# FXL2SD106 <br> Low－Voltage Dual－Supply 6－Bit Voltage Translator with Auto－Direction Sensing 

## Features

－Bi－Directional Interface between Two Levels：1．1V and 3．6V
－Fully Configurable：Inputs and Outputs Track $V_{C C}$ Level
－Non－Preferential Power－up；Either $\mathrm{V}_{\mathrm{CC}}$ May Be Powered－up First
－Outputs Remain in 3－State until Active $\mathrm{V}_{\mathrm{CC}}$ Level is Reached
－Outputs Switch to 3－State if Either $V_{C C}$ is at GND
－Power－Off Protection
－Bus hold on Data Inputs Eliminates Need for Pull－ up Resistors（Do NOT Use Resistors on the A or B Ports）
－OE and CLK IN are Referenced to $\mathrm{V}_{\mathrm{CCA}}$ Voltage
－Packaged in 16 －Terminal DQFN（ $2.5 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ ）
－Direction Control Not Needed
－ 80 Mbps Throughput Translating between 1．8V and 2.5 V
－ESD Protection Exceeds：
－12kV HBM（B port I／O to GND） （per JESD22－A114 \＆Mil Std 883e 3015．7）
－8kV HBM（A port I／O to GND）
（per JESD22－A114 \＆Mil Std 883e 3015．7）
－1kV CDM（per ESD STM 5．3）

## General Description

The FXL2SD106 is a configurable dual－voltage－supply translator designed for both uni－directional and bi－ directional voltage translation between two logic levels． The device allows translation between voltages as high as 3.6 V to as low as 1.1 V ．The A port tracks the $\mathrm{V}_{\mathrm{CCA}}$ level and the $B$ port tracks the $\mathrm{V}_{\mathrm{CCB}}$ level．This allows for bi－directional voltage translation over a variety of voltage levels： $1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ ，and 3.3 V ．

The device remains in 3－state until both $\mathrm{V}_{\mathrm{Cc}}$ reach active levels，allowing either $\mathrm{V}_{\mathrm{CC}}$ to be powered－up first．Inter－ nal power－down control circuits place the device in 3－ state if either $V_{C C}$ is removed．

The OE input，when low，disables both $A$ and $B$ ports by placing them in a 3 －state condition．The FXL2SD106 is designed so that OE and CLK IN are supplied by $\mathrm{V}_{\mathrm{CCA}}$ ．
The device senses an input signal on A or B port auto－ matically．The input signal is transferred to the other port．
The FXL2SD106 is not designed for SD card applica－ tions．The internal bus hold circuitry conflicts with pull－up resistors．SD cards have internal pull－up resistors on the CD／DAT3 pins．

## Ordering Information

| Order Number | Package Number | Package Description |
| :---: | :---: | :---: |
| FXL2SD106BQX | MLP16E | 16－Terminal Depopulated Quad Very－Thin Flat Pack， <br> No Leads（DQFN），JEDEC MO－241，2．5mm $\times 3.5 \mathrm{~mm}$ |

## Connection Diagram



Pin Description

| Number | Name | Description |
| :---: | :---: | :--- |
| 1 | $\mathrm{~V}_{\text {CCA }}$ | A-Side Power Supply |
| 2 | CLK IN | A-Side Input |
| $3-7$ | $\mathrm{~A}_{0}-\mathrm{A}_{4}$ | A-Side Inputs or 3-State Outputs |
| 8 | OE | Output Enable Input |
| 9 | GND | Ground |
| $10-14$ | $\mathrm{~B}_{4}-\mathrm{B}_{0}$ | B-Side Inputs or 3-State Outputs |
| 15 | CLK OUT | 3-State Output |
| 16 | $\mathrm{~V}_{\mathrm{CCB}}$ | B-Side Power Supply |

## Functional Diagram



Function Table

| Control | Outputs |
| :---: | :---: |
| OE |  |
| LOw Logic Level | 3-State |
| HIGH Logic Level | Normal Operation |

## Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either $\mathrm{V}_{\mathrm{CC}}$ may be powered up first. This benefit derives from the chip design. When either $\mathrm{V}_{\mathrm{CC}}$ is at 0 volts, outputs are in a high-impedance state. The control input (OE) is designed to track the $\mathrm{V}_{\text {CCA }}$ supply. A pull-down resistor tying OE to GND should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up / power-down. The size of the pull-down resistor is based upon the current-sinking capability of the device driving the OE pin.

