General Description

The MAX2900–MAX2904 complete single-chip 200mW transmitters are designed for use in the 868MHz/ 915MHz frequency bands. The MAX2900/MAX2901/ MAX2902 are compliant with the FCC CFR47 part 15.247 902MHz to 928MHz ISM-band specifications. MAX2903/ MAX2904 are compliant with the ETSI EN330-220 specification for the European 868MHz ISM band.

These transmitter ICs offer a high level of integration while minimizing the number of external components. This is achieved by full integration of the transmit modulator, power amplifier, RF VCO, 8-channel frequency synthesizer, and baseband PN sequence lowpass filter. By filtering the BPSK modulation, the spurious emissions are reduced, enabling up to eight independent transmit channels in the U.S. ISM band. Inputs are provided for spread-spectrum BPSK, ASK, and OOK. FM can be achieved by directly modulating the VCO. The devices are intended primarily for use with an external differential antenna.

Applications

Automatic Meter Reading Wireless Security Systems/Alarms Wireless Sensors Wireless Data Networks Wireless Building Control

_Features

- Versions for U.S. 902MHz to 928MHz Band and European 868MHz Band
- -7dBm to +23dBm Adjustable Differential RF Output Power
- +23dBm Output Power at 4.5V, +20dBm Output Power at 3.0V
- Support BPSK, OOK, ASK, and FM Modulations
- Modulation Filter for Direct Sequence BPSK up to 8Mchips/s
- Fully Integrated VCO with On-Chip Tank
- Extremely Low Frequency Pulling for OOK Modulation (typ 60kHz peak, 5kHz RMS)
- Integrated Frequency Synthesizer for up to 8 Channels (MAX2900)
- ♦ +2.7V to +4.5V Supply Operation
- Small 28-Pin QFN Package with Exposed Pad (5mm × 5mm)

Ordering Information

REFIN OSC

23 22

21 VCO+

20 VCO-

19 DIVOUT

18 GND

17 RF+

16 RF-

15 GND

PART	TEMP RANGE	PIN-PACKAGE
MAX2900EGI	-40°C to +85°C	28 QFN-EP*
MAX2901EGI	-40°C to +85°C	28 QFN-EP*
MAX2902EGI	-40°C to +85°C	28 QFN-EP*
MAX2903EGI	-40°C to +85°C	28 QFN-EP*
MAX2904EGI	-40°C to +85°C	28 QFN-EP*

DIV63 REFOUT VCC4

25 24

11

VASK

DUAL

CHANNEL

(/62 OR /63) SYNTHESIZER

12 13

ID

*Exposed pad

VTUNE

GND 2

VREG 3

VCC1 4

RLPF 5

EN 6

REFEN 7

_Functional Diagrams/Pin Configurations

26

MAXIM

MAX2901/

MAX2903

CPOUT VCC5

СР

REG

GATE

9 10

VCC2

8

MODIN OOKIN

28

27

Functional Diagrams/Pin Configurations are continued at end of data sheet.

M/IXI/M

_ Maxim Integrated Products 1

PWRSET VCC3

14

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION! ESD SENSITIVE DEVICE

Five different versions are available. The versions differ by their frequency band of operation, and by the synthesizer's mode of operation. The MAX2900 has an internal 8-channel synthesizer.

The MAX2901 and MAX2903 are dual-channel versions with a selectable internal synthesizer division ratio of 62 or 63. The MAX2901 operates in the 902MHz to 928MHz ISM band and the MAX2903 operates in the 867MHz to 870MHz European ISM band.

_Part Selection Information

///XI//

The MAX2902 and MAX2904 require an off-chip frequency synthesizer. The MAX2902 operates in the 902MHz– 928MHz ISM band and MAX2904 operates in the 867MHz–870MHz European ISM band.

The MAX2901–MAX2904 provide LO outputs to drive a receiver and/or an external synthesizer.

