Philips Components—Signetics

Document No.	853-1486
ECN No.	00730
Date of Issue	October 17, 1990
Status	Product Specification
ACL Products	, , , , , , , , , , , , , , , , , , ,

AC11013: Product Specification ACT11013: Objective Specification **Dual 4-input NAND Schmitt-trigger**

FEATURES

- · Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- · Icc category: SSI

DESCRIPTION

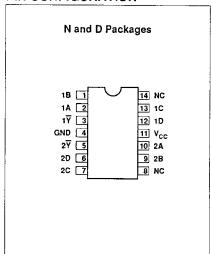
The 74AC/ACT11013 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11013 provides two separate 4-input NAND gate functions which are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates.

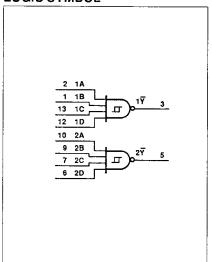
QUICK REFERENCE DATA

01/11/01		CONDITIONS	TYP	ICAL	
SYMBOL	PARAMETER	T _{amb} = 25°C; GND = 0V; V _{CC} = 5.0V	AC	ACT	UNIT
t _{PLH} / t _{PHL}	Propagation delay A, B, C, D to ₹	C _L = 50pF	4.3	8.0	ns
C _{PD}	Power dissipation capacitance,per gate1	f = 1MHz; C _L = 50pF	29	32	pF
CIN	Input capacitance	V _I = 0V or V _{CC}	3.5	3.5	pF
LATCH	Latch-up current	Per Jedec JC40.2 Standard 17	500	500	mA

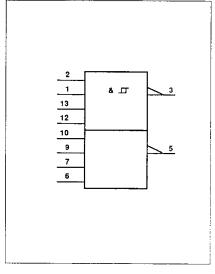
1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_0) \text{ where:}$ $f_1 = \text{input frequency in MHz, } C_L = \text{output load capacitance in pF,}$


$$P_D = C_{DD} \times V_{CC}^2 \times f_1 + \sum (C_1 \times V_{CC}^2 \times f_2)$$
 where:

 f_O = output frequency in MHz, V_{CC} = supply voltage in V, $\Sigma (C_L \times V_{CC}^2 \times f_O)$ = sum of outputs


ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE
14-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11013N 74ACT11013N
14-pin plastic SO (150mil-wide)	-40°C to +85°C	74AC11013D 74ACT11013D


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74AC/ACT11013

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 10	1A - 2A	Data inputs
1, 9	1B - 2B	Data inputs
13, 7	1C - 2C	Data inputs
12, 6	1D - 2D	Data inputs
3, 5	1₹ - 2₹	Data outputs
4	GND	Ground (0V)
11 -	Vcc	Positive supply voltage

FUNCTION TABLE

	INP	UTS	ОИТРИТ	
nA	nВ	nC	nD	nŸ
Н	н	Н	Н	L
L	х	×	×	н
x	L	х	х	н
Х	×	L	х	н
х	х	x	L	н

RECOMMENDED OPERATING CONDITIONS

01/11001			74AC11013			74ACT1101	3	114117
SYMBOL	PARAMETER	Min	Nom	Max	Min	Nom	Max	UNIT
Vcc	DC supply voltage	3.0 ¹	5.0	5.5	4.5	5.0	5.5	٧
V _I	Input voltage	0		V _{CC}	0		V _{CC}	V
V _O	Output voltage	0		V _{cc}	0		V _{cc}	٧
Δt/Δν	Input transition rise or fall rate	0		100	0		100	ns/V
T _{amb}	Operating free-air temperature range	-40		+85	-40		+85	°C

NOTE:

ABSOLUTE MAXIMUM RATINGS1

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 TO +7.0	V
Luc		V ₁ < 0	-20	
l _{IK}	DC input diode current ²	V _I >V _{CC}	20	mA
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V
Lov	2	V _O < 0	-50	
or or	DC output diode current ²	V _o >V _{cc}	50	m A
v _o	DCoutput voltage		-0.5 to V _{CC} +0.5	V
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
Icc	DC V _{CC} current		±100	
or I _{GND}	DC ground current		±100	⊶ mA
T _{STG}	Storage temperature		-65 to 150	°C
	Power dissipation per package	Above 70°C; derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C; derate linearly by 8mW/K	400	mW

NOTES:

