$\mathrm{V}_{\text {OUT }}=1.22 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<1.22 \mathrm{~V}$			5	10	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT3024 regulator is tested and specified under pulse load conditions such that $\mathrm{T}_{\mathrm{J}} \approx \mathrm{T}_{\mathrm{A}}$. The LT3024 is 100% production tested at
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Performance at $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ is assured by design, characterization and correlation with statistical process controls.
Note 3: The LT3024 is tested and specified for these conditions with the ADJ1/ADJ2 pin connected to the corresponding OUT1/OUT2 pin.

ELECTRICAL CHARACTERISTICS

Note 4: Operating conditions are limited by maximum junction temperature. The regulated output voltage specification will not apply for all possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be limited. When operating at maximum output current, the input voltage range must be limited.
Note 5: To satisfy requirements for minimum input voltage, the LT3024 is tested and specified for these conditions with an external resistor divider (two 250k resistors) for an output voltage of 2.44 V . The external resistor divider will add a $5 \mu \mathrm{ADC}$ load on the output.
Note 6: Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In dropout, the output voltage will be equal to: $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {DROPOUT }}$.
Note 7: GND pin current is tested with $\mathrm{V}_{I N}=2.44 \mathrm{~V}$ and a current source load. This means the device is tested while operating in its dropout region
or at the minimum input voltage specification. This is the worst-case GND pin current. The GND pin current will decrease slightly at higher input voltages. Total GND pin current is equal to the sum of GND pin currents from Output 1 and Output 2.
Note 8: ADJ1 and ADJ2 pin bias current flows into the pin.
Note 9: $\overline{\text { SHDN1 }}$ and $\overline{\text { SHDN2 }}$ pin current flows into the pin.
Note 10: Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current flows into the OUT pin and out the GND pin.
Note 11: For the LT3024 dropout voltage will be limited by the minimum input voltage specification under some output voltage/load conditions. See the curve of Minimum Input Voltage in the Typical Performance Characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

Output 2
Typical Dropout Voltage

3024 G01

Output 1

Typical Dropout Voltage

Output 2

Guaranteed Dropout Voltage

3024 G02

Output 1

Guaranteed Dropout Voltage

Output 2 Dropout Voltage

3024 G03

TYPICAL PGRFORmANCE CHARACTERISTICS

3024 G07

3024 G10

ADJ1 or ADJ2 Pin Voltage

3024 G08
Output 2
GND Pin Current vs I LoAd

3024 G11
Output 1
GND Pin Current vs ILOAD

Quiescent Current (Per Output)

3024 G09

Output 1 GND Pin Current

3024 G 12
$\overline{\text { SHDN1 }}$ or SHDN2 Pin Threshold (On-to-Off)

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

3024 G25
Output 2
Input Ripple Rejection

3024 G28

Output 1 Ripple Rejection

Output 2
Input Ripple Rejection

Output 1
Input Ripple Rejection

Output 2 Minimum Input Voltage

Output 2
Input Ripple Rejection

Output 1

Input Ripple Rejection

Output 1 Minimum Input Voltage

3024 G32

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PGRFORmANCG CHARACTERISTICS

Output 1 Transient Response
$\mathrm{C}_{\text {BYP }}=0 \mathrm{pF}$

Output 1 Transient Response
$\mathrm{C}_{\mathrm{BYP}}=0.01 \mu \mathrm{~F}$

3024 G49

3024 G48

PIn FUnCTIO
GND (Pins 4, 13)/(Pins 1, 5, 8, 9, 16, 17): Ground. The Exposed Pad must be soldered to PCB ground for optimum thermal performance.