PART	FREQUENCY RANGE (MHz)	SYNTHESIZER	LO OUTPUTS
MAX2900EGI	902 to 928	Internal 8 selectable channels	No
MAX2901EGI	902 to 928	Internal 2 selectable channels	Yes
MAX2902EGI	902 to 928	Off-chip	Yes
MAX2903EGI	867 to 870	Internal 2 selectable channels	Yes
MAX2904EGI	867 to 870	Off-chip	Yes

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.7V to +4.5V, EN = OOKIN = REFEN = high, T_A = -40°C to +85°C. Typical values are at V_{CC} = +4.5V, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS		MIN	-3 σ	ТҮР	+3 σ	МАХ	UNITS
Supply Voltage			2.7		4.5		4.5	V
	Shutdown mode: EN =	$V_{CC} = +4.0V$			0.7		10	
	REFEN = low	$V_{CC} = +4.5V$			60		200	μA
Supply Current	Synth mode: OOKIN = low (MAX2900/MAX2901/MAX290)3 only)			32		40	
	Transmit mode with output matching optimized for +23dBm at +4.5V: PWRSET loaded with 22kΩ resistor	$T_A = -40^{\circ}C$ to +85°C			150	200		mA
	Transmit mode with output matching optimized for +20dBm at +3.0V: PWRSET loaded with 22kΩ resistor	T _A = -40°C to +85°C			110	135		

DC ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.7V to +4.5V, EN = OOKIN = REFEN = high, T_A = -40°C to +85°C. Typical values are at V_{CC} = +4.5V, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS		MIN	-3 σ	ТҮР	+3 σ	MAX	UNITS
	Transmit mode with output matching optimized for +17dBm at +3.0V: PWRSET loaded with 36kΩ resistor	T _A = +25°C			75			
Supply Current (continued)	Transmit mode with output matching optimized for +14dBm at +3.0V: PWRSET loaded with 51kΩ resistor	T _A = +25°C			57			mA
	Reference-only mode: EN = I	WC			2		3	
	PA standby mode: OOKIN = (MAX2902/MAX2904 only)	low			29		33	
VCO Input Tuning Pin Current	VTUNE = +4.5V, T _A = +25°C				0.02		2	μA
VREG VCO Regulator Voltage					2.0			V
DIGITAL INPUT/OUTPUTS (PINS	S EN, REFEN, D0, D1, D2, MODIN	N, OOKIN, LD)						-
Input Level High			V _{CC} - 0.5V					V
Input Level Low							0.5	V
Input Bias Current			-10				10	μA
Output Level High			V _{CC} - 0.4					V
Output Level Low							0.4	V
Output Current			-100				100	μA
ANALOG CONTROL INPUTS (F	PINS PWRSET, RLPF, VASK)							
PWRSET Voltage					1.2			V
RLPF Voltage					1.2			V
VASK Input Impedance			100		220		400	kΩ

AC ELECTRICAL CHARACTERISTICS

 $(MAX290_EV \ kits. \ V_{CC} = +2.7V \ to +4.5V, \ R_{RLPF} = 68k\Omega, \ R_{PWRSET} = 22k\Omega, \ f_{RF} = 917.28MHz \ (MAX2900/MAX2901/MAX2902) \ or \ f_{RF} = 868MHz \ (MAX2903/MAX2904), \ VASK = VREG, \ f_{REF} = 14.56MHz \ (MAX2900/MAX2901/MAX2902) \ or \ f_{REF} = 13.62MHz \ (MAX2903/MAX2904), \ chip \ rate \ on \ MODIN = 1.22Mbps, \ P_{OUT} = +23dBm, \ T_A = -40^{\circ}C \ to \ +85^{\circ}C. \ Typical \ values \ are \ at \ V_{CC} = +4.5V, \ T_A = +25^{\circ}C, \ unless \ otherwise \ noted.) \ (Note \ 1)$