The recommended power-up sequence is the following:

1. Apply power to the first $\mathrm{V}_{\mathrm{Cc}}$.
2. Apply power to the second $\mathrm{V}_{\mathrm{CC}}$.
3. Drive the OE input high to enable the device.

The recommended power-down sequence is the following:

1. Drive OE input low to disable the device.
2. Remove power from either $\mathrm{V}_{\mathrm{CC}}$.
3. Remove power from other $\mathrm{V}_{\mathrm{CC}}$.

## Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol | Parameter | Rating |
| :---: | :---: | :---: |
| $\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$ | Supply Voltage | -0.5 V to +4.6 V |
| $V_{1}$ | DC Input Voltage <br> I/O Port A <br> I/O Port B <br> OE, CLK IN | $\begin{aligned} & -0.5 \mathrm{~V} \text { to }+4.6 \mathrm{~V} \\ & -0.5 \mathrm{~V} \text { to }+4.6 \mathrm{~V} \\ & -0.5 \mathrm{~V} \text { to }+4.6 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{O}}$ | Output Voltage ${ }^{(1)}$ Outputs 3-STATE Outputs Active ( $\mathrm{A}_{\mathrm{n}}$ ) Outputs Active ( $\mathrm{B}_{\mathrm{n}}$, CLK OUT) | $\begin{array}{r} -0.5 \mathrm{~V} \text { to }+4.6 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CCA}}+0.5 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CCB}}+0.5 \mathrm{~V} \end{array}$ |
| $\mathrm{I}_{\mathrm{IK}}$ | DC Input Diode Current at $\mathrm{V}_{1}<0 \mathrm{~V}$ | -50mA |
| $\mathrm{I}_{\mathrm{OK}}$ | DC Output Diode Current at $\begin{aligned} & \mathrm{V}_{\mathrm{O}}<0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$ | $\begin{aligned} & -50 \mathrm{~mA} \\ & +50 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$ | DC Output Source/Sink Current | $-50 \mathrm{~mA} /+50 \mathrm{~mA}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Supply Pin | $\pm 100 \mathrm{~mA}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

## Note:

1. $\mathrm{I}_{\mathrm{O}}$ Absolute Maximum Rating must be observed.

## Recommended Operating Conditions ${ }^{(2)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol | Parameter | Rating |
| :---: | :--- | ---: |
| $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$ | Power Supply Operating | 1.1 V to 3.6 V |
|  | Input Voltage |  |
|  | Port A | 0.0 V to 3.6 V |
|  | Port B | 0.0 V to 3.6 V |
|  | OE, CLK IN | 0.0 V to $\mathrm{V}_{\mathrm{CCA}}$ |
|  | Dynamic Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ with $\mathrm{V}_{\mathrm{CC}}$ at |  |
|  | 3.0 V to 3.6 V | $\pm 18.0 \mathrm{~mA}$ |
|  | 2.3 V to 2.7 V | $\pm 11.8 \mathrm{~mA}$ |
|  | 1.65 V to 1.95 V | $\pm 7.4 \mathrm{~mA}$ |
|  | 1.4 V to 1.65 V | $\pm 5.0 \mathrm{~mA}$ |
|  | 1.1 V to 1.4 V | $\pm 2.6 \mathrm{~mA}$ |
|  | Static Output Current $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ with $\mathrm{V}_{\mathrm{CC}}$ at 1.1 V to 3.6 V | $\pm 20.0 \mu \mathrm{~A}$ |
| $\mathrm{~T}_{\mathrm{A}}$ | Free Air Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | Maximum Input Edge Rate $\mathrm{V}_{\mathrm{CCA}}=1.1 \mathrm{~V}$ to 3.6 V | $10 \mathrm{~ns} / \mathrm{V}$ |

