1-Bit Dual-Supply Non-Inverting Level Translator The NLSV1T244 is a 1-bit configurable dual-supply voltage level translator. The input A_n and output B_n ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_n to the output B_n port. #### **Features** - $\bullet~$ Wide V_{CCA} and V_{CCB} Operating Range: 0.9~V to 4.5~V - High-Speed w/ Balanced Propagation Delay - Inputs and Outputs have OVT Protection to 4.5 V - Non-preferential V_{CCA} and V_{CCB} Sequencing - Outputs at 3-State until Active V_{CC} is Reached - Power-Off Protection - Outputs Switch to 3-State with V_{CCB} at GND - Ultra-Small Packaging: 1.2 mm x 1.0 mm UDFN6 - This is a Pb-Free Device #### **Typical Applications** • Mobile Phones, PDAs, Other Portable Devices ### **Important Information** • ESD Protection for All Pins: HBM (Human Body Model) > 3000 V Figure 1. Logic Diagram ### ON Semiconductor® http://onsemi.com MARKING DIAGRAM Q = Specific Device Code M = Date Code = Pb-Free Package #### **PIN ASSIGNMENT** (Top View) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|--------------------|-----------------------| | NLSV1T244MUTBG | UDFN6
(Pb-Free) | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ### **PIN ASSIGNMENT** | PIN | FUNCTION | |------------------|-----------------------------| | V _{CCA} | Input Port DC Power Supply | | V _{CCB} | Output Port DC Power Supply | | GND | Ground | | Α | Input Port | | В | Output Port | | ŌĒ | Output Enable | #### **TRUTH TABLE** | In | Inputs | | | | |----|--------|---------|--|--| | ŌĒ | Α | В | | | | L | L | L | | | | L | Н | Н | | | | Н | X | 3-State | | | ### **MAXIMUM RATINGS** | Symbol | Rating | | Value | Condition | Unit | |-------------------------------------|----------------------------------|----|--------------|-------------------------|------| | V _{CCA} , V _{CCB} | DC Supply Voltage | | −0.5 to +5.5 | | V | | V _I | DC Input Voltage | Α | −0.5 to +5.5 | | V | | V _C | Control Input | ŌĒ | -0.5 to +5.5 | | V | | Vo | DC Output Voltage (Power Down) | В | -0.5 to +5.5 | $V_{CCA} = V_{CCB} = 0$ | V | | | (Active Mode) | В | -0.5 to +5.5 | | V | | | (Tri-State Mode) | В | -0.5 to +5.5 | | ٧ | | I _{IK} | DC Input Diode Current | | -20 | V _I < GND | mA | | lok | DC Output Diode Current | | -50 | V _O < GND | mA | | I _O | DC Output Source/Sink Current | | ±50 | | mA | | I _{CCA} , I _{CCB} | DC Supply Current Per Supply Pin | | ±100 | | mA | | I _{GND} | DC Ground Current per Ground Pin | | ±100 | | mA | | T _{STG} | Storage Temperature | | -65 to +150 | | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Min | Max | Unit | |-------------------------------------|---|----|-----|------------------|------| | V _{CCA} , V _{CCB} | Positive DC Supply Voltage | | 0.9 | 4.5 | V | | VI | Bus Input Voltage | | GND | 4.5 | V | | V _C | Control Input | ŌĒ | GND | 4.5 | V | | V _{IO} | Bus Output Voltage (Power Down Mode) | В | GND | 4.5 | V | | | (Active Mode) | В | GND | V _{CCB} | V | | | (Tri-State Mode) | В | GND | 4.5 | V | | T _A | Operating Temperature Range | | -40 | +85 | °C | | Δt / ΔV | Input Transition Rise or Rate V _I , from 30% to 70% of V _{CC} ; V _{CC} = 3.3 V \pm 0.3 V | | 0 | 10 | nS | ### DC ELECTRICAL CHARACTERISTICS | | | | | | -40°C to | J +65 C | | |------------------|---|--|----------------------|----------------------|-------------------------|-------------------------|-----| | Symbol | Parameter | Test Conditions | V _{CCA} (V) | V _{CCB} (V) | Min | Max | Uni | | V _{IH} | Input HIGH Voltage | | 3.6 – 4.5 | 0.9 – 4.5 | 2.2 | - | V | | | (A, \overline{OE}) | | 2.7 – 3.6 | | 2.0 | - | | | | | | 2.3 – 2.7 | | 1.6 | _ | | | | | | 1.4 – 2.3 | | 0.65 * V _{CCA} | - | | | | | | 0.9 – 1.4 | | 0.9 * V _{CCA} | - | | | V_{IL} | Input LOW Voltage | | 3.6 – 4.5 | 0.9 – 4.5 | - | 0.8 | V | | | (A, \overline{OE}) | | 2.7 – 3.6 | | - | 8.0 | | | | | | 2.3 – 2.7 | | - | 0.7 | | | | | | 1.4 – 2.3 | | - | 0.35 * V _{CCA} | | | | | | 0.9 – 1.4 | | - | 0.1 * V _{CCA} | | | V _{OH} | Output HIGH Voltage | $I_{OH} = -100 \mu A; V_I = V_{IH}$ | 0.9 – 4.5 | 0.9 – 4.5 | V _{CCB} - 0.2 | _ | V | | | | $I_{OH} = -0.5 \text{ mA}; V_I = V_{IH}$ | 0.9 | 0.9 | 0.75 * V _{CCB} | - | | | | | $I_{OH} = -2 \text{ mA}; V_I = V_{IH}$ | 1.4 | 1.4 | 1.05 | _ | | | | | $I_{OH} = -6 \text{ mA}; V_I = V_{IH}$ | 1.65 | 1.65 | 1.25 | - | | | | | | 2.3 | 2.3 | 2.0 | _ | | | | | $I_{OH} = -12 \text{ mA}; V_I = V_{IH}$ | 2.3 | 2.3 | 1.8 | _ | | | | | | 2.7 | 2.7 | 2.2 | _ | | | | | $I_{OH} = -18 \text{ mA}; V_I = V_{IH}$ | 2.3 | 2.3 | 1.7 | - | | | | | | 3.0 | 3.0 | 2.4 | _ | | | | | $I_{OH} = -24 \text{ mA}; V_I = V_{IH}$ | 3.0 | 3.0 | 2.2 | _ | | | V _{OL} | Output LOW Voltage | I_{OL} = 100 μ A; V_I = V_{IL} | 0.9 – 4.5 | 0.9 – 4.5 | - | 0.2 | V | | | | I_{OL} = 0.5 mA; V_I = V_{IL} | 1.1 | 1.1 | - | 0.3 | | | | | $I_{OL} = 2 \text{ mA}; V_I = V_{IL}$ | 1.4 | 1.4 | - | 0.35 | | | | | $I_{OL} = 6 \text{ mA}; V_I = V_{IL}$ | 1.65 | 1.65 | - | 0.3 | | | | | I_{OL} = 12 mA; V_I = V_{IL} | 2.3 | 2.3 | - | 0.4 | | | | | | 2.7 | 2.7 | - | 0.4 | | | | | I_{OL} = 18 mA; V_I = V_{IL} | 2.3 | 2.3 | - | 0.6 | | | | | | 3.0 | 3.0 | - | 0.4 | | | | | I_{OL} = 24 mA; V_I = V_{IL} | 3.0 | 3.0 | - | 0.55 | | | l _l | Input Leakage Current | $V_I = V_{CCA}$ or GND | 0.9 - 4.5 | 0.9 – 4.5 | -1.0 | 1.0 | μΑ | | l _{OFF} | Power-Off Leakage Current | <u>OE</u> = 0 V | 0
0.9 – 4.5 | 0.9 – 4.5
0 | -1.0
-1.0 | 1.0
1.0 | μΑ | | I _{CCA} | Quiescent Supply Current | $V_I = V_{CCA}$ or GND;
$I_O = 0$, $V_{CCA} = V_{CCB}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 1.0 | μΑ | | I _{CCB} | Quiescent Supply Current | $V_I = V_{CCA}$ or GND;
$I_O = 0$, $V_{CCA} = V_{CCB}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 1.0 | μΔ | | CA + ICCB | Quiescent Supply Current | $V_I = V_{CCA}$ or GND;
$I_O = 0$, $V_{CCA} = V_{CCB}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 2.0 | μΔ | | ΔI_{CCA} | Increase in I_{CC} per Input Voltage, Other Inputs at V_{CCA} or GND | $V_I = V_{CCA} - 0.6 V;$
$V_I = V_{CCA}$ or GND | 4.5
3.6 | 4.5
3.6 | _ | 10
5.0 | μA | | ΔI_{CCB} | Increase in I _{CC} per Input Voltage,
Other Inputs at V _{CCA} or GND | $V_I = V_{CCA} - 0.6 \text{ V};$
$V_I = V_{CCA} \text{ or GND}$ | 4.5
3.6 | 4.5
3.6 | _ | 10
5.0 | μA | | I _{OZ} | I/O Tri-State Output Leakage | $T_A = 25^{\circ}C, \overline{OE} = 0 \text{ V}$ | 0.9 – 4.5 | 0.9 – 4.5 | -1.0 | 1.0 | μA | TOTAL STATIC POWER CONSUMPTION (I_{CCA} + I_{CCB}) | | -40°C to +85°C | | | | | | | | | | | |----------------------|----------------------|-------|-----|-------|-----|-------|-----|-------|-----|-------|------| | | V _{CCB} (V) | | | | | | | | | | | | | 4. | .5 | 3. | .3 | 2. | .8 | 1. | .8 | 0. | .9 | | | V _{CCA} (V) | Min | Max | Unit | | 4.5 | | 2 | | 2 | | 2 | | 2 | | < 1.5 | μА | | 3.3 | | 2 | | 2 | | 2 | | 2 | | < 1.5 | μА | | 2.8 | | < 2 | | < 1 | | < 1 | | < 0.5 | | < 0.5 | μА | | 1.8 | | < 1 | | < 1 | | < 0.5 | | < 0.5 | | < 0.5 | μА | | 0.9 | | < 0.5 | | < 0.5 | | < 0.5 | | < 0.5 | | < 0.5 | μА | NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power–up sequence of V_{CCA} and V_{CCB} will not damage the IC. #### **AC ELECTRICAL CHARACTERISTICS** | | | | −40°C to +85°C | | | | | | | | | | | |------------------------------|-----------------|----------------------|----------------|----------------------|-----|------|-----|------|-----|------|-----|------|------| | | | ' | | V _{CCB} (V) | | | | | | | | | | | | | | 4. | .5 | 3. | 3 | 2 | .8 | 1. | .8 | 1. | .2 | | | Symbol | Parameter | V _{CCA} (V) | Min | Max | Unit | | t _{PLH} , | Propagation | 4.5 | | 1.6 | | 1.8 | | 2.0 | | 2.1 | | 2.3 | nS | | t _{PHL}
