

Pin Names	Description
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A Bus Data Inputs/Data Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B Bus Data Inputs/Data Outputs
APAR, BPAR	A and B Bus Parity Inputs
ODD/EVEN	ODD/EVEN Parity Select, Active LOW for EVEN Parity
$\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$	Output Enables for A or B Bus, Active LOW
$\overline{\mathrm{SEL}}$	Select Pin for Feed-Through or Generate Mode, LOW for Generate Mode
LEA, LEB	Latch Enables for A and B Latches, HIGH for Transparent Mode
ERRA, ERRB	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs

Functional Description

The 'AC/'ACT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.

- Bus $A(B)$ communicates to Bus $B(A)$, parity is generated and passed on to the B (A) Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select (SEL) is LOW, the parity generated from $B[0: 7] \quad(A[0: 7])$ can be checked and monitored by ERRB (ERRA).
- Bus A (B) communicates to Bus B (A) in a feed-through mode if $\overline{\text { SEL }}$ is HIGH. Parity is still generated and checked as ERRA and ERRB in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU).
- Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table below).

Function Table							
Inputs				Operation			

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
Note 1: O/E = ODD/EVEN

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V_{CC})
-0.5 V to +7.0 V
DC Input Diode Current (I_{IK})

$$
V_{1}=-0.5 \mathrm{~V}
$$

$$
-20 \mathrm{~mA}
$$

$$
V_{I}=V_{C C}+0.5 \mathrm{~V}
$$

$$
+20 \mathrm{~mA}
$$

DC Input Voltage (V_{I})
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (lok)

$$
\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}
$$

$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

DC Output Voltage (V_{O})
DC Output Source or Sink Current (lo)

$$
\pm 50 \mathrm{~mA}
$$

DC V_{CC} or Ground Current per Output Pin (ICC or IGND)
Storage Temperature (TSTG)
$\pm 50 \mathrm{~mA}$

DC Latch-Up Source or Sink Current
mA
Junction Temperature (T_{J})
CDIP
$175^{\circ} \mathrm{C}$ PDIP $140^{\circ} \mathrm{C}$
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating

 ConditionsSupply Voltage (VCC)

'AC	2.0 V to 6.0 V
'ACT	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}

Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$

$74 \mathrm{AC} /$ ACT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
54 ACT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
'AC Devices
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC}
V_{CC} @ $3.0 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
'ACT Devices
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
V_{CC} @ $4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Note: PLCC packaging is not recommended for applications requiring greater than 2000 temperature cycles from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

DC Electrical Characteristics for 'AC Family Devices

Symbol	Parameter	$V_{c c}$ (V)			74AC	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.25 \\ & 2.75 \end{aligned}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.99 \\ 4.49 \\ 5.49 \\ \hline \end{array}$	$\begin{array}{r} 2.9 \\ 4.4 \\ 5.4 \\ \hline \end{array}$	$\begin{array}{r} 2.9 \\ 4.4 \\ 5.4 \\ \hline \end{array}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} { }^{*} \mathrm{~V}_{\mathrm{IN}}= & \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & -12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} \quad & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{gathered} { }^{*} \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ 12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} \\ 24 \mathrm{~mA} \\ 24 \mathrm{~mA} \end{gathered}$
In	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \text { (Note) } \end{aligned}$

[^0]

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathbf{V}_{\mathrm{CC}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$	74AC			74AC		Units	Fig. No.
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{n}, B_{n} \text { to } B_{n}, A_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{array}{r} 15.0 \\ 10.0 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{array}{r} 15.5 \\ 10.5 \\ \hline \end{array}$	ns	1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay APAR, BPAR to BPAR, APAR	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$	ns	1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to BPAR, APAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 17.0 \\ 11.5 \\ \hline \end{array}$	ns	2
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to $\overline{\mathrm{ERRA}}, \overline{\mathrm{ERRB}}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	3
tpLH tpHL	Propagation Delay ODD/EVEN to ERRA, $\overline{\text { ERRB }}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay ODD/EVEN to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.0 \end{aligned}$	ns	5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay APAR, BPAR to ERRA, ERRB	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	6
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SEL to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 2.0 \\ 1.5 \\ \hline \end{array}$	$\begin{gathered} 13.5 \\ 9.0 \\ \hline \end{gathered}$	ns	9
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LEB, LEA to A_{n}, B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	10,11
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LEB, LEA to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 12.0 \end{aligned}$	ns	10,11
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LEB, LEA to ERRA, ERRB	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 8.0 \\ \hline \end{gathered}$			$\begin{aligned} & 18.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	12
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$ to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$ to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{G B A}, \overline{G A B}$ to A_{n}, B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{GBA}}, \overline{\mathrm{GAB}}$ to APAR, BPAR	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \\ \hline \end{gathered}$	ns	7, 8