## Note:

2. All unused inputs and $\mathrm{I} / \mathrm{O}$ pins must be held at $\mathrm{V}_{\mathrm{CCI}}$ or GND .

DC Electrical Characteristics ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

| Symbol | Parameter | $\mathrm{V}_{\text {CCA }}(\mathrm{V})$ | $\mathrm{V}_{\text {ccB }}(\mathrm{V})$ | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 1.4-3.6 | 1.1-3.6 | Data inputs $A_{n}$, CLK IN, OE | $0.6 \times \mathrm{V}_{\text {CCA }}$ |  |  | V |
|  |  | 1.1-1.4 | 1.1-3.6 |  | $0.9 \times \mathrm{V}_{\text {CCA }}$ |  |  |  |
|  |  | 1.1-3.6 | 1.4-3.6 | Data inputs $\mathrm{B}_{\mathrm{n}}$ | $0.6 \times \mathrm{V}_{\text {CCB }}$ |  |  |  |
|  |  | 1.1-3.6 | 1.1-1.4 |  | $0.9 \times \mathrm{V}_{\text {CCB }}$ |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | 1.4-3.6 | 1.1-3.6 | Data inputs $A_{n}$, CLK IN, OE |  |  | $0.35 \times \mathrm{V}_{\text {CCA }}$ | V |
|  |  | 1.1-1.4 | 1.1-3.6 |  |  |  | $0.1 \times \mathrm{V}_{\text {CCA }}$ |  |
|  |  | 1.1-3.6 | 1.4-3.6 | Data inputs $\mathrm{B}_{\mathrm{n}}$ |  |  | $0.35 \times \mathrm{V}_{\text {CCB }}$ |  |
|  |  | 1.1-3.6 | 1.1-1.4 |  |  |  | $0.1 \times \mathrm{V}_{\text {CCB }}$ |  |
| $\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$ | High Level Output Voltage | 1.65-3.6 | 1.1-3.6 | Data outputs $\mathrm{A}_{\mathrm{n}}$,$I_{\text {HOLD }}=-20 \mu \mathrm{~A}$ | $0.75 \times \mathrm{V}_{\mathrm{CCA}}$ |  |  | V |
|  |  | 1.1-1.4 | 1.1-3.6 |  |  | 0.8 |  |  |
|  |  | 1.1-3.6 | 1.65-3.6 | Data outputs $\mathrm{B}_{\mathrm{n}}$,$I_{\text {HOLD }}=-20 \mu \mathrm{~A}$ | $0.75 \times \mathrm{V}_{\text {CCB }}$ |  |  |  |
|  |  | 1.1-3.6 | 1.1-1.4 |  |  | 0.8 |  |  |
| $\mathrm{V}_{\mathrm{OL}}{ }^{(3)}$ | Low Level Output Voltage | 1.65-3.6 | 1.1-3.6 | Data outputs $\mathrm{A}_{\mathrm{n}}$,$\mathrm{I}_{\mathrm{HOLD}}=20 \mu \mathrm{~A}$ |  |  | $0.2 \times \mathrm{V}_{\text {CCA }}$ | V |
|  |  | 1.1-1.4 | 1.1-3.6 |  |  | 0.3 |  |  |
|  |  | 1.1-3.6 | 1.65-3.6 | Data outputs $\mathrm{B}_{\mathrm{n}}$,$I_{\mathrm{HOLD}}=20 \mu \mathrm{~A}$ |  |  | $0.2 \times \mathrm{V}_{\mathrm{CCB}}$ |  |
|  |  | 1.1-3.6 | 1.1-1.4 |  |  | 0.3 |  |  |
| $\mathrm{I}_{\text {(ODH) })^{(4)}}$ | $\begin{aligned} & \text { Bushold Input } \\ & \text { Overdrive High } \\ & \text { Current } \end{aligned}$ | 3.6 | 3.6 | Data inputs $A_{n}, B_{n}$ | 450 |  |  | $\mu \mathrm{A}$ |
|  |  | 2.7 | 2.7 |  | 300 |  |  |  |
|  |  | 1.95 | 1.95 |  | 200 |  |  |  |
|  |  | 1.6 | 1.6 |  | 120 |  |  |  |
|  |  | 1.4 | 1.4 |  | 80 |  |  |  |
| $\mathrm{I}_{(\text {ODL })^{(5)}}$ | Bushold Input Overdrive Low Current | 3.6 | 3.6 | Data inputs $A_{n}, B_{n}$ | -450 |  |  | $\mu \mathrm{A}$ |
|  |  | 2.7 | 2.7 |  | -300 |  |  |  |
|  |  | 1.95 | 1.95 |  | -200 |  |  |  |
|  |  | 1.6 | 1.6 |  | -120 |  |  |  |
|  |  | 1.4 | 1.4 |  | -80 |  |  |  |
| 1 | Input Leakage Current | 1.1-3.6 | 3.6 | $\begin{aligned} & \text { OE, CLK IN, } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \\ & \text { GND } \end{aligned}$ |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| IOFF | Power Off Leakage Current | 0 | 3.6 | $\mathrm{A}_{\mathrm{n}}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V |  |  | $\pm 2.0$ | $\mu \mathrm{A}$ |
|  |  | 3.6 | 0 | $\begin{aligned} & \mathrm{B}_{\mathrm{n}}, \mathrm{CLK} \text { OUT, } \\ & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$ |  |  | $\pm 2.0$ |  |
| $\mathrm{I}_{\mathrm{Oz}}{ }^{(6)}$ | 3-State Output Leakage | 3.6 | 3.6 | $\begin{aligned} & \mathrm{A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}, \mathrm{CLK} \text { OUT, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \text { or } 3.6 \mathrm{~V}, \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  |  | $\pm 2.0$ | $\mu \mathrm{A}$ |
|  |  | 3.6 | 0 | $\begin{aligned} & \mathrm{A}_{\mathrm{n}}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{OE}=\text { Don't Care } \end{aligned}$ |  |  | $\pm 2.0$ |  |
|  |  | 0 | 3.6 | $\mathrm{B}_{\mathrm{n}}, \text { CLK OUT, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { or }$ 3.6V, OE = Don't Care |  |  | $\pm 2.0$ |  |
| $\mathrm{I}_{\mathrm{CCA} / \mathrm{B}}{ }^{(7)(8)}$ | Quiescent Supply Current | 1.1-3.6 | 1.1-3.6 | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCI}}$ or $\mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0$ |  |  | 5.0 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{Ccz}}{ }^{(7)}$ | Quiescent Supply Current | 1.1-3.6 | 1.1-3.6 | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCI}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  |  | 5.0 | $\mu \mathrm{A}$ |
| $I_{\mathrm{CCA}}{ }^{(7)}$ | Quiescent Supply Current | 0 | 1.1-3.6 | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCB}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$ |  |  | -2.0 | $\mu \mathrm{A}$ |
|  |  | 1.1-3.6 | 0 | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$ |  |  | 2.0 |  |

