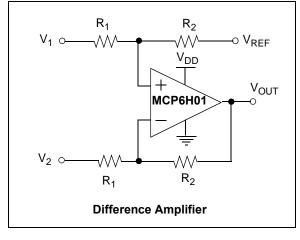


1.2 MHz, 16V Op Amps

Features:

- Input Offset Voltage: ±0.7 mV (typical)
- Quiescent Current: 135 µA (typical)
- Common Mode Rejection Ratio: 100 dB (typical)
- Power Supply Rejection Ratio: 102 dB (typical)
- Rail-to-Rail Output
- Supply Voltage Range:
 - Single-Supply Operation: 3.5V to 16V
 - Dual-Supply Operation: ±1.75V to ±8V
- Gain Bandwidth Product: 1.2 MHz (typical)
- Slew Rate: 0.8V/µs (typical)
- Unity Gain Stable
- Extended Temperature Range: -40°C to +125°C
- No Phase Reversal

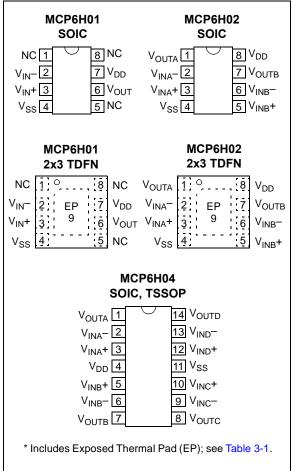

Applications:

- Automotive Power Electronics
- Industrial Control Equipment
- Battery Powered Systems
- Medical Diagnostic Instruments

Design Aids:

- SPICE Macro Models
- FilterLab[®] Software
- MAPS (Microchip Advanced Part Selector)
- · Analog Demonstration and Evaluation Boards
- Application Notes

Typical Application



Description:

Microchip's MCP6H01/2/4 family of operational amplifiers (op amps) has a wide supply voltage range of 3.5V to 16V and rail-to-rail output operation. This family is unity gain stable and has a gain bandwidth product of 1.2 MHz (typical). These devices operate with a single-supply voltage as high as 16V, while only drawing 135 μ A/amplifier (typical) of quiescent current.

The MCP6H01/2/4 family is offered in single (MCP6H01), dual (MCP6H02) and quad (MCP6H04) configurations. All devices are fully specified in extended temperature range from -40°C to +125°C.

Package Types

© 2011 Microchip Technology Inc.

NOTES:

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

V _{DD} – V _{SS} 17V
Current at Input Pins±2 mA
Analog Inputs (V _{IN} +, V _{IN} -)††V _{SS} – 1.0V to V _{DD} + 1.0V
All Other Inputs and OutputsV_{SS} – 0.3V to V_{DD} + 0.3V
Difference Input VoltageV _{DD} – V_{SS}
Output Short-Circuit Currentcontinuous
Current at Output and Supply Pins±65 mA
Storage Temperature65°C to +150°C
Maximum Junction Temperature (T _J)+150°C
ESD protection on all pins (HBM; MM) \geq 2 kV; 200V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

++ See 4.1.2 "Input Voltage Limits".

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = +3.5V$ to +16V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$ and $R_L = 10 \text{ k}\Omega$ to V_L . (Refer to Figure 1-1).

$V_{CM} = V_{DD} 2^{-1} + V_{T} + V_{DD} 2^{-1} + V_{DD} 2^{-$									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Input Offset									
Input Offset Voltage	V _{OS}	-3.5	±0.7	+3.5	mV				
Input Offset Drift with Temperature	$\Delta V_{OS} / \Delta T_A$	—	±2.5	—	µV/°C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			
Power Supply Rejection Ratio	PSRR	87	102	—	dB				
Input Bias Current and Impedance									
Input Bias Current	ا _B	—	10	—	pА				
	Ι _Β	—	600	—	pА	T _A = +85°C			
	I _B	—	10	25	nA	T _A = +125°C			
Input Offset Current	I _{OS}	—	±1	—	pА				
Common Mode Input Impedance	Z _{CM}	—	10 ¹³ 6	_	Ω pF				
Differential Input Impedance	Z _{DIFF}	—	10 ¹³ 6	—	Ω pF				
Common Mode									
Common Mode Input Voltage Range	V _{CMR}	$V_{SS} - 0.3$		$V_{DD}-2.3$	V				
Common Mode Rejection Ratio	CMRR	78	93	—	dB	$V_{CM} = -0.3V$ to 1.2V, $V_{DD} = 3.5V$			
		82	98	—	dB	$V_{CM} = -0.3V$ to 2.7V, $V_{DD} = 5V$			
		84	100		dB	$V_{CM} = -0.3V$ to 12.7V, $V_{DD} = 15V$			
Open-Loop Gain									
DC Open-Loop Gain (Large Signal)	A _{OL}	95	115	_	dB	$0.2V < V_{OUT} < (V_{DD}-0.2V)$			

