

256K (32K x 8) Static RAM

Features

• Temperature Ranges

Commercial: 0°C to 70°CIndustrial: -40°C to 85°C

— Automotive-A: -40°C to 85°C— Automotive-E: -40°C to 125°C

Speed: 70 ns

• Low voltage range: 2.7V-3.6V

· Low active power and standby power

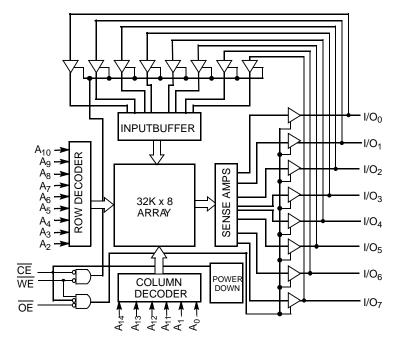
• Easy memory expansion with CE and OE features

TTL-compatible inputs and outputs

· Automatic power-down when deselected

· CMOS for optimum speed/power

 Available in standard Pb-free and non Pb-free 28-lead (300-mil) narrow SOIC, 28-lead TSOP-I and 28-lead Reverse TSOP-I packages


Functional Description[1]

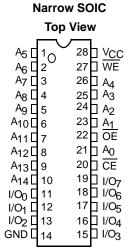
The CY62256VN family is composed of two high-performance CMOS static RAM's organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and tri-state drivers. These devices have an automatic power-down feature, reducing the power consumption by over 99% when deselected.

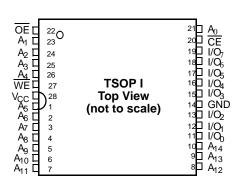
An active LOW write enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$ active LOW, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

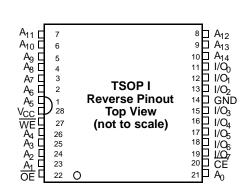
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Logic Block Diagram

Note:


1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.




Product Portfolio

					Power Dissipation			
		V _{CC} Range (V)		Operating	g, I _{CC} (mA)	Standby,	I _{SB2} (μA)	
Product	Range	Min.	Typ. ^[2]	Max.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
CY62256VNLL	Com'l	2.7	3.0	3.6	11	30	0.1	5
CY62256VNLL	Ind'l	2.7	3.0	3.6	11	30	0.1	10
CY62256VNLL	Automotive-A	2.7	3.0	3.6	11	30	0.1	10
CY62256VNLL	Automotive-E	2.7	3.0	3.6	11	30	0.1	130

Pin Configurations

Pin Definitions

Pin Number	Туре	Description
1–10, 21, 23–26	Input	A ₀ -A ₁₄ . Address Inputs
11–13, 15–19	Input/Output	I/O ₀ -I/O ₇ . Data lines. Used as input or output lines depending on operation
27	Input/Control	WE. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted
20	Input/Control	CE. When LOW, selects the chip. When HIGH, deselects the chip
22	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins
14	Ground	GND. Ground for the device
28	Power Supply	V _{CC} . Power supply for the device

Note:

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC}$ Typ., $T_A = 25^{\circ}C$, and $t_{AA} = 70$ ns.

Maximum Ratings

Static Discharge Voltage	> 2001V
(per MIL-STD-883, Method 3015)	
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature (T _A) ^[4]	v _{cc}
CY62256VN	Commercial	0°C to +70°C	2.7V to 3.6V
	Industrial	-40°C to +85°C	
	Automotive-A	−40°C to +85°C	
	Automotive-E	-40°C to +125°C	

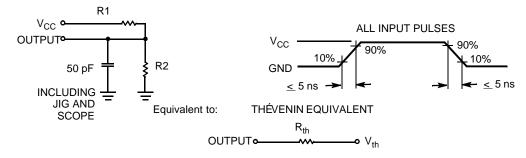
Electrical Characteristics Over the Operating Range

