> Wideband, High Slew Rate, High Output Current, Video Operational Amplifier

Features

- This Circuit is Processed in Accordance to MIL-STD883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low AC Variability Over Process and Temperature
- Stable at Gains of 2 or Greater
- Low Supply Current 15mA (Max)
- Gain Bandwidth Product 80MHz (Typ)
- High Slew Rate. $375 \mathrm{~V} / \mu \mathrm{s}$ (Тур)
- High Output Current 100mA (Min)
- Full Power Bandwidth 6MHz (Typ)
- Low Differential Gain/Phase \qquad . 0.02\%/0.03 ${ }^{\circ}$ (Typ)

Applications

- Coaxial Cable Drivers

- Pulse and Video Amplifiers
- Wideband Amplifiers
- Fast Sample and Hold Circuits
- High Frequency Signal Conditioning Circuits

Description

The HA-2842/883 is a wideband, high slew rate, operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability. This amplifier's performance is further enhanced through stable operation down to closed loop gains of +2 , the inclusion of offset null controls, and by its excellent video performance.
The capabilities of the HA-2842/883 are ideally suited for high speed cable driver circuits, where low closed loop gains and high output drive are required. With a 6 MHz full power bandwidth, this amplifier is well suited for high frequency signal conditioning circuits and video amplifiers. Gain flatness of 0.035 dB , combined with differential gain and phase specifications of 0.02%, and 0.03 degrees, respectively, make the HA-2842/883 ideal for component and composite video applications.
A zener/nichrome based reference circuit, coupled with advanced laser trimming techniques, yields a supply current with a low temperature coefficient and low lot-to-lot variability. For example, the average I_{CC} variation from $+85^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ is $<600 \mu \mathrm{~A}(\pm 2 \%)$, while the standard deviation of the I_{CC} distribution is $<0.1 \mathrm{~mA}(0.8 \%)$ at $+25^{\circ} \mathrm{C}$. Tighter I_{CC} control translates to more consistent AC parameters ensuring that units from each lot perform the same way, and easing the task of designing systems for wide temperature ranges.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2842/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CerDIP
HA7 $-2842 / 883$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CerDIP

Pinouts

NOTE: (NC) No Connection pins may be tied to a ground plane for better isolation and heat dissipation.

Absolute Maximum Ratings	
Voltage between V+ and V- Terminals. .	35 V
Differential Input Voltage	6V
Voltage at Either Input Terminal.	V+ to V-
Peak Output Current ($\leq 40 \%$ Duty Cycle)	125mA
Junction Temperature (T_{J}) (Note 1)	$+175^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating.	<2000V
Lead Temperature (Soldering 10s).	$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
14 Lead CerDIP Package	$73^{\circ} \mathrm{C} / \mathrm{W}$	$18^{\circ} \mathrm{C} / \mathrm{W}$
8 Lead CerDIP Package	$110^{\circ} \mathrm{C} / \mathrm{W}$	$27^{\circ} \mathrm{C} / \mathrm{W}$
Package Power Dissipation Limit at $+75^{\circ} \mathrm{C}$ for $\mathrm{T}_{J} \leq+175^{\circ} \mathrm{C}$		
14 Lead CerDIP Package . 1.1W		
8 Lead CerDIP Package		
Package Power Dissipation Derating Factor Above $+75^{\circ} \mathrm{C}$		
14 Lead CerDIP Package		
Lead CerDIP Pac		mW

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {INCM }} \leq 1 / 2(\mathrm{~V}+-\mathrm{V}-)$
Operating Supply Voltage............................ $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V} \quad R_{L} \geq 1 \mathrm{k} \Omega$
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=100 \Omega, \mathrm{R}_{\text {LOAD }}=100 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-4	4	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-8	8	mV
Input Bias Current	${ }^{+1}{ }_{B}$	$\begin{aligned} & V_{C M}=0 V,+R_{S}=1.1 \mathrm{k} \Omega \\ & -R_{S}=100 \Omega \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-10	10	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-20	20	$\mu \mathrm{A}$
	${ }^{-1}{ }_{B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V},+\mathrm{R}_{\mathrm{S}}=100 \Omega \\ & -\mathrm{R}_{\mathrm{S}}=1.1 \mathrm{k} \Omega \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-10	10	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-20	20	$\mu \mathrm{A}$
Input Offset Current	I_{10}	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V},+\mathrm{R}_{\mathrm{S}}=1.1 \mathrm{k} \Omega \\ & -\mathrm{R}_{\mathrm{S}}=1.1 \mathrm{k} \Omega \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-1	1	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-2	2	$\mu \mathrm{A}$
Common Mode Range	+CMR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{~V}-=-25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	10	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	10	-	V
	-CMR	$\begin{aligned} & V+=25 V \\ & V-=-5 V \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-10	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-10	V
Large Signal Voltage Gain	+Avol	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { and }+10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	4	$+25^{\circ} \mathrm{C}$	50	-	kV/V
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	30	-	kV/V
	- AVOL	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { and }-10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	4	$+25^{\circ} \mathrm{C}$	50	-	kV/V
			5, 6	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	30	-	kV/V
Common Mode Rejection Ratio	+CMRR	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=-10 \mathrm{~V} \\ & \mathrm{~V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	90	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	85	-	dB
	-CMRR	$\begin{aligned} & \Delta V_{C M}=-10 \mathrm{~V}, \\ & V_{O U T}=10 \mathrm{~V} \\ & V_{+}=25 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	90	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	85	-	dB

