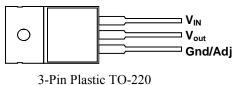


AMC7584 7A Low Dropout Regulator

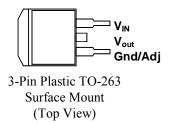
DESCRIPTION

The AMC7584 series is a high performance low dropout regulator rated for 7A output current. It is designed for use in applications requiring low dropout characteristics over rated current range. The AMC7584 series offers fixed 2.5V, 3.3V, 5V and adjustable output voltage versions. In addition, the AMC7584 series features the device protections including over current and thermal shutdown. Also, reverse battery protection scheme limits the reverse current when the input voltage falls below the output.

FEATURES


- Input-Output differential of typical1.1V at 7A and low quiescent current
- Output current is excess of 7A
- □ Reverse battery protection
- □ Short circuit protection
- □ Internal thermal overload protection
- ☐ Available in 3L plastic TO-220 and surface mount 3L TO-263 packages
- □ Pin assignment identical to EZ1585B and LT1585A series.

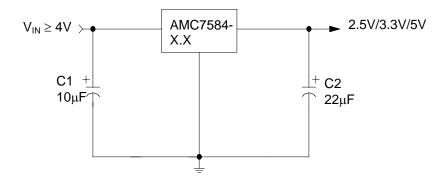
APPLICATIONS


- Pentium[®] Processor Supplies
- PowerPCTM Supplies
- Computer Add-On Cards
- Other Applications Requiring Low Dropout Voltage Over Rated Current.

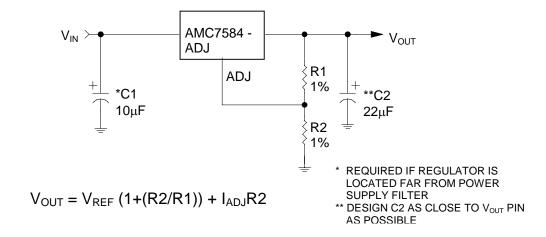
AMC7584-2.5 – 2.5V Fixed AMC7584-3.3 – 3.3V Fixed AMC7584-5.0 – 5.0V Fixed AMC7584-ADJ– Adjustable

PACKAGE PIN OUT

(Top View)


ORDER INFORMATION						
T. (00)	Plastic TO-220	ST Plastic TO-263				
T_A (°C)	3-pin	3-pin				
0 to 70	AMC7584-XXT	AMC7584-XXST				
0 to 70	AMC7584-XXTF (Lead Free)	AMC7584-XXSTF (Lead Free)				
0 to 70	AMC7584-ADJT	AMC7584-ADJST				
0 to 70	AMC7584-ADJTF (Lead Free)	AMC7584-ADJSTF (Lead Free)				

Note: 1.All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e., AMC7584-X.XSTT).


2.The letter "F" is marked for Lead Free process.

1

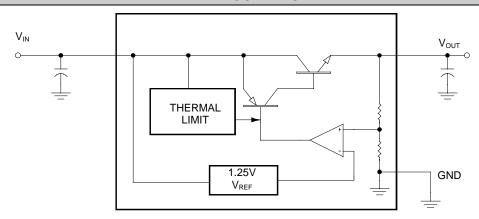
TYPICAL APPLICATION

AMC7584-X.X application schematic

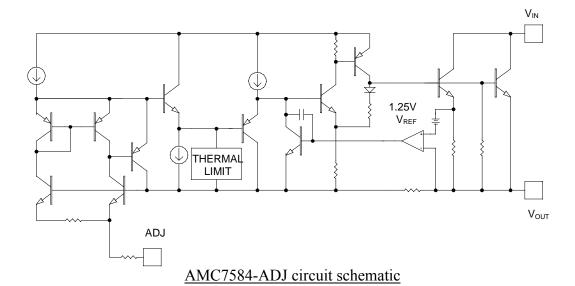
AMC7584-ADJ application schematic

7A LOW DROPOUT REGULATOR

ABSOLUTE MAXIMUM RATINGS (Note 1)	
Input Voltage (V _{IN})	7V
Operating Junction temperature	150°C
Storage Temperature Range	-65 °C to 150 °C
Lead temperature (Soldering, 10 seconds)	300°C


Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

THERMAL DATA					
T, ST PACKAGE:					
Thermal Resistance-Junction to Tab, θ_{JT}	3.0 °C /W				
Thermal Resistance-Junction to Ambient, θ_{JA}	45 °C /W				


The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system.