					-70		
Parameter	Description	Test Conditions		Min.	Typ . ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	V
V _{IL}	Input Leakage Voltage			-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	Com'I/Ind'I/Auto-A	-1		+1	μΑ
			Auto-E	-10		+10	μΑ
l _{OZ}	Output Leakage Current	$GND \leq V_IN \leq V_CC$, Output Disabled	Com'I/Ind'I/Auto-A	-1		+1	μΑ
			Auto-E	-10		+10	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = 3.6V, I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	All Ranges		11	30	mA
I _{SB1}	Automatic CE Power down Current - TTL Inputs	$V_{CC} = 3.6V, \overline{CE} \ge V_{IH},$ $V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}, f = f_{MAX}$	All Ranges		100	300	μА
I _{SB2}	Automatic CE	$V_{CC} = 3.6V, \overline{CE} \ge V_{CC} - 0.3V$	Com'l		0.1	5	μΑ
	Power-down Current- CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V, f = 0$	Ind'I/Auto-A		1	10	
	- Inpute		Auto-E		1	130	

Notes:

^{3.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.

^{4.} TA is the "Instant-On" case temperature


Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF

Thermal Resistance^[5]

Parameter	Description	Test Conditions	SOIC	TSOPI	RTSOPI	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	68.45	87.62	87.62	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		26.94	23.73	23.73	°C/W

AC Test Loads and Waveforms



Parameter	Value	Units
R1	1100	Ohms
R2	1500	Ohms
RTH	645	Ohms
VTH	1.750	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[6]		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.4			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.4V$	Com'l		0.1	3	μΑ
		$\begin{aligned} &\frac{V_{CC}}{CE} = 1.4V,\\ &CE \geq V_{CC} - 0.3V,\\ &V_{IN} \geq V_{CC} - 0.3V \end{aligned}$	Ind'I/Auto-A			6	
		or V _{IN} ≤ 0.3V	Auto-E			50	
t _{CDR} ^[6]	Chip Deselect to Data Retention Time			0			ns
t _R ^[5]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

- 5. Tested initially and after any design or process changes that may affect these parameters. 6. No input may exceed V_{CC} + 0.3V.

Switching Characteristics Over the Operating Range^[7]

		CY6225	CY62256VN-70		
Parameter	Description	Min.	Max.	Unit	
Read Cycle		-	1	1	
t _{RC}	Read Cycle Time	70		ns	
t_{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[8]	5		ns	
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[8]	10		ns	
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		25	ns	
t _{PU}	CE LOW to Power-up	0		ns	
t _{PD}	CE HIGH to Power-down		70	ns	
Write Cycle ^[10, 11]	·				
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t_{AW}	Address Set-up to Write End	60		ns	
t_{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{SD}	Data Set-up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High-Z ^[8, 9]		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[8]	10		ns	

Notes:

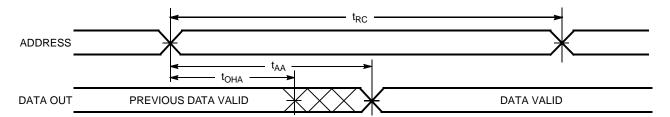
Document #: 001-06512 Rev. *A

Notes:

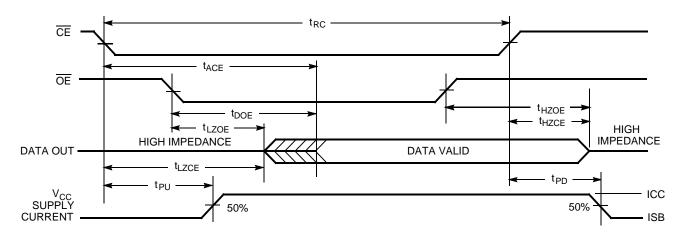
7. Test conditions assume signal transition time of 5 ns or less timing reference levels of V_{CC}/2, input pulse levels of 0 to V_{CC}, and output loading of the specified l_{OL}/l_{OH} and 100-pF load capacitance.

8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.

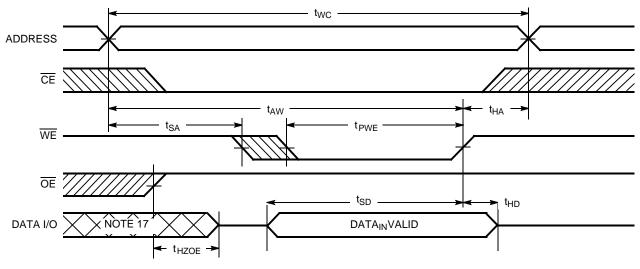
9. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.


10. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

11. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



Switching Waveforms


Read Cycle No. 1^[12, 13]

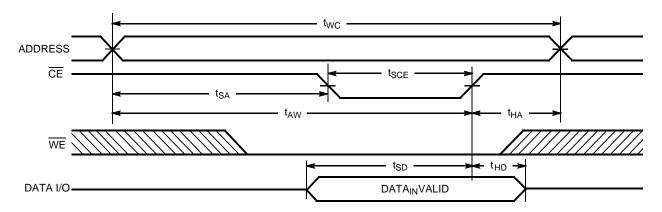
Read Cycle No. 2^[13, 14]

Write Cycle No. 1 (WE Controlled)[10, 15, 16]

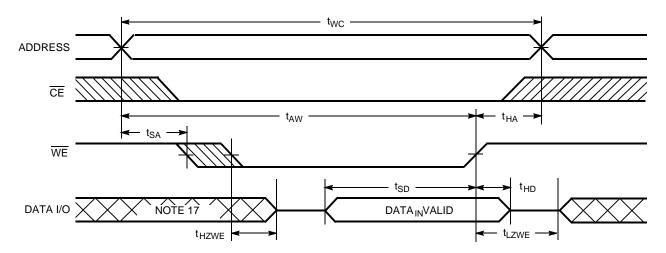
Notes:

- 12. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 13. WE is HIGH for read cycle.

- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

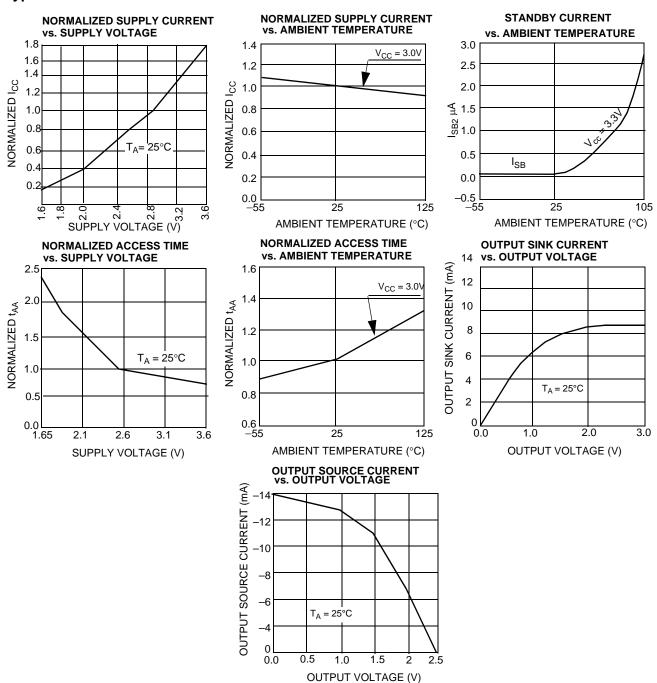

 15. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IL}}$.

 16. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 17. During this period, the I/Os are in output state and input signals should not be applied.

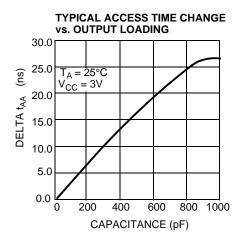


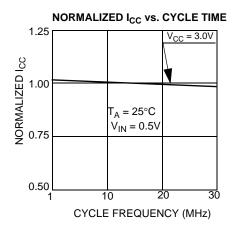
Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)[10, 15, 16]



Write Cycle No. 3 (WE Controlled, OE LOW)[11, 16]


Typical DC and AC Characteristics



[+] Feedback

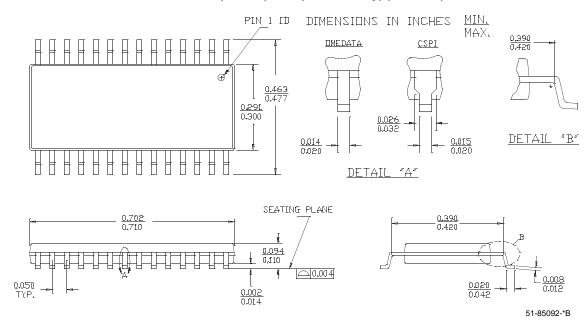
Typical DC and AC Characteristics (continued)

