54ABT/74ABT373

 Octal Transparent Latch with TRI-STATE ${ }^{\circledR}$ Outputs
General Description

The 'ABT373 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\mathrm{OE}}$) is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state.

Features

- TRI-STATE outputs for bus interfacing
- Output sink capability of 64 mA , source capability of 32 mA

Commercial	Military	Package Number	Package Description
74ABT373CSC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74ABT373CSJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
74ABT373CPC		N20B	20-Lead (0.300" Wide) Molded Dual-In-Line
	54ABT373J/883	J20A	20-Lead Ceramic Dual-In-Line
74ABT373CMSA (Note 1)		MSA20	20-Lead Molded Shrink Small Outline, EIAJ Type II
	54ABT373W/883	W20A	20-Lead Cerpack
	54ABT373E/883	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C
74ABT373CMTC (Notes 1, 2)		MTC20	20-Lead Molded Thin Shrink Small Outline, JEDEC

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix = SCX, SJX, MSAX, and MTCX.
Note 2: Contact factory for package availability.

Connection Diagrams

■ Guaranteed output skew

- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down
- Nondestructive hot insertion capability

■ Standard Military Drawing (SMD) 5962-9321801

[^0]
Functional Description

The 'ABT373 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the bi-state mode. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Output
LE	$\overline{\mathbf{O E}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$
H	L	H	H
H	L	L	L
L	L	X	O $_{\boldsymbol{n}}$ (no change)
X	H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Leve
L = LOW Voltage Level
X $=$ Immaterial
$Z=$ High Impedance State

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

DC Latchup Source Current: OE Pin -150 mA (Across Comm Operating Range) Other Pins -500 mA Over Voltage Latchup (I/O) 10 V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
Recommended Operating Conditions

Free Air Ambient Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
Military	+4.5 V to +5.5 V
Commercial	$(\Delta \mathrm{V} / \Delta \mathrm{t})$
Minimum Input Edge Rate	$50 \mathrm{mV} / \mathrm{ns}$
\quad Data Input	$20 \mathrm{mV} / \mathrm{ns}$
Enable Input	

DC Electrical Characteristics

Symbol	Parameter	ABT373		Units	V_{Cc}	Conditions
		Min	Typ Max			
V_{IH}	Input HIGH Voltage	2.0		V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage		0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage		-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage $54 \mathrm{ABT} / 74 \mathrm{ABT}$ 54 ABT 74 ABT	$\begin{aligned} & 2.5 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		V	Min	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
V_{OL}	$\begin{array}{ll}\text { Output LOW Voltage } & \text { 54ABT } \\ & 74 \mathrm{ABT}\end{array}$		$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test		7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current		$\begin{aligned} & -5 \\ & -5 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
lozh	Output Leakage Current		50	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
lozL	Output Leakage Current		-50	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
los	Output Short-Circuit Current	-100	-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
ICEX	Output High Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Izz	Bus Drainage Test		100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$; All Others GND
ICCH	Power Supply Current		50	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current		30	mA	Max	All Outputs LOW
ICCZ	Power Supply Current		50	$\mu \mathrm{A}$	Max	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ All Others at V_{CC} or GND
${ }^{\text {I CCT }}$	$\begin{array}{ll}\text { Additional } \mathrm{I}_{\mathrm{CC}} \text { /Input } & \begin{array}{l}\text { Outputs Enabled } \\ \text { Outputs TRI-STATE } \\ \text { Outputs TRI-STATE }\end{array}\end{array}$		$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	mA mA mA	Max	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Enable Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Data Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$
${ }^{\text {ICCD }}$	Dynamic ICC \quad No Load (Note 2)		0.12	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open, LE $=\mathrm{V}_{\mathrm{CC}}$ $\overline{\mathrm{OE}}=\mathrm{GND}$, (Note 1) One Bit Toggling, 50\% Duty Cycle

[^1]DC Electrical Characteristics (Solc Package) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$		0.4	0.8	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-1.2	-0.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{V}_{\text {OHV }}$	Minimum High Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	2.0	1.7		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		0.9	0.6	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)

Note 1: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at Low. Guaranteed, but not tested.
Note 2: Max number of data inputs (n) switching. $n-1$ inputs switching $0 V$ to 3 V . Input-under-test switching: 3 V to theshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold ($\mathrm{V}_{\text {IHD }}$).
Guaranteed, but not tested.
Note 3: Max number of outputs defined as (n). $n-1$ data inputs are driven $0 V$ to 3 V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	74ABT			54ABT		74ABT		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	74ABT$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			54ABT		74ABT		Units
					$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {toggle }}$	Max Toggle Frequency		100		100				MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D n to LE	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Pulse Width, LE HIGH	3.0			3.3		3.0		ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\left(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5} \mathbf{C}^{\circ}\right)$
C_{IN}	Input Capacitance	5	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{OUT}}$ (Note 1)	Output Capacitance	9	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 1: COUT is measured at frequency $f=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.

AC Loading

*Includes jig and probe capacitance FIGURE 1. Standard AC Test Load

TL/F/11547-6
FIGURE 2a. Test Input Signal Levels

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 2b. Test Input Signal Requirements

TL/F/11547-8
FIGURE 3. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

TL/F/11547-5
FIGURE 4. Propagation Delay,
Pulse Width Waveforms

FIGURE 5. TRI-STATE Output HIGH and LOW Enable and Disable Times

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: TRI-STATE ${ }^{*}$ is a registered trademark of National Semiconductor Corporation

[^1]: Note 1: For 8 bits toggling, $I_{C C D}<0.8 \mathrm{~mA} / \mathrm{MHz}$.
 Note 2: Guaranteed, but not tested.