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=100 \Omega, \mathrm{R}_{\text {LOAD }}=100 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Output Voltage Swing	$+\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1	$+25^{\circ} \mathrm{C}$	10	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	10	-	V
	- $\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1	$+25^{\circ} \mathrm{C}$	-	-10	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-10	V
Output Current	+lout	$\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}$ Note 1	1	$+25^{\circ} \mathrm{C}$	100	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	100	-	mA
	-Iout	$\mathrm{V}_{\text {OUT }}=+5 \mathrm{~V}$ Note 1	1	$+25^{\circ} \mathrm{C}$	-	-100	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-100	mA
Quiescent Power Supply Current	${ }^{+1} \mathrm{CC}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	15	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	15	mA
	${ }^{-1} \mathrm{CC}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-15	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-15	-	mA
Power Supply Rejection Ratio	+PSRR	$\begin{aligned} & \Delta V_{\text {SUPPLY }}=10 \mathrm{~V} \\ & \mathrm{~V}_{+}=10 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ & \mathrm{~V}_{+}=20 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	70	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	70	-	dB
	-PSRR	$\begin{aligned} & \Delta V_{\text {SUPPLY }}=10 \mathrm{~V} \\ & V_{+}=15 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V} \\ & V_{+}=15 \mathrm{~V}, \mathrm{~V}-=-20 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	70	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	70	-	dB
Offset Voltage Adjustment	+ V_{10} Adj	Note 2	1	$+25^{\circ} \mathrm{C}$	V_{10-1}	-	mV
	$+\mathrm{V}_{10} A \mathrm{Adj}^{\text {d }}$	Note 2	1	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{10}+1$	-	mV

NOTES:

1. Maximum power dissipation, including output load conditions, must be designed to maintain the maximum junction temperature below $+175^{\circ} \mathrm{C}$. For a 100 mA load and a $+125^{\circ} \mathrm{C}$ ambient, heat sinking is required.
2. Offset Adjustment range is $\mid \mathrm{V}_{10}$ (measured) $\pm 1 \mathrm{mV} \mid$ minimum referred to output. This test is for functionality only, to assure adjustment through OV .

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS
Table 2 Intentionally Left Blank. See A.C. Specifications in Table 3.

Specifications HA-2842/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {SOURCE }}=50 \Omega$, $\mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Gain Bandwidth Product	GBWP	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=200 \mathrm{mV}, \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{kHz} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	60	-	MHz
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=200 \mathrm{mV}, \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{MHz} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	70	-	MHz
Slew Rate	+SR	$\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V}$ to +5 V	1, 3	$+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	350	-	V/us
			1,3	$+125^{\circ} \mathrm{C}$	300	-	V/us
	-SR	$\mathrm{V}_{\mathrm{O}}=+5 \mathrm{~V}$ to -5 V	1, 3	$+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	350	-	V/us
			1, 3	$+125^{\circ} \mathrm{C}$	300	-	V/us
Full Power Bandwidth	FPBW	$\mathrm{V}_{\text {PEAK }}=+10 \mathrm{~V}$	1,2	$+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	5.5	-	MHz
			1, 2	$+125^{\circ} \mathrm{C}$	4.7	-	MHz
Rise Time	T_{R}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }+200 \mathrm{mV} \\ & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \end{aligned}$	1, 3	$+25^{\circ} \mathrm{C}$	-	5	ns
			1, 3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	7	ns
Fall Time	T_{F}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }-200 \mathrm{mV} \\ & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \end{aligned}$	1, 3	$+25^{\circ} \mathrm{C}$	-	5	ns
			1, 3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	5	ns
Overshoot	+OS	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to +200 mV	1	$+25^{\circ} \mathrm{C}$	-	50	\%
			1	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	55	\%
	-OS	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to -200 mV	1	$+25^{\circ} \mathrm{C}$	-	50	\%
			1	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	55	\%

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variations.
2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/(2 $\left.2 \mathrm{~V}_{\text {PEAK }}\right)$.
3. Measured between 10% and 90% points.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3, 4, 5, 6
Group A Test Requirements	$1,2,3,4,5,6$
Groups C \& D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:
$77 \times 81 \times 19$ mils ± 1 mils
$1960 \times 2060 \times 483 \mu \mathrm{~m} \pm 25.4 \mu \mathrm{~m}$
METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 k \AA \pm 2 k \AA$
GLASSIVATION:
Type: Nitride over Silox
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.83 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ at 56 mA
SUBSTRATE POTENTIAL (Powered Up): V-
TRANSISTOR COUNT: 58
PROCESS: Bipolar Dielectric Isolation
Metallization Mask Layout
HA-2842/883