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

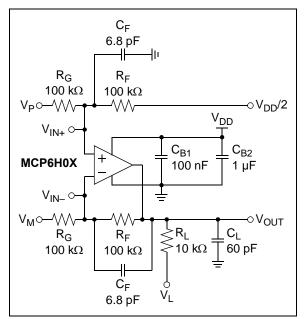
Electrical Characteristics: Unless of $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_{DD}/2$,						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Output						
High-Level Output Voltage	V _{OH}	3.490	3.495		V	V _{DD} = 3.5V 0.5V input overdrive
		4.985	4.993	_	V	V _{DD} = 5V 0.5V input overdrive
		14.970	14.980	—	V	V _{DD} = 15V 0.5V input overdrive
Low-Level Output Voltage	V _{OL}	—	0.005	0.010	V	V _{DD} = 3.5V 0.5 V input overdrive
		—	0.007	0.015	V	V _{DD} = 5V 0.5 V input overdrive
		—	0.020	0.030	V	V _{DD} = 15V 0.5 V input overdrive
Output Short-Circuit Current	I _{SC}	—	±27	_	mA	V _{DD} = 3.5V
		—	±45		mA	$V_{DD} = 5V$
		—	±50	_	mA	V _{DD} = 15V
Power Supply						
Supply Voltage	V _{DD}	3.5	—	16	V	Single-supply operation
		±1.75	—	±8	V	Dual-supply operation
Quiescent Current per Amplifier	Ι _Q	-	125	175	μA	$I_{O} = 0, V_{DD} = 3.5V$ $V_{CM} = V_{DD}/4$
		-	130	180	μA	$I_O = 0, V_{DD} = 5V$ $V_{CM} = V_{DD}/4$
			135	185	μA	$I_{O} = 0, V_{DD} = 15V$ $V_{CM} = V_{DD}/4$

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +3.5V$ to +16V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$. (Refer to Figure 1-1).									
Parameters	Sym	Min	Тур	Мах	Units	Conditions			
AC Response									
Gain Bandwidth Product	GBWP	_	1.2		MHz				
Phase Margin	PM	_	57	_	°C	G = +1V/V			
Slew Rate	SR	_	0.8	_	V/µs				
Noise	· · · · ·								
Input Noise Voltage	E _{ni}	_	12	_	µVp-p	f = 0.1 Hz to 10 Hz			
Input Noise Voltage Density	e _{ni}	_	35	_	nV/√Hz	f = 1 kHz			
		_	30	_	nV/√Hz	f = 10 kHz			
Input Noise Current Density	i _{ni}		1.9	_	fA/√Hz	f = 1 kHz			

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V_{DD} = +3.5V to +16V and V_{SS} = GND.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Temperature Ranges								
Operating Temperature Range	T _A	-40	_	+125	°C	Note 1		
Storage Temperature Range	T _A	-65	_	+150	°C			
Thermal Package Resistances								
Thermal Resistance, 8L-2x3 TDFN	θ_{JA}	_	41	_	°C/W			
Thermal Resistance, 8L-SOIC	θ_{JA}	—	149.5	_	°C/W			
Thermal Resistance, 14L-SOIC	θ_{JA}	—	95.3	_	°C/W			
Thermal Resistance, 14L-TSSOP	θ_{JA}	—	100	_	°C/W			


Note 1: The internal junction temperature (T_J) must not exceed the absolute maximum specification of +150°C.

1.2 Test Circuits

The circuit used for most DC and AC tests is shown in Figure 1-1. This circuit can independently set V_{CM} and V_{OUT} (refer to Equation 1-1). Note that V_{CM} is not the circuit's common mode voltage ((V_P + V_M)/2), and that V_{OST} includes V_{OS} plus the effects (on the input offset error, V_{OST}) of temperature, CMRR, PSRR and A_{OL}.

EQUATION 1-1:

$G_{DM} = R_F / R_G$ $V_{CM} = (V_P + V_{DD} / 2) / 2$ $V_{OST} = V_{IN-} - V_{IN+}$	
$V_{OUT} = (V_{DD}/2) + (V_P - V_M) + V_{OST} \cdot (1)$ Where:	+ <i>G_{DM}</i>)
G_{DM} = Differential Mode Gain	(V/V)
V _{CM} = Op Amp's Common Mode Input Voltage	(V)
V _{OST} = Op Amp's Total Input Offset Voltage	(mV)

FIGURE 1-1: AC and DC Test Circuit for Most Specifications.

NOTES:

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +3.5V$ to +16V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

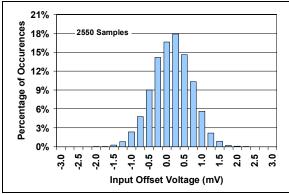


FIGURE 2-1:

Input Offset Voltage.

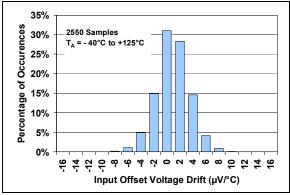


FIGURE 2-2:

Input Offset Voltage Drift.



FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage.

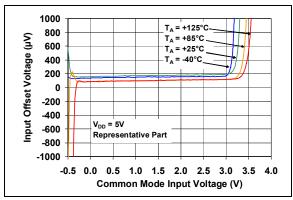


FIGURE 2-4: Input Offset Voltage vs. Common Mode Input Voltage.

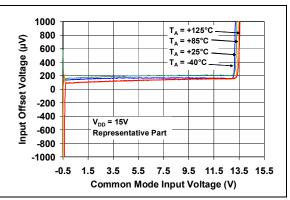


FIGURE 2-5: Input Offset Voltage vs. Common Mode Input Voltage.

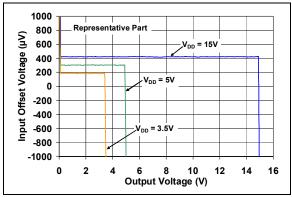


FIGURE 2-6: Input Offset Voltage vs. Output Voltage.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +3.5V$ to +16V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

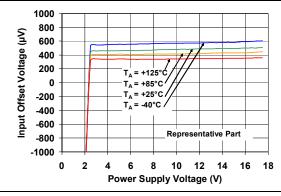


FIGURE 2-7: Input Offset Voltage vs. Power Supply Voltage.