DC Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ) (Continued)

| Symbol | Parameter | $\mathrm{V}_{\text {CCA }}(\mathrm{V})$ | $\mathrm{V}_{\text {CCB }}(\mathrm{V})$ | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{CCB}}{ }^{(7)}$ | Quiescent <br> Supply Current | 1.1-3.6 | 0 | $\mathrm{VI}=\mathrm{V}_{\text {CCB }}$ or GND; $\mathrm{IO}=0$ |  |  | -2.0 | $\mu \mathrm{A}$ |
|  |  | 0 | 1.1-3.6 | $\mathrm{VI}=\mathrm{V}_{\text {CCA }}$ or GND; IO $=0$ |  |  | 2.0 |  |

## Notes:

3. This is the output voltage for static conditions. Dynamic drive specifications are given in "Dynamic Output Electrical Characteristics."
4. An external driver must source at least the specified current to switch LOW-to-HIGH.
5. An external driver must source at least the specified current to switch HIGH-to-LOW.
6. "Don't Care" indicates any valid logic level.
7. $\mathrm{V}_{\mathrm{CCI}}$ is the $\mathrm{V}_{\mathrm{CC}}$ associated with the input side.
8. Reflects current per supply, $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$.

## Dynamic Output Electrical Characteristics ${ }^{(9)}$

A Port ( $\mathrm{A}_{\mathrm{n}}$ )
Output Load: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {CCA }}=$ |  |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.0 V to 3.6 V |  | 2.3V to 2.7V |  | 1.65 V to 1.95V |  | 1.4V to 1.6V |  | 1.1V to 1.3 V |  |
|  |  | Typ. | Max. | Typ. | Max. | Typ. | Max. | Typ. | Max. | Typ. |  |
| $\mathrm{t}_{\text {rise }}{ }^{(10)}$ | Output Rise Time A Port |  | 3.0 |  | 3.5 |  | 4.0 |  | 5.0 | 7.5 | ns |
| $\mathrm{t}_{\text {fall }}{ }^{(11)}$ | Output Fall Time A Port |  | 3.0 |  | 3.5 |  | 4.0 |  | 5.0 | 7.5 | ns |
| $\mathrm{IOHD}^{(10)}$ | Dynamic Output Current High | -18.0 |  | -11.8 |  | -7.4 |  | -5.0 |  | -2.6 | mA |
| $\mathrm{I}_{\text {OLD }}{ }^{(11)}$ | Dynamic Output Current Low | +18.0 |  | +11.8 |  | +7.4 |  | +5.0 |  | +2.6 | mA |

