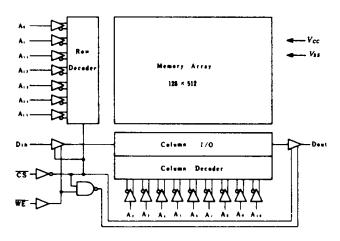
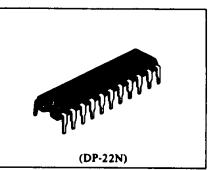
HM6287 Series

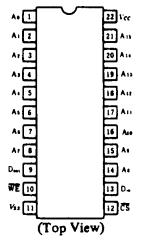

65536-word x 1-bit High Speed CMOS Static RAM

- FEATURES
- High Speed: Fast Access Time 45/55/70ns (max.)
- Single 5V Supply and High Density 22 Pin Package
- Low Power Standby and Low Power Operation Standby: 100μW (typ.)/10μW (typ.) (L-version) Operation: 300mW (typ.)
- Completely Static Memory
 No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Directly TTL Compatible: All Inputs and Output
- Capability of Battery Back Up Operation (L-version)

ORDERING INFORMATION


Type No.	Access Time	Package
HM6287P-45	45ns	
HM6287P-55	55ns	
HM6287P-70	70ns	300 mil 22 pin
HM6287LP-45	45ns	Plastic DIP
HM6287LP-55	55ns	
HM6287LP-70	70ns	

BLOCK DIAGRAM



Maintenance Only

Refer to HM6287H Series

PIN ARRANGEMENT

HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 113

TRUTH TABLE

CS	WE	Mode	V _{CC} Current	Dout Pin	Ref. Cycle
н	X	Not Selected	I _{SB} , I _{SB1}	High Z	-
L	н	Read	Icc	Dout	Read Cycle
L	L	Write	Icc	High Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	V _T	-0.5 ^{*1} to +7.0	v
Power Dissipation	PT	1.0	W
Operating Temperature	Topr	0 to +70	°C
Storage Temperature	Tete	-55 to +125	°C
Temperature Under Bias	Tbias	-10 to +85	°C

Note) *1. -3.5V for pulse width ≤ 20 ns

• RECOMMENDED DC OPERATING CONDITIONS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$)

Item	Symbol	min	typ	max	Unit
	Vcc	4.5	5.0	5.5	V
Supply Voltage	V _{SS}	0	0	0	V
	V _{IH}	2.2	-	6.0	v
Input Voltage	V _{IL}	-0.5*1		0.8	v

Note) *1. -3.0V for pulse width ≤ 20 ns

• DC AND OPERATING CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, $T_a = 0$ to $+70^{\circ}$ C)

Item	Symbol	Test Conditions	min	typ ⁺¹	max	Unit
Input Leakage Current		$V_{CC} = 5.5 \text{V}, V_{in} = V_{SS} \text{ to } V_{CC}$	-		2.0	μA
Output Leakage Current	ILOI	$\overline{CS} = V_{IH}, V_{out} = V_{SS}$ to V_{CC}	-	-	2.0	μA
Operating Power Supply Current	ICC	$\overline{CS} = V_{IL}, I_{out} = 0 \text{mA}, \text{min. cycle}$	-	60	100	mA
	ISB	$\overline{CS} = V_{IH}$, min. cycle	-	10	30	mA
Standby Power Supply Current	- 00	$\overline{CS} \ge V_{CC} - 0.2 V,$		0.02	2.0	mA
Standby rower Supply Current	I _{SB1}	$0V \leq V_{in} \leq 0.2V$ or $V_{CC} - 0.2V \leq V_{in}$	-	2*2	100*2	μA
	V _{OL}	$I_{OL} = 8$ mA		-	0.4	V
Output Voltage	V _{OH}	$I_{OH} = -4.0$ mA	2.4	-		V

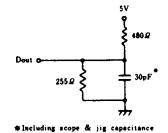
Notes) *1. Typical limits are at $V_{CC} = 5.0V$, $T_a = 25^{\circ}C$ and specified loading. *2. This characteristics is guaranteed only for L-version.

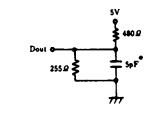
• CAPACITANCE (f = 1MHz, $T_a = 25$ °C)

Item	Symbol	Test Conditions	min	typ	max	Unit
Input Capacitance	Cin	<i>V_{in}</i> = 0V	-	-	5	pF
Output Capacitance	Cout	V _{out} = 0V		-	7.5	pF

Note) This parameter is sampled and not 100% tested.