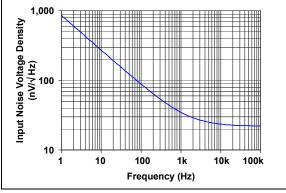


FIGURE 2-8: Input Noise Voltage Density vs. Frequency.

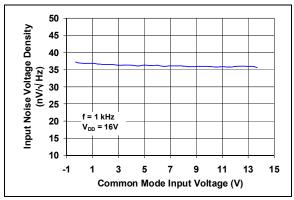


FIGURE 2-9: Input Noise Voltage Density vs. Common Mode Input Voltage.

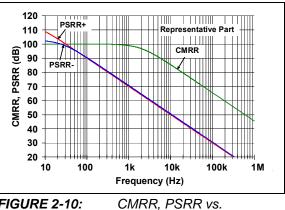
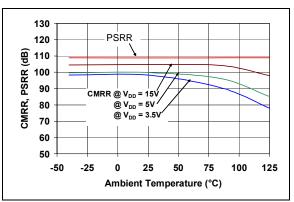



FIGURE 2-10: (Frequency.

FIGURE 2-11: CMRR, PSRR vs. Ambient Temperature.

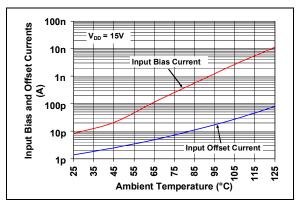
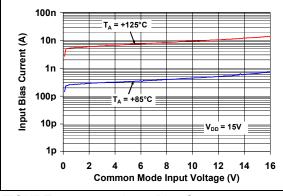
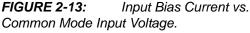




FIGURE 2-12: Input Bias, Offset Currents vs. Ambient Temperature.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +3.5V$ to +16V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

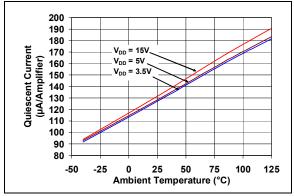


FIGURE 2-14: Quiescent Current vs. Ambient Temperature.

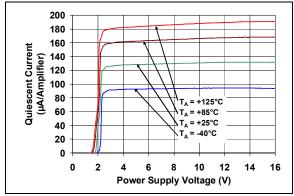


FIGURE 2-15: Quiescent Current vs. Power Supply Voltage.

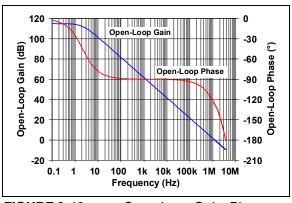


FIGURE 2-16: Open-Loop Gain, Phase vs. Frequency.

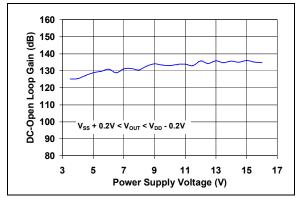


FIGURE 2-17: DC Open-Loop Gain vs. Power Supply Voltage.

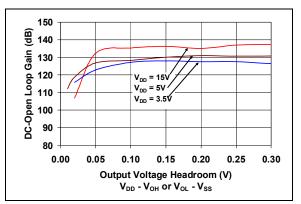


FIGURE 2-18: DC Open-Loop Gain vs. Output Voltage Headroom.

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +3.5$ V to +16V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4$ V, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

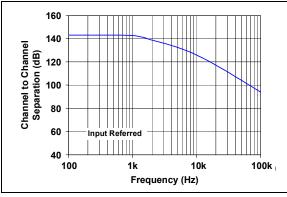


FIGURE 2-19: Channel-to-Channel Separation vs. Frequency (MCP6H02 only).

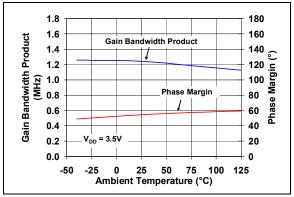


FIGURE 2-20: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

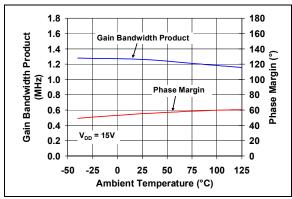


FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

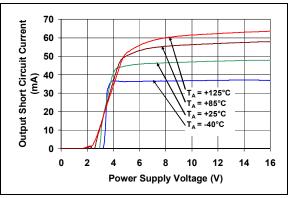


FIGURE 2-22: Output Short Circuit Current vs. Power Supply Voltage.

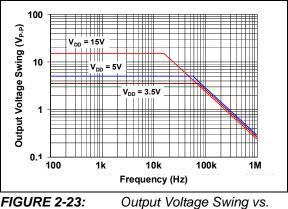


FIGURE 2-23: Ou Frequency.

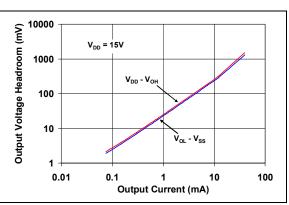


FIGURE 2-24: Output Voltage Headroom vs. Output Current.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +3.5V$ to +16V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4V$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

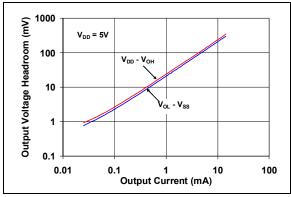


FIGURE 2-25: Output Voltage Headroom vs. Output Current.

