

♦ STRUCTURE

Silicon Monolithic Integrated Circuit

◇ PRODUCT

Microwire BUS Serial EEPROMs

♦ SERIES

ADVANTAGE SERIES

♦ FAMILY

BR93C□□ family

♦ TYPE

Supply voltage 1.8V~5.5V/Opreating temperature -40°C~+85°Ctype

♦ PART NUMBER

BR93C□□-10□U-1.8

PART NUMBER	PACKAGE	DENSITY
BR93C46 -10SU-1.8	Olaszi	1Kbit
BR93C56 -10SU-1.8	8-lead JEDECSOIC	2Kbit
BR93C66 -10SU-1.8	GEBEOGOIO	4Kbit
BR93C46R-10SU-1.8	8-lead JEDECSOIC(Different pin assignment)	1Kbit
BR93C46 -10TU-1.8		1Kbit
BR93C56 -10TU-1.8	8-lead TSSOP	2Kbit
BR93C66 -10TU-1.8	1330F	4Kbit

Microwire BUS interface

Endurance: 1,000,000 erase/write cycles

Data retention: 100 years Intial Data FFFFh in all address

♦ ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min.	Max.	Unit
T _{STG}	Storage Temperature	-65	125	°C
V _{out}	Output Range(Q=V _{OH} or Hi-Z)	-0.3	Vcc+0.3	V
V _{IN}	Input range	-0.3	Vcc+0.3	٧
V _{cc}	Supply Voltage	-0.3	6.5	V

♦ POWER DISSIPATION (Ta=25°C)

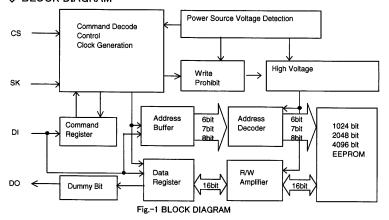
100H / (10 L0 0)		
PACKAGE	Rating	Unit
8-lead JEDECSOIC	450 *1	mW
8-lead TSSOP	330 *2	mW

^{*} Degradation is done at 4.5mW/°C(*1), 3.3mW/°C(*2)for operation above 25°C

♦ RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	1.8	5.5	V
T _A	Ambient Operating Temperature	-40	85	°C

♦ DC OPERATING CHARACTERISTICS (Unless otherwise specified, Ta=-40~85°C, Vcc=1.8~5.5V)


Parameter	Symbol		Specification	n	Unit	T . O . III	
Farallieter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Supply Voltage	Vcc	1.8	-	5.5	V		
Supply Current	I _{cc}	-	-	2.0	mA	Vcc=5V,READ at f=1MHz	
Supply Current	*cc	-	_	2.0	mA	Vcc=5V,WRITE at f=1MHz	
Standby Current	I _{SB}		-	10	μΑ	Vcc=2.7V,CS=0V	
Grandby Gurrent	*SB	-	-	30	μΑ	Vcc=5.0V,CS=0V	
Input Leakage	I _{IL}	-	-	1.0	μΑ	0V≦V _{IH} ≦Vcc	
Output Leakage	loL	-	-	1.0	μА	0≦V _{out} ≦Vcc,DO in Hi−Z	
Input Low Voltage	V _{IL1}	-0.3	-	0.8	V	4.0V≤Vcc≤5.5V	
Input High Voltage	V _{IH1}	2.0	-	Vcc+0.3	V	4.0V ≥ VCC ≥ 5.5V	
Input Low Voltage	V _{IL2}	-0.3	-	0.2Vcc	V	Vcc≤4.0V	
Input High Voltage	V _{IH2}	0.7Vcc	-	Vcc+0.3	V	Vcc≧4.UV	
Output Low Voltage	V _{OL1}	-	-	0.4	٧	2.7V≦Vcc≦5.5V	
Output High Voltage	V _{OH1}	2.4	-	-	V	I _{OL} =2.1mA, I _{OH} =-0.4mA	
Output Low Voltage	V _{OL2}	-	-	0.2	V	1.8V≦Vcc≦2.7V	
Output High Voltage	V _{OH2}	Vcc−0.2		_	٧	I_{OL} =0.15mA, I_{OH} =-100 μ A	