HITACHI

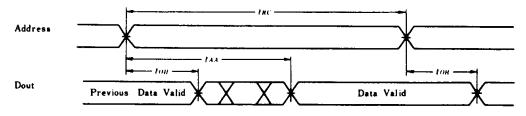

114 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300


• AC CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $T_a = 0$ to $\pm 70^{\circ}$ C, unless otherwise noted)

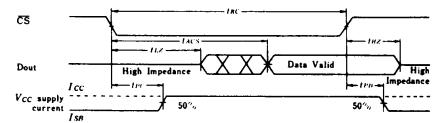
• AC TEST CONDITIONS

Input Pulse Levels: V_{SS} to 3.0V Input Rise and Fall Times: 5ns Input and Output Timing Reference Levels: 1.5V Output Load: See Figure

Output Load A


#Including scope & jig capacitance

Output Loed B


READ CYCLE

Item	Symbol	HM6287-45		HM6287-55		HM6287-70		11-14	
Item	Symbol	min	max	min	max	min	max	Unit	Notes
Read Cycle Time	t _{RC}	45	-	55	-	70	-	ПS	1
Address Access Time	^t AA	_	45	-	55	-	70	ns	
Chip Select Access Time	^t ACS	-	45	-	55	_	70	ns	
Output Hold from Address Change	tOH	5	-	5	-	5	-	ns	
Chip Selection to Output in Low Z	tLZ	5	- 1	5	_	5	_	ns	2, 3, 7
Chip Deselection to Output in High Z	t HZ	0	30	0	30	0	30	ns	2, 3, 7
Chip Selection to Power Up Time	t PU	0	-	0	-	0	-	ns	7
Chip Deselection to Power Down Time	t PD	-	40	-	40	-	40	ns.	7

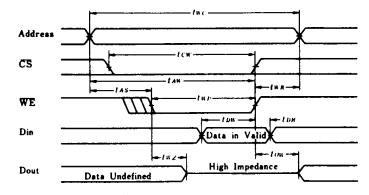
Timing Waveform of Read Cycle No. 1⁽⁴⁾⁽⁵⁾

Timing Waveform of Read Cycle No. 2⁽⁴⁾⁽⁶⁾

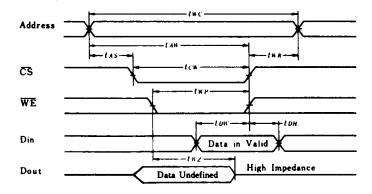
Notes:

- 1. All Read Cycle timings are referenced from last valid address to the first transitioning address.
 - 2. At any given temperature and voltage condition, t_{HZ} max. is less than t_{LZ} min. both for a given device and from device to device.
 - 3. Transition is measured ±500 mV from steady state voltage with specified loading in Load B.
 - 4. WE is high for READ Cycle.
 - 5. Device is continuously selected, while $\overline{CS} = V_{IL}$.
 - 6. Address valid prior to or coincident with CS transition low.
 - 7. This parameter is sampled and not 100% tested.

HITACHI


Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 115

HM6287 Series


WRITE CYCLE

Item	0	HM62	287-45	HM6287-55		HM6287-70		Unit	Notes
Item	Symbol	min	max	min	max	min	max	Unit	Notes
Write Cycle Time	IWC	45	-	55	-	70	-	ns	2
Chip Selection to End of Write	tCW	40	-	50	-	55	-	П\$	Ţ.
Address Valid to End of Write	^t AW	40	-	50	- 1	55	-	пз	
Address Setup Time	tAS .	0	-	0	-	0	-	ПS	
Write Pulse Width	twp	25	_	35	-	40	_	ns	
Write Recovery Time	tWR	0	_	0	-	0	-	ns	
Data Valid to End of Write	tDW	25	-	25	-	30	~	ns	
Data Hold Time	t DH	0		0	-	0	-	ns	
Write Enabled to Output in High Z	twz	0	25	0	25	0	30	ЛЗ	3,4
Output Active from End of Write	tow	0	-	0	-	0	[–]	ns	3,4

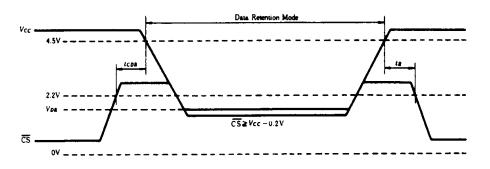
• Timing Waveform of Write Cycle No. 1 (WE Controlled)

• Timing Waveform of Write Cycle No. 1 (CS Controlled)

- Notes) 1. If \overline{CS} goes high Simultaneously with \overline{WE} high, the output remains in a high impedance state.
 - All Write Cycle timings are referenced from the last valid address to the first transitioning address.
 Transition is measured ±500mV from steady state voltage with specified loading in Load B.

