

Advanced Information

Proximity Capacitive Touch Sensor Controller

MPR121 OVERVIEW

The MPR121 is the second generation sensor controller after the initial release of the MPR03x series devices. The MPR121 will feature increased internal intelligence in addition to Freescale's second generation capacitance detection engine. Some of the major additions include an increased electrode count, a hardware configurable I²C address, an expanded filtering system with debounce, and completely independent electrodes with auto-configuration built in. The device also features a 13th simulated electrode that represents the simultaneous charging of all the electrodes connected together to allow for increased proximity detection in a touch panel or touch screen array.

Features

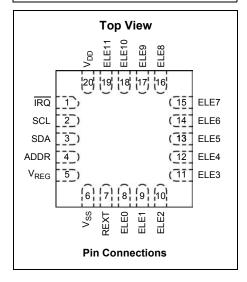
- 1.71 V to 3.6 V operation
- 29 μA supply current at 16 ms sample period
- 3 μA shutdown current
- 12 electrodes
- · Continuous independent auto-calibration for each electrode input
- Separate touch and release trip thresholds for each electrode, providing hysteresis and electrode independence
- I²C interface, with IRQ output to advise electrode status changes
- 3 mm x 3 mm x 0.65 mm 20 lead QFN package
- LED driver functionality with 8 shared LEDs
- -40°C to +85°C operating temperature range

Implementations

- Switch Replacements
- Touch Pads

Typical Applications

- PC Peripherals
- MP3 Players
- Remote Controls
- Mobile Phones
- Lighting Controls


MPR121

Capacitive Touch Sensor Controller

Bottom View

20-PIN QFN CASE 2059-01

ORDERING INFORMATION						
Device Name						
MPR121QR2	-40°C to +85°C	2059 (20-Pin QFN)	12-pads	0x4C - 0x4F	Tape & Reel	

This document contains a product under development. Freescale Semiconductor reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

SCHEMATIC DRAWINGS AND IMPLEMENTATION

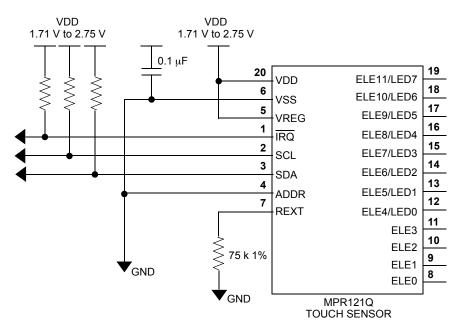


Figure 1. Configuration 1: MPR121 runs from a 1.71 V to 2.75 V supply.

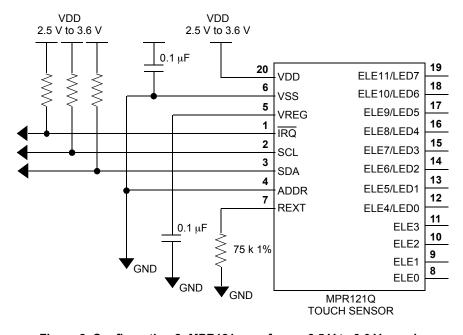


Figure 2. Configuration 2: MPR121 runs from a 2.5 V to 3.6 V supply.

Capacitance Sensing

The MPR121 uses a constant current touch sensor system with two primary types of control. It can measure capacitances ranging from 10 pF to 2000 pF by varying the current and the amount of time supplied to each electrode. The electrodes are controlled independently allowing for a great deal of flexibility in electrode pattern design. To make setup of the device easier, an automatic configuration system can be used to set the ideal capacitance of each electrode. For information on how to set up this system refer to application note AN3889.

Once capacitance is calculated, it runs through a couple of levels of digital filtering allowing for good noise immunity in different environments without sacrificing response time or power consumption. The MPR121 can be configured for sample rates between 1 ms and 128 ms. For information on how to set up this system refer to application note AN3890.

