Signetics

TDA5702 8-Bit Digital-to-Analog Converter

Preliminary Specification

Linear Products

DESCRIPTION

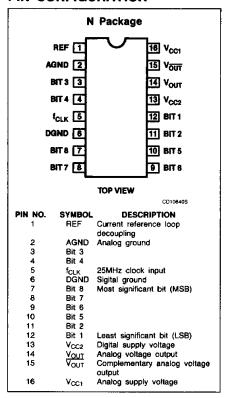
The TDA5702 is an 8-bit digital-to-analog converter (DAC) designed for video and professional applications. The TDA5702 converts the 8-bit binary-coded digital words into an analog output signal at a sampling rate of 25MHz. The design of the TDA5702 has eliminated the need for an operational amplifier, buffer and deglitching circuit at the analog output.

FEATURES

- 8-bit accuracy
- Internal input register
- TTL compatible digital signals
- Two voltage supply connections:
 - -analog +5V
 - digital +5V
- Two complementary outputs (V_{OUT}, V_{OUT})
- No deglitching circuit required
- Low power consumption; typically 300mW
- 16-lead plastic DIP

APPLICATIONS

- Video data conversion
- Color/black-and-white graphics
- CRT displays
- Waveform/test signal generation

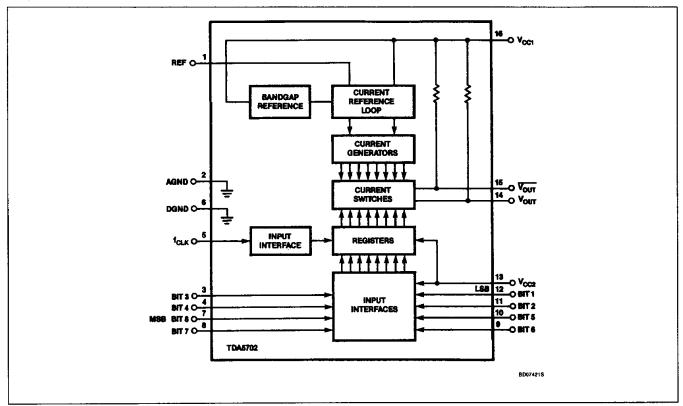

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic DIP (SOT-38)	0 to +70°C	TDA5702N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	HATING	UNIT	
	Supply voltage			
V _{CC2}	at Pin 13	8	V	
V _{CC1}	at Pin 16	8	V	
VIN	Input voltage at Pins 3, 4, 5, 7, 8, 9, 10, 11 and 12	8	V	
T _{STG}	STG Storage temperature range -65		°C	
T _J Junction temperature		+ 125	°C	
TA	Operating ambient temperature range	0 to +70	°C	

PIN CONFIGURATION


linney = inpull cade

February 1987 5-243

8-Bit Digital-to-Analog Converter

TDA5702

BLOCK DIAGRAM

February 1987 5-244

8-Bit Digital-to-Analog Converter

TDA5702

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = 4.75$ to 5.25V, $T_A = 0$ to +70°C, unless otherwise specified.

CVMBC	BARAMETER	TEST COMPLETORS	LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Supply			<u> </u>	1		
V _{CC2}	Digital supply voltage	Pin 13	4.75	5.0	5.25	٧
V _{CC1}	Analog supply voltage	Pin 16	4.75	5.0	5.25	٧
I _{CC2}	Digital supply current	Pin 13	25	34	43	mA
I _{CC1}	Analog supply current	Pin 16	20	27	34	mA
Res	Resolution			8	77	bits
Digital in	out levels				• •	
VIH	Input voltage HIGH		2.2			٧
V _{IL}	Input voltage LOW				0.8	٧
lін	Input current HIGH				10	μΑ
I _{IL}	Input current LOW		-1.5			mA
I _{IL}	Clock input current LOW		-1.0	,		mΑ
Outputs ²						
V _{FS}	Full-scale voltage	with respect to V _{CC}	1.43	1.6	1.75	٧
Vzs	Zero offset voltage	with respect to V _{CC}		10	25	mV
	Absolute linearity	V ₁₄ , V ₁₅	-0.5	0.1953	+0.5	LSB
	Differential linearity	V ₁₄ , V ₁₅	-0.5		+0.5	LSB
R ₁₆₋₁₄	Output resistance			75		Ω
C ₁	External capacitance			100		nF

NOTES:

- 1. See Figure 3.
- 2. See Figure 2.
- 3. See Figure 1.

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = 4.75$ to 5.25V, $T_A = 0$ to $+70^{\circ}C_1$ unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			
			Min	Тур	Max	UNIT
Timing				•		
fc	Maximum conversion rate		25			MHz
t _{DS}	Data turn-on delay ¹			10		ns
t _{SET1}	Transient settling time	½ LSB		30	-	ns
t _{SET2}	Transient settling time	1 LSB		20		ns
t _O	Transient output (glitch) energy				+ 50	LSB ns
t _{PW}	Pulse width ³		10			ns
tsu	Data setup time		4			ns
t _H	Data hold time		6			ns

NOTE:

1. See Figure 1.

February 1987 5-245

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com