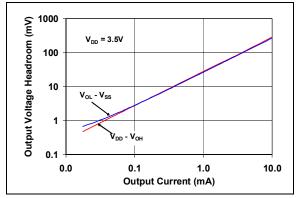
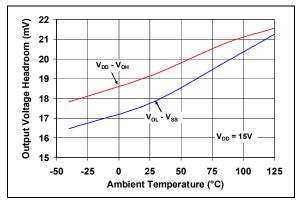



FIGURE 2-26: Output Voltage Headroom vs. Output Current.

FIGURE 2-27: Output Voltage Headroom vs. Ambient Temperature.

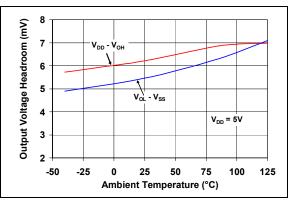
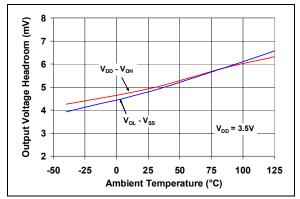
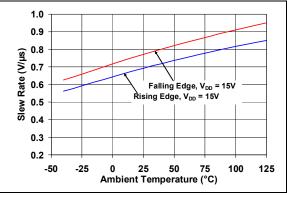
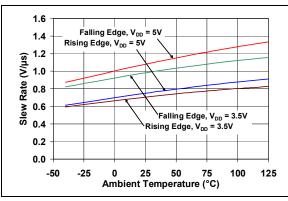
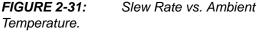


FIGURE 2-28: Output Voltage Headroom vs. Ambient Temperature.


FIGURE 2-29: Output Voltage Headroom vs. Ambient Temperature.

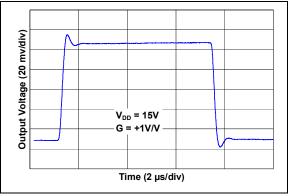


FIGURE 2-30: Slew Rate vs. Ambient Temperature.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +3.5$ V to +16 V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4$ V, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

FIGURE 2-32: Small Signal Non-Inverting Pulse Response.

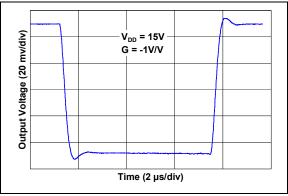


FIGURE 2-33: Response.

Small Signal Inverting Pulse

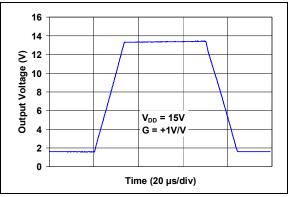


FIGURE 2-34: Large Signal Non-Inverting Pulse Response.

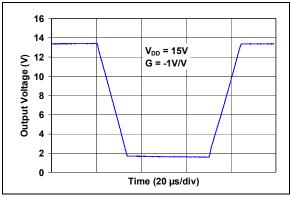


FIGURE 2-35: Large Signal Inverting Pulse Response.

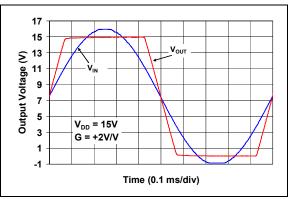


FIGURE 2-36: The MCP6H01/2/4 Shows No Phase Reversal.

DS22243C-page 12

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +3.5$ V to +16 V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2 - 1.4$ V, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

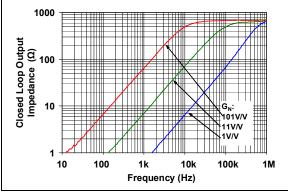
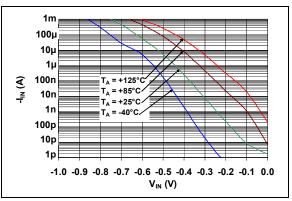



FIGURE 2-37: Closed Loop Output Impedance vs. Frequency.

FIGURE 2-38: Measured Input Current vs. Input Voltage (below V_{SS}).

NOTES:

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

MC	P6H01	MCF	P6H02	MCP6H04		
SOIC	2x3 TDFN	SOIC	2x3 TDFN	SOIC, TSSOP	Symbol	Description
6	6	1	1	1	V _{OUT} , V _{OUTA}	Analog Output (op amp A)
2	2	2	2	2	V _{IN} —, V _{INA} —	Inverting Input (op amp A)
3	3	3	3	3	V _{IN} +, V _{INA} +	Non-inverting Input (op amp A)
7	7	8	8	4	V _{DD}	Positive Power Supply
—	_	5	5	5	V _{INB} +	Non-inverting Input (op amp B)
—	_	6	6	6	V _{INB} –	Inverting Input (op amp B)
	_	7	7	7	V _{OUTB}	Analog Output (op amp B)
_	_	_	—	8	V _{OUTC}	Analog Output (op amp C)
	_		—	9	V _{INC} -	Inverting Input (op amp C)
	_		—	10	V _{INC} +	Non-inverting Input (op amp C)
4	4	4	4	11	V _{SS}	Negative Power Supply
_	_	_	—	12	V _{IND} +	Non-inverting Input (op amp D)
_	_	_	—	13	V _{IND} -	Inverting Input (op amp D)
	_	_		14	V _{OUTD}	Analog Output (op amp D)
1, 5, 8	1, 5, 8	_			NC	No Internal Connection
_	9	_	9	—	EP	Exposed Thermal Pad (EP); must be connected to V _{SS} .

TABLE 3-1: PIN FUNCTION TABLE

3.1 Analog Outputs

The output pins are low-impedance voltage sources.

3.2 Analog Inputs

The non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.3 Power Supply Pins

The positive power supply (V_{DD}) is 3.5V to 16V higher than the negative power supply (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD}.

Typically, these parts can be used in single-supply operation or dual-supply operation. Also, V_{DD} will need bypass capacitors.