Touch Sensing

Once the capacitance is determined at any given moment, this information must then be translated into intelligent touch recognition. The MPR121 has a couple of systems that have improved over the previous generation in the MPR03x series devices. A baseline tracking system allows the system to track the untouched capacitance in the system. For information on how to set up the baseline capacitance system refer to application note AN3891. The baseline value is then compared with the current value to determine if a touch has occurred. A designer has the ability to set both the rising and falling thresholds in addition to a debounce to eliminate jitter and false touches due to noise. These elements are described in application note AN3892.

Proximity Sensing

A new feature of the MPR121 is the use of a proximity sensing system whereby all of a system's electrodes can be shorted together internally and create a single large electrode. The capacitance of this electrode is larger and projected capacitance can be measured. When enabled, this "13th" electrode will be included at the end of a normal detection cycle and will have its own independent set of configuration registers. This system is described in application note AN3893.

LED Driver

The MPR121 includes eight shared LED driving pins. When these pins are not configured as electrodes, they may be used to drive LEDs. The system allows for both pull up and pull down LED configurations as well as general GPIO push/pull functionality. The configuration of the LED driver system is described in application note AN3894.

Serial Communication

The MPR121 is an Inter-Integrated Circuit (I^2C) compliant device with an additional interrupt that is triggered any time a touch or release of a button is detected. The device has a configurable I^2C address by connecting the ADDR pin to the VDD, VSS, SDA or SCL lines. The resulting I^2C addresses are 0x4C, 0x4D, 0x4E and 0x4F respectively. The specific details of this system are described in AN3895. For reference the register map of the MPR121 is included in **Table 1**.

Table 1. Register Map

REGISTER				Fie	lds				Register Address	Initial Value	Auto Increment Address
ELE0 - ELE7 Touch Status	ELE7	ELE6	ELE5	ELE4	ELE3	ELE2	ELE1	ELE0	0x00	0x00	
ELE8 - ELE11, ELEPROX Touch Status	OVCF	ELEPROX			ELE11	ELE10	ELE9	ELE8	0x01	0x00	
ELE0-7 OOR Status	ELE7	ELE6	ELE5	ELE4	ELE3	ELE2	ELE1	ELE0	0x02	0x00	
ELE8-11, ELEPROX OOR Status	ARFF	ACFF		ELEPROX	ELE11	ELE10	ELE9	ELE8	0x03	0x00	
ELE0 Electrode Filtered Data LSB		I		EFD	00LB	I	I	l	0x04	0x00	
ELE0 Electrode Filtered Data MSB							EFC	0HB	0x05	0x00	
ELE1 Electrode Filtered Data LSB				EFD	ILLB D1LB				0x06	0x00	-
ELE1 Electrode Filtered Data MSB							EFC	1HB	0x07	0x00	
ELE2 Electrode Filtered Data LSB				EFD	l D2LB				0x08	0x00	
ELE2 Electrode Filtered Data MSB							l EFC	2HB	0x09	0x00	1
ELE3 Electrode Filtered Data LSB				EFD	J J3LB				0x0A	0x00	1
ELE3 Electrode Filtered Data MSB							EFC	3HB	0x0B	0x00	-
ELE4 Electrode Filtered Data LSB				EED	l ALB				0x0C	0x00	
ELE4 Electrode Filtered Data MSB					125		FED)4HB	0x0D	0x00	
ELE5 Electrode Filtered Data LSB				FED	5LB		1		0x0E	0x00	1
ELE5 Electrode Filtered Data MSB							EET	5HB	0x0F	0x00	1
ELE6 Electrode Filtered Data LSB				EED	6LB			- SI IB	0x10	0x00	-
ELE6 Electrode Filtered Data MSB	_				, olb			06HB	0x10	0x00	
ELE7 Electrode Filtered Data LSB				EED	7LB				0x11	0x00	
				EFL	//LB		l	71.10			
ELE7 Electrode Filtered Data MSB				FFD	OL D		EFL	7HB	0x13	0x00	-
ELE8 Electrode Filtered Data LSB				EFU	8LB		I		0x14	0x00	
ELE8 Electrode Filtered Data MSB							EFL	8HB	0x15	0x00	
ELE9 Electrode Filtered Data LSB				EFD	9LB				0x16	0x00	
ELE9 Electrode Filtered Data MSB							EFL	9HB	0x17	0x00	Register
ELE10 Electrode Filtered Data LSB				EFD:	10LB		1		0x18	0x00	Address +
ELE10 Electrode Filtered Data MSB							EFD	10HB	0x19	0x00	
ELE11 Electrode Filtered Data LSB				EFD:	11LB		1		0x1A	0x00	
ELE11 Electrode Filtered Data MSB							EFD	11HB	0x1B	0x00	
ELEPROX Electrode Filtered Data LSB				EFDPF	ROXLB				0x1C	0x00	
ELEPROX Electrode Filtered Data MSB							EFDPI	ROXHB	0x1D	0x00	
ELE0 Baseline Value				E0	BV				0x1E	0x00	
ELE1 Baseline Value				E1	BV				0x1F	0x00	
ELE2 Baseline Value				E2	BV				0x20	0x00	
ELE3 Baseline Value				E3	BV				0x21	0x00	
ELE4 Baseline Value				E4	BV				0x22	0x00	
ELE5 Baseline Value				E5	BV				0x23	0x00	
ELE6 Baseline Value				E6	BV				0x24	0x00	
ELE7 Baseline Value				E7	BV				0x25	0x00]
ELE8 Baseline Value				E8	BV				0x26	0x00	
ELE9 Baseline Value				E9	BV				0x27	0x00	
ELE10 Baseline Value	E10BV					0x28	0x00				
ELE11 Baseline Value				E11	1BV				0x29	0x00]
ELEPROX Baseline Value				EPRO	OXBV				0x2A	0x00]
MHD Rising					MH	HDR			0x2B	0x00]
NHD Amount Rising					NH	HDR			0x2C	0x00	1
NCL Rising				NC	LR				0x2D	0x00	1
FDL Rising				FD	LR				0x2E	0x00	1
MHD Falling					MI	HDF			0x2F	0x00	1
NHD Amount Falling					NE	HDF			0x30	0x00	1