ADJ1/ADJ2 (Pins 12/7)/(Pins 15/10): Adjust Pin. These are the input to the error amplifiers. These pins are internally clamped to $\pm 7 \mathrm{~V}$. They have a bias current of 30nA which flows into the pin (see curve of ADJ1/ADJ2 Pin Bias Current vs Temperature in the Typical Performance Characteristics section). The ADJ1 and ADJ2 pin voltage is 1.22 V referenced to ground and the output voltage range is 1.22 V to 20 V .
BYP1/BYP2 (Pins 1/6)/(Pins 2/7): Bypass. The BYP1/BYP2 pins are used to bypass the reference of the LT3024 regulator to achieve low noise performance from the regulator. The BYP1/BYP2 pins are clamped internally to $\pm 0.6 \mathrm{~V}$ (one V_{BE}) from ground. A small capacitor from the corresponding output to this pin will bypass the reference to lower the output voltage noise. A maximum value of $0.01 \mu \mathrm{~F}$ can be used for reducing output voltage noise to a typical $20 \mu \mathrm{~V}_{\text {RMS }}$ over a 10 Hz to 100 kHz bandwidth. If not used, this pin must be left unconnected.

OUT1/OUT2 (Pins 2, 3/5)/(Pins 3, 4/6): Output. The outputs supply power to the loads. A minimum output capacitor of $1 \mu \mathrm{~F}$ is required to prevent oscillations on Output 2; Output 1 requires a minimum of 3.3μ F. Larger output capacitors will be required for applications with large transient loads to limit peak voltage transients. See the Applications Information section for more information on output capacitance and reverse output characteristics.

SHDN1/SHDN2 (Pins 11/8)/(Pins 14/11): Shutdown. The SHDN1/SHDN2 pins are used to put the corresponding output of the LT3024 regulator into a low power shutdown state. The output will be off when the pin is pulled low. The SHDN1/SHDN2 pins can be driven either by 5V logic or open-collector logic with pull-up resistors. The pull-up resistors are required to supply the pull-up current of the open-collector gates, normally several microamperes, and the $\overline{\text { SHDN1 }} / \overline{\mathrm{SHDN}} 2$ pin current, typically $1 \mu \mathrm{~A}$. If unused, the pin must be connected to $\mathrm{V}_{\text {IN }}$. The device will not function if the SHDN1/SHDN2 pins are not connected.

IN (Pins 9, 10)/(Pins 12, 13): Input. Power is supplied to the device through the IN pin. A bypass capacitor is required on this pin if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in batterypowered circuits. A bypass capacitor in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is sufficient. The LT3024 regulator is designed to withstand reverse voltages on the IN pin with respect to ground and the OUT pin. In the case of a reverse input, which can happen if a battery is plugged in backwards, the device will act as if there is a diode in series with its input. There will be no reverse current flow into the regulator and no reverse voltage will appear at the load. The device will protect both itself and the load.

APPLICATIONS INFORMATION

The LT3024 is a dual $100 \mathrm{~mA} / 500 \mathrm{~mA}$ Iow dropout regulator with micropower quiescent current and shutdown. The device is capable of supplying 100 mA from Output 2 at a dropout voltage of 300 mV . Output 1 delivers 500 mA at a dropout voltage of 300 mV . The two regulators have common $\mathrm{V}_{\text {IN }}$ and GND pins and are thermally coupled, however, the two outputs of the LT3024 operate independently. They can be shut down independently and a fault
condition on one output will not affect the other output electrically. Outputvoltage noise can be lowered to $20 \mu \mathrm{~V}_{\text {RMS }}$ over a 10 Hz to 100 kHz bandwidth with the addition of a $0.01 \mu \mathrm{~F}$ reference bypass capacitor. Additionally, the reference bypass capacitor will improve transient response of the regulator, lowering the settling time for transient load conditions. The low operating quiescent current ($30 \mu \mathrm{~A}$ per output) drops to less than $1 \mu \mathrm{~A}$ in shutdown. In addition to

APPLICATIONS INFORMATION

the low quiescent current, the LT3024 regulator incorporates several protection features which make it ideal for use in battery-powered systems. The device is protected against both reverse input and reverse output voltages. In battery backup applications where the output can be held up by a backup battery when the input is pulled to ground, the LT3024 acts like it has a diode in series with its output and prevents reverse current flow. Additionally, in dual supply applications where the regulator load is returned to a negative supply, the output can be pulled below ground by as much as 20 V and still allow the device to start and operate.