3.4 Exposed Thermal Pad (EP)

There is an internal electrical connection between the Exposed Thermal Pad (EP) and the V_{SS} pin; they must be connected to the same potential on the Printed Circuit Board (PCB).

NOTES:

4.0 APPLICATION INFORMATION

The MCP6H01/2/4 family of op amps is manufactured using Microchip's state-of-the-art CMOS process and is specifically designed for low-power, high-precision applications.

4.1 Inputs

4.1.1 PHASE REVERSAL

The MCP6H01/2/4 op amps are designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 2-36 shows the input voltage exceeding the supply voltage without any phase reversal.

4.1.2 INPUT VOLTAGE LIMITS

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the voltages at the input pins (see Section 1.1 "Absolute Maximum Ratings †").

The ESD protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors against many (but not all) over-voltage conditions, and to minimize the input bias current (I_B).

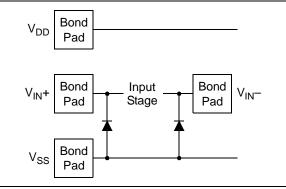
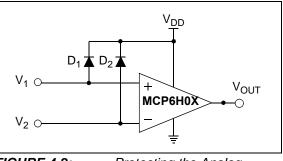
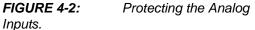
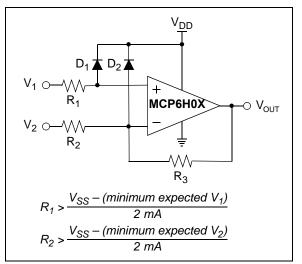




FIGURE 4-1: Simplified Analog Input ESD Structures.

The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages that go well above V_{DD} ; their breakdown voltage is high enough to allow normal operation, but not low enough to protect against slow over-voltage (beyond V_{DD}) events. Very fast ESD events (that meet the specification) are limited so that damage does not occur.

In some applications, it may be necessary to prevent excessive voltages from reaching the op amp inputs; Figure 4-2 shows one approach to protecting these inputs.



A significant amount of current can flow out of the inputs when the common mode voltage (V_{CM}) is below ground (V_{SS}); See Figure 2-38.

4.1.3 INPUT CURRENT LIMITS

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the currents into the input pins (see Section 1.1 "Absolute Maximum Ratings †").

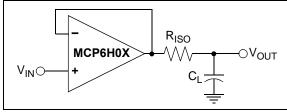
Figure 4-3 shows one approach to protecting these inputs. The resistors R_1 and R_2 limit the possible currents in or out of the input pins (and the ESD diodes, D_1 and D_2). The diode currents will go through either V_{DD} or V_{SS} .

FIGURE 4-3: Protecting the Analog Inputs.

4.1.4 NORMAL OPERATION

The inputs of the MCP6H01/2/4 op amps connect to a differential PMOS input stage. It operates at a low common mode input voltage (V_{CM}), including ground. With this topology, the device operates with a V_{CM} up to V_{DD} – 2.3V and 0.3V below V_{SS} (refer to Figure 2-3 through 2-5). The input offset voltage is measured at V_{CM} = V_{SS} – 0.3V and V_{DD} – 2.3V to ensure proper operation.

For a unity gain buffer, V_{IN} must be maintained below V_{DD} – 2.3V for correct operation.


4.2 Rail-to-Rail Output

The output voltage range of the MCP6H01/2/4 op amps is 0.020V (typical) and 14.980V (typical) when $R_L = 10 \text{ k}\Omega$ is connected to $V_{DD}/2$ and $V_{DD} = 15V$. Refer to Figures 2-24 through 2-29 for more information.

4.3 Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. While a unity-gain buffer (G = +1V/V) is the most sensitive to capacitive loads, all gains show the same general behavior.

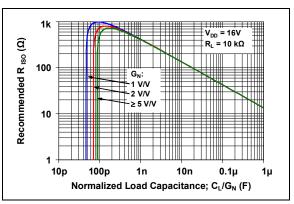
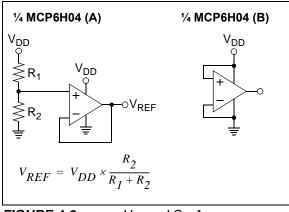

When driving large capacitive loads with these op amps (e.g., > 100 pF when G = + 1V/V), a small series resistor at the output (R_{ISO} in Figure 4-4) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will generally be lower than the bandwidth with no capacitance load.

FIGURE 4-4: Output Resistor, R_{ISO} Stabilizes Large Capacitive Loads.

Figure 4-5 gives the recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit's noise gain. For non-inverting gains, G_N and the Signal Gain are equal. For inverting gains, G_N is 1 + [Signal Gain] (e.g., -1V/V gives $G_N = +2V/V$).

After selecting R_{ISO} for your circuit, double check the resulting frequency response peaking and step response overshoot. Modify R_{ISO} 's value until the response is reasonable. Bench evaluation and simulations with the MCP6H01/2/4 SPICE macro model are very helpful.

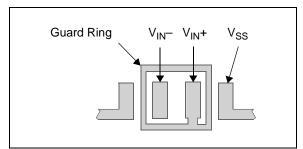

FIGURE 4-5: Recommended R_{ISO} Values for Capacitive Loads.

4.4 Supply Bypass

With this family of operational amplifiers, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good high-frequency performance. It can use a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.