Table 1. Register Map

REGISTER			Fields			Register Address	Initial Value	Auto Increment Address
NCL Falling			NCLF			0x31	0x00	
FDL Falling			FDLF			0x32	0x00	
NHD Amount Touched				NHDT		0x33	0x00	
NCL Touched			NCLT			0x34	0x00	
FDL Touched		FDLT				0x35	0x00	
ELEPROX MHD Rising		MHDPROXR					0x00	
ELEPROX NHD Amount Rising			NH	DPROXR		0x37	0x00	
ELEPROX NCL Rising			NCLPROXR			0x38	0x00	
ELEPROX FDL Rising			FDLPROXR			0x39	0x00	
ELEPROX MHD Falling			MH	IDPROXF		0x3A	0x00	
ELEPROX NHD Amount Falling			NH	IDPROXF		0x3B	0x00	
ELEPROX NCL Falling			NCLPROXF			0x3C	0x00	
ELEPROX FDL Falling			FDLPROXF			0x3D	0x00	
ELEPROX NHD Amount Touched			NH	IDPROXT		0x3E	0x00	
ELEPROX NCL Touched			NCLPROXT			0x3F	0x00	
ELEPROX FDL Touched			FDLPROXT			0x40	0x00	
ELE0 Touch Threshold			EOTTH			0x41	0x00	
ELE0 Release Threshold			EORTH			0x42	0x00	
ELE1 Touch Threshold			E1TTH			0x43	0x00	
ELE1 Release Threshold			E1RTH			0x44	0x00	
ELE2 Touch Threshold			E2TTH			0x45	0x00	
ELE2 Release Threshold							0x00	
ELE3 Touch Threshold		E2RTH				0x46 0x47	0x00	
ELE3 Release Threshold			E3TTH E3RTH			0x47 0x48	0x00	
ELE4 Touch Threshold			E4TTH			0x49	0x00	Register
								Address + 1
ELE4 Release Threshold			E4RTH			0x4A	0x00	
ELE5 Touch Threshold			E5TTH			0x4B	0x00	
ELE5 Release Threshold			E5RTH			0x4C	0x00	
ELE6 Touch Threshold			E6TTH			0x4D	0x00	
ELE6 Release Threshold			E6RTH			0x4E	0x00	
ELE7 Touch Threshold			E7TTH			0x4F	0x00	
ELE7 Release Threshold			E7RTH			0x50	0x00	
ELE8 Touch Threshold			E8TTH			0x51	0x00	
ELE8 Release Threshold			E8RTH			0x52	0x00	
ELE9 Touch Threshold			E9TTH			0x53	0x00	
ELE9 Release Threshold			E9RTH			0x54	0x00	
ELE10 Touch Threshold			E10TTH			0x55	0x00	
ELE10 Release Threshold			E10RTH			0x56	0x00	
ELE11 Touch Threshold			E11TTH			0x57	0x00	
ELE11 Release Threshold		E11RTH				0x58	0x00	
ELEPROX Touch Threshold	EPROXTTH					0x59	0x00	
ELEPROX Release Threshold		EPROXRTH				0x5A	0x00	
Debounce Touch & Release		DR DT			0x5B	0x00		
AFE Configuration	FFI	FFI CDC				0x5C	0x10	
Filter Configuration	CDT		SFI	ESI		0x5D	0x04	
Electrode Configuration	CL	EL EleEn			0x5E	0x00		
ELE0 Electrode Current				CDC0		0x5F	0x00	
ELE1 Electrode Current				CDC1		0x60	0x00	
ELE2 Electrode Current				CDC2		0x61	0x00	