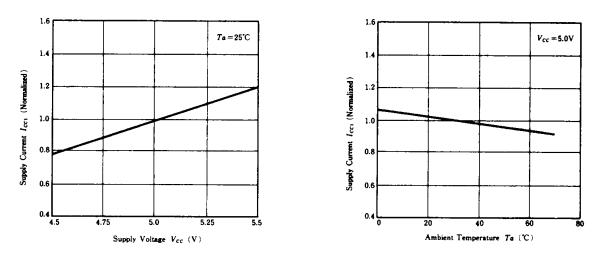
 - 4. This parameter is sampled and not 100% tested.

HITACHI

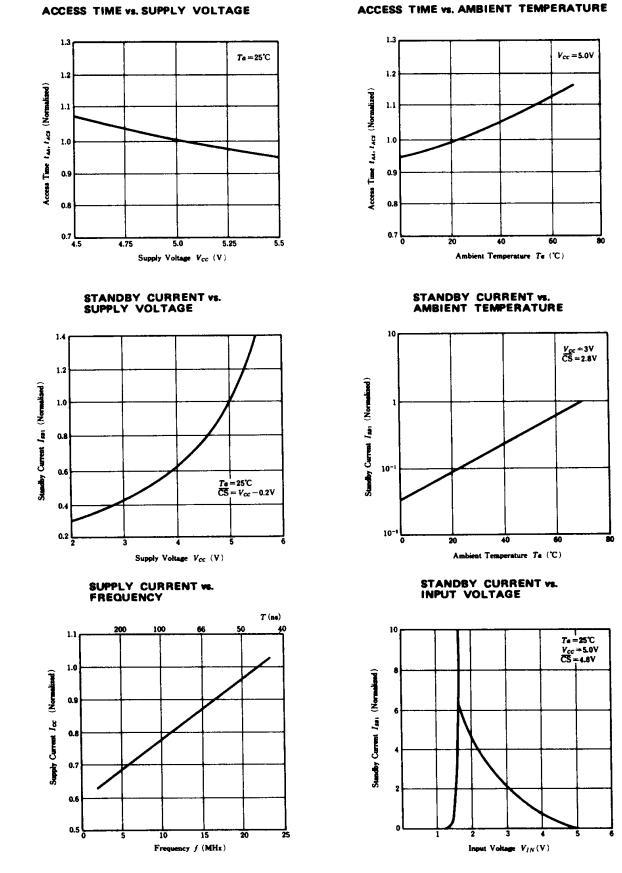

116 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

• LOW V_{CC} DATA RETENTION CHARACTERISTICS ($T_a = 0$ to +70°C) This characteristics is guaranteed only for L-version.

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
VCC for Data Retention	V DR	$\frac{\overline{CS} \ge VCC - 0.2V}{Vin \ge VCC - 0.2V},$	2.0	-	-	v
Data Retention Current	ICCDR	$0V \leq Vin \leq 0.2V$ or $0V \leq Vin \leq 0.2V$	-	1	50 ^{*2}	μA
Chip Deselect to Data Retention Time	[†] CDR	See retention wave-	0			ns
Operation Recovery Time	tR	form	t _{RC} ^{*1}	-	-	ns

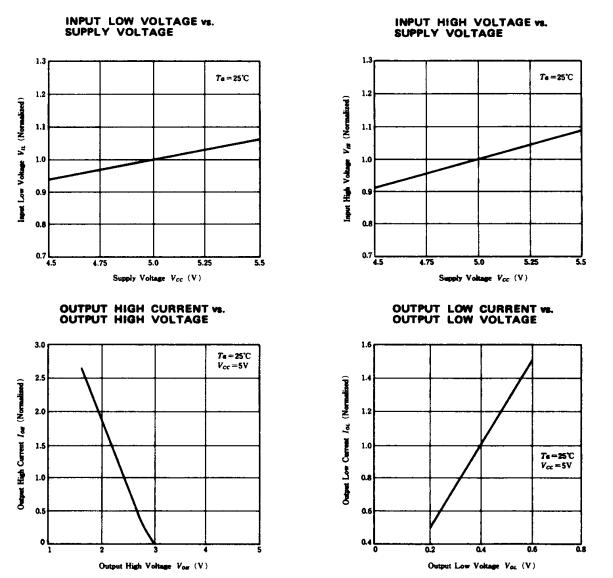

Note) *1. t_{RC} = Read Cycle Time *2. V_{CC} = 3.0V

LOW V_{CC} DATA RETENTION WAVEFORM



SUPPLY CURRENT VS. SUPPLY VOLTAGE

SUPPLY CURRENT VS. AMBIENT TEMPERATURE



Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 117

OHITACHI

118 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 119