PARAMETER	CONDITIONS	MIN	-3σ T	/P +3 0	MAX	UNITS	
ANALOG INPUT PINS							
VTUNE Input Capacitance	VTUNE = +1.35V		1	5		pF	
DIGITAL INPUT PINS							
Digital Input Pin Capacitance			(3		pF	
VCO AND SYNTHESIZERS SEC	ΓΙΟΝ						
RFOUT Frequency Range	(MAX2900/MAX2901/MAX2902)	902	917	7.28	928	MHz	
RECOT Frequency hange	(MAX2903/MAX2904)	867	86	68	870	IVICIZ	
REFIN Reference Frequency	(MAX2900/MAX2901/MAX2902)	14	14	.56	15	MHz	
Range	(MAX2903/MAX2904)	13	13	.78	14.5	IVICIZ	
REFDIV Fixed Reference Divider Ratio	(MAX2900)	4	2	1	4		
	Table 4 (MAX2900)	249			256		
Main Divider Ratios	(MAX2901/MAX2903)	62			63		
	(MAX2900)	3.5	3.	64	3.75		
PLL Comparison Frequency	(MAX2901/MAX2903)	13			15	MHz	
VCO Buffer Output Power	300Ω differential load (MAX2901–MAX2904)		-*	2		dBm	
REFDIV Fixed Reference Divider Ratio	(MAX2901/MAX2903)	1		1	1		
VCO Phase Noise	At 100kHz offset, measured at RFOUT, PLL loop BW = $5kHz$		-1	01		dBc/Hz	
VCO Tuning Gain	VTUNE = +1.35V	44	6	5	86	MHz/V	
VCO Frequency Pulling with	OOKIN clocked at 19kHz, internal (crystal)		Į	5		kHz RMS	
OOK Modulation	or external reference frequency		6	0		kHz peak	
PLL Phase Noise	Measured at RFOUT, 5kHz offset, PLL loop BW = 50kHz		-6	96		dBc/Hz	
REFOUT Voltage Swing		100				mVp-p	
CPOUT Charge Pump Current			50	00		μA	
Reference Spurs			-6	62		dBc	
Reference Input Voltage for Nominal Operation	Using an external frequency reference	200	30	00		mV	
BPSK, OOK MODULATOR, AND	РА						
MODIN Frequency Range			1	.2	8	Mb/s	
Modulation Filter Nominal 3dB Bandwidth				1		MHz	
Modulation Filter Final Attenuation	Measured at 30MHz	28	4	1		dB	
Carrier Suppression			2	8		dB	
Noise Power Density	At 960MHz (measured at RFOUT at +23dBm output power)		-1	50		dBc/Hz	

4

AC ELECTRICAL CHARACTERISTICS (continued)

 $(MAX290_EV \ kits. \ V_{CC} = +2.7V \ to +4.5V, \ R_{RLPF} = 68k\Omega, \ R_{PWRSET} = 22k\Omega, \ f_{RF} = 917.28MHz \ (MAX2900/MAX2901/MAX2902) \ or \ f_{RF} = 868MHz \ (MAX2903/MAX2904), \ VASK = VREG, \ f_{REF} = 14.56MHz \ (MAX2900/MAX2901/MAX2902) \ or \ f_{REF} = 13.62MHz \ (MAX2903/MAX2904), \ chip \ rate \ on \ MODIN = 1.22Mbps, \ P_{OUT} = +23dBm, \ T_A = -40^{\circ}C \ to \ +85^{\circ}C. \ Typical \ values \ are \ at \ V_{CC} = +4.5V, \ T_A = +25^{\circ}C, \ unless \ otherwise \ noted.) \ (Note \ 1)$

