NL27WZU04

Dual Unbuffered Inverter

The NL27WZU04 is a high performance dual unbuffered inverter operating from a 1.65 to 5.5 V supply. These devices are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high-input impedance amplifier. For digital applications, the NL27WZ04 is recommended.

Features

- $\mathrm{Pb}-$ Free Package is Available
- Designed for 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- Unbuffered for Crystal Oscillator and Analog Applications
- LVCMOS Compatible
- Source/Sink $\pm 16 \mathrm{~mA} @ 4.5 \mathrm{~V}$ VCC
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Chip Complexity: FET $=72$; Equivalent Gate $=18$

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol
MARKING
DIAGRAMS

Pin 1
d = Date Code

Pin 1
d = Date Code

PIN ASSIGNMENT	
1	IN A1
2	GND
3	IN A2
4	OUT $\overline{\mathrm{Y} 2}$
5	$\mathrm{~V}_{\mathrm{CC}}$
6	OUT $\overline{\mathrm{Y} 1}$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	V
V_{O}	DC Output Voltage	-0.5 to 7.0	V
$\mathrm{I}_{\text {K }}$	DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND	-50	mA
lok	DC Output Diode Current $\begin{array}{ll} \\ & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}\end{array}$	$\begin{aligned} & \hline-50 \\ & +50 \end{aligned}$	mA
10	DC Output Sink Current	± 50	mA
$I_{\text {cc }}$	DC Supply Current per Supply Pin	± 100	mA
IGND	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation in Still Air SC-88, TSOP-6	200	mW
$\theta_{\text {JA }}$	Thermal Resistance SC-88, TSOP-6	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{L}	Lead Temperature, 1 mm from case for 10 s	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$	V
ILatchUp	LatchUp Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 4)	± 500	mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A.
2. Tested to EIA/JESD22-A115-A.
3. Tested to JESD22-C101-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage	Operating Data Retention Only	$\begin{aligned} & 1.65 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	(High or LOW State)	0	V_{Cc}	V
T_{A}	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 20 \\ 10 \\ 5 \end{gathered}$	ns / V

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\begin{aligned} & V_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		1.65 to 1.85	$0.85 \mathrm{~V}_{\text {CC }}$			$0.85 \mathrm{~V}_{\text {CC }}$		V
			2.3 to 5.5	$0.8 \mathrm{~V}_{\text {CC }}$			$0.8 \mathrm{~V}_{\mathrm{CC}}$		
V_{IL}	Low-Level Input Voltage		1.65 to 1.85			$0.15 \mathrm{~V}_{\mathrm{CC}}$		$0.15 \mathrm{~V}_{\mathrm{CC}}$	V
			2.3 to 5.5			$0.2 \mathrm{~V}_{\mathrm{CC}}$		$0.2 \mathrm{~V}_{\mathrm{CC}}$	
V_{OH}	High-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$	1.65 to 5.5	$\mathrm{V}_{\mathrm{CC}}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$		V
	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	1.65	1.29	1.52		1.29		
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.3	1.9	2.1		1.9		
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.7	2.2	2.3		2.2		
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	3.0	2.4	2.6		2.4		
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	3.0	2.3	2.5		2.3		
		$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	4.5	3.8	4.2		3.8		
V ${ }_{\text {OL }}$	Low-Level Output Voltage $V_{I N}=V_{I H}$	$\mathrm{IOL}=100 \mu \mathrm{~A}$	1.65 to 5.5			0.1		0.1	V
	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$	$\mathrm{IOL}=3 \mathrm{~mA}$	1.65		0.08	0.24		0.24	
		$\mathrm{l} \mathrm{OL}=4 \mathrm{~mA}$	2.3		0.12	0.3		0.3	
		$\mathrm{lOL}=6 \mathrm{~mA}$	2.7		0.20	0.4		0.4	
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	3.0		0.24	0.4		0.4	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	3.0		0.26	0.55		0.55	
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	4.5		0.31	0.55		0.55	
1 N	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	1.65 to 5.5			1.0		10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Input A to Y (Figure 3 and 4)	$\begin{aligned} \hline \mathrm{R}_{\mathrm{L}} & =1 \mathrm{M} \Omega, \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$	1.8 ± 0.15	1.5	5.5	1.8	1.5	11.0	ns
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$	2.5 ± 0.2	1.2	3.3	5.7	1.2	6.3	
		$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =1 \mathrm{M} \Omega, \\ \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \end{aligned}$	3.3 ± 0.3	0.8	2.7	4.1	0.8	4.5	
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		1.2	4.0	6.4	1.2	7.0	
		$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =1 \mathrm{M} \Omega, \\ \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \end{aligned}$	5.0 ± 0.5	0.5	2.2	3.3	0.5	3.6	
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		0.8	3.4	5.6	0.8	6.2	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance (Note 5)	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}}$. $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

Figure 3. Switching Waveforms

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

	Device Nomenclature							Package Type (Name/SOT\#/ Common Name)	Tape and Reel Size ${ }^{\dagger}$
Device Order Number	Logic Circuit Indicator	No. of Gates per Package	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NL27WZU04DFT2	NL	2	7	WZ	U04	DF	T2	SC-88 / SOT-363 / SC-70	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$
NL27WZU04DFT2G	NL	2	7	WZ	U04	DF	T2	$\begin{aligned} & \text { SC-88/ } \\ & \text { SOT-363 } \\ & \text { / SC-70 } \\ & \text { (Pb-Free) } \end{aligned}$	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$
NL27WZU04DTT1	NL	2	7	WZ	U04	DT	T1	$\begin{aligned} & \hline \text { TSOP-6/ } / 2 \\ & \text { SOT-23 } \\ & \text { /SC-59 } \end{aligned}$	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SC70-6/SC-88/SOT-363
 DF SUFFIX
 CASE 419B-02
 ISSUE U

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.071	0.087	1.80	2.20		
B	0.045	0.053	1.15	1.35		
C	0.031	0.043	0.80	1.10		
D	0.004	0.012	0.10			
G	0.026		BSC	0.65		BSC
H	---	0.004	--			
\mathbf{J}	0.004	0.010	0.10			
\mathbf{K}	0.004	0.012	0.10			
\mathbf{N}	0.008		REF	0.20		
\mathbf{S}	0.079	0.087	REF			

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT23-6/TSOP-6/SC59-6 DT SUFFIX
 CASE 318G-02
 ISSUE M

NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	2.90	3.10	0.1142	0.1220
B	1.30	1.70	0.0512	0.0669
C	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
H	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
K	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
M	$0 \circ$	10°	0	0
\mathbf{S}	2.50	3.00	10°	

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