## B Port ( $\mathrm{B}_{\mathrm{n}}$, CLK OUT)

Output Load: $C_{L}=15 \mathrm{pF}, R_{L}>1 \mathrm{M} \Omega$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$ |  |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.0V to 3.6V |  | 2.3V to 2.7V |  | 1.65 V to 1.95 V |  | 1.4 V to 1.6 V |  | 1.1V to 1.3V |  |
|  |  | Typ. | Max. | Typ. | Max. | Typ. | Max. | Typ. | Max. | Typ. |  |
| $\mathrm{t}_{\text {rise }}{ }^{(10)}$ | Output Rise Time B Port |  | 3.0 |  | 3.5 |  | 4.0 |  | 5.0 | 7.5 | ns |
| $\mathrm{t}_{\text {fall }}{ }^{(11)}$ | Output Fall Time B Port |  | 3.0 |  | 3.5 |  | 4.0 |  | 5.0 | 7.5 | ns |
| $\mathrm{IOHD}^{(10)}$ | Dynamic Output Current High | -18.0 |  | -11.8 |  | -7.4 |  | -5.0 |  | -2.6 | mA |
| $\mathrm{I}_{\text {OLD }}{ }^{(11)}$ | Dynamic Output Current Low | +18.0 |  | +11.8 |  | +7.4 |  | +5.0 |  | +2.6 | mA |

## Notes:

9. Dynamic Output Characteristics are guaranteed, but not tested.
10. See Figure 5.
11. See Figure 6.

AC Characteristics
$\mathrm{V}_{\text {CCA }}=3.0 \mathrm{~V}$ to 3.6 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$ |  |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $3.0 \mathrm{~V}-3.6 \mathrm{~V}$ |  | 2.3V-2.7V |  | 1.65V-1.95V |  | 1.4V-1.6V |  | $\begin{gathered} \hline 1.1 \mathrm{~V}-1.3 \mathrm{~V} \\ \hline \text { Typ. } \\ \hline \end{gathered}$ |  |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. |  |  |
| $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}$ | A to B | 0.2 | 3.5 | 0.3 | 3.9 | 0.5 | 5.4 | 0.6 | 6.8 | 22.0 | ns |
|  | B to A | 0.2 | 3.5 | 0.2 | 3.8 | 0.3 | 5.0 | 0.5 | 6.0 | 15.0 | ns |
| $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}$ | CLK IN to CLK OUT |  | 3.0 |  | 3.5 |  | 4.5 |  | 6.0 | 15.0 | ns |
| $\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PZH}}$ | OE to A, OE to B |  | 1.7 |  | 1.7 |  | 1.7 |  | 1.7 | 1.7 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {skew }}{ }^{(12)}$ | A Port, B Port |  | 0.5 |  | 0.5 |  | 0.5 |  | 1.0 | 1.0 | ns |

$\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V}$ to 2.7 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$ |  |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $3.0 \mathrm{~V}-3.6 \mathrm{~V}$ |  | 2.3V-2.7V |  | 1.65V-1.95V |  | 1.4V-1.6V |  | $\begin{gathered} \hline \text { 1.1V-1.3V } \\ \hline \text { Typ. } \end{gathered}$ |  |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. |  |  |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | $A$ to $B$ | 0.2 | 3.8 | 0.4 | 4.2 | 0.5 | 5.6 | 0.8 | 6.9 | 22.0 | ns |
|  | $B$ to $A$ | 0.3 | 3.9 | 0.4 | 4.2 | 0.5 | 5.5 | 0.5 | 6.5 | 15.0 | ns |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | CLK IN to CLK OUT |  | 3.5 |  | 4.0 |  | 4.5 |  | 6.5 | 15.0 | ns |
| $t_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$ | OE to A, OE to B |  | 1.7 |  | 1.7 |  | 1.7 |  | 1.7 | 1.7 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {skew }}{ }^{(12)}$ | A Port, B Port |  | 0.5 |  | 0.5 |  | 0.5 |  | 1.0 | 1.0 | ns |

