256 Kbit (32Kb x 8) UV EPROM and OTP EPROM

■ $5 \mathrm{~V} \pm 10 \%$ SUPPLY VOLTAGE in READ OPERATION
■ ACCESS TIME: 45ns

- LOW POWER CONSUMPTION:
- Active Current 30 mA at 5 MHz
- Standby Current 100 1 A

■ PROGRAMMING VOLTAGE: $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$
■ PROGRAMMING TIME: $100 \mu \mathrm{~s} /$ word

- ELECTRONIC SIGNATURE
- Manufacturer Code: 20h
- Device Code: 8Dh

DESCRIPTION

The M27C256B is a 256 Kbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems and is organized as 32,768 by 8 bits.
The FDIP28W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.
For applications where the content is programmed only one time and erasure is not required, the M27C256B is offered in PDIP28, PLCC32 and TSOP28 (8 x 13.4 mm) packages.

Figure 1. Logic Diagram

Figure 2A. DIP Connections

VPP 1	$\bigcirc 28] \mathrm{V}_{\mathrm{CC}}$
A12 2	27 A14
A7 3	26 A13
A6 4	25 A8
A5 5	24 A9
A4 6	23 A11
A3 7	M27C256B ${ }^{22} \mathrm{~J}^{\text {G }}$
A2 8	M27C256B 21 A10
A1 9	20 E
A0 10	19 Q7
Q0 11	18 Q6
Q1 12	17 Q5
Q2 13	16 Q4
$\mathrm{V}_{\text {SS }} 14$	15 Q3
A100756	

Figure 2C. TSOP Connections

Figure 2B. LCC Connections

Table 1. Signal Names

A0-A14	Address Inputs
Q0-Q7	Data Outputs
$\overline{\mathrm{E}}$	Chip Enable
\bar{G}	Output Enable
$\mathrm{V}_{\text {PP }}$	Program Supply
V_{CC}	Supply Voltage
$\mathrm{V}_{\text {SS }}$	Ground
NC	Not Connected Internally
DU	Don't Use

Table 2. Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Parameter	Value	Unit
T_{A}	Ambient Operating Temperature ${ }^{(3)}$	-40 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{BIAS}}$	Temperature Under Bias	-50 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{IO}}{ }^{(2)}$	Input or Output Voltage (except A9)	-2 to 7	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage	-2 to 7	V
$\mathrm{~V}_{\mathrm{Ag}}{ }^{(2)}$	A9 Voltage	-2 to 13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Program Supply Voltage	-2 to 14	V

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
2. Minimum DC voltage on Input or Output is -0.5 V with possible undershoot to -2.0 V for a period less than 20ns. Maximum DC voltage on Output is $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ with possible overshoot to $\mathrm{V}_{\mathrm{CC}}+2 \mathrm{~V}$ for a period less than 20ns.
3. Depends on range.

Table 3. Operating Modes

Mode	$\overline{\mathbf{E}}$	$\overline{\mathrm{G}}$	$\mathbf{A 9}$	V_{PP}	Q7-Q0
Read	V_{IL}	V_{IL}	X	V_{CC}	Data Out
Output Disable	V_{IL}	V_{IH}	X	V_{CC}	Hi-Z
Program	V_{IL} Pulse	V_{IH}	X	V_{PP}	Data In
Verify	V_{IH}	V_{IL}	X	V_{PP}	Data Out
Program Inhibit	V_{IH}	V_{IH}	X	V_{PP}	Hi-Z
Standby	V_{IH}	X	X	V_{CC}	Hi-Z
Electronic Signature	V_{IL}	V_{IL}	V_{ID}	V_{CC}	Codes

Note: $\mathrm{X}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{ID}}=12 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Table 4. Electronic Signature

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	V_{IL}	0	0	1	0	0	0	0	0	20h
Device Code	V_{IH}	1	0	0	0	1	1	0	1	8 Dh

Table 5. AC Measurement Conditions

	High Speed	Standard
Input Rise and Fall Times	$\leq 10 \mathrm{~ns}$	$\leq 20 \mathrm{~ns}$
Input Pulse Voltages	0 to 3 V	0.4 V to 2.4 V
Input and Output Timing Ref. Voltages	1.5 V	0.8 V and 2 V

Figure 3. AC Testing Input Output Waveform

Figure 4. AC Testing Load Circuit

Table 6. Capacitance ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Symbol	Parameter	Test Condition	Min	Max	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		12	pF

Note: 1. Sampled only, not 100% tested.

