Micropower dual CMOS voltage comparators

Features

- Push-pull CMOS output (no external pull-up resistor required)
- Extremely low supply current: $9 \mu \mathrm{~A}$ typ / comparator
- Wide single supply range: 2.7 V to 16 V or dual supplies ($\pm 1.35 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$)
- Extremely low input bias current: 1pA typ
- Extremely low input offset currents: 1pA typ
- Input common-mode voltage range includes GND
- High input impedance: $10^{12} \Omega$ typ
- Fast response time: $2 \mu \mathrm{~s}$ typ for 5 mV overdrive
- Pin-to-pin and functionally compatible with bipolar LM393

Description

The TS3702 is a micropower CMOS dual voltage comparator with extremely low consumption of $9 \mu \mathrm{~A}$ typ / comparator (20 times less than bipolar LM393). The push-pull CMOS output stage allows power and space saving by eliminating the external pull-up resistor required by usual opencollector output comparators.
Thus response times remain similar to the LM393.

1 Schematic diagram

Figure 1. Schematic diagram (for $1 / 2$ TS3702)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CC}}{ }^{+}$	Supply voltage ${ }^{(1)}$	18	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$	± 18	V
V_{i}	Input voltage ${ }^{(3)}$	18	V
V_{0}	Output voltage	18	V
I_{0}	Output current	20	mA
I_{F}	Forward current in ESD protection diodes on input ${ }^{(4)}$	50	mA
p_{d}	$\begin{aligned} & \text { Power dissipation }{ }^{(5)} \\ & \text { DIP8 } \\ & \text { SO8 } \\ & \text { TSSOP8 } \end{aligned}$	$\begin{gathered} 1250 \\ 710 \\ 625 \end{gathered}$	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	HBM: human body model ${ }^{(6)}$	400	V
	MM: machine model ${ }^{(7)}$	50	V
	CDM: charged device model ${ }^{(8)}$	1.5	kV

1. All voltage values, except differential voltage, are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive and negative supply voltages.
4. Guaranteed by design.
5. P_{d} is calculated with $T_{a m b}=+25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{j}}=+150^{\circ} \mathrm{C}$ and $\mathrm{R}_{\text {thia }}=100^{\circ} \mathrm{C} / \mathrm{W}$ for DIP8 package $\mathrm{R}_{\text {thja }}=175^{\circ} \mathrm{C} / \mathrm{W}$ for SO8 package $R_{\text {thja }}=200^{\circ} \mathrm{C} / \mathrm{W}$ for TSSOP8 package
6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $<5 \Omega$). This is done for all couples of connected pin combinations while the other pins are floating.
8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CC}}{ }^{+}$	Supply voltage TS3702C, TS37021 TS3702M	2.7 to 16 4 to 16	V
	Common mode input voltage range	0 to $\mathrm{V}_{\mathrm{CC}^{+}-1.5}$	V
oper	Operating free-air temperature range		
	TS3702C	0 to +70	C
	TS37021	-40 to +125	
	TS3702M	-55 to +125	

3 Electrical characteristics

Table 3. $\quad \mathrm{V}_{\mathrm{cc}}{ }^{+}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}{ }^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Input offset voltage ${ }^{(1)}$ $\begin{aligned} & \mathrm{V}_{\text {ic }}=1.5 \mathrm{~V} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$			$\begin{gathered} 5 \\ 6.5 \end{gathered}$	mV
$\mathrm{I}_{\text {io }}$	Input offset current ${ }^{(2)}$ $\begin{aligned} & \mathrm{V}_{\text {ic }}=1.5 \mathrm{~V} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		1	300	pA
$\mathrm{l}_{\text {ib }}$	Input bias current (2) $\begin{aligned} & \mathrm{V}_{\text {ic }}=1.5 \mathrm{~V} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		1	600	pA
$\mathrm{V}_{\mathrm{icm}}$	Input common mode voltage range $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}^{+}-1.2} \\ & \mathrm{~V}_{\mathrm{CC}^{+}-1.5} \end{aligned}$	V
CMR	Common-mode rejection ratio $V_{\text {ic }}=V_{\text {icm min }}$		80		dB
SVR	Supply voltage rejection ratio $\mathrm{V}_{\mathrm{CC}}^{+}=3 \mathrm{~V} \text { to } 5 \mathrm{~V}$		75		dB
V_{OH}	High level output voltage $\begin{aligned} & \mathrm{V}_{\mathrm{id}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} \end{aligned}$	$\begin{gathered} 2 \\ 1.8 \end{gathered}$	2.4		V
V_{OL}	Low level output voltage $\begin{aligned} & \mathrm{V}_{\mathrm{id}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} \end{aligned}$		300	$\begin{aligned} & 400 \\ & 575 \end{aligned}$	mV
I_{Cc}	Supply current (each comparator) No load - Outputs low $T_{\text {min }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }}$.		7	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$
$t_{\text {PLH }}$	Response time low to high $V_{\text {ic }}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, overdrive $=5 \mathrm{mV}$ TTL input		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$		$\mu \mathrm{S}$
$t_{\text {PHL }}$	Response time high to low $\mathrm{V}_{\mathrm{ic}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, overdrive }=5 \mathrm{mV}$ TTL input		$\begin{gathered} 2.2 \\ 0.15 \end{gathered}$		$\mu \mathrm{s}$

1. The specified offset voltage is the maximun value required to drive the output up to 2.5 V or down to 0.3 V .
. Maximum values include unavoidable inaccuracies of the industrial tests.

