

Output Enable	Select Input	Data Inputs		Outputs
$\overline{\mathrm{OE}}$	s	I_{0}	I_{1}	z
H	X	X	X	Z
L	H	X	L	H
L	H	x	H	L

[^0]
Functional Description

The ACT258 is a quad 2-input multiplexer with 3-STATE outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the $\mathrm{I}_{0 \mathrm{x}}$ inputs are selected and when Select is HIGH, the $\mathrm{I}_{1 \mathrm{x}}$ inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The ACT258 is the logic implementation of a 4-pole, 2position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \overline{\mathrm{Z}}_{\mathrm{a}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{l}_{1 \mathrm{l}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Oa}} \cdot \overline{\mathrm{~S}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{l}_{1 \mathrm{~b}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Ob}} \cdot \overline{\mathrm{~S}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{c}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{l}_{\mathrm{c}} \cdot \mathrm{~S}+\mathrm{I}_{\mathrm{Oc}} \cdot \overline{\mathrm{~S}}\right) \\
& \overline{\mathrm{Z}}_{\mathrm{d}}=\overline{\mathrm{OE}} \cdot\left(\mathrm{l}_{1 \mathrm{~d}} \cdot \mathrm{~S}+\mathrm{l}_{\mathrm{Od}} \cdot \overline{\mathrm{~S}}\right)
\end{aligned}
$$

When the Output Enable input $(\overline{\mathrm{OE}})$ is HIGH, the outputs are forced to a high impedance state. If the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-STATE devices whose outputs are tied together are designed so there is no overlap.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions
Supply Voltage (VCC)	-0.5 V to +7.0 V	
DC Input Diode Current (1/1)		
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	Input Voltage (V_{I}) $\mathrm{V}^{(0 \mathrm{~V}}$ to V_{CC}
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	Output Voltage (V_{O}) 0 V to V_{CC}
DC Input Voltage (V_{1})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Output Diode Current (lok)		Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	+20 mA	V_{CC} @ 4.5V, 5.5 V
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
DC Output Source or Sink Current (I ${ }_{0}$)	$\pm 50 \mathrm{~mA}$	
DC V_{CC} or Ground Current per Output Pin (ICC or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 50 \mathrm{~mA}$	Note 1: Absolute maximum ratings are those values beyond which damage
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power
Junction PDIP	$140^{\circ} \mathrm{C}$	

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{LL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
I_{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\overline{\mathrm{I}_{\mathrm{Oz}}}$	Maximum 3-STATE Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
${ }_{\text {CCT }}$	Maximum I ${ }_{\text {cc }} /$ lnput	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
ToLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD	Output Current (Note 3)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{\text {CC }}$	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms , one output loaded at a time.							

Symbol	Parameter	V_{CC} (V) (Note 4)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay I_{n} to \bar{Z}_{n}	5.0	2.0	6.5	8.5	1.5	9.5	ns
$t_{\text {PHL }}$	Propagation Delay $\mathrm{I}_{\mathrm{n}} \text { to } \bar{Z}_{\mathrm{n}}$	5.0	2.0	5.5	7.5	1.5	8.0	ns
$t_{\text {PLH }}$	Propagation Delay $\text { S to } \bar{Z}_{n}$	5.0	3.0	7.5	10.5	2.0	11.5	ns
$t_{\text {PHL }}$	Propagation Delay $\mathrm{S} \text { to } \overline{\mathrm{Z}}_{\mathrm{n}}$	5.0	1.5	7.0	9.5	1.5	11.0	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	6.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	5.0	2.0	6.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	5.0	1.5	7.0	9.0	1.0	10.0	ns
$t_{\text {PLZ }}$	Output Disable Time	5.0	2.0	6.0	8.0	1.5	9.0	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	55.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L = LOW Voltage Level
 X = Immaterial
 $Z=$ High Impedance