♦ AC OPERATING CHARACTERISTICS (Unless otherwise specified, Ta=-40~85°C, V_{CC}=1.8~5.5V)

	Τ		Specification)		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
		0	-	2		4.5V≦Vcc≦5.5V
SK Clock Frequency	f _{SK}	0	-	1	MHz	2.7V≦Vcc≦5.5V
	. [0	-	0.25		1.8V≦Vcc≦5.5V
		250	- "	-		4.5V≦Vcc≦5.5V
SK High Time	t _{SKH} *1	250	-	-	ns	2.7V≦Vcc≦5.5V
		1000	-	-		1.8V≦Vcc≦5.5V
		250	-	-		4.5V≦Vcc≦5.5V
SK Low Time	t _{SKL} *1	250	-	-	ns	2.7V≦Vcc≦5.5V
		1000	-			1.8V≦Vcc≦5.5V
		250		-		4.5V≦Vcc≦5.5V
Minimum CS Low Time	t _{CS}	250	-	-	ns	2.7V≦Vcc≦5.5V
		1000	-	-		1.8V≦Vcc≦5.5V
		50		-		4.5V≦Vcc≦5.5V
CS Set-up Time(relative to SK)	tcss	50	-	-	ns	2.7V≦Vcc≦5.5V
		200	-	-		1.8V≦Vcc≦5.5V
		100		-		4.5V≦Vcc≦5.5V
DI Set-up Time(relative to SK)	t _{DIS}	100	-	-	ns	2.7V≦Vcc≦5.5V
	1	400	-	-		1.8V≦Vcc≦5.5V
CS Hold Time(relative to SK)	t _{CSH}	0	-	-	ns	
		100	-	-		4.5V≦Vcc≦5.5V
DI Hold Time(relative to SK)	t _{OIH}	100	-	-	ns	2.7V≦Vcc≦5.5V
		400		-	l	1.8V≦Vcc≦5.5V
		-	-	250		4.5V≦Vcc≦5.5V
Output Delay to "1"	t _{PD1}	-	-	250	ns	2.7V≦Vcc≦5.5V
	<u> </u>	-	-	1000		1.8V≦Vcc≦5.5V
		~	-	250		4.5V≦Vcc≦5.5V
Output Delay to "0"	t _{P00}	-	-	250	ns	2.7V≦Vcc≦5.5V
		-	L _	1000		1.8V≦Vcc≦5.5V
		-	-	250		4.5V≦Vcc≦5.5V
CS to Status Valid	t _{SV}	-	-	250	ns	2.7V≦Vcc≦5.5V
		-	-	1000		1.8V≦Vcc≦5.5V
		-	-	100		4.5V≦Vcc≦5.5V
CS to DO in High Impedance	t _{OF}	-	-	100	ns	2.7V≦Vcc≦5.5V
		-	_	400		1.8V≦Vcc≦5.5V
Write Cycle time	t _{WP}		-	10	ms	
Endurance(5.0V,25°C)	-	1M	-		Write Cycle	

*1: t_{SKL}+t_{SKH}≥1/f_C

♦ BLOCK DIAGRAM

PIN No., PIN NAME

PIN NAME				
CS	DC			
SK	Vcc			
DI	CS			
DO	SK			
GND	DI			
DC	DO			
DC	GND			
Vcc	DC			
BR93C56-10SU-1.8 BR93C66-10SU-1.8 BR93C46-10TU-1.8 BR93C56-10TU-1.8	BR93C46R-10SU-1.8			
	CS SK DI DO GND DC Vcc BR30246-10SU-1.8 BR93056-10SU-1.8 BR93056-10SU-1.8			

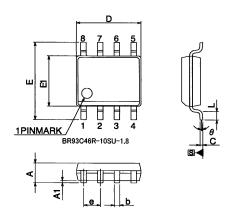
♦ NOTES FOR POWER SUPPLY

This IC has a POR (Power On Reset) circuit as mistake write countermeasure.

After POR action, it gets in write disable status. The POR circuit is valid only when power is ON, and does not work when power is OFF. However, if CS is "H" at power ON/OFF, it may become write enable status owing to noises and the likes. For secure operations, observe the following conditions.