October 17, 1990 28

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11013

DC ELECTRICAL CHARACTERISTICS

				1		74AC	11013			74AC1	11013]
SYMBOL	PARAMETER	TEST	CONDITIONS	V _{cc}	T _{amb} ≈	+25°C	T _{amb} =	-40°C 35°C	T _{amb} =	+25°C	T _{amb} =	= -40°C 85°C	דואט
				V	Min	Max	Min	Max	Min	Max	Min	Max	
	Danish a maina			3.0		2.2		2.2					
V_{T+}	Positive-going threshold			4.5		3.2		3.2		2.0		2.0	V
				5.5		3.9		3.9		2.0		2.0	<u></u>
	Negative-going			3.0	0.5		0.5						
V _T .	threshold			4.5	0.9		0.9			0.8		0.8	\ \
				5.5	1.1		1.1			8.0		0.8	
	Hysteresis	:		3.0	0.3	1.2	0.3	1.2					
ΔV_{T}	(V _{T+} - V _{T-})			4.5	0.4	1.4	0.4	1.4	0.4	1.2	0.4	1.2	V
				5.5	0.5	1.6	0.5	1.6	0.4	1.2	0.4	1.2	
	High-level			3.0	2.10		2.10						
V_{IH}	input voltage			4.5	3.15		3.15		2.0		2.0		V
				5.5	3.85		3.85		2.0		2.0		
	Low-level	İ		3.0		0.90		0.90					
V_{IL}	input voltage			4.5		1.35		1.35		0.8		0.8	V
	-			5.5		1.65		1.65		8.0		0.8	
				3.0	2.9		2.9						
			I _{OH} = -50μ A	4.5	4.4		4.4		4.4		4.4		
		ļ., .,		5.5	5.4		5.4		5.4		5.4		
V_{OH}	High-level output voltage	$V_l = V_{lL}$ or V_{lH}	l _{OH} = -4mA	3.0	2.58		2.48						V
	, capetranage	1	I _{OH} = -24m A	4.5	3.94		3.8		3.94		3.8		
			10H = -54111V	5.5	4.94		4.8		4.94		4.8		
			l _{OH} = -75mA ¹	5.5			3.85				3.85		
				3.0		0.1		0.1			·		
			l _{OL} = 50μ A	4.5		0.1		0.1		0.1		0.1	
				5.5		0.1		0.1		0.1		0.1	
V_{OL}	Low-level	$V_I = V_{IL}$ or V_{IH}	l _{OL} = 12mA	3.0		3.6		0.44					v
	output voltage	Or V _{IH}		4.5		3.6		0.44		3.6		0.44	,
			l _{OL} = 24mA	5.5		3.6		0.44		3.6		0.44	
			l _{OL} = 75mA ¹	5.5				1.65				1.65	
11	Input leakage current	V _I = V _{CC}	·	5.5		±0.1		±0.1		±0.1		±0.1	μA
l _{cc}	Quiescent supply	V _I = V _{CC}	or GND,	5.5		4.0		4.0		4.0		4.0	μΑ
	current	$I_0 = 0mA$		1.0		7.0				7.0		4.0	μΑ
Δl _{CC}	Supply current, TTL inputs High ²		ut at 3.4V, outs at V _{CC} or	5.5						0.9		1.0	mA

NOTES

1. Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.

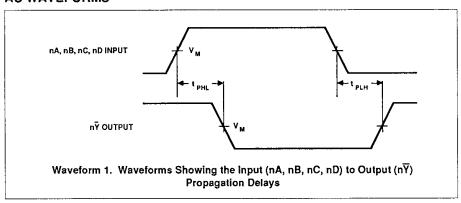
2. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{cc}.

74AC/ACT11013

AC ELECTRICAL CHARACTERISTICS AT 3.3V ±0.3V

					74AC1101	3		
SYMBOL	PARAMETER	WAVEFORM	T	amb = +25°	c		-40°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH}	Propagation delay nA, nB, nC, nD to nY	1	2.5 2.3	6.4 6.5	8.7 8.7	2.5 2.3	9.7 9.9	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ± 0.5 V

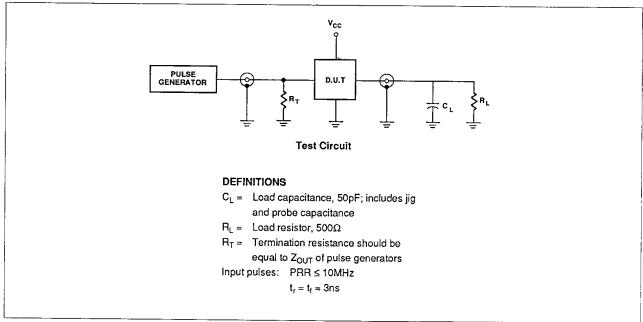

				7	74AC1101	3		
SYMBOL	PARAMETER	WAVEFORM	Т	amb = +25°	c	T _{amb} = -	-40℃ to 5℃	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH}	Propagation delay nA, nB, nC, nD to nY	1	2.0 2.0	4.2 4.4	6.4 6.9	2.0 2.0	7.1 7.8	ns

AC ELECTRICAL CHARACTERISTICS AT $5.0V \pm 0.5V$

				7	4ACT110	13		
SYMBOL	PARAMETER	WAVEFORM	Т	_{amb} = +25°		T _{amb} = -	-40°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH}	Propagation delay nA, nB, nC, nD to nY	1	1.5 1.5			1.5 1.5		ns

30

AC WAVEFORMS



WAVEFORM CONDITIONS

	INPUTS	OUTPUTS
AC	$V_{IN} = GND \text{ to } V_{CC}$	V V +0 V
AC	$V_M = 50\% V_{CC}$	$V_{OUT} = V_{OL}$ to V_{OH}
ACT	$V_{IN} = GND \text{ to } 3.0V,$	\/ F09/\/
ACT	$V_M = 1.5V$	$V_{\rm M} = 50\% V_{\rm CC}$

74AC/ACT11013

TEST CIRCUIT