Adjustable Operation

The LT3024 has an output voltage range of 1.22 V to 20 V . The output voltage is set by the ratio of two external resistors as shown in Figure 1. The device servos the output to maintain the corresponding ADJ pin voltage at 1.22 V referenced to ground. The current in R1 is then equal to $1.22 \mathrm{~V} / \mathrm{R} 1$ and the current in R2 is the current in R1 plus the ADJ pin bias current. The ADJ pin bias current, 30nA at $25^{\circ} \mathrm{C}$, flows through R2 into the ADJ pin. The output voltage can be calculated using the formula in Figure 1. The value of R1 should be no greater than 250k to minimize errors in the output voltage caused by the ADJ pin bias current. Note that in shutdown the output is turned off and the divider current will be zero. Curves of ADJ Pin Voltage vs Temperature and ADJ Pin Bias Current vs Temperature appear in the Typical Performance Characteristics.

The device is tested and specified with the ADJ pin tied to the corresponding OUT pin for an output voltage of 1.22 V . Specifications for output voltages greater than 1.22 V will be proportional to the ratio of the desired output voltage

$V_{\text {OUT }}=1.22 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\left(\mathrm{I}_{\mathrm{ADJ}}\right)(\mathrm{R} 2)$

$$
V_{\text {ADJ }}=1.22 \mathrm{~V}
$$

$I_{A D J}=30$ nA AT $25^{\circ} \mathrm{C}$
OUTPUT RANGE $=1.22 \mathrm{~V}$ TO 20V

Figure 1. Adjustable Operation
to 1.22 V : $\mathrm{V}_{\text {OUT }} / 1.22 \mathrm{~V}$. For example, load regulation on Output 2 for an output current change of 1 mA to 100 mA is -1 mV typical at $\mathrm{V}_{\text {OUT }}=1.22 \mathrm{~V}$. At $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$, Ioad regulation is:

$$
(12 \mathrm{~V} / 1.22 \mathrm{~V})(-1 \mathrm{mV})=-9.8 \mathrm{mV}
$$

Bypass Capacitance and Low Noise Performance

The LT3024 regulator may be used with the addition of a bypass capacitor from $\mathrm{V}_{\text {OUT }}$ to the corresponding BYP pin to lower output voltage noise. A good quality low leakage capacitor is recommended. This capacitor will bypass the reference of the regulator, providing a low frequency noise pole. The noise pole provided by this bypass capacitor will lower the output voltage noise to as low as $20 \mu \mathrm{~V}_{\text {RMS }}$ with the addition of a $0.01 \mu \mathrm{~F}$ bypass capacitor. Using a bypass capacitor has the added benefit of improving transient response. With no bypass capacitor and a $10 \mu \mathrm{~F}$ output capacitor, a 10 mA to 100 mA load step on Output 2 will settle to within 1% of its final value in less than $100 \mu \mathrm{~s}$. With the addition of a $0.01 \mu \mathrm{~F}$ bypass capacitor, the output will stay within 1% for the same load step. Both outputs exhibit this improvement in transient response (see Transient Reponse in Typical Performance Characteristics section). However, regulator start-up time is inversely proportional to the size of the bypass capacitor, slowing to 15 ms with a $0.01 \mu \mathrm{~F}$ bypass capacitor and $10 \mu \mathrm{~F}$ output capacitor.

Output Capacitance and Transient Response

The LT3024 regulator is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability, most notably with small capacitors. A minimum output capacitor of $1 \mu \mathrm{~F}$ with an ESR of 3Ω or less is recommended for Output 2 to prevent oscillations. A minimum output capacitor of $3.3 \mu \mathrm{~F}$ with an ESR of 3Ω or less is recommended for Output 1. The LT3024 is a micropower device and output transient response will be a function of output capacitance. Larger values of output capacitance decrease the peak deviations and provide improved transient response for larger load current changes. Bypass capacitors, used to decouple individual components powered by the LT3024, will increase the effective output capacitor value. With larger capacitors

APPLICATIONS InFORMATION

used to bypass the reference (for low noise operation), larger values of output capacitors are needed. For 100pF of bypass capacitance on Output 2, $2.2 \mu \mathrm{~F}$ of output capacitor is recommended. With a 330pF bypass capacitor or larger on this output, a $3.3 \mu \mathrm{~F}$ output capacitor is recommended. For Output $1,4.7 \mu \mathrm{~F}$ of output capacitor is recommended for 100pF of bypass capacitance. With 1000 pF or larger bypass capacitor on this output, a $6.8 \mu \mathrm{~F}$ output capacitor is recommended. The shaded region of Figures 2 and 3 define the regions over which the LT3024 regulator is stable. The minimum ESR needed is defined by the amount of bypass capacitance used, while the maximum ESR is 3Ω.