Truth Table

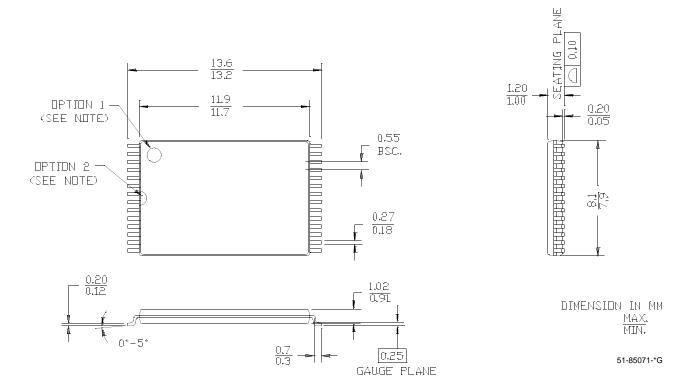
CE	WE	ŌE	Inputs/Outputs	Mode	Power
Н	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY62256VNLL-70SNC	51-85092	28-lead (300-mil) Narrow SOIC	Commercial
	CY62256VNLL-70SNXC		28-lead (300-mil) Narrow SOIC (Pb-Free)	
	CY62256VNLL-70ZC	51-85071	28-lead TSOP I	
	CY62256VNLL-70ZXC		28-lead TSOP I (Pb-Free)	
	CY62256VNLL-70SNXI	51-85092	28-lead (300-mil) Narrow SOIC (Pb-Free)	Industrial
	CY62256VNLL-70ZI	51-85071	28-lead TSOP I	
	CY62256VNLL-70ZXI		28-lead TSOP I (Pb-Free)	
	CY62256VNLL-70ZRI	51-85074	28-lead Reverse TSOP I	
	CY62256VNLL-70ZRXI		28-lead Reverse TSOP I (Pb-Free)	
	CY62256VNLL-70ZXA	51-85071	28-lead TSOP I (Pb-Free)	Automotive-A
	CY62256VNLL-70SNXE	51-85092	28-lead (300-mil) Narrow SOIC (Pb-Free)	Automotive-E
	CY62256VNLL-70ZXE	51-85071	28-lead TSOP I (Pb-Free)	
	CY62256VNLL-70ZRXE	51-85074	28-lead Reverse TSOP I (Pb-Free)	


Please contact your local Cypress sales representative for availability of other parts

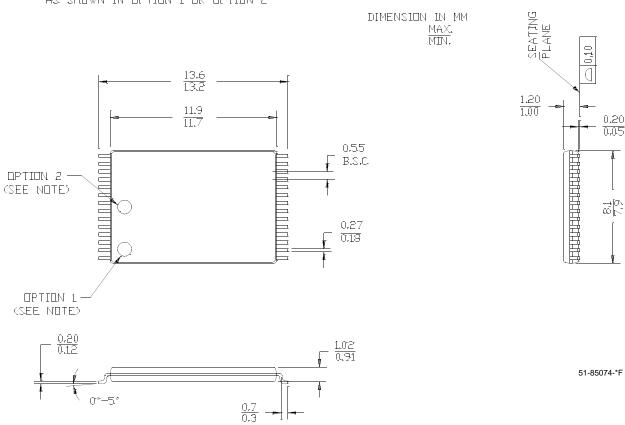
[+] Feedback


Package Diagrams

28-lead (300-mil) SNC (Narrow Body) (51-85092)

28-lead TSOP 1 (8 x 13.4 mm) (51-85071)

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2


Document #: 001-06512 Rev. *A

Package Diagrams (continued)

28-lead Reverse TSOP 1 (8 x 13.4 mm) (51-85074)

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY62256VN 256K (32K x 8) Static RAM Document Number: 001-06512					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	426504	See ECN	NXR	New Data Sheet	
*A	488954	See ECN	NXR	Added Automotive product Updated ordering Information table	

Document #: 001-06512 Rev. *A

[+] Feedback