V-

Test Circuit (Applies to Table 1)

ALL RESISTORS $= \pm 1 \%(\Omega)$
ALL CAPACITORS $= \pm \mathbf{1 0 \%}(\mu \mathrm{F})$

Test Waveforms

SIMPLIFIED TEST CIRCUIT FOR LARGE AND SMALL SIGNAL RESPONSE (Applies to Table 3)

MEASURED LARGE SIGNAL RESPONSE
Vertical Scale: Input $=5 \mathrm{~V} /$ Div., Output $=5 \mathrm{~V} /$ Div.
Horizontal Scale: 50ns/Div.

MEASURED SMALL SIGNAL RESPONSE
Vertical Scale: Input $=100 \mathrm{mV} /$ Div., Output $=100 \mathrm{mV} /$ Div. Horizontal Scale: 50ns/Div.

Burn-In Circuits

HA1-2842/883 CERAMIC DIP

HA7-2842/883 CERAMIC DIP

NOTES:

1. $\mathrm{R}_{1}=1 \mathrm{M} \Omega, \pm 5 \%, 1 / 4 \mathrm{~W}$ (Min)
2. $R_{2}=100 \mathrm{k} \Omega, \pm 5 \%, 1 / 4 \mathrm{~W}(\mathrm{Min})=R_{3}$
3. $\mathrm{C}_{1}=\mathrm{C}_{2}=0.01 \mu \mathrm{~F} /$ Socket (Min) or 0.1 $\mu \mathrm{F} /$ Row, (Min)
4. $D_{1}=D_{2}=1 \mathrm{~N} 4002$ or Equivalent/Board
5. $|(\mathrm{V}+)-(\mathrm{V}-)|=31 \mathrm{~V} \pm 1 \mathrm{~V}$

Schematic Diagram

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

FREQUENCY RESPONSE FOR VARIOUS GAINS

GAIN BANDWIDTH PRODUCT vs TEMPERATURE

CMRR vs FREQUENCY

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+2, R_{L}=1 \mathrm{k} \Omega, C_{L}<10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+2, R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY

INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)

NEGATIVE OUTPUT SWING vs TEMPERATURE

TOTAL HARMONIC DISTORTION vs FREQUENCY

DIFFERENTIAL GAIN vs LOAD RESISTANCE

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Corporation and is for use as application and design information only. No guarantee is implied.

SUGGESTED OFFSET VOLTAGE ADJUSTMENT

TYPICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETERS	CONDITIONS	TEMPERATURE	TYPICAL	UNITS
Input Offset Voltage	$V_{C M}=0 V$	$+25^{\circ} \mathrm{C}$	1	mV
Average Offset Voltage Drift	Versus Temperature	Full	13	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	5.0	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	0.5	$\mu \mathrm{A}$
Differential Input Resistance		$+25^{\circ} \mathrm{C}$	170	$\mathrm{k} \Omega$
Input Noise Voltage	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$ to 1 MHz	$+25^{\circ} \mathrm{C}$	16	$\mu \mathrm{V}_{\text {RMS }}$
Input Noise Voltage Density	$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	16	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	2	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	100	kV/V
		Full	60	kV/V
CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	110	dB
Gain Bandwidth Product	$\mathrm{f}=10 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	80	MHz
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	Full	± 11	V
Output Current	$\mathrm{V}_{\text {OUT }}>10 \mathrm{~V}$	Full	120	mA
Output Resistance	Open Loop	$+25^{\circ} \mathrm{C}$	8.5	Ω
Full Power Bandwidth	FPBW $=$ SR/ $2 \pi \mathrm{~V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{P}}=10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	6.0	MHz
Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$	$+25^{\circ} \mathrm{C}$	375	V/us
Rise and Fall Time	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}, \mathrm{A}_{\mathrm{V}}=+2$	$+25^{\circ} \mathrm{C}$	3.5	ns
Overshoot	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}, \mathrm{A}_{\mathrm{V}}=+2$	$+25^{\circ} \mathrm{C}$	20	\%
PSRR	Delta $\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	Full	80	dB
Supply Current	No Load	Full	14.2	mA
Differential Gain	$R_{L}=700 \Omega$	$+25^{\circ} \mathrm{C}$	0.02	\%
Differential Phase	$\mathrm{R}_{\mathrm{L}}=700 \Omega$	$+25^{\circ} \mathrm{C}$	0.03	Degrees
Gain Flatness to 10 MHz	$R_{L}=75 \Omega$	$+25^{\circ} \mathrm{C}$	± 0.035	dB

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