3024 F02
Figure 2. Output 2 Stability

3024 F04

Figure 4. Ceramic Capacitor DC Bias Characteristics

Extra consideration must be given to the use of ceramic capacitors. Ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across temperature and applied voltage. The most common dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are good for providing high capacitances in a small package, but exhibit strong voltage and temperature coefficients as shown in Figures 4 and 5. When used with a 5 V regulator, a $10 \mu \mathrm{~F}$ Y5V capacitor can exhibit an effective value as low as $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ over the operating temperature range. The X5R and X7R dielectrics result in more stable characteristics and are more suitable for use as the output capacitor. The X7R type has better stability across temperature, while the X5R is less expensive and is available in higher values.

3024 F03
Figure 3. Output 1 Stability

3024 F05
Figure 5. Ceramic Capacitor Temperature Characteristics

APPLICATIONS INFORMATION

Voltage and temperature coefficients are not the only sources of problems. Some ceramic capacitors have a piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress, similar to the way a piezoelectric accelerometer or microphone works. For a ceramic capacitor the stress can be induced by vibrations in the system or thermal transients. The resulting voltages produced can cause appreciable amounts of noise, especially when a ceramic capacitor is used for noise bypassing. A ceramic capacitor produced Figure 6's trace in response to light tapping from a pencil. Similar vibration induced behavior can masquerade as increased output voltage noise.

Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor

Thermal Considerations

The power handling capability of the device will be limited by the maximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The power dissipated by the device will be made up of two components for each output:

1. Output current multiplied by the input/output voltage differential: $\left(I_{\text {OUT }}\right)\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$, and
2. GND pin current multiplied by the input voltage: $\left(I_{G N D}\right)\left(V_{I N}\right)$.

The ground pin current can be found by examining the GND Pin Current curves in the Typical Performance Characteristics section. Power dissipation will be equal to the sum of the two components listed above.

The LT3024 regulator has internal thermal limiting designed to protect the device during overload conditions.

For continuous normal conditions, the maximum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be exceeded. It is important to give careful consideration to all sources of thermal resistance from junction to ambient. Additional heat sources mounted nearby must also be considered.
For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by power devices.
The following tables list thermal resistance for several different board sizes and copper areas. All measurements were taken in still air on $3 / 32$ " FR-4 board with one ounce copper.

Table 1. FE Package, 16-Lead TSSOP

COPPER AREA			THERMAL RESISTANCE TOPSIDE*	BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)

Table 2. UE Package, 12-Lead DFN

COPPER AREA			THERMAL RESISTANCE TOPSIDE*
BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)	

*Device is mounted on topside.
The thermal resistance junction-to-case (θ_{Jc}), measured at the Exposed Pad on the back of the die is $10^{\circ} \mathrm{C} / \mathrm{W}$ for the DFN package and $8^{\circ} \mathrm{C} / \mathrm{W}$ for the TSSOP package.

Calculating Junction Temperature

Example: Given Output 1 set for an output voltage of 3.3V, Output 2 set for an output voltage of 2.5 V , an input voltage range of 3.8 V to 5 V , an output current range of 0 mA to 500 mA for Output 1, an output current range of 0 mA to 100 mA for Output 2 and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?

13

APPLICATIONS Information

The power dissipated by each output will be equal to:

$$
I_{\text {OUT(MAX) }}\left(V_{\text {IN(MAX) }}-V_{\text {OUT }}\right)+I_{G N D}\left(V_{\text {IN(MAX }}\right)
$$