Table 4. $\quad \mathrm{V}_{\mathrm{CC}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}{ }^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	Input offset voltage $\begin{aligned} & \mathrm{V}_{\text {ic }}=\mathrm{V}_{\text {icm } \min }, \mathrm{V}_{\mathrm{cc}}{ }^{+}=5 \mathrm{~V} \text { to } 10 \mathrm{~V}^{(1)} \\ & \mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		1.2	$\begin{gathered} 5 \\ 6.5 \end{gathered}$	mV
$\mathrm{I}_{\text {io }}$	Input offset current ${ }^{(2)}$ $\begin{aligned} & \mathrm{V}_{\text {ic }}=2.5 \mathrm{~V} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		1	300	pA
$\mathrm{l}_{\text {ib }}$	Input bias current $\begin{aligned} & \mathrm{V}_{\text {ic }}=2.5 \mathrm{~V} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\max } \end{aligned}$		1	600	pA
$\mathrm{V}_{\mathrm{icm}}$	Input common mode voltage range $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}^{+}-1.2} \\ & \mathrm{~V}_{\mathrm{CC}^{+}-1.5} \end{aligned}$	V
CMR	Common-mode rejection ratio $\mathrm{V}_{\text {ic }}=\mathrm{V}_{\text {icm min }}$		82		dB
SVR	Supply voltage rejection ratio $\mathrm{V}_{\mathrm{CC}^{+}}=+5 \mathrm{~V} \text { to }+10 \mathrm{~V}$		90		dB
V_{OH}	High level output voltage $\begin{aligned} & \mathrm{V}_{\mathrm{id}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	4.7		V
V_{OL}	Low level output voltage $\begin{aligned} & \mathrm{V}_{\mathrm{id}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		200	$\begin{aligned} & 300 \\ & 375 \end{aligned}$	mV
$I_{C C}$	Supply current (each comparator) No load - Outputs low $T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }}$		9	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$
$t_{\text {PLH }}$	Response time low to high $\begin{aligned} & V_{\text {ic }}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, overdrive }=5 \mathrm{mV} \\ & \text { Overdrive }=10 \mathrm{mV} \\ & \text { Overdrive }=20 \mathrm{mV} \\ & \text { Overdrive }=40 \mathrm{mV} \\ & \text { TTL input } \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.1 \\ & 0.9 \\ & 0.7 \\ & 0.6 \end{aligned}$		$\mu \mathrm{S}$
${ }_{\text {tPHL }}$	Response time high to low $\begin{aligned} & \mathrm{V}_{\text {ic }}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, overdrive }=5 \mathrm{mV} \\ & \text { Overdrive }=10 \mathrm{mV} \\ & \text { Overdrive }=20 \mathrm{mV} \\ & \text { Overdrive }=40 \mathrm{mV} \\ & \text { TTL input } \end{aligned}$		$\begin{gathered} 2.2 \\ 1.6 \\ 1.1 \\ 0.75 \\ 0.17 \end{gathered}$		$\mu \mathrm{S}$
t_{f}	Fall time $f=10 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, overdrive 50 mV		30		ns

1. The specified offset voltage is the maximun value required to drive the output up to 4.5 V or down to 0.3 V .
2. Maximum values include unavoidable inaccuracies of the industrial tests.

4 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.

4.1 DIP8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max	Min.	Typ.	Max.
A		3.3			0.130	
a1	0.7			0.028		
B	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

4.2 SO8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
B	0.33		0.51	0.013		0.020
C	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
e		1.27			0.050	
H	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

4.3 TSSOP8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.0256	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	

5 Ordering information

Table 5. Order codes

Part number	Temperature range	Package	Packaging	Marking
TS3702CN	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	DIP8	Tube	TS3702CN
TS3702CD/CDT		SO8	Tube or tape \& reel	3702C
TS3702IN	$-40^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	DIP8	Tube	TS3702IN
TS3702ID/IDT		SO8	Tube or tape \& reel	37021
TS3702IPT		TSSOP8	Tape \& reel	37021
TS3702MN	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	DIP8	Tube	TS3702MN
TS3702MD/MDT		SO8	Tube or tape \& reel	3702M
TS3702MPT		TSSOP8	Tape \& reel	3702M

6 Revision history

Date	Revision	Changes
2-Jan-2003	1	First release.
2-May-2005	2	PPAP references inserted in the datasheet, see Section 5: Ordering information on page 10.
26-Feb-2007	3	PPAP references removed. ESD data added to Table 1 on page 3. Order codes added to Table 5 on page 10.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

11/11

