

Functional Description

The AC/ACT253 contains two identical 4-input multiplexers with 3-STATE outputs. They select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}_{\mathrm{a}}$, $\overline{\mathrm{OE}}_{\mathrm{b}}$) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown:
$\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}}_{\mathrm{a}} \cdot \quad\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{S}}_{1} \cdot \mathrm{~S}_{0}+\right.$ $\left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{S}_{1} \cdot \mathrm{~S}_{0}\right)$
$\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}}_{\mathrm{b}} \cdot \quad\left(\mathrm{I}_{\mathrm{Ob}} \cdot \overline{\mathrm{S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right.$

$$
\left.\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
$$

If the outputs of 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3STATE devices whose outputs are tied together are designed so that there is no overlap.

Truth Table

Select Inputs		Data Inputs					Output Enable
Outputs							
S $_{\mathbf{0}}$	S $_{\mathbf{1}}$	I $_{\mathbf{0}}$	I $_{\mathbf{1}}$	I $_{\mathbf{2}}$	I $_{\mathbf{3}}$	$\overline{\text { OE }}$	Z
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address Inputs S_{0} and S_{1} are common to both sections.
H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)		Recommended Operating
Supply Voltage (VCC)	-0.5 V to +7.0 V	Conditions
DC Input Diode Current ($\mathrm{I}_{\mathbf{K}}$)		Supply Voltage (V_{CC})
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	AC 2.0 V to 6.0 V
$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	+20 mA	ACT 4.5 V to 5.5 V
DC Input Voltage (V_{1})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	Input Voltage (V_{V}) O
DC Output Diode Current (lok)		Output Voltage (V_{O}) $\mathrm{O}^{\text {a }}$ to V_{CC}
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	AC Devices
DC Output Source		$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
or Sink Current (10)	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC V_{CC} or Ground Current per Output Pin (ICC or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 50 \mathrm{~mA}$	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$) ACT Devices
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}$ from 0.8V to 2.0 V
Junction Temperature (T_{J})		
PDIP	$140^{\circ} \mathrm{C}$	Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with Out exception, to ensure supply, temperature and outputingut loading variables. Fairchild does not reconme

DC Electrical Characteristics for AC

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.25 \\ & 2.75 \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	V	Iout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\overline{1 / 2}$ (Note 4)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
Ioz	Maximum 3-STATE Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
IOLD	Minimum DynamicOutput Current (Note 3)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms , one output loaded at a time. Note 4: $I_{\mathbb{I}}$ and $I_{C C} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$							

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions	
			Typ	Guaranteed Limits				
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
V_{IL}	Maximum LOW Level Input Voltage	$\begin{array}{r} \hline 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{array}{\|l} \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \hline \end{array}$	
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$	
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 5) } \\ & \hline \end{aligned}$	
1 N	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$	
1 loz	Maximum 3-STATE Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{v}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{v}_{\mathrm{IH}} \\ & \mathrm{v}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$	
${ }^{\text {CCT }}$	Maximum ICC/lnput	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	
Iold	Minimum Dynamic Output Current (Note 6)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max	
IOHD		5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min	
$\mathrm{I}_{\text {CC }}$	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$	
Note 5: All outputs loaded; thresholds on input associated with output under test. Note 6: Maximum test duration 2.0 ms , one output loaded at a time. AC Electrical Characteristics for AC								
Symbol	Parameter		V_{cc} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Typ Max	Min	Max		
tpLH	Propagation Delay$S_{n} \text { to } Z_{n}$			$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	8.5 15.5 6.5 11.0	2.0 17.5 1.5 12.5	
$\overline{t_{\text {PHL }}}$	Propagation Delay$S_{n} \text { to } Z_{n}$		$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	9.5 16.0 7.0 11.5	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	18.0 ns 13.0	
${ }_{\text {tPLH }}$	Propagation Delay$I_{n} \text { to } Z_{n}$		$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	7.0 14.5 5.5 10.0	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	17.0 ns 11.5	
${ }_{\text {t }{ }_{\text {PLL }}}$	Propagation Delay$I_{n} \text { to } Z_{n}$		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	7.5 13.0 5.5 9.5	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	15.0 ns 11.0 n	
${ }_{\text {tpzH }}$	Output Enable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	4.5 8.0 3.5 6.0	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	8.5 ns 6.5 n	
$\overline{t_{\text {PZL }}}$	Output Enable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	5.0 8.0 3.5 6.0	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	9.0 ns 7.0 ns	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	5.5 9.5 5.0 8.0	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	10.0 ns 8.5	
${ }_{\text {tpLZ }}$	Output Disable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	5.0 8.0 4.0 7.0	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	9.0 ns 7.5	
Note 7: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$								

AC Electrical Characteristics for ACT								
Symbol	Parameter	V_{cc} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay S_{n} to Z_{n}	5.0	2.0	7.0	11.5	2.0	13.0	ns
$\overline{t_{\text {PHL }}}$	$\begin{aligned} & \text { Propagation Delay } \\ & S_{n} \text { to } Z_{n} \end{aligned}$	5.0	3.0	7.5	13.0	2.5	14.5	ns
$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { Propagation Delay } \\ & I_{n} \text { to } Z_{n} \end{aligned}$	5.0	2.5	5.5	10.0	2.0	11.0	ns
$\overline{t_{\text {PHL }}}$	$\begin{array}{\|l\|} \hline \text { Propagation Delay } \\ I_{n} \text { to } Z_{n} \\ \hline \end{array}$	5.0	3.5	6.5	11.0	3.0	12.5	ns
$\mathrm{t}_{\text {pzH }}$	Output Enable Time	5.0	2.0	4.5	7.5	1.5	8.5	ns
${ }_{\text {tPZL }}$	Output Enable Time	5.0	2.0	5.0	8.0	1.5	9.0	ns
tPHZ	Output Disable Time	5.0	3.0	6.0	9.5	2.5	10.0	ns
tpLz	Output Disable Time	5.0	2.5	4.5	7.5	2.0	8.5	ns
Note 8: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Capacitance								
Symbol	Parameter		Typ	Units	Conditions			
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4.5	pF	$\mathrm{V}_{\text {CC }}=$ OPEN			
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance		50.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			

74AC253•74ACT253
Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