Where for Output 1:
$I_{\text {OUT(MAX) }}=500 \mathrm{~mA}$
$\mathrm{V}_{\operatorname{IN}(\text { MAX })}=5 \mathrm{~V}$
$I_{\text {GND }}$ at $\left(I_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}\right)=9 \mathrm{~mA}$
For Output 2:
$I_{\text {OUT(MAX) }}=100 \mathrm{~mA}$
$V_{\operatorname{IN}(M A X)}=5 \mathrm{~V}$
$I_{\text {GND }}$ at $\left(I_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}\right)=2 \mathrm{~mA}$
So for Output 1:

$$
P=500 \mathrm{~mA}(5 \mathrm{~V}-3.3 \mathrm{~V})+9 \mathrm{~mA}(5 \mathrm{~V})=0.90 \mathrm{~W}
$$

For Output 2:

$$
P=100 \mathrm{~mA}(5 \mathrm{~V}-2.5 \mathrm{~V})+2 \mathrm{~mA}(5 \mathrm{~V})=0.26 \mathrm{~W}
$$

The thermal resistance will be in the range of $35^{\circ} \mathrm{C} / \mathrm{W}$ to $55^{\circ} \mathrm{C} / \mathrm{W}$ depending on the copper area. So the junction temperature rise above ambient will be approximately equal to:

$$
(0.90 \mathrm{~W}+0.26 \mathrm{~W}) 50^{\circ} \mathrm{C} / \mathrm{W}=57.8^{\circ} \mathrm{C}
$$

The maximum junction temperature will then be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+57.8^{\circ} \mathrm{C}=107.8^{\circ} \mathrm{C}
$$

Protection Features

The LT3024 regulator incorporates several protection features which make it ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the device is protected against reverse input voltages, reverse output voltages and reverse voltages from output to input. The two regulators have common $\mathrm{V}_{\text {IN }}$ and GND pins and are thermally coupled, however, the two outputs of the LT3024 operate independently. They can be shut down independently and a fault condition on one output will not affect the other output electrically.

Current limit protection and thermal overload protection are intended to protect the device against current overload conditions at the output of the device. For normal operation, the junction temperature should not exceed $125^{\circ} \mathrm{C}$.

The input of the device will withstand reverse voltages of 20 V . Current flow into the device will be limited to less than 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at the output. The device will protect both itself and the load. This provides protection against batteries which can be plugged in backward.
The output of the LT3024 can be pulled below ground without damaging the device. If the input is left open circuit or grounded, the output can be pulled below ground by 20 V . The output will act like an open circuit; no current will flow out of the pin. If the input is powered by a voltage source, the output will source the short-circuit current of the device and will protect itself by thermal limiting. In this case, grounding the SHDN1/SHDN2 pins will turn off the device and stop the output from sourcing the short-circuit current.

The ADJ pins can be pulled above or below ground by as much as 7 V without damaging the device. If the input is left open circuit or grounded, the ADJ pins will act like an open circuit when pulled below ground and like a large resistor (typically 100k) in series with a diode when pulled above ground.
In situations where the ADJ pins are connected to a resistor divider that would pull the pins above their 7 V clamp voltage if the output is pulled high, the ADJ pin input current must be limited to less than 5mA. For example, a resistor divider is used to provide a regulated 1.5 V output from the 1.22 V reference when the output is forced to 20 V . The top resistor of the resistor divider must be chosen to limit the current into the ADJ pinto less than 5mA when the ADJ pin is at 7 V . The 13 V difference between output and ADJ pin divided by the 5 mA maximum current into the ADJ pin yields a minimum top resistor value of 2.6 k .

APPLICATIONS INFORMATION

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is left open circuit. Current flow back into the output will follow the curve shown in Figure 7.

When the IN pin of the LT3024 is forced below either OUT pin oreitherOUT pin is pulled above the IN pin, inputcurrent for the corresponding regulator will typically drop to less than $2 \mu \mathrm{~A}$. This can happen if the input of the device is connected to a discharged (low voltage) battery and the output is held up by either a backup battery or a second regulator circuit. The state of the SHDN1/SHDN2 pin will have no effect on the reverse output current when the output is pulled above the input.