PARAMETER	CONDITIO	NS	MIN	-3 σ	ТҮР	+3 σ	MAX	UNITS
	PWRSET = $22k\Omega$, V _{CC} = + T _A = +25°C	-4.5V,		21	23.5	25		
RF Output Power	PWRSET = $22k\Omega$, V _{CC} = +4.5V, T _A = -40°C to +85°C		20.5 25		dBm			
	PWRSET = $22k\Omega$, V _{CC} = +3	8.0V, T _A = +25°C		18	20	21		
RF Output Power Flatness	f _{RF} = 900MHz to 930MHz (MAX2900/MAX2901/MAX2902)				0.3			dB
	$f_{RF} = 867 MHz$ to $870 MHz$				0.1			
Adjacent Channel Power Ratio	PN sequence at 1.22MHz				-17			dBc
Alternate Channel Power Ratio	PN sequence at 1.22MHz				-26			dBc
OOK Control Range		•	40		80			dB
ASK Output Power Adjustment	ASK output power back- OOKIN = high, VASK = 0				41			٩D
Range	off relative to max power	OOKIN = high, VASK = 1V			16			- dB
RFOUT Rise and Fall Time	Square-wave signal applie	ed on OOK			1			μs
	At 2nd harmonic of RF output frequency with external matching network				-50			
	At 3rd harmonic of RF output frequency with external matching network				-51			
	At 4th harmonic of RF outp with external matching net				-63			dDo
Spurious Emissions	Out of 902MHz to 928MHz harmonics with external m (MAX2900/MAX2901/MAX	atching network			< -70			- dBc
	Out of 867MHz to 870MHz harmonics with external m (MAX2903/MAX2904)				< -70			
Unlocked, Out-of-Band Spurious Output Level	Any condition when synthesizer unlocked (pin LD low)				< -50			dBm
Noise Level Out of Pard	Modulation off, measured gain setting (MAX2900/MA	•			-126		-120	dD/
Noise Level Out of Band	Modulation off, measured at 900MHz, any gain setting (MAX2903/MAX2904)				-126		-120	- dBm/H
Output VSWR for Guaranteed Stability				2:1				
Maximum Allowable Output VSWR					2:1			

Note 1: Devices are production tested at T_A = +25°C and +85°C. Min/Max values are guaranteed by design and characterization over temperature and supply voltage.

MAX2900-MAX2904

Typical Operating Characteristics

 $(MAX290_EV \ \text{kits.} \ V_{CC} = +4.5V, \ f_{RF} = 917.28 \text{MHz} \ (MAX2900/MAX2901/MAX2902) \ \text{or} \ f_{RF} = 868 \text{MHz} \ (MAX2903/MAX2904), \ R_{RLPF} = 68 \text{k}\Omega, \ R_{PWRSET} = 22 \text{k}\Omega, \ VASK = VREG, \ f_{REF} = 14.56 \text{MHz} \ (MAX2900/MAX2901/MAX2902) \ \text{or} \ f_{REF} = 13.78 \text{MHz} \ (MAX2903/MAX2904), \ \text{chip rate on MODIN} = 1.22 \ \text{Mbps}, \ RF \ \text{output matching network optimized for} \ +23 \text{dBm}, \ V_{CC} = 4.5V, \ T_{A} = +25^{\circ}\text{C}, \ \text{unless otherwise noted.}$

Downloaded from Elcodis.com electronic components distributor

MXXIM

MAX2900-MAX2904

⁷

Pin Description

	PIN				
MAX2900	MAX2901 MAX2903	MAX2902 MAX2904	NAME	PIN TYPE	FUNCTION
1	1	1	VTUNE	Analog Input	VCO tuning voltage input
2	2	2	GND	Supply Pin	Ground
3	3	3	VREG	Analog Input/Output	Regulated voltage output to supply the VCO. Bypass with a 0.01μ F capacitor to GND as close to the part as possible.
4	4	4	VCC1	Supply Pin	Power supply pin for VCO circuits. Bypass with a 1000pF and a 10μ F capacitor to GND as close to the part as possible.
5	5	5	RLPF	Analog Input Resistor to Ground	Resistor to ground on this pin sets the modulation filter bandwidth.
6	6	6	EN	Digital Input	Chip-enable digital input pin. Set EN low maintain the chip in power-down mode.
7	7	7	REFEN	Digital Input	Enable for crystal oscillator and frequency reference buffer.
8	8	8	MODIN	Digital Input	BPSK modulation input
9	9	9	OOKIN	Digital Input	On-off keying modulation. On state = high.
10	10	10	VCC2	Supply	Power supply pin for internal RF buffer circuits. Bypass with a 100pF and a 0.01µF capacitor to GND as close to the part as possible.
11	11	11	VASK	Analog Voltage Input	ASK voltage input pin
12	12	_	LD	Digital Output	Lock detector output digital pin. Level is high when PLL is inside lock range.
	_	12	D.C.	Do NOT Connect	
13	13	13	PWRSET	Analog Input Resistor to Ground	Current input set to adjust output power.
14	14	14	VCC3	Supply	Power supply pin for RF power amplifier circuits. Bypass with a 100pF capacitor to GND as close to the part as possible.