 $T_J = T_A + (P_D \times \theta_{JA})$., all of the above assume no ambient airflow.

BLOCK DIAGRAM

AMC7584-X.X circuit schematic

7A LOW DROPOUT REGULATOR

RECOMMENDED OPERATING CONDITIONS								
Parameter		Recommend	Units					
		Min.	Тур.	Max.	Cints			
Input Voltage	V_{IN}	4.0		7	V			
Load Current (with adequate heatsinking)	I_{o}	0.010		7	A			
Input Capacitor (V _{IN} to GND)		1.0			μF			
Output Capacitor with ESR of 10Ω max., (V_{OUT} to GND)		10			μF			

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperature of 0° C to +70 °C for AMC7584; $I_{O} = 10$ mA, $C_{OUT} = 10$ μ F, and are for DC characteristics only. (Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter		Crmbol	Symbol Test Conditions		AMC7584			Units	
Farai	netei	Test Conditions		Min.	Typ.	Max.	Omts		
	AMC7584-2.5		$V_{IN} = 4V, T_A = 25^{\circ}C$		2.475	2.500	2.525	V	
Output Voltage	AMC7584-3.3	V_{O}	W W 200 T 25 OC		3.267	3.300	3.333		
	AMC7584-5.0		$\mathbf{v}_{\mathrm{IN}} = \mathbf{v}_{\mathrm{OUT}} + 2\mathbf{v},$	$V_{IN} = V_{OUT} + 2V, T_A = 25$ °C		5.000	5.050		
Reference	AMC7584-ADJ	V_{REF}			1.238	1.250	1.262	V	
Voltage	AIVIC / 304-AD3	▼ REF	$I_{\rm O} = 10 \text{ mA to } 7$	A	1.230	1.250	1.270	•	
Line Regulation	(Note 2)	$\triangle V_{OI}$	$4V \le V_{IN} \le 7V$			0.005	0.2	%	
	AMC7584-2.5		$V_{IN} = 4V$, $10mA \le I_O \le 7A$			0.05	0.2	%	
Load regulation	AMC7584-3.3	$\Delta_{V_{OL}}$							
(Note 2)	AMC7584-5.0		$V_{\rm IN} = V_{\rm OUT} + 2V,$						
	AMC7584-ADJ								
Dropout Voltage	Dungant Walters		41/41/471/	$I_O = 100 \text{mA}$		0.010	0.030	V	
Dropout Voltage		$\triangle V$	$4V \le V_{IN} \le 7V$	$I_O = 7A$		1.100	1.300	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Quiescent Curre	ent	I_Q	$4V \le V_{IN} \le 7V$, $100mA \le I_O \le 7A$			8	13	mA	
Adj pin current (AMC7584-AD)	Adj pin current (AMC7584-ADJ only)		$4V \le V_{IN} \le 7V, 100mA \le I_O \le 7A$			50	120	μΑ	
Current Limit		I_{CL}	$4V \le V_{IN} \le 7V$		7	8		A	
Output Noise Voltage (Note 3)		V_{ORMS}	10Hz – 100kHz,	$I_{\rm O} = 5 \mathrm{mA}$		150		μV_{RMS}	
Long Term Stability (Note 3)						20		mV/1000hr	
Ripple rejection	(Note 3)	R_R	$f_0 = 120$ Hz, $1V_{R1}$		66		dB		
Note 2: Line and 1	and magnitude in	an aranta	ad um to morrimaum	marrian dissination	datama	inad br	· innut/a	tt	

Note 2: Line and load regulation is guaranteed up to maximum power dissipation determined by input/output differential and the output current. However, the maximum power will not be available over the full input/output voltage range.

Note 3: These parameters, although guaranteed, are not tested in production prior to shipment

APPLICATION INFORMATION:

• Thermal Consideration

Maximum Power Calculation:

$$P_{D(MAX)}\!\!=\!\!-\frac{T_{J(MAX)}-T_{A(MAX)}}{\theta_{_{JA}}}$$

T_J(°C): Maximum recommended junction temperature

T_A(°C): Ambient temperature of the application

 $\theta_{JA}(^{\circ}C/W)$: Junction-to-junction temperature thermal resistance of the package, and other heat dissipating materials.