4.5 Unused Op Amps

An unused op amp in a quad package (MCP6H04) should be configured as shown in Figure 4-6. These circuits prevent the output from toggling and causing crosstalk. Circuit A sets the op amp at its minimum noise gain. The resistor divider produces any desired reference voltage within the output voltage range of the op amp; the op amp buffers that reference voltage. Circuit B uses the minimum number of components and operates as a comparator, but it may draw more current.



Unused Op Amps.

4.6 PCB Surface Leakage

In applications where low input bias current is critical, PCB surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low-humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 15V difference would cause 15 pA of current to flow; which is greater than the MCP6H01/2/4 family's bias current at +25°C (10 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-7.

FIGURE 4-7: Example Guard Ring Layout for Inverting Gain.

- 1. Non-inverting Gain and Unity-Gain Buffer:
 - a. Connect the non-inverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
 - b. Connect the guard ring to the inverting input pin (V_{IN} -). This biases the guard ring to the common mode input voltage.
- 2. Inverting Gain and Trans-impedance Gain Amplifiers (convert current to voltage, such as photo detectors):
 - a. Connect the guard ring to the non-inverting input pin (V_{IN} +). This biases the guard ring to the same reference voltage as the op amp (e.g., $V_{DD}/2$ or ground).
 - b. Connect the inverting pin (V $_{\rm IN}-$) to the input with a wire that does not touch the PCB surface.

4.7 Application Circuits

4.7.1 DIFFERENCE AMPLIFIER

The MCP6H01/2/4 op amps can be used in current sensing applications. Figure 4-8 shows a resistor (R_{SEN}) that converts the sensor current (I_{SEN}) to voltage, as well as a difference amplifier that amplifies the voltage across the resistor while rejecting common mode noise. R_1 and R_2 must be well matched to obtain an acceptable Common Mode Rejection Ratio (CMRR). Moreover, R_{SEN} should be much smaller than R_1 and R_2 in order to minimize the resistive loading of the source.

To ensure proper operation, the op amp common mode input voltage must be kept within the allowed range. The reference voltage (V_{REF}) is supplied by a low-impedance source. In single-supply applications, V_{REF} is typically $V_{DD}/2$.

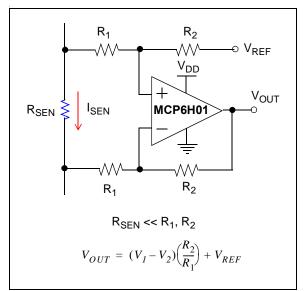


FIGURE 4-8: High Side Current Sensing Using Difference Amplifier.

4.7.2 TWO OP AMP INSTRUMENTATION AMPLIFIER

The MCP6H01/2/4 op amps are well suited for conditioning sensor signals in battery-powered applications. Figure 4-9 shows a two op amp instrumentation amplifier using the MCP6H02, which works well for applications requiring rejection of common mode noise at higher gains.

To ensure proper operation, the op amp common mode input voltage must be kept within the allowed range. The reference voltage (V_{REF}) is supplied by a low-impedance source. In single-supply applications, V_{REF} is typically V_{DD}/2.

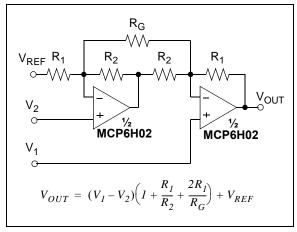


FIGURE 4-9: Two Op Amp Instrumentation Amplifier.

To obtain the best CMRR possible, and not limit the performance by the resistor tolerances, set a high gain with the ${\sf R}_{\rm G}$ resistor.

4.7.3 PHOTODETECTOR AMPLIFIER

The MCP6H01/2/4 op amps can be used to easily convert the signal from a sensor that produces an output current (such as a photo diode) into voltage (a trans-impedance amplifier). This is implemented with a single resistor (R_2) in the feedback loop of the amplifiers shown in Figure 4-10. The optional capacitor (C_2) sometimes provides stability for these circuits.

A photodiode configured in Photovoltaic mode has a zero voltage potential placed across it. In this mode, the light sensitivity and linearity is maximized, making it best suited for precision applications. The key amplifier specifications for this application are: low input bias current, common mode input voltage range (including ground), and rail-to-rail output.

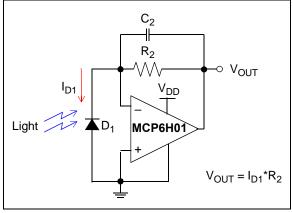


FIGURE 4-10: Photodetector Amplifier.

5.0 DESIGN AIDS

Microchip provides the basic design tools needed for the MCP6H01/2/4 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6H01/2/4 op amp is available on the Microchip web site at www.microchip.com. The model was written and tested in PSPICE owned by Orcad (Cadence). For other simulators, it may require translation.

The model covers a wide aspect of the op amp's electrical specifications. Not only does the model cover voltage, current and resistance of the op amp, but it also covers the temperature and noise effects on the behavior of the op amp. The model has not been verified outside the specification range listed in the op amp data sheet. The model behaviors under these conditions cannot be guaranteed to match the actual op amp performance.

Moreover, the model is intended to be an initial design tool. Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab[®] Software

Microchip's FilterLab software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

5.3 MAPS (Microchip Advanced Part Selector)

MAPS is a software tool that helps semiconductor professionals efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site at www.microchip.com/maps, MAPS is an overall selection tool for Microchip's product portfolio that includes analog, memory, MCUs and DSCs. Using this tool, you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for data sheets, purchases and sampling of Microchip parts.

5.4 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site: www.microchip.com/analogtools.