Table 1. Register Map

REGISTER				Fie	lds				Register Address	Initial Value	Auto Increment Address
ELE3 Electrode Current			CDC3						0x62	0x00	
ELE4 Electrode Current			CDC4							0x00	
ELE5 Electrode Current					CE)C5			0x64	0x00	
ELE6 Electrode Current					CE	C6			0x65	0x00	
ELE7 Electrode Current					CE)C7			0x66	0x00	
ELE8 Electrode Current					CE	C8			0x67	0x00	
ELE9 Electrode Current					CE	C9			0x68	0x00	
ELE10 Electrode Current					CD	C10			0x69	0x00	
ELE11 Electrode Current					CD	C11			0x6A	0x00	
ELEPROX Electrode Current					CDC	PROX			0x6B	0x00	
ELE0, ELE1 Charge Time			CDT1				CDT0		0x6C	0x00	
ELE2, ELE3 Charge Time			CDT3 CDT2					0x6D	0x00		
ELE4, ELE5 Charge Time			CDT5 CDT4					0x6E	0x00		
ELE6, ELE7 Charge Time			CDT7				CDT6		0x6F	0x00	
ELE8, ELE9 Charge Time			CDT9 CDT8					0x70	0x00	Register Address + 1	
ELE10, ELE11 Charge Time			CDT11				CDT10		0x71	0x00	
ELEPROX Charge Time							CDTPROX		0x72	0x00	
GPIO Control Register 0	CTL011	CTL010	CTL09	CTL08	CTL07	CTL06	CTL05	CTL04	0x73	0x00	
GPIO Control Register 1	CTL111	CTL110	CTL19	CTL18	CTL17	CTL16	CTL15	CTL14	0x74	0x00	
GPIO Data Register	DAT11	DAT10	DAT9	DAT8	DAT7	DAT6	DAT5	DAT4	30x75	0x00	
GPIO Direction Register	DIR11	DIR10	DIR9	DIR8	DIR7	DIR6	DIR5	DIR4	0x76	0x00	
GPIO Enable Register	EN11	EN10	EN9	EN8	EN7	EN6	EN5	EN4	0x77	0x00	
GPIO Data Set Register	SET11	SET10	SET9	SET8	SET7	SET6	SET5	SET4	0x78	0x00	
GPIO Data Clear Register	CLR11	CLR10	CLR9	CLR8	7CLR7	CLR6	CLR5	CLR4	0x79	0x00	
GPIO Data Toggle Register	TOG11	TOG10	TOG9	TOG8	TOG7	TOG6	TOG5	TOG4	0x7A	0x00	
AUTO-CONFIG Control Register 0	AF	ES	RETRY BVA ARE ACE					0x7B	0x00		
AUTO-CONFIG Control Register 1	SCTS		OORIE ARFIE ACFIE						0x7C	0x00	
AUTO-CONFIG USL Register		USL						0x7D	0x00		
AUTO-CONFIG LSL Register				LS	SL				0x7E	0x00	
AUTO-CONFIG Target Level Register				Т	L				0x7F	0x00	0x00