DEVICE OPERATION

The operating modes of the M27C256B are listed in the Operating Modes. A single power supply is required in the read mode. All inputs are TTL levels except for V_{PP} and 12 V on A 9 for Electronic Signature.

Read Mode

The M27C256B has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{E}}$) is the power control and should be used for device selection. Output Enable $(\overline{\mathrm{G}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the ad-
dresses are stable, the address access time ($\mathrm{t}_{\mathrm{AVQV}}$) is equal to the delay from $\overline{\mathrm{E}}$ to output (tELQV). Data is available at the output after delay of $\mathrm{t}_{\mathrm{GLQV}}$ from the falling edge of $\overline{\mathrm{G}}$, assuming that \bar{E} has been low and the addresses have been stable for at least $t_{A V Q V} t_{G L Q V}$.

Standby Mode

The M27C256B has a standby mode which reduces the supply current from 30 mA to $100 \mu \mathrm{~A}$. The M27C256B is placed in the standby mode by applying a CMOS high signal to the \bar{E} input. When in the standby mode, the outputs are in a high impedance state, independent of the G input.

Table 7. Read Mode DC Characteristics ${ }^{(1)}$
($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C},-40$ to $85^{\circ} \mathrm{C},-40$ to $105^{\circ} \mathrm{C}$ or -40 to $125^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ or $5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$)

Symbol	Parameter	Test Condition	Min	Max	Unit
I_{L}	Input Leakage Current	O $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		± 10	$\mu \mathrm{A}$
lo	Output Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$		± 10	$\mu \mathrm{A}$
Icc	Supply Current	$\begin{aligned} & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{IOUT}=0 \mathrm{~mA}, \mathrm{f}=5 \mathrm{MHz} \end{aligned}$		30	mA
IcC1	Supply Current (Standby) TTL	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}$		1	mA
Icc2	Supply Current (Standby) CMOS	$\overline{\mathrm{E}}>\mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$		100	$\mu \mathrm{A}$
IPP	Program Current	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$		100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	0.8	V
$\mathrm{V}_{\mathrm{IH}}{ }^{(2)}$	Input High Voltage		2	$\mathrm{V}_{\mathrm{CC}}+1$	V
VOL	Output Low Voltage	$\mathrm{IOL}=2.1 \mathrm{~mA}$		0.4	V
V_{OH}	Output High Voltage TTL	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.6		V
	Output High Voltage CMOS	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {cc }}-0.7 \mathrm{~V}$		V

Note: 1. VCC must be applied simultaneously with or before V_{PP} and removed simultaneously or after VPP.
2. Maximum DC voltage on Output is $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Table 8A. Read Mode AC Characteristics ${ }^{(1)}$
($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C},-40$ to $85^{\circ} \mathrm{C},-40$ to $105^{\circ} \mathrm{C}$ or -40 to $125^{\circ} \mathrm{C}$; $\mathrm{V} C \mathrm{C}=5 \mathrm{~V} \pm 5 \%$ or $5 \mathrm{~V} \pm 10 \%$; $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$)