The maximum power dissipation of a single-output regulator :

$$P_{D(MAX)} = [(V_{IN(MAX)} - V_{OUT(NOM)})] \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_{O}$$

Where: $V_{OUT(NOM)}$ = the nominal output voltage

 $I_{OUT(NOM)}$ = the nominal output current, and

 I_Q = the quiescent current the regulator consumes at $I_{OUT(MAX)}$

 $V_{IN(MAX)}$ = the maximum input voltage

Then $\theta_{IA} = (150^{\circ} C - T_A) / P_D$

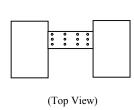
Thermal consideration:

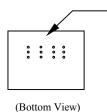
When power consumption is over about 1.2W(at 70° C ambient temperature), additional heat sink is required to control the junction temperature below 125 $^{\circ}$ C.

The junction temperature is: $Tj = P_D (\theta_{JT} + \theta_{CS} + \theta_{SA}) + T_A$

P_D:Dissipated power.

 θ_{IT} : Thermal resistance from the junction to the mounting tab of the package.

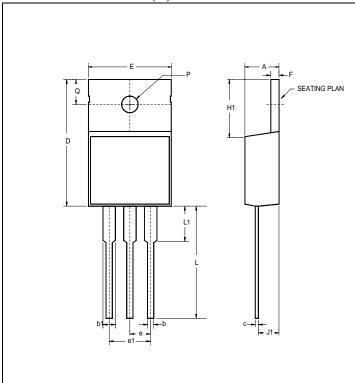

 θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} \le 1.0^{\circ} C \ / \ W$)


 θ_{SA} :Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

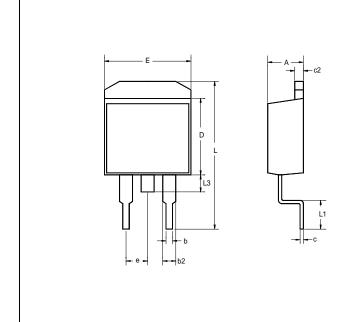
If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through hole vias.

PCB θ _{SA} (°C / W)	59	45	38	11	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000

Recommended figure of PCB area used as a heat sink.



through hole vias


7A Low Dropout Regulator

3-Pin Plastic TO-220 (T)

	J	NCHES	3	MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
Α	0.140	ı	0.190	3.56	ı	4.83
b1	0.045	ı	0.070	1.14	ı	1.78
b	0.020	ı	0.045	0.51	1	1.14
С	0.012	ı	0.045	0.30	1	1.14
D	0.560	1	0.650	14.22	-	16.51
Е	0.380	ı	0.420	9.65	1	10.67
е	0.090	ı	0.110	2.29	1	2.79
e1	0.190	ı	0.210	4.83	-	5.33
F	0.020		0.055	0.51	-	1.40
H1	0.230	ı	0.270	5.84	-	6.86
J1	0.080	1	0.115	2.03	-	2.92
L	0.500	-	0.580	12.7	-	14.73
Р	0.139	-	0.161	3.53	-	4.09
Q	0.100	-	0.135	2.54	-	3.43
L1	-	-	0.250	-	-	6.35

3-Pin Surface Mount TO-263 (ST)

	ı	NCHES	3	MILLIMETERS			
	MIN	TYP	MAX	MIN	TYP	MAX	
Α	0.160	ı	0.190	4.06	ı	4.83	
b	0.020	ı	0.039	0.51	1	0.99	
b2	0.045	ı	0.055	1.14	1	1.40	
С	0.	015 TY	P.	0.38 TYP.			
c2	0.045	-	0.055	1.14	-	1.40	
D	0.340	ı	0.380	8.64	1	9.65	
Е	0.380	1	0.405	9.65	-	10.29	
е	0.	0.100 BSC			2.54 BSC		
L	0.575	ı	0.625	14.61	1	15.88	
L1	0.090	ı	0.110	2.29	-	2.79	
L2	-		0.115	-	-	2.92	
L3	0.050	-	0.070	1.27		1.78	

March 2004

IMPORTANT NOTICE

ADD Microtech (ADDM) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDM integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDM products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDM assumes to no liability to customer product design or application support. ADDM warrants the performance of its products to the specifications applicable at the time of sale.

U.S.	Asia Pacific region		
ADD Microtech Inc.	ADD Microtech Corp		
492 Altamont Drive	13F, NO. 287, Sec. 3, Nan Jing E. Rd.,		
Milpitas, CA 95035	Taipei, Taiwan 105		
TEL: (408) 9410420	TEL: 2-27132800		
FAX: (408) 9410864	FAX: 2-27132805		