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

Table 2. Absolute Maximum Ratings - Voltage (with respect to V_{SS})

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.3 to +3.6	V
Supply Voltage	V_{REG}	-0.3 to +2.75	V
Input Voltage SCL, SDA, IRQ	V _{IN}	V _{SS} - 0.3 to V _{DD} + 0.3	V
Operating Temperature Range	T _O	-40 to +85	°C
GPIO Source Current per Pin	i _{GPIO}	12	mA
GPIO Sink Current per Pin	i _{GPIO}	1.2	mA
Storage Temperature Range	T _S	-40 to +125	°C

ESD AND LATCH-UP PROTECTION CHARACTERISTICS

Normal handling precautions should be used to avoid exposure to static discharge.

Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 3. ESD and Latch-up Test Conditions

Rating	Symbol	Value	Unit
Human Body Model (HBM)	V _{ESD}	±2000	V
Machine Model (MM)	V _{ESD}	±200	V
Charge Device Model (CDM)	V _{ESD}	±500	V
Latch-up current at T _A = 85°C	I _{LATCH}	±100	mA

DC CHARACTERISTICS

This section includes information about power supply requirements and I/O pin characteristics.

Table 4. DC Characteristics

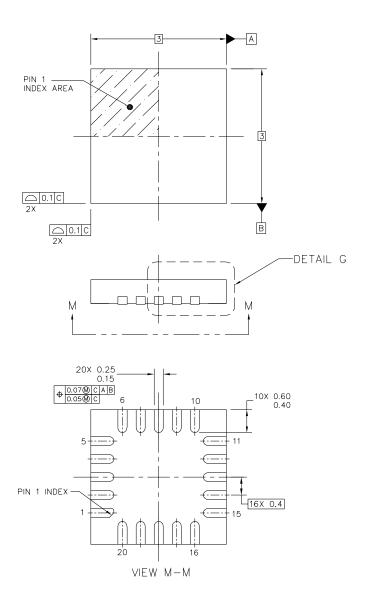
(Typical Operating Circuit, V_{DD} and V_{REG} = 1.8 V, T_A = 25°C, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
High Supply Voltage	V_{DD}		2.5	3.3	3.6	V
Low Supply Voltage	V _{REG}		1.71	1.8	2.75	V
Average Supply Current	I _{DD}	Run1 Mode @ 1 ms sample period		393		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 2 ms sample period		199		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 4 ms sample period		102		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 8 ms sample period		54		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 16 ms sample period		29		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 32 ms sample period		17		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 64 ms sample period		11		μΑ
Average Supply Current	I _{DD}	Run1 Mode @ 128 ms sample period		8		μΑ
Measurement Supply Current	I _{DD}	Peak of measurement duty cycle		1		mA
Idle Supply Current	I _{DD}	Stop Mode		3		μΑ
Input Leakage Current ELE_	I _{IH} , I _{IL}			0.025		μΑ
Input Capacitance ELE_					15	pF
Input High Voltage SDA, SCL	V _{IH}		0.7 x V _{DD}			V
Input Low Voltage SDA, SCL	V _{IL}				0.3 x V _{DD}	V
Input Leakage Current SDA, SCL	I _{IH} , I _{IL}			0.025	1	μА
Input Capacitance SDA, SCL					7	pF
Output Low Voltage SDA, IRQ	V _{OL}	I _{OL} = 6mA			0.5V	V
Output High Voltage ELE4 - ELE11 (GPIO mode)	V _{OHGPIO}	V _{DD} = 2.7 V to 3.6 V: I _{OHGPIO} = -10 mA V _{DD} = 2.3 V to 2.7 V: I _{OHGPIO} = -6 mA V _{DD} = 1.8 V to 2.3 V: I _{OHGPIO} = -3 mA	V _{DD} - 0.5			V
Output Low Voltage ELE4 - ELE11 (GPIO mode)	V _{OLGPIO}	I _{OLGPIOD} = 1 mA			0.5	V
Power On Reset	V _{TLH}	V _{DD} rising	1.08	1.35	1.62	V
	V_{THL}	V _{DD} falling	0.88	1.15	1.42	V