M/IXI/M

Pin Description (continued)

	PIN					
MAX2900	MAX2901 MAX2903	MAX2902 MAX2904	NAME	PIN TYPE	FUNCTION	
15	15	15	GND	Supply Pin	Ground	
16, 17	16, 17	16, 17	RF-, RF+	RF Output	RF differential output, open-collector type	
18			N.C.	Not Connected	—	
	18	_	GND	Supply Pin	Ground	
		18	D.C.	Do Not Connect	—	
19	_	19	N.C.	Not Connected	—	
	19	_	DIVOUT	ECL Output	Divider output	
_	20, 21	20, 21	VCO-, VCO+	Open Collector RF	VCO output (differential)	
20			D1	Digital Input	Channel selection bit 1	
21			D0	Digital Input	Channel selection bit 0	
22	22	22	OSC	Analog Input	Crystal oscillator connection. See <i>Typical Operating Circuit.</i>	
23	23	23	REFIN	Analog Voltage Input	Reference input pin analog (can be used as input or as crystal oscillator driver). See <i>Typical Operating Circuit</i> .	
24	24		VCC4	Supply Pin	Power-supply pin for the synthesizer circuits. Bypass with a 1000pF capacitor to GND as close to the part as possible.	
_	_	24	VCC4	Supply Pin	Power-supply pin for the digital circuits. Bypass with a 100pF capacitor to GND as close to the part as possible.	
25	25	25	REFOUT	Analog Output	Buffered clock analog output pin	
26			D2	Digital Input	Channel selection bit 2	
_	26	_	DIV63	Digital Input	Division ratio selections (division ratio = 62 when DIV63 = high; division ratio = 63 when DIV63 = low).	
		26	N.C.	Not Connected	—	
27	27	_	VCC5	Supply Pin	Power-supply pin for charge pump circuits. Bypass with a 100pF capacitor to GND as close to the part as possible.	
_	_	27	VCC5	Supply Pin	Power-supply pin. Bypass with a 100pF capacitor to GND as close to the part as possible.	
28	28		CPOUT	Analog Output	Charge pump output pin	
		28	D.C.	Do Not Connect		
GROUND	GROUND	GROUND	GROUND	Electrical Ground	Back side of package is connected to ground.	

M/X/W

Detailed Description

Principles of Operation

When EN goes high, the reference and the VCO start while the PA stays in the off mode. For MAX2900/ MAX2901/MAX2903, the PLL also starts when EN goes high. After the lock-detect pin LD goes high, the PA is set to stand-by mode. For the MAX2902/MAX2904, the VCO loop has to be closed by using an external synthesizer. After this, pulling OOKIN high turns on the PA. The internal modulation filter smoothes the power ramp-up of the PA.

The modulation filter BW is typically 0.8MHz, used for a 1.22Mbps chip rate, and can be adjusted by varying RLPF. A high value can be used for RLPF to get a slow PA ramping up when BPSK is not used.

The reference blocks can be turned on separately (and earlier) by pulling REFEN high, to allow the crystal frequency to settle.

The device supports various modulation modes:

- BPSK, filtered by the internal modulation filter, is obtained through the MODIN pin. This is the preferred mode of operation for MAX2900.
- OOK is obtained digitally with the OOKIN pin.
- ASK is obtained through the ASK pin.
- FM is imposed on the VCO or the reference.
- FM is the preferred mode of operation for the MAX2903/MAX2904 due to the narrowband operation common in Europe.

The maximum output power is set by the output matching network and the external biasing resistor on the PWRSET pin.