$\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 1.95 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$ |  |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.0V-3.6V |  | 2.3V-2.7V |  | $1.65 \mathrm{~V}-1.95 \mathrm{~V}$ |  | 1.4V-1.6V |  | $\frac{1.1 \mathrm{~V}-1.3 \mathrm{~V}}{\text { Typ. }}$ |  |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. |  |  |
| $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | A to B | 0.3 | 5.0 | 0.5 | 5.5 | 0.8 | 6.7 | 0.9 | 7.5 | 22.0 | ns |
|  | B to A | 0.5 | 5.4 | 0.5 | 5.6 | 0.8 | 6.7 | 1.0 | 7.0 | 15.0 | ns |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | CLK IN to CLK OUT |  | 4.5 |  | 4.5 |  | 6.3 |  | 6.7 | 15.0 | ns |
| $\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$ | OE to A, OE to B |  | 1.7 |  | 1.7 |  | 1.7 |  | 1.7 | 1.7 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {skew }}{ }^{(12)}$ | A Port, B Port |  | 0.5 |  | 0.5 |  | 0.5 |  | 1.0 | 1.0 | ns |

$\mathrm{V}_{\mathrm{CCA}}=1.4 \mathrm{~V}$ to 1.6 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$ |  |  |  |  |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.0V-3.6V |  | 2.3V-2.7V |  | 1.65V-1.95V |  | 1.4V-1.6V |  | $\begin{gathered} \text { 1.1V-1.3V } \\ \text { Typ. } \end{gathered}$ |  |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. |  |  |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | A to B | 0.5 | 6.0 | 0.5 | 6.5 | 1.0 | 7.0 | 1.0 | 8.5 | 22.0 | ns |
|  | B to A | 0.6 | 6.8 | 0.8 | 6.9 | 0.9 | 7.5 | 1.0 | 8.5 | 15.0 | ns |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | CLK IN to CLK OUT |  | 6.0 |  | 6.5 |  | 6.7 |  | 8.5 | 15.0 | ns |
| $\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$ | OE to A, OE to B |  | 1.7 |  | 1.7 |  | 1.7 |  | 1.7 | 1.7 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {skew }}{ }^{(12)}$ | A Port, B Port |  | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 | 1.0 | ns |

## Note:

12. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port $\left(\mathrm{A}_{\mathrm{n}}\right.$ or $\left.\mathrm{B}_{\mathrm{n}}\right)$ and switching with the same polarity (Low-to-High or High-to-Low). See Figure 8.

## Maximum Data Rate ${ }^{(13)(14)}$

| $\mathrm{V}_{\text {cCA }}$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$ |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.0 V to 3.6 V | 2.3V to 2.7 V | 1.65 V to 1.95 V | 1.4 V to 1.6 V | 1.1V to 1.3V |  |
|  | Min. | Min. | Min. | Min. | Typ. |  |
| $\mathrm{V}_{\text {CCA }}=3.0 \mathrm{~V}$ to 3.6 V | 100 | 100 | 80 | 60 | 20 | Mbps |
| $\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V}$ to 2.7 V | 100 | 100 | 80 | 60 | 20 | Mbps |
| $\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 1.95 V | 80 | 80 | 60 | 40 | 20 | Mbps |
| $\mathrm{V}_{\text {CCA }}=1.4 \mathrm{~V}$ to 1.6 V | 60 | 60 | 40 | 40 | 20 | Mbps |
|  | Typ. | Typ. | Typ. | Typ. | Typ. |  |
| $\mathrm{V}_{\text {CCA }}=1.1 \mathrm{~V}$ to 1.3 V | 20 | 20 | 20 | 20 | 20 | Mbps |

## Note:

13. Maximum data rate is guaranteed but not tested.
14. Maximum data rate is specified in megabits per second. See Figure 7. It is equivalent to two times the F-toggle frequency, specified in megahertz. For example, 100 Mbps is equivalent to 50 MHz .