Symbol	Alt	Parameter	Test Condition	M27C256B								Unit
				-45 ${ }^{(3)}$		-60		-70		-80		
				Min	Max	Min	Max	Min	Max	Min	Max	
tavQv	taCC	Address Valid to Output Valid	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$		45		60		70		80	ns
telov	tce	Chip Enable Low to Output Valid	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$		45		60		70		80	ns
tgLQv	toe	Output Enable Low to Output Valid	$\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}$		25		30		35		40	ns
tEHQZ ${ }^{(2)}$	tbF	Chip Enable High to Output Hi-Z	$\overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	0	25	0	30	0	30	0	30	ns
$\mathrm{t}_{\mathrm{GHQZ}}{ }^{(2)}$	tDF	Output Enable High to Output Hi-Z	$\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}$	0	25	0	30	0	30	0	30	ns
$\mathrm{t}_{\text {AXQX }}$	toh	Address Transition to Output Transition	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$	0		0		0		0		ns

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.
2. Sampled only, not 100% tested.
3. Speed obtained with High Speed AC measurement conditions.

Two Line Output Control

Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:
a. the lowest possible memory power dissipation,
b. complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, \bar{E} should be decoded and used as the primary device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is desired from a particular memory device.

Table 8B. Read Mode AC Characteristics ${ }^{(1)}$
($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C},-40$ to $85^{\circ} \mathrm{C},-40$ to $105^{\circ} \mathrm{C}$ or -40 to $125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ or $5 \mathrm{~V} \pm 10 \%$; $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$)

Symbol	Alt	Parameter	Test Condition	M27C256B								Unit
				-90		-10		-12		-15/-20/-25		
				Min	Max	Min	Max	Min	Max	Min	Max	
tavav	$\mathrm{t}_{\mathrm{ACC}}$	Address Valid to Output Valid	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$		90		100		120		150	ns
telov	tce	Chip Enable Low to Output Valid	$\overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$		90		100		120		150	ns
tglev	toe	Output Enable Low to Output Valid	$\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}$		40		50		60		65	ns
$\mathrm{tEHQZ}^{(2)}$	tDF	Chip Enable High to Output Hi-Z	$\overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	0	30	0	30	0	40	0	50	ns
$\mathrm{tGHQZ}{ }^{(2)}$	tDF	Output Enable High to Output Hi-Z	$\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}$	0	30	0	30	0	40	0	50	ns
$\mathrm{t}_{\text {AXQx }}$	toh	Address Transition to Output Transition	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	0		0		0		0		ns

Note: 1. $V_{C C}$ must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.
2. Sampled only, not 100% tested.

Figure 5. Read Mode AC Waveforms

System Considerations

The power switching characteristics of Advance CMOS EPROMs require careful decoupling of the devices. The supply current, $I_{C c}$, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of $\overline{\mathrm{E}}$. The magnitude of this transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line
output control and by properly selected decoupling capacitors. It is recommended that a $0.1 \mu \mathrm{~F}$ ceramic capacitor be used on every device between V_{CC} and $V_{\text {SS }}$. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V_{CC} and $\mathrm{V}_{\text {SS }}$ for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

Table 9. Programming Mode DC Characteristics ${ }^{(1)}$
($\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=6.25 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$)

Symbol	Parameter	Test Condition	Min	Max	Unit
I_{LI}	Input Leakage Current	$\mathrm{V}_{\mathrm{IL}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IH}}$		± 10	$\mu \mathrm{~A}$
I_{CC}	Supply Current			50	mA
I_{PP}	Program Current	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}$		50	mA
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage		-0.3	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage		2	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{IOL}=2.1 \mathrm{~mA}$		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage TTL	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.6		V
$\mathrm{~V}_{\mathrm{ID}}$	A9 Voltage		11.5	12.5	V

Note: V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.
Table 10. Programming Mode AC Characteristics ${ }^{(1)}$
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=6.25 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}\right.$