For the MAX2901–MAX2904, differential LO outputs are provided to drive a companion receiver and/or an external synthesizer.

Power-Up Modes

The circuit has four modes of operations, defined as follows:

- 1) Shutdown mode: Pin EN and REFEN are low, all functions are off, and the current consumption is leakage only.
- 2) Synth mode: Pin EN and REFEN are high, pin OOKIN is low. The reference circuits, VCO, and synthesizer are turned on. The power amplifier is in stand-by mode. Total current is less than 50mA. Note that as long as the LD pin is not going high, indicating that the PLL is unlocked, OOKIN high is ignored.

- 3) Transmit mode: Pin EN and REFEN are high. If output pin LD is high, the device is ready to transmit. When OOKIN is high, the power amplifier is turned on. The current consumption varies between 50mA and 120mA, depending on the output power requested by the combination of the OOK duty cycle, the PWRSET value, and output matching circuit.
- 4) Reference Only mode: This mode enables the use of the crystal reference from the IC to drive the external logic ICs. To obtain this mode, set the REFEN pin high and EN low. In this mode, only the reference circuit turns on, the crystal oscillator starts, and the clock is present at the REFOUT pin. The current consumption remains much lower than that in the SYNTH mode because the VCO, synthesizer, and PA standby circuits are off. When EN goes high, the IC goes into the SYNTH mode.

Synthesizer Programming

The three pins D0–D2 (MAX2900) and DIV63 (MAX2901/ MAX2903) are used as digital entries to program the synthesizer division ratios. Tables 4 and 5 show the division ratios obtained for the various pin logic levels.

Figure 1. PIN PWRSET Equivalent Circuit

Analog Input Control Pins

The two pins PWRSET and VASK are analog inputs used to control the power of the transmitter. The equivalent input schematics are defined in Figures 1, 2, and 3. The PWRSET pin sets the biasing of the amplification chain. Because the last stage of the amplifier operates in saturation, the output power mostly depends on the load and supply voltage. The purpose of the PWRSET resistor is to achieve optimum biasing (and therefore efficiency) for various maximum output power configurations. For a given application with a known operating voltage and peak power, a fixed value of resistor is determined. The output power range of -7dBm to +23dBm at 4.5V is obtained by choosing a combination of output load line and the resistor on PWRSET; $22k\Omega$ is

used on the EV kit board for +23dBm output power at 4.5V, and 22k Ω is also recommended for +20dBm output power at +3.0V. For +17dBm at 3.0V, 36k Ω is recommended. The current consumption, efficiency, and distortion in the amplification chain are affected by the choice of the resistor RPWRSET, offering a lot of design flexibility.

Figure 2. PIN VASK Equivalent Circuit

The VASK pin is an input to the internal gain control circuitry. The gain control is greater than 30dB over the full range of input voltages from 0 to VREG = 2.1V. This input is used for ASK modulation. At 1V, a typical 15dB attenuation is obtained from the peak power. When this input is not used, connect VASK to VREG.

The RLPF input controls the modulation filter center frequency.

Figure 3. PIN RLPF Equivalent Circuit

The RLPF pin sets the bandwidth of the modulation filter. The default filter bandwidth, obtained with a $68k\Omega$ resistor, is for 1.2Mchips/s. The bandwidth is increased to accommodate 5Mchips/s by decreasing the resistor value to about $26k\Omega$. The minimum value for the resistor is $12k\Omega$, which generates the maximum filter bandwidth. A higher value can be used in FM mode to set up a slow ramp-up time for the PA.

Data Filter Characteristics

The data filter approximates a 3rd-order Butterworth filter. The 3dB cut-off frequency is adjusted through the resistor on pin RLPF, which controls the first two poles of the filter (the last high-frequency pole is fixed and set around 10MHz). The filter is adjustable in a range from approximately 700kHz to 7MHz.

With the nominal setting (3dB cut off at 0.8MHz), the filter attenuation is 10dB at 3.6MHz. If used with a BPSK at 1.22MHz, this provides about 30dB of modulation rolloff at 3.6MHz. Hence, a significant channelization effect is obtained.