Capacitance

| Symbol | Parameter |  | Conditions | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typical |  |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance, OE, CLK IN |  |  | $\mathrm{VccA}=\mathrm{VccB}=\mathrm{GND}$ | 4 | pF |
| $\mathrm{C}_{1 / \mathrm{O}}$ | Input/Output Capacitance | $\mathrm{A}_{n}$ | $\begin{aligned} & \mathrm{VccA}=\mathrm{VccB}=3.3 \mathrm{~V}, \\ & \mathrm{OE}=\mathrm{VccA} \end{aligned}$ | 5 | pF |
|  |  | $\mathrm{B}_{\mathrm{n}}$, CLK OUT |  | 6 |  |
| $\mathrm{C}_{\text {PD }}$ | Power Dissipation Capacitance |  | $\begin{aligned} & \mathrm{VccA}=\mathrm{VccB}=3.3 \mathrm{~V}, \\ & \mathrm{Vi}=0 \mathrm{~V} \text { or } \mathrm{Vcc}, \mathrm{f}=10 \mathrm{MHz} \end{aligned}$ | 25 | pF |




Input $t_{R}=t_{F}=2.0$ ns, $10 \%$ to $90 \%$ Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \%$, @ $\mathrm{Vi}=3.0 \mathrm{~V}$ to 3.6 V only

Figure 2. Waveform for Inverting and Non-inverting Functions


Input $t_{R}=t_{F}=2.0 n \mathrm{~ns}, 10 \%$ to $90 \%$
Input $t_{R}=t_{F}=2.5$ ns, $10 \%$ to $90 \%$, @ $\mathrm{Vi}=3.0 \mathrm{~V}$ to 3.6 V only
Figure 4. 3-STATE Output High Enable Time for Low Voltage Logic


Figure 5. Active Output Rise Time and Dynamic Output Current High


Figure 7. Maximum Data Rate


Input $t_{R}=t_{F}=2.0$ ns, $10 \%$ to $90 \%$
Input $t_{R}=t_{F}=2.5$ ns, $10 \%$ to $90 \%$, @ $\mathrm{Vi}=3.0 \mathrm{~V}$ to 3.6 V only
Figure 3. 3-STATE Output Low Enable Time for Low Voltage Logic

| Symbol | Vcc |
| :---: | :---: |
| $\mathrm{Vmi}^{(15)}$ | $\mathrm{V}_{\mathrm{CCI}} / 2$ |
| $\mathrm{Vmo}{ }^{(1)}$ | $\mathrm{V}_{\mathrm{CCO}} / 2$ |
| VX | $0.9 \times \mathrm{V}_{\mathrm{CCO}}$ |
| VY | $0.1 \times \mathrm{V}_{\mathrm{CCO}}$ |

## Note:

15. $\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for control pin OE or $\mathrm{Vmi}=\left(\mathrm{V}_{\mathrm{CCA}} / 2\right)$.


Figure 6. Active Output Fall Time and Dynamic Output Current Low


$$
\left.\mathrm{t}_{\text {skew }}=\left(\mathrm{t}_{\mathrm{p} H L \max }-\mathrm{t}_{\text {pHLmin }}\right) \text { or ( } \mathrm{t}_{\mathrm{pLH}} \text { max }-\mathrm{t}_{\mathrm{t} L H \text { min }}\right)
$$

Figure 8. Output Skew Time

## Physical Dimensions



NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AB
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994
MLP16ErevA
Figure 9. 16-Terminal Depopulated Quad, Very-Thin Flat Pack, No Leads (DQFN), JEDEC MO-241 $2.5 \mathrm{~mm} \times 3.5 \mathrm{~mm}$

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
For current tape and reel specifications, visit Fairchild Semiconductor's packaging area:
http://www.fairchildsemi.com/ms/MS/MS-522.pdf