Some boards that are especially useful include:

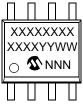
- MCP6XXX Amplifier Evaluation Board 1
- MCP6XXX Amplifier Evaluation Board 2
- MCP6XXX Amplifier Evaluation Board 3
- MCP6XXX Amplifier Evaluation Board 4
- Active Filter Demo Board Kit
- 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2
- 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board, P/N SOIC8EV

5.5 Application Notes

The following Microchip analog design note and application notes are available on the Microchip web site at www.microchip.com/appnotes, and are recommended as supplemental reference resources.

- ADN003: "Select the Right Operational Amplifier for your Filtering Circuits", DS21821
- AN722: "Operational Amplifier Topologies and DC Specifications", DS00722
- AN723: "Operational Amplifier AC Specifications and Applications", DS00723
- AN884: "Driving Capacitive Loads With Op Amps", DS00884
- AN990: "Analog Sensor Conditioning Circuits An Overview", DS00990
- AN1177: "Op Amp Precision Design: DC Errors", DS01177
- AN1228: "Op Amp Precision Design: Random Noise", DS01228
- AN1297: "Microchip's Op Amp SPICE Macro Models" DS01297
- AN1332: "Current Sensing Circuit Concepts and Fundamentals" DS01332

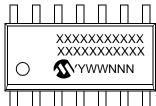
These application notes and others are listed in:

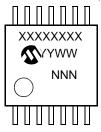

• "Signal Chain Design Guide", DS21825

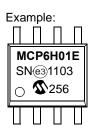
NOTES:

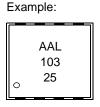
6.0 PACKAGING INFORMATION

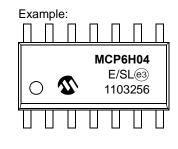
6.1 Package Marking Information


8-Lead SOIC (150 mil) (MCP6H01, MCP6H02)

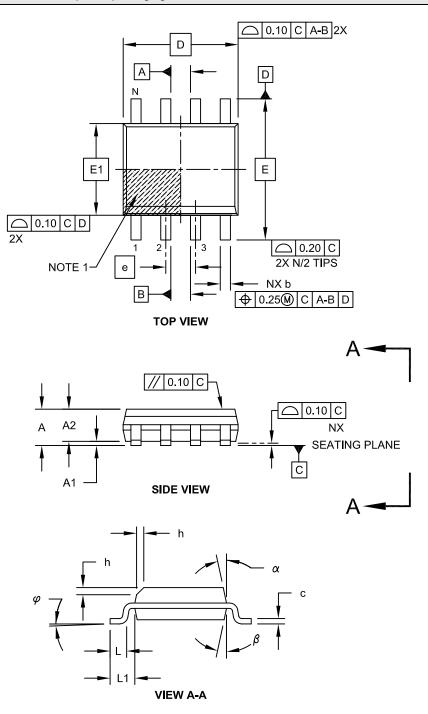

8-Lead 2x3 TDFN (MCP6H01, MCP6H02)




14-Lead SOIC (150 mil) (MCP6H04)



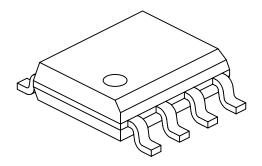
14-Lead TSSOP (MCP6H04)



Legend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((a)) can be found on the outer packaging for this package.
ł	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2011 Microchip Technology Inc.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

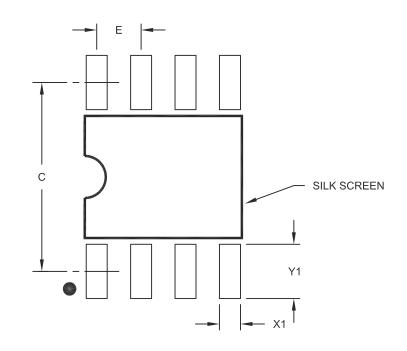
	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04 REF		
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.


4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

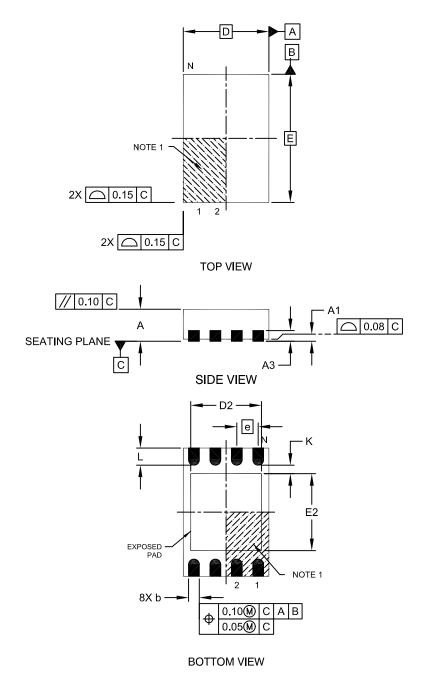
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

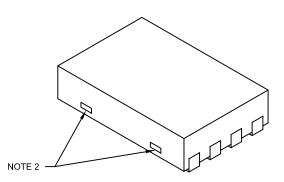
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

DS22243C-page 26

8-Lead Plastic Dual Flat, No Lead Package (MN) - 2x3x0.75mm Body [TDFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-129C

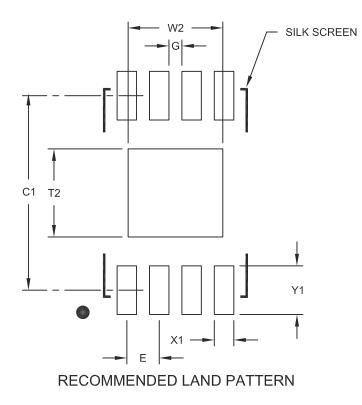
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		8			
Pitch	е		0.50 BSC			
Overall Height	Α	0.70	0.75	0.80		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Length	D	2.00 BSC				
Overall Width	E	3.00 BSC				
Exposed Pad Length	D2	1.20	-	1.60		
Exposed Pad Width	E2	1.20	-	1.60		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.25	0.30	0.45		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-129C Sheet 2 of 2

