74ACT258

Quad 2－Input Multiplexer with 3－STATE Outputs

Features

－ I_{CC} and I_{OZ} reduced by 50%
■ Multiplexer expansion by tying outputs together
■ Inverting 3－STATE outputs
■ Outputs source／sink 24mA
■ TTL－compatible inputs

General Description

The ACT258 is a quad 2 －input multiplexer with 3－STATE outputs．Four bits of data from two sources can be selected using a common data select input．The four out－ puts present the selected data in the complement （inverted）form．The outputs may be switched to a high impedance state with a HIGH on the common Output Enable（ $\overline{\mathrm{OE}}$ ）input，allowing the outputs to interface directly with bus－oriented systems．

Ordering Information

Order Number	Package Number	Package Description
74ACT258SC	M16A	16－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012， $0.150 "$ Narrow Body
74ACT258SJ	M16D	16－Lead Small Outline Package（SOP），EIAJ TYPE 11，5．3mm Wide
74ACT258MTC	MTC16	16－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153， $4.4 m m$ Wide

Device also available in Tape and Reel．Specify by appending suffix letter＂X＂to the ordering number．

Connection Diagram

Pin Description

Pin Names	Description
S	Common Data Select Input
$\overline{O E}$	3－STATE Output Enable Input
$I_{0 a}-I_{0 d}$	Data Inputs from Source 0
$I_{1 a}-I_{1 d}$	Data Inputs from Source 1
$\bar{Z}_{a}-\bar{Z}_{d}$	3－STATE Inverting Data Outputs

Logic Symbol

IEEE/IEC

Functional Description

The ACT258 is a quad 2-input multiplexer with 3-STATE outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the $I_{0 x}$ inputs are selected and when Select is HIGH, the $I_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The ACT258 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \overline{\mathrm{Z}}_{\mathrm{a}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{I}_{1 \mathrm{a}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{I}_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Ob}} \cdot \overline{\mathrm{~S}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{c}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{I}_{1 \mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{0 \mathrm{c}} \cdot \overline{\mathrm{~S}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{d}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{I}_{1 \mathrm{~d}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Od}} \cdot \overline{\mathrm{~S}}\right)
\end{aligned}
$$

When the Output Enable input $(\overline{\mathrm{OE}})$ is HIGH, the outputs are forced to a high impedance state. If the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-STATE devices whose outputs are tied together are designed so there is no overlap.

Truth Table

Output Enable	Select Input	Data Inputs		Outputs
$\overline{\mathrm{OE}}$	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\overline{\mathbf{Z}}$
H	X	X	X	Z
L	H	X	L	H
L	H	X	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 1.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{1}	DC Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{OK}	DC Output Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{O}	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{0}	DC Output Source or Sink Current	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	4.5 V to 5.5 V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 V to V_{CC}
V_{O}	Output Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate: $\mathrm{V}_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter	$V_{C c}$ (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ uaranteed Limits	Units
				Typ.			
V_{IH}	Minimum HIGH Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	
V_{OH}	Minimum HIGH Level Output Voltage	4.5	IOUT $=-50 \mu \mathrm{~A}$	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\mathrm{I}_{\mathrm{OH}}=-24 m A^{(1)}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	4.5	l I UUT $=50 \mu \mathrm{~A}$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}{ }^{(1)}$		0.36	0.44	
I_{IN}	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
I_{OZ}	Maximum 3-STATE Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G \mathrm{GND} \end{aligned}$		± 0.25	± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	0.6		1.5	mA
IOLD	Minimum Dynamic Output Current ${ }^{(2)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min.			-75	mA
I_{CC}	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND		4.0	40.0	$\mu \mathrm{A}$

Notes:

1. All outputs loaded; thresholds on input associated with output under test.
2. Maximum test duration 2.0 ms , one output loaded at a time.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(3)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$t_{\text {PLH }}$	Propagation Delay, I_{n} to $\overline{\mathrm{Z}}_{\mathrm{n}}$	5.0	2.0	6.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, I_{n} to \bar{Z}_{n}	5.0	2.0	5.5	7.5	1.5	8.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, S to \bar{Z}_{n}	5.0	3.0	7.5	10.5	2.0	11.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, S to \bar{Z}_{n}	5.0	1.5	7.0	9.5	1.5	11.0	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	6.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	5.0	2.0	6.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	5.0	1.5	7.0	9.0	1.0	10.0	ns
$t_{\text {PLZ }}$	Output Disable Time	5.0	2.0	6.0	8.0	1.5	9.0	ns

Notes:
3. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

Symbol	Parameter	Conditions	Typ.	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$	4.5	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	55.0	pF

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

Figure 2. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

ALL LEAD TIPS

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M16DREVC

Figure 3. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

MTC16rev4

Figure 4. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	HiSeCtM	Programmable Active Droop ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$	$i-$ Lot $^{\text {TM }}$	QFET ${ }^{\circledR}$	TINYOPTO'M
ActiveArray ${ }^{\text {TM }}$	ImpliedDisconnect ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TinyPower ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {™ }}$
Build it Now $^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
CoolFET ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {™ }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
DOME ${ }^{\text {TM }}$	MSXProtm	SPM ${ }^{\text {® }}$	Wire ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	OCX ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProm	SuperFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	
${ }^{\text {FACT }}{ }^{\text {® }}$	PACMAN ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	
${ }^{\text {FAST }}{ }^{\text {® }}$	POP ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM ${ }^{\text {™ }}$	
FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\circledR}$	
FRFET ${ }^{\text {® }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerSavertM	TinyBoost ${ }^{\text {TM }}$	
GTOM	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