PACKAGG DESCRIPTION

FE Package

16-Lead Plastic TSSOP (4.4mm)
(Reference LTC DWG \# 05-08-1663)
Exposed Pad Variation BB

RECOMMENDED SOLDER PAD LAYOUT

NOTE:

1. CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSIONS ARE IN $\frac{\text { MILLIMETERS }}{\text { (INCHES) }}$
(INCHES)
3. DRAWING NOT TO SCALE

4. RECOMMENDED MINIMUM PCB METAL SIZE

FOR EXPOSED PAD ATTACHMENT
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED $0.150 \mathrm{~mm}(.006$ ") PER SIDE

DE/UE Package
12-Lead Plastic DFN ($4 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1695)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1129	700mA, Micropower, LD0	$\mathrm{V}_{\text {IN: }} 4.2 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}_{\text {OUt(MIN })}=3.75 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=50 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<16 \mu \mathrm{~A}$, DD, SOT-223, S8,T0220, TSSOP20 Packages
LT1175	500mA, Micropower Negative LDO	Guaranteed Voltage Tolerance and Line/Load Regulation $\mathrm{V}_{\text {IN }}:-20 \mathrm{~V}$ to $-4.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIIN }}=-3.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=45 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<10 \mu \mathrm{~A}$, DD,SOT-223, S8 Packages
LT1185	3A, Negative LDO	Accurate Programmable Current Limit, Remote Sense $\mathrm{V}_{\text {IN: }}:-35 \mathrm{~V}$ to $-4.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}(\mathrm{MIN})=-2.40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{TO} 220-5$ Package
LT1761	100mA, Low Noise Micropower, LDO	Low Noise $<20 \mu V_{\text {RMS }}$, Stable with $1 \mu \mathrm{~F}$ Ceramic Capacitors, $\mathrm{V}_{\text {IN: }}: 1.8 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=1.22 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package
LT1762	150mA, Low Noise Micropower, LDO	Low Noise < $20 \mu V_{\text {RMS }}$, $\mathrm{V}_{\text {IN }}: 1.8 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=1.22 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, MS8 Package
LT1763	500mA, Low Noise Micropower, LDO	Low Noise < $20 \mu V_{\text {RMS }}$, $\mathrm{V}_{\text {IN: }}$: 1.8 V to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=1.22 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, S8 Package
LT1764/LT1764A	3A, Low Noise, Fast Transient Response, LDO	Low Noise $<40 \mu V_{\text {RMS }}$, "A" Version Stable with Ceramic Capacitors, $\mathrm{V}_{\text {IN: }}$: 2.7 V to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=1.21 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{DD}$, TO220 Packages
LTC1844	150mA, Very Low Drop-Out LDO	Low Noise $<30 \mu V_{\text {RMS }}$, Stable with $1 \mu \mathrm{~F}$ Ceramic Capacitors, $\mathrm{V}_{\text {IN: }}: 1.6 \mathrm{~V}$ to $6.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=1.25 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package
LT1962	300mA, Low Noise Micropower, LDO	Low Noise < $20 \mu V_{\text {RMS }}$, $\mathrm{V}_{\text {IN }}: 1.8 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=1.22 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, MS8 Package
LT1963/LT1963A	1.5A, Low Noise, Fast Transient Response, LD0	Low Noise $<40 \mu V_{\text {RMS }}$, "A" Version Stable with Ceramic Capacitors, $\mathrm{V}_{\text {IN }}$: 2.1 V to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=1.21 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, DD, TO220, SOT-223, S8 Packages
LT1964	200mA, Low Noise Micropower, Negative LDO	Low Noise $<30 \mu V_{\text {RMS }}$, Stable with Ceramic Capacitors, $\mathrm{V}_{\text {IN: }}:-0.9 \mathrm{~V}$ to $-20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=-1.21 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<3 \mu \mathrm{~A}$, ThinSOT Package
LT3023	Dual 100mA, Low Noise, Micropower LDO	Low Noise $<20 \mu V_{\text {RMS }}$, Stable with $1 \mu \mathrm{~F}$ Ceramic Capacitors, $\mathrm{V}_{\mathbb{I N}}: 1.8 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=1.22 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MS} 10 \mathrm{E}, \mathrm{DFN}$ Packages
LTC3407	Dual 600 mA . 1.5MHz Synchronous Step Down DC/DC Converter	$\mathrm{V}_{\text {IN }}$: 2.5 V to 5.5V, $\mathrm{V}_{\text {OUT(MIN }}=0.6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}, \mathrm{MS10E}$ Package