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathbf{V}_{\mathbf{C c}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$	74AC	74AC	Units	Fig. No.
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Guaranteed Minimum			
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	ns	11, 12
$t_{\text {h }}$	Hold Time, HIGH or LOW $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$, PAR to LEA, LEB	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	ns	11, 12
t_{w}	Pulse Width for LEA, LEB	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns	13

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}{ }^{*}$ (V)	74ACT			54ACT		74ACT		Units	Fig. No.
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to B_{n}, A_{n}	5.0	2.5	7.5	11.5	1.5	13.5	2.5	12.0	ns	1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay APAR, BPAR to BPAR , APAR	5.0	1.5	6.0	8.5	1.5	11.0	1.5	9.0	ns	1
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay A_{n}, B_{n} to BPAR, APAR	5.0	2.5	8.5	12.0	1.5	16.0	2.5	12.5	ns	2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n}, B_{n} to ERRA, ERRB	5.0	2.0	8.0	11.5	1.5	16.0	2.0	12.0	ns	3
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay ODD/EVEN to ERRA, $\overline{\text { ERRB }}$	5.0	2.0	8.0	11.5	1.5	16.0	2.0	12.0	ns	4
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay ODD/EVEN to APAR, BPAR	5.0	2.5	8.0	11.5	1.5	14.5	2.5	12.0	ns	5
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay APAR, BPAR to ERRA, $\overline{\text { ERRB }}$	5.0	1.5	7.5	10.5	1.5	11.5	1.5	11.5	ns	6
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SEL to APAR, BPAR	5.0	1.5	6.5	9.0	1.5	12.5	1.5	9.5	ns	9
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LEB to A_{n}, B_{n}	5.0	2.5	7.0	10.5	1.5	13.5	2.5	11.0	ns	10, 11
$t_{\text {PLH }}$ tpHL	Propagation Delay LEA to APAR, BPAR	5.0	2.0	8.0	11.5	1.5	16.0	2.0	12.0	ns	10, 11
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LEA, LEB to ERRA, $\overline{\text { ERRB }}$	5.0	2.5	8.0	11.5	1.5	16.0	2.5	12.0	ns	12
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	5.0	2.5	7.0	10.5	1.5	16.0	2.5	11.0	ns	7, 8
$\begin{aligned} & \text { tPZH } \\ & \text { tpZL }^{2} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to BPAR or APAR	5.0	1.5	6.0	9.0	1.5	11.0	1.5	9.5	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	5.0	1.5	6.5	9.5	1.5	11.0	1.5	9.5	ns	7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{GBA}}$ or $\overline{\mathrm{GAB}}$ to BPAR, APAR	5.0	1.5	6.5	9.5	1.5	11.0	1.5	9.5	ns	7, 8
*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.											

AC Operating Requirements

Symbol	Parameter	V_{Cc} * (V)	74ACT	54ACT	74ACT	Units	Fig. No.
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Guaranteed Minimum				
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB	5.0	3.0	3.0	3.0	ns	11, 12
t_{n}	Hold Time, HIGH or LOW A_{n}, B_{n}, PAR to LEA, LEB	5.0	1.5	3.0	1.5	ns	11, 12
t_{w}	Pulse Width for LEB, LEA	5.0	4.0	4.0	4.0	ns	13

*Voltage Range $5.0=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	210	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

$X=$ Devices shipped in $13^{\prime \prime}$ reels
QB $=$ Military grade with environmental and burn-in processing shipped

Q = Plastic Leaded Chip Carrier (PCC) in tubes
$\mathrm{C}=$ Commercial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $\mathrm{M}=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

28-Lead Plastic Chip Carrier (Q) NS Package Number V28A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^0]: "Maximum of 9 outputs loaded; thresholds on input associated with output under test.