In the wideband setting (3dB cut off at 5MHz), the attenuation at 30MHz is still 30dB, helping to pass the FCC spurious emissions at 960MHz.

Table 1. MAX2900 Power-Up Modes

LOGIC LEVEL			INTERNAL BLOCK STATUS					
REFEN	EN	OOKIN	REFERENCE	VCO MOD FILTER	SYNTHESIZER	PA		
0	0	Х	Off	Off	Off	Off		
1	0	Х	On	Off	Off	Off		
1	1	0	On	On	On	Off		
1	1	1	On	On	On	On only after LD goes high		

Table 2. MAX2901/MAX2903 Power-Up Modes

REFEN	EN	OOKIN	REFERENCE	VCO MOD FILTER	SYNTHESIZER	РА
0	0	Х	Off	Off	Off	Off
1	0	Х	On	Off	Off	Off
1	1	0	On	On	On	Off
1	1	1	On	On	On	On only after LD goes high

Table 3. MAX2902/MAX2904 Power-Up Modes

REFEN	EN	OOKIN	REFERENCE	VCO MOD FILTER	РА
0	0	Х	Off	Off	Off
1	0	0	On	Off	Off
0	1	0	Off	On	Off
1	1	0	On	On	Off
0	1	1	Off	On	On
1	1	1	On	On	On

Table 4. MAX2900 SynthesizerProgramming

D0	D1	D2	DIVISION RATIO
0	1	1	249
0	1	0	250
0	0	1	251
0	0	0	252
1	1	1	253
1	1	0	254
1	0	1	255
1	0	0	256

Table 5. MAX2901/MAX2903 SynthesizerProgramming

DIV 63	DIVISION RATIO					
0	62					
1	63					

Typical Operating Circuits

MAX2900-MAX2904

Typical Operating Circuits (continued)

Typical Operating Circuits (continued)

MAX2900-MAX2904

MAX2900-MAX2904

Chip Information

TRANSISTOR COUNT: 898

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

					COMM	ON DIME	NSIONS													
PKG	16L 5x5 20L 5x5						28L 5x5 32L 5x5													
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.								
Α	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00								
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05								
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00								
A3		0.20 RE			0.20 REF			0.20 RE	-		0.20 REF	-								
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30		EXPD	SED	ΡΔΠ				
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10				D2			E2	
D1		4.75 BS	0		4.75 BSC			4.75 BS	C		4.75 BSC	;		PKG. CODES	MIN.	NDM.	MAX.	MIN.	NDM.	M
£	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10		G1655-3	2.95	3.10		2.95	3.10	3.
E1		4.75 BS	0		4.75 BSC			4.75 BS	-		4.75 BSC			G2055-1	2.55	2.70		2.55	2.70	2.
e		0.80 BSC 0.65 BSC 0.50 BSC 0.50				0.50 BSC			G2055-2	2.95	3.10	3.25	2.95	3.10	з.					
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-		G2855-1	2.55	2.70	2.85	2.55	2.70	2.
L	0.35	0.55	0.75	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.50		G2855-2	2.95	3.10	3.25	2.95	3.10	з.
N		16			20			28			32		[G3255-1	2.95	3.10	3.25	2.95	3.10	З.
ND	4 5 7 8																			
		4 5 7 8																		
NE		4			5			7			8									
	0.00	<u> </u>	0.60	0.00	5 0.42	0.60	0.00	7 0.42	0.60	0.00	8 0.42	0.60								
NE P O	0.	<u> </u>	0.60 12*	0.00 0*	-	0.60 12*	0.00 0*		0.60 12*	0.00 0*	-	0.60 12*								
NE P θ IOTES 1. 2. 3. 4. 5. 6. 7.	O" DIE T DIMEN N IS Nd IS DIMEN THE I DETAI EXACI	0.42 HICKNES ISIONING THE NU S THE NU ISION 6 PIN #1	12° S ALLC & TO MBER C UMBER APPLIE IDENTIF IN #1 AND S NS AR	O' WABLE LERANCI OF TER OF TER OF TER STO P IER MUS IDENTIF SIZE OF E IN MI	0.42 IS 0.30 ES CONF INALS MINALS LATED T ST BE E IER IS (THIS FI LLIMETER	12* 5mm M FORM TO IN X-D ERMINAI XISTED OPTIONA EATURE	O" AXIMUN ASME IRECTIC AND ON THI	0.42 (.012 (.14.5) () & No IS MEA E TOP S MUST	12" INCHE: A 1 IS TH SURED	O* S MAXIN 994. IE NUM BETWEE E OF T	0.42 (UM) BER OF IN 0.20	12* TERMINAL	ōmm FRC USING IN	DIRECTION. IM TERMIN/ DENTATION			NK/LA	ASER I	MARKE	D.
NE P 0 1. 2. 3. 4. 6. 7. 8. 9. 10.	O" DIE T DIMEN N IS Nd IS DIMEN THE I DETAI EXACT ALL E PACK/ APPLI EXCLU	0.42 HICKNES ISIONING THE NU STHE NU STHE NU SION 6 FIN 67 FIN 67	12° S ALLC & TO MBER (JMBER (JMBER (JMBER (JMBER (APPLIE IDENTIF 'IN #1 AND S INS ARI RPAGE EXPOS DEDDED MO220 EXPOS	0° WABLE LERANCI OF TERM OF TERMUS IDENTIF SIZE OF E IN MI MAX 0.0 ED PAD PART (0; EXCE	0.42 IS 0.30 ES CONF INALS LATED T ST BE E IER IS (THIS F LLIMETER DSmm. AND TE DF EXPO PT DIME	12° 5mm M ORM TC IN X-D ERMINAI XISTED DPTIONA EATURE IS. CRMINAL SED PA NSION '	O' AXIMUN ASME IRECTIC AND ON THI L, BUT IS OP IS OP S. D FROI	0.42 (.012 Y14.5) ON & NO IS MEAS MUST FIONAL.	12" INCHE: A 1 IS TH SURED SURFAC BE LOC	O" S MAXIN 994. IE NUM BETWEE E OF T ATED V	0.42 (UM) BER OF IN 0.20 HE PACI (ITHIN Z	12* TERMINAL: AND 0.25 KAGE BY 1	5mm FRC USING IN CATED.		MARK			42	KI	
NE P 0 1. 2. 3. 4. 6. 7. 8. 9. 10.	O' DIE T DIMEN N IS Nd IS DIMEN THE I DETAI EXACI ALL E PACKA APPLI EXCLU MEETS APPLII FROM	0.42 HICKNES ISIONING THE NU STHE NU ISION D PIN #1 LS OF F T SHAPE DIMENSIO AGE WAF IED FOR UDE EMB S JEDEC	12° S ALLC & TO MBER C JMBER C JM	0° WABLE LERANCI OF TER OF TER OF TER SIZE OF E IN MI MAX 0.4 ED PAD PART 0 0; EXCE ED PAD	0.42 IS 0.30 ES CONF IINALS MINALS LATED T ST BE E IER IS (THIS F LLIMETER DSmm. AND TE DF EXPO PT DIME AND TE	12° 5mm M ORM TO IN X-D ERMINAI XISTED DPTIONA EATURE IS. CRMINAL SED PA NSION ' RMINAL	OT AXIMUM ASME IRECTIC AND ON THI L, BUT IS OP S. D FROI "b". S. EX	0.42 (.012 Y14.5) N & N. IS MEA: MUST TIONAL. M MEAS	IICHE: INCHE: INCHE: IS THE SURED SURFAC BE LOC URING.	O" S MAXIN 994. IE NUM BETWEE E OF T ATED V	0.42 (UM) BER OF IN 0.20 HE PACI VITHIN Z	12 TERMINAL AND 0.25 KAGE BY I	PAD		MARK			1 5,20,25	KI	QI

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

18				

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2003 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.