AC CHARACTERISTICS

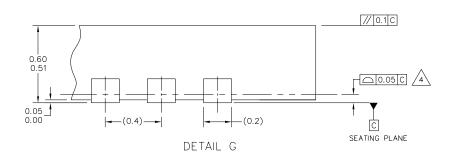
Table 5. AC CHARACTERISTICS

(Typical Operating Circuit, V_{DD} and V_{REG} = 1.8 V, T_A = 25°C, unless otherwise noted.)


Parameter	Symbol	Conditions	Min	Тур	Max	Units
8 MHz Internal Oscillator	f _H		7.44	8	8.56	MHz
1 kHz Internal Oscillator	f _L		0.65	1	1.35	kHz

I²C AC CHARACTERISTICS

Table 6. I²C AC Characteristics (Typical Operating Circuit, V_{DD} and V_{REG} = 1.8 V, T_A = 25°C, unless otherwise noted.)


Parameter	Symbol	Conditions	Min	Тур	Max	Units
Serial Clock Frequency	f _{SCL}				400	kHz
Bus Free Time Between a STOP and a START Condition	t _{BUF}		1.3			μS
Hold Time, (Repeated) START Condition	t _{HD, STA}		0.6			μS
Repeated START Condition Setup Time	t _{SU, STA}		0.6			μS
STOP Condition Setup Time	t _{su, sто}		0.6			μS
Data Hold Time	t _{HD, DAT}				0.9	μS
Data Setup Time	t _{SU, DAT}		100			ns
SCL Clock Low Period	t _{LOW}		1.3			μS
SCL Clock High Period	t _{HIGH}		0.7			μS
Rise Time of Both SDA and SCL Signals, Receiving	t _R			20+0.1C _b	300	ns
Fall Time of Both SDA and SCL Signals, Receiving	t _F			20+0.1C _b	300	ns
Fall Time of SDA Transmitting	t _{F.TX}			20+0.1C _b	250	ns
Pulse Width of Spike Suppressed	t _{SP}			25		ns
Capacitive Load for Each Bus Line	C _b				400	pF

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	ECHANICAL	OUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE: QUAD FLAT NO LEAD		DOCUMENT NO	REV: 0		
COL PACKAGE (QFN-COL)		CASE NUMBER: 2059-01 19 FEB 20			
20 TERMINAL, 0.4 PITCH (3 X 3	X (0.6)	STANDARD: NO	N JEDEC		

PAGE 1 OF 3

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	HANICAL OUTLINE	PRINT VERSION NO	T TO SCALE			
TITLE: QUAD FLAT NO LEAD	DOCUMENT N	DOCUMENT NO: 98ASA00021D REV:				
COL PACKAGE (QFN-COL)		CASE NUMBER: 2059-01 19 FEB 2009				
20 TERMINAL, 0.4 PITCH (3 X 3 X	0.6) STANDARD: N	STANDARD: NON JEDEC				

PAGE 2 OF 3

PACKAGE DIMENSIONS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. THIS IS NON JEDEC REGISTERED PACKAGE.

4. COPLANARITY APPLIES TO LEADS AND ALL OTHR BOTTOM SURFACE METALLIZATION.

5. MIN. METAL GAP SHOULD BE 0.2MM.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE		
TITLE: QUAD FLAT NO LEAD	DOCUMENT NO: 98ASA00021D REV: 0					
COL PACKAGE (QFN-C	CASE NUMBER: 2059-01 19 FEB 200					
20 TERMINAL, 0.4 PITCH (3)	X 3 X U.6)	STANDARD: NON JEDEC				

PAGE 3 OF 3

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

MPR121 Rev. 0 9/2009