(Note 1) | Delay, | 3.3 | | 1.7 | | 1.9 | | 2.1 | | 2.3 | | 2.6 | | | (IVOIC I) | A to B | 2.8 | | 1.9 | | 2.1 | | 2.3 | | 2.5 | | 2.8 | | | | | 1.8 | | 2.1 | | 2.4 | | 2.5 | | 2.7 | | 3.0 | | | | | 1.2 | | 2.4 | | 2.7 | | 2.8 | | 3.0 | | 3.3 | | | t _{PZH} , | Output | 4.5 | | 2.6 | | 3.8 | | 4.0 | | 4.1 | | 4.3 | nS | | t _{PZL}
(Note 1) | Enable, | 3.3 | | 3.7 | | 3.9 | | 4.1 | | 4.3 | | 4.6 | | | (Note 1) | O to B | 2.5 | | 3.9 | | 4.1 | | 4.3 | | 4.5 | | 4.8 | | | | | 1.8 | | 4.1 | | 4.4 | | 4.5 | | 4.7 | | 5.0 | | | | | 1.2 | | 4.4 | | 4.7 | | 4.8 | | 5.0 | | 5.3 | | | t _{PHZ} , | Output | 4.5 | | 2.6 | | 3.8 | | 4.0 | | 4.1 | | 4.3 | nS | | t _{PLZ}
(Note 1) | Disable, | 3.3 | | 3.7 | | 3.9 | | 4.1 | | 4.3 | | 4.6 | | | (Note 1) | OE to B | 2.5 | | 3.9 | | 4.1 | | 4.3 | | 4.5 | | 4.8 | | | | | 1.8 | | 4.1 | | 4.4 | | 4.5 | | 4.7 | | 5.0 | | | | | 1.2 | | 4.4 | | 4.7 | | 4.8 | | 5.0 | | 5.3 | | | t _{OSHL} , | Output to | 4.5 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | nS | | t _{OSLH} | Output
Skew, | 3.3 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | ┪ ' | | (Note 1) | Note 1) Tim | 2.5 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | | | | 1.8 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | | | | 1.2 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | 0.15 | | ^{1.} Propagation delays defined per Figure 2. ### **CAPACITANCE** | Symbol | Parameter | Test Conditions | Typ (Note 2) | Unit | |------------------|-------------------------------|--|--------------|------| | C _{IN} | Control Pin Input Capacitance | $V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$ | 3.5 | pF | | C _{I/O} | I/O Pin Input Capacitance | $V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$ | 5.0 | pF | | C _{PD} | Power Dissipation Capacitance | $V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_{I} = 0 \text{ V or } V_{CCA}, f = 10 \text{ MHz}$ | 5.0 | pF | Typical values are at T_A = +25°C. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC(operating)} ≅ C_{PD} x V_{CC} x f_{IN} where I_{CC} = I_{CCA} + I_{CCB}. Figure 2. AC (Propagation Delay) Test Circuit | Test | Switch | |-------------------------------------|----------------------| | t _{PLH} , t _{PHL} | OPEN | | t_{PLZ} , t_{PZL} | V _{CCO} x 2 | | t _{PHZ} , t _{PZH} | GND | C_L = 15 pF or equivalent (includes probe and jig capacitance) $R_L = 2 \text{ k}\Omega$ or equivalent Z_{OUT} of pulse generator = 50 Ω ### Waveform 1 – Propagation Delays $t_R = t_F = 2.0 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$ #### Waveform 2 - Output Enable and Disable Times t_R = t_F = 2.0 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns Figure 3. AC (Propagation Delay) Test Circuit Waveforms | | V _{CC} | | | | | | | | | |-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--|--| | Symbol | 3.0 V – 4.5 V | 2.3 V – 2.7 V | 1.65 V – 1.95 V | 1.4 V – 1.6 V | 0.9 V – 1.3 V | | | | | | V_{mA} | V _{CCA} /2 | | | | | | V _{mB} | V _{CCB} /2 | | | | | | V _X | V _{OL} x 0.1 | | | | | | V_{Y} | V _{OH} x 0.9 | | | | | #### PACKAGE DIMENSIONS #### UDFN6 1.2 x 1.0, 0.4P CASE 517AA ISSUE C *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com **BOTTOM VIEW** N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative