High Accuracy
 INSTRUMENTATION AMPLIFIER

FEATURES

- LOW DRIFT: $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- LOW OFFSET VOLTAGE: $25 \mu \mathrm{~V}$ max
- LOW NONLINEARITY: 0.002\%
- LOW NOISE: $13 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- HIGH CMR: 106dB AT 60Hz
- HIGH INPUT IMPEDANCE: $10^{10} \Omega$
- 14-PIN PLASTIC, CERAMIC DIP, SOL-16, AND TO-100 PACKAGES

DESCRIPTION

The INA101 is a high accuracy instrumentation amplifier designed for low-level signal amplification and general purpose data acquisition. Three precision op amps and laser-trimmed metal film resistors are integrated on a single monolithic integrated circuit.

APPLICATIONS

- STRAIN GAGES
- THERMOCOUPLES
- RTDs
- REMOTE TRANSDUCERS
- LOW-LEVEL SIGNALS
- MEDICAL INSTRUMENTATION

The INA101 is packaged in TO-100 metal, 14-pin plastic and ceramic DIP, and SOL-16 surface-mount packages. Commercial, industrial and military temperature range models are available.

SPECIFICATIONS

ELECTRICAL

At $+25^{\circ} \mathrm{C}$ with ± 15 VDC power supply and in circuit of Figure 1 , unless otherwise noted.

PARAMETER	INA101AM, AG			INA101SM, SG			INA101CM, CG			INA101HP, KU			UNITS		
	MIN	TYP	MAX												
GAIN Range of Gain Gain Equation Error from Equation, DC(1) Gain Temp. Coefficient ${ }^{(3)}$ $G=1$ $G=10$ $G=100$ $G=1000$ Nonlinearity, DC(2)	1	$\begin{gathered} \mathrm{G}=1+\left(40 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right) \\ \pm(0.04+0.00016 \mathrm{G} \\ -0.02 / \mathrm{G}) \\ \\ 2 \\ 20 \\ 22 \\ 22 \\ \pm\left(0.002+10^{-5} \mathrm{G}\right) \end{gathered}$	$\begin{gathered} 1000 \\ \pm(0.1+0.0003 \mathrm{G} \\ -0.05 / \mathrm{G}) \\ \\ 5 \\ 100 \\ 110 \\ 110 \\ \pm\left(0.005+2 \times 10^{-5} \mathrm{G}\right) \end{gathered}$	*	$\begin{gathered} * \\ * \\ * \\ * \\ * \\ * \\ \pm(0.001 \\ \left.+10^{-5} \mathrm{G}\right) \end{gathered}$	$\begin{aligned} & \pm(0.002 \\ & \left.+10^{-5} \mathrm{G}\right) \end{aligned}$	*	$\begin{gathered} 10 \\ 11 \\ 11 \\ \pm(0.001 \\ \left.+10^{-5} \mathrm{G}\right) \end{gathered}$	$\begin{aligned} & \pm(0.002 \\ & \left.+10^{-5} \mathrm{G}\right) \end{aligned}$	*	$\pm(0.1+$ $0.00015 \mathrm{G})$ $-0.05 / \mathrm{G}$	$\begin{aligned} & \pm(0.3+ \\ & 0.0002 \mathrm{G}) \\ & -0.10 / \mathrm{G} \end{aligned}$	$\begin{gathered} \mathrm{V} / \mathrm{N} \\ \mathrm{VN} \\ \% \\ \\ \\ \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{pmm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \text { of } \mathrm{p}-\mathrm{p} \mathrm{FS} \end{gathered}$		
RATED OUTPUT Voltage Current Output Impedance Capacitive Load	$\begin{gathered} \pm 10 \\ \pm 5 \end{gathered}$	$\begin{gathered} \pm 12.5 \\ \pm 10 \\ 0.2 \\ 1000 \end{gathered}$		*			*	*		*	*		$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{pF} \end{gathered}$		
INPUT OFFSET VOLTAGE Initial Offset at $+25^{\circ} \mathrm{C}$ vs Temperature vs Supply vs Time		$\pm(25+200 / \mathrm{G})$ $\begin{aligned} & \pm(1+20 / \mathrm{G}) \\ & \pm(1+20 / \mathrm{G}) \end{aligned}$	$\begin{gathered} \pm(50+400 / \mathrm{G}) \\ \pm(2+20 / \mathrm{G}) \end{gathered}$		$\begin{gathered} \pm 10+ \\ 100 / \mathrm{G}) \end{gathered}$	$\begin{gathered} \pm(25 \\ +200 / \mathrm{G}) \\ \pm(0.75 \\ +10 / \mathrm{G}) \end{gathered}$		$\begin{aligned} & \pm(10+ \\ & 100 / \mathrm{G}) \end{aligned}$	$\begin{gathered} \pm(25+ \\ 200 / \mathrm{G}) \\ \pm(0.25+ \\ 10 / \mathrm{G}) \end{gathered}$		$\begin{gathered} \pm(125+ \\ 450 / \mathrm{G}) \\ \pm(2+20 / \mathrm{G}) \end{gathered}$	$\begin{gathered} \pm(250+ \\ 900 / \mathrm{G}) \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{VV} / \\ \mu \mathrm{V} / \mathrm{mo} \end{gathered}$		
INPUT BIAS CURRENT Initial Bias Current (each input) vs Temperature vs Supply Initial Offset Current vs Temperature		$\begin{gathered} \pm 15 \\ \pm 0.2 \\ \pm 0.1 \\ \pm 15 \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & \pm 30 \\ & \pm 30 \end{aligned}$		$\begin{gathered} \pm 10 \\ \stackrel{*}{*} \\ \pm 10 \end{gathered}$			± 5 ± 5	$\begin{aligned} & \pm 20 \\ & \pm 20 \end{aligned}$			*	$\begin{gathered} \mathrm{nA} \\ \mathrm{nA}{ }^{\prime} \mathrm{C} \\ \mathrm{nA} / \mathrm{V} \\ \mathrm{nA} \\ \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{gathered}$		
INPUT IMPEDANCE Differential Common-mode		$\begin{aligned} & 10^{10}\| \| 3 \\ & 10^{10}\| \| 3 \end{aligned}$			*								$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
INPUT VOLTAGE RANGE Range, Linear Response CMR with $1 \mathrm{k} \Omega$ Source Imbalance DC to $60 \mathrm{~Hz}, \mathrm{G}=1$ DC to $60 \mathrm{~Hz}, \mathrm{G}=10$ DC to $60 \mathrm{~Hz}, \mathrm{G}=100$ to 1000	$\begin{gathered} \pm 10 \\ 80 \\ 96 \\ 106 \end{gathered}$	$\begin{gathered} \pm 12 \\ 90 \\ 106 \\ 110 \end{gathered}$								$\begin{gathered} 65 \\ 90 \\ 100 \end{gathered}$	85 95 105		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$		
INPUT NOISE Input Voltage Noise $\mathrm{f}_{\mathrm{B}}=0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}$ Density, G = 1000 $\begin{aligned} & f_{0}=10 \mathrm{~Hz} \\ & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1 \mathrm{kHz} \end{aligned}$ Input Current Noise $\mathrm{f}_{\mathrm{B}}=0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}$ Density $\begin{aligned} f_{0} & =10 \mathrm{~Hz} \\ f_{0} & =100 \mathrm{~Hz} \\ f_{0} & =1 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 0.8 \\ 18 \\ 15 \\ 13 \\ \\ 50 \\ \\ 0.8 \\ 0.46 \\ 0.35 \end{gathered}$											$\mu \mathrm{V}$, p-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ pA, p-p $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$		
DYNAMIC RESPONSE Small Signal, $\pm 3 \mathrm{~dB}$ Flatness $G=1$ $\mathrm{G}=10$ $G=100$ $G=1000$ Small Signal, $\pm 1 \%$ Flatness $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Full Power, $G=1$ to 100 Slew Rate, $G=1$ to 100 Settling Time (0.1\%) $\begin{aligned} G & =1 \\ G & =100 \\ G & =1000 \end{aligned}$ Settling Time (0.01\%) $\begin{aligned} G & =1 \\ G & =100 \\ G & =1000 \end{aligned}$	0.2	$\begin{gathered} 300 \\ 140 \\ 25 \\ 2.5 \\ 20 \\ 20 \\ 10 \\ 1 \\ 200 \\ 6.4 \\ 0.4 \\ 30 \\ 40 \\ 350 \\ 30 \\ 50 \\ 500 \end{gathered}$	$\begin{aligned} & 40 \\ & 55 \\ & 470 \\ & \\ & 45 \\ & 70 \\ & 650 \end{aligned}$	*			*		*	*			kHz Hz kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ us		
POWER SUPPLY Rated Voltage Voltage Range Current, Quiescent(2)	± 5	$\begin{gathered} \pm 15 \\ \pm 6.7 \end{gathered}$	$\begin{gathered} \pm 20 \\ \pm 8.5 \end{gathered}$	*		*	*		*	*		*	$\begin{gathered} V \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
TEMPERATURE RANGE(5) Specification Operation Storage	$\begin{aligned} & -25 \\ & -55 \\ & -65 \end{aligned}$		$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	-55		$+125$				$\begin{gathered} 0 \\ -25 \\ -40 \end{gathered}$		$\begin{aligned} & +70 \\ & +85 \\ & +85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$		

Specifications same as for INA101AM, AG.
 to zero at any one gain. (5) θ_{JC} output stage $=113^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}$ quiescent circuitry $=19^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{CA}}=83^{\circ} \mathrm{C} / \mathrm{W}$

PIN CONFIGURATIONS

ORDERING INFORMATION

PRODUCT	PACKAGE	TEMPERATURE RANGE
INA101AM	10-Pin Metal TO-100	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
INA101CM	10-Pin Metal TO-100	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
INA101AG	14-Pin Ceramic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
INA101CG	14-Pin Ceramic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
INA101HP	14-Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
INA101KU	SOL-16 Surface-Mount	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
INA101SG	14-Pin Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
INA101SM	10-Pin Metal TO-100	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER
(1)		

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. $\pm 20 \mathrm{~V}$Power Dissipation .. 600 mWInput Voltage Range ... \pm V CCOutput Short Circuit (to ground) ContinuousOperating Temperature M, G Package $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$P, U Package .. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Storage Temperature M, G Package $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$P, U Package .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Lead Temperature (soldering, 10s) M, G, P Package $+300^{\circ} \mathrm{C}$Lead Temperature (wave soldering, 3s) U Package $+260^{\circ} \mathrm{C}$	

ELECTROSTATIC UN DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

TYPICAL PERFORMANCE CURVES

At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA101. (Pin numbers shown are for the TO-100 metal package.) Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.
The output is referred to the output Common terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance greater than 0.1Ω in series with the Common pin will cause common-mode rejection to fall below 106 dB .

SETTING THE GAIN

Gain of the INA101 is set by connecting a single external resistor, R_{G} :

$$
\begin{equation*}
\mathrm{G}=1+\frac{40 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}} \tag{1}
\end{equation*}
$$

OFFSET TRIMMING

The INA101 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows connection of an optional potentiometer connected to the Offset Adjust pins for trimming the input offset voltage. (Pin numbers shown are for the DIP package.) Use this adjustment to null the offset voltage in high gain ($G \geq 100$) with both inputs connected to ground. Do not use this adjustment to null offset produced by the source or other system offset since this will increase the offset voltage drift by $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per $100 \mu \mathrm{~V}$ of adjusted offset.

Offset of the output amplifier usually dominates when the INA101 is used in unity gain $(G=1)$. The output offset
voltage can be adjusted with the optional trim circuit connected to the Common pin as shown in Figure 2. The voltage applied to Common terminal is summed with the output. Low impedance must be maintained at this node to assure good common-mode rejection. The op amp connected as a buffer provides low impedance.

THERMAL EFFECTS ON OFFSET VOLTAGE

To achieve lowest offset voltage and drift, prevent air currents from circulating near the INA101. Rapid changes in temperature will produce a thermocouple effect on the package leads that will degrade offset voltage and drift. A shield or cover that prevents air currents from flowing near the INA101 will assure best performance.

FIGURE 1. Basic Connections.

FIGURE 2. Optional Trimming of Input and Output Offset Voltage.