- 1. Set CS = "L".
- 2. Turn on power so as to satisfy the recommended conditions of tR, tOFF, Vbot for POR circuit operation.

♦ Recommended conditions of tR, tOFF, Vbot							
tR	tOFF	Vbot					
Below 10ms	Above 10ms	Below 0.3V					
Below 100ms	Above 10ms	Below 0.2V					


♦ CAUTIONS ON USE

(1) Absolute maximum ratings

If the absolute maximum ratings such as impressed voltage and action temperature range and so forth are exceeded, LSI may be destructed. Do not impress voltage and temperature exceeding the absolute maximum ratings. In the case of fear exceeding the absolute maximum ratings, take physical safety countermeasures such as fuses, and see to it that conditions exceeding the absolute maximum ratings should not be impressed to LSI.

- (2) GND electric potential
 - Set the voltage of GND terminal lowest at any action condition. Make sure that each terminal voltage is lower than that of GND terminal.
- (3) Thermal design
 - In consideration of permissible loss in actual use condition, carry out heat design with sufficient margin.
- (4) Terminal to terminal shortcircuit and wrong packaging
 - When to package LSI onto a board, pay sufficient attention to LSI direction and displacement. Wrong packaging may destruct LSI. And in the case of shortcircuit between LSI terminals and terminals and power source, terminal and GND owing to foreign matter, LSI may be destructed.
- (5) Use in a strong electromagnetic field may cause malfunction, therefore, evaluated design sufficiently.
 - * Degradation is done at 4.5mW/°C(*1), 3.3mW/°C(*2)for operation above 25°C

♦ PHYSICAL DIMENSION

Notes

- 1. This drawing is subject to change without notice.
- 2.Body dimensions do not include mold flash or protrusion, or gate burns.
- 3.Reference JEDEC MS-012 variation AA.

Fig-3 8-lead JEDECSOIC Package Outline

♦ 8-lead JEDECSOIC Package Size Data

Symbol	mm			inches			
Symbol	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α	1	1.35	1.75	-	0.053	0.069	
A1	1	0.10	0.25	-	0.004	0.010	
b	1	0.31	0.51	-	0.012	0.020	
С	1	0.17	0.25	_	0.007	0.010	
D	1	4.80	5.00	-	0.189	0.197	
е	1.27	_	1	-	0.050	_	
b	BSC				BSC	_	_
Е	1	5.79	6.20	_	0.228	0.244	
E1	-	3.81	3.99	_	0.150	0.157	
L	•	0.40	1.27	-	0.016	0.050	
θ	_	0°	8°	-	0°	8°	

田四 1PINMARK

* Degradation is done at 4.5mW/°C(*1), 3\smw/°C(*2)for operation

Notes

- 1. This drawing is subject to change without notice.
- 2.Body dimensions do not include mold flash or
- protrusion, or gate burns.

 3.Reference JEDEC MO-153.

Fig-4 8-lead TSSOP Package Outline

♦ 8-lead TSSOP Package Size Data

Symbol		mm		inches			
Synibol	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α	-	-	1.20	-	-	0.047	
A2	1.00	0.80	1.05	0.039	0.031	0.041	
b	_	0.19	0.30	-	0.007	0.012	
D	3.00	2.90	3.10	0.118	0.114	0.122	
	0.65	-			0.005		
е	BSC		-	0.025	_	_	
Е	6.40			0.050			
	BSC	_	_	0.252	_	_	
E1	4.40	4.30	4.50	0.173	0.169	0.177	
L	0.60	0.45	0.75	0.023	0.017	0.030	
	1.00			0.000			
L1	REF	_	_	0.039	_	_	

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

ROHM

Appendix1-Rev1.1

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

```
Please contact our sales offices for details ;
```

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                 FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                 FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                 FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                 FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                                                 FAX: +852(2)375-8971
                        TEL: +852(2)740-6262
       Shanghai
                        TEL: +86(21)6279-2727
                                                 FAX: +86(21)6247-2066
      Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
      Beijing
                        TEL: +86(10)8525-2483
                                                 FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                 FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                 FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                 FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                 FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                 FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                 FAX: +66(2)256-6334
```

Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL: +81(52)581-8521 FAX: +81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271

As of 18th. April 2005