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
$t_{\text {aVEL }}$	$t_{\text {AS }}$	Address Valid to Chip Enable Low		2		$\mu \mathrm{s}$
tovel	tbs	Input Valid to Chip Enable Low		2		$\mu \mathrm{s}$
tvPHEL	tvps	VPP High to Chip Enable Low		2		$\mu \mathrm{s}$
tvchel	tves	V Cc High to Chip Enable Low		2		$\mu \mathrm{s}$
teleh	tpw	Chip Enable Program Pulse Width		95	105	Hs
tEHQX	tD	Chip Enable High to Input Transition		2		$\mu \mathrm{s}$
tQxGL	toes	Input Transition to Output Enable Low		2		$\mu \mathrm{s}$
tglov	toe	Output Enable Low to Output Valid			100	ns
tGHQZ	tbFP	Output Enable High to Output Hi-Z		0	130	ns
tghax	t_{AH}	Output Enable High to Address Transition		0		ns

Note: V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

Programming

When delivered (and after each erasure for UV EPROM), all bits of the M27C256B are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only " 0 "s will be programmed, both " 1 "s and " 0 "s can be present in the data word. The only way to change a ' 0 ' to a ' 1 ' is by die exposure to ultraviolet
light (UV EPROM). The M27C256B is in the programming mode when $V_{P P}$ input is at $12.75 \mathrm{~V}, \mathrm{G}$ is at $\mathrm{V}_{\text {IH }}$ and E is pulsed to $\mathrm{V}_{\text {IL }}$. The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. $V_{C C}$ is specified to be $6.25 \mathrm{~V} \pm 0.25 \mathrm{~V}$.

Figure 6. Programming and Verify Modes AC Waveforms

Figure 7. Programming Flowchart

PRESTO II Programming Algorithm

PRESTO II Programming Algorithm allows to program the whole array with a guaranteed margin, in a typical time of 3.5 seconds. Programming with PRESTO II involves the application of a sequence of 100μ s program pulses to each byte until a correct verify occurs (see Figure 7). During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE provides necessary margin to each programmed cell.

Program Inhibit

Programming of multiple M27C256Bs in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{E}}$, all like inputs including $\overline{\mathrm{G}}$ of the parallel M27C256B may be common. A TTL low level pulse applied to a M27C256B's E input, with VPP at 12.75 V , will program that M27C256B. A high level E input inhibits the other M27C256Bs from being programmed.

Program Verify

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with G at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{E}}$ at $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{PP}}$ at 12.75 V and V_{CC} at 6.25 V .

Electronic Signature

The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the M27C256B. To activate the ES mode, the programming equipment must force 11.5 V to 12.5 V on address line A 9 of the M 27 C 256 B , with $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V}$. Two identifier bytes may then be sequenced from the device outputs by toggling address line A 0 from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$. All other address lines must be held at $\mathrm{V}_{\text {IL }}$ during Electronic Signature mode. Byte $0\left(\mathrm{~A} 0=\mathrm{V}_{\mathrm{IL}}\right)$ represents the manufacturer code and byte 1 ($\mathrm{A} 0=\mathrm{V}_{I H}$) the device identifier code. For the STMicroelectronics M27C256B, these two identifier bytes are given in Table 4 and can be read-out on outputs Q7 to Q0.

ERASURE OPERATION (applies for UV EPROM)

The erasure characteristics of the M27C256B is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately $4000 \AA$. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 A range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27C256B in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27C256B is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27C256B window to prevent unintentional erasure. The recommended erasure procedure for the M27C256B is exposure to short wave ultraviolet light which has wavelength 2537A. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The M27C256B should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.

M27C256B

Table 11. Ordering Information Scheme

$\mathrm{X}=$ Additional Burn-in
TR = Tape \& Reel Packing

Note: 1. High Speed, see AC Characteristics section for further information.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

Table 12. Revision History

Date	Version	Revision Details
July 1998	1.0	First Issue
20-Sep-2000	1.1	AN620 Reference removed
29-Nov-2000	1.2	PLCC codification changed (Table 11)
02-Apr-2001	1.3	FDIP28W mechanical dimensions changed (Table 13)
29-Aug-2002	1.4	Package mechanical data clarified for PDIP28 (Table 14), PLCC32 (Table 15, Figure 10) and TSOP28 (Table 16, Figure 11)