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| $2 \mathrm{Cool}{ }^{\text {m M }}$ | FlashWriter ${ }^{\text {® }}$ | PDP SPM ${ }^{\text {™ }}$ | The Power Franchise ${ }^{\text {(1) }}$ |
| :---: | :---: | :---: | :---: |
| AccuPowertm | FPSTM | Power-SPM ${ }^{\text {TM }}$ | The Right Technology for Your Success ${ }^{\text {TM }}$ |
| Auto-SPM ${ }^{\text {™ }}$ | F-PFS ${ }^{\text {TM }}$ | PowerTrench ${ }^{\text {® }}$ | the vers. |
| AX-CAPTm* | FRFET ${ }^{\text {® }}$ | Power $\times S^{\text {TM }}$ | Pranchiser |
| BitSiC ${ }^{\text {® }}$ | Global Power Resource ${ }^{\text {SM }}$ | Programmable Active Droop ${ }^{\text {™ }}$ | TinyBoost ${ }^{\text {m }}$ |
| Build it Now ${ }^{\text {TM }}$ | Green FPS ${ }^{\text {m }}$ | QFET ${ }^{\text {® }}$ | TinyBuck ${ }^{\text {mm }}$ |
| CorePLUS ${ }^{\text {m }}$ | Green FPSS ${ }^{\text {TM }} \mathrm{e}$-Series ${ }^{\text {™ }}$ | QS ${ }^{\text {TM }}$ | TinyCalc ${ }^{\text {m }}$ |
| CorePOMER ${ }^{\text {™ }}$ | Gmax ${ }^{\text {™ }}$ | Quiet Series ${ }^{\text {TM }}$ | TinyLogic ${ }^{\text {a }}$ |
| CROSSVOLT ${ }^{\text {Tm }}$ | GTOTM | RapidConfigure ${ }^{\text {TM }}$ | TINYOPTOTM |
| CTL'M | IntelliMAXTM | $\bigcirc^{\text {m }}$ | TinyPower ${ }^{\text {Tm }}$ |
| Current Transfer Logic ${ }^{\text {TM }}$ | ISOPLANARTM | Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{KW}$ at a time ${ }^{\text {Tm }}$ | TinyPMM ${ }^{\text {TM }}$ |
| DEUXPEED ${ }^{\text {® }}$ | MegaBuck ${ }^{\text {TM }}$ | SignalWise ${ }^{\text {™ }}$ | Tiny ${ }^{\text {Nare }}$ TM |
| Dual Cool ${ }^{\text {TM }}$ | MICROCOUPLER ${ }^{\text {TM }}$ | SmartMax ${ }^{\text {™ }}$ | Transic ${ }^{\text {a }}$ |
| EcoSPARK ${ }^{\text {a }}$ | MicroFETM | SMART START'M | TriFault Detect ${ }^{\text {™ }}$ |
| EfficientMax ${ }^{\text {™ }}$ | MicroPak ${ }^{\text {TM }}$ | SPM ${ }^{\text {® }}$ | TRUECURRENT** |
| ESBC ${ }_{\text {®m }}$ | MicroPak2 ${ }^{\text {TM }}$ | STEALTH ${ }^{\text {TM }}$ | $\mu$ SerDes ${ }^{\text {TM }}$ |
| $5^{8}$ | MillerDrive ${ }^{\text {TM }}$ | SuperFET ${ }^{\text {® }}$ | M |
| Fairchild ${ }^{\text {® }}$ | MotionMax ${ }^{\text {™ }}$ | SuperSOTTM. 3 | SerDes- |
| Fairchild Semiconductor ${ }^{\text {® }}$ | Motion-SPM ${ }^{\text {m/m }}$ | SuperSOTTM-6 | UHC ${ }^{\text {® }}$ |
| FACT Quiet Series ${ }^{\text {™ }}$ | mWSaver'm | SuperSOTTM-8 | Ultra FRFET ${ }^{\text {Tm }}$ |
| $\mathrm{FACT}^{\text {® }}$ | OptohiT'm | SupreMOS ${ }^{\text {® }}$ | UniFETTM |
| FAST ${ }^{\text {® }}$ | OPTOLOGIC ${ }^{\circ}$ | SyncFET'M | VCX ${ }^{\text {™ }}$ |
| FastvCore ${ }^{\text {m }}$ | OPTOPLANAR | Sync-Lock ${ }^{\text {Tm }}$ | VisualMax ${ }^{\text {™ }}$ |
| FETBench ${ }^{\text {m }}$ |  | CGENERAL ${ }^{\text {® }}$ | $\times S^{\text {TM }}$ |

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES MTHOUT FURTHER NOTICE TOANY PRODUCTS HEREIN TOIMPROVE RELIABIUTY, FUNCTION, ORDESIGN. FAIRCHILDDOESNOT ASSUME ANY LIABIUTY ARISING OUT OF THE APPUCATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DONOT EXPAND THE TERMS OF FAIRCHID'S WORDDMDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITIEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, waw.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :---: | :---: | :--- |
| Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change <br> in any manner without notice. |
| Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild <br> Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make <br> changes at any time without notice to improve the design. |
| Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. <br> The datasheet is for reference information only. |