$11 / 16$

Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data

Symbol	millimeters			inches		
	Typ	Min	Max	Typ	Min	Max
A			5.72			0.225
A1		0.51	1.40		0.020	0.055
A2		3.91	4.57		0.154	0.180
A3		3.89	4.50		0.153	0.177
B		0.41	0.56		0.016	0.022
B1	1.45	-	-	0.057	-	-
C		0.23	0.30		0.009	0.012
D		36.50	37.34		1.437	1.470
D2	33.02	-	-	1.300	-	-
E	15.24	-	-	0.600	-	-
E1		13.06	13.36		0.514	0.526
e	2.54	-	-	0.100	-	-
eA	14.99	-	-	0.590	-	-
eB		16.18	18.03		0.637	0.710
L		3.18	4.10		0.125	0.161
S		1.52	2.49		0.060	0.098
\varnothing	7.11	-	-	0.280	-	-
α		4°	11°		4°	11°
N		28			28	

Figure 8. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline

Drawing is not to scale.

Table 14. PDIP28-28 pin Plastic DIP, 600 mils width, Package Mechanical Data

Symbol	millimeters			inches								
	Typ	Min	Max	Typ	Min	Max						
A	4.445			0.1750								
A1	0.630			0.0248								
A2	3.810	3.050	4.570	0.1500	0.1201	0.1799						
B	0.450			0.0177								
B1	1.270			0.0500								
C		0.230	0.310		0.0091	0.0122						
D	36.830	36.580	37.080	1.4500	1.4402	1.4598						
D2	33.020	-	-	1.3000	-	-						
E	15.240			0.6000								
E1	13.720	12.700	14.480	0.5402	0.5000	0.5701						
e1	2.540	-	-	0.1000	-	-						
eA	15.000	14.800	15.200	0.5906	0.5827	0.5984						
eB		15.200	16.680		0.5984	0.6567						
L	3.300			0.1299								
S		1.78	2.08		0.070	0.082						
α	0°	10°		0°	10°							
N									28		28	

Figure 9. PDIP28-28 pin Plastic DIP, 600 mils width, Package Outline

Drawing is not to scale.

13/16

Table 15. PLCC32-32 lead Plastic Leaded Chip Carrier, Package Mechanical Data

Symbol	millimeters			inches		
	Typ	Min	Max	Typ	Min	Max
A		3.18	3.56		0.125	0.140
A1		1.53	2.41		0.060	0.095
A2		0.38	-		0.015	-
B		0.33	0.53		0.013	0.021
B1		0.66	0.81		0.026	0.032
CP			0.10			0.004
D		12.32	12.57		0.485	0.495
D1		11.35	11.51		0.447	0.453
D2		-	5.66		0.188	0.223
D3	7.62	14.86	15.11		-	-
E		13.89	14.05		0.585	0.595
E1		6.05	6.93		0.547	0.553
E2		-	-	0.400	-	0.273
E3	10.16	-	-	0.050	-	-
e	1.27		0.00	0.13		0.000
F		-	-	0.035	-	-
R	0.89	32			32	-
N						

Figure 10. PLCC32-32 lead Plastic Leaded Chip Carrier, Package Outline

Drawing is not to scale.

Table 16. TSOP28-28 lead Plastic Thin Small Outline, 8×13.4 mm, Package Mechanical Data

		millimeters			inches	
Symbol	Typ	Min	Max	Typ	Min	Max
A			1.250			0.0492
A1			0.200			0.0079
A2		0.950	1.150		0.0374	0.0453
B		0.170	0.270		0.0067	0.0106
C		0.100	0.210		0.0039	0.0083
CP			0.100			0.0039
D		13.200	13.600		0.5197	0.5354
D1		11.700	11.900		0.4606	0.4685
e	0.550	-	-	0.0217	-	-
E		7.900	8.100		0.3110	0.3189
L		0.500	0.700		0.0197	0.0276
α		0°	5°		0°	5°
N		28			28	

Figure 11. TSOP28-28 lead Plastic Thin Small Outline, 8×13.4 mm, Package Outline

Drawing is not to scale

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