DS22243C-page 28

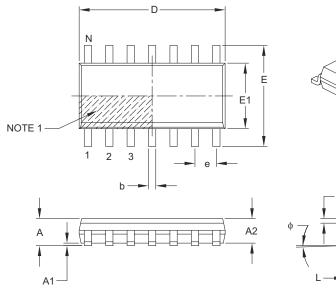
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75 mm Body [TDFN]

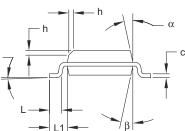
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	Dimension Limits				
Contact Pitch	Contact Pitch E		0.50 BSC		
Optional Center Pad Width	W2			1.46	
Optional Center Pad Length 1				1.36	
Contact Pad Spacing C1			3.00		
Contact Pad Width (X8)	X1			0.30	
Contact Pad Length (X8)	Y1			0.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2129A

 $\ensuremath{\textcircled{}^\circ}$ 2011 Microchip Technology Inc.

14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	14			
Pitch	e	1.27 BSC			
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-		
Standoff §	A1	0.10	0.25		
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (optional)	h	0.25 – 0.5			
Foot Length	L	0.40 –		1.27	
Footprint	L1	1.04 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31 – 0.5			
Mold Draft Angle Top	α	5° – 15°			
Mold Draft Angle Bottom	β	5° – 15°			

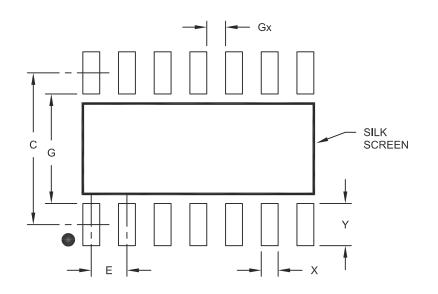
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B

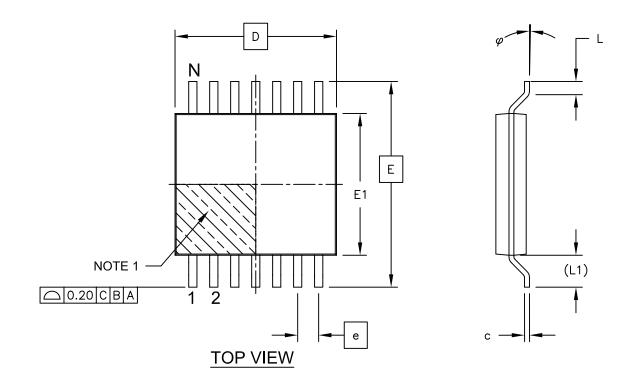
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

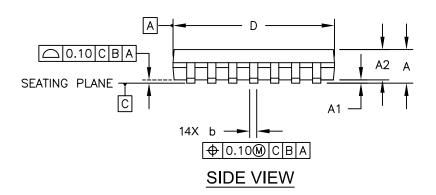
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

				-		
	Units		MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX		
Contact Pitch	E	1.27 BSC				
Contact Pad Spacing	С		5.40			
Contact Pad Width	Х			0.60		
Contact Pad Length	Y			1.50		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	3.90				

Notes:

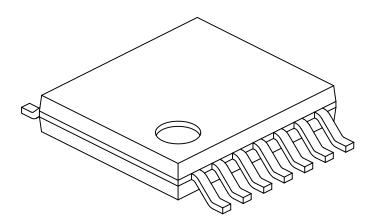

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

DS22243C-page 32

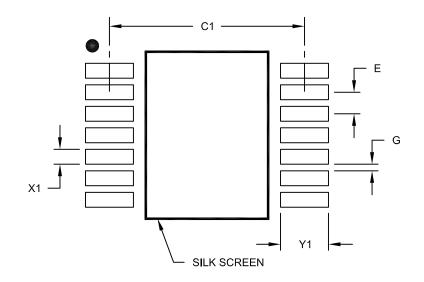
14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	14		
Pitch	е	0.65 BSC		
Overall Height	A	1.20		
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30 4.40 4.50		
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	C1		5.90		
Contact Pad Width (X14)	X1			0.45	
Contact Pad Length (X14)	Y1			1.45	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

DS22243C-page 34

APPENDIX A: REVISION HISTORY

Revision C (March 2011)

The following is the list of modifications:

- 1. Added new device MCP6H04.
- 2. Updated Table 3-1 with MCP6H04 pin names and details.

Revision B (October 2010)

The following is the list of modifications:

1. Updated Section 4.1 "Inputs".

Revision A (March 2010)

• Original Release of this Document.

^{© 2011} Microchip Technology Inc.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>× /xx</u>	E	xamples:	
Device Temp	erature Package nge	a) b) c)	MCP6H01T-E/SN:	8LD SOIC pkg Tape and Reel, 8LD SOIC pkg Tape and Reel, 8LD 2x3 TDFN pkg
Device: Temperature Range:	MCP6H01: Single Op Amp MCP6H01T: Single Op Amp (Tape and Reel) (SOIC and 2x3 TDFN) MCP6H02: Dual Op Amp MCP6H02T: Dual Op Amp (Tape and Reel) (SOIC and 2x3 TDFN) MCP6H04: Quad Op Amp MCP6H04: Quad Op Amp	d) e) f) g) h) i) j)	MCP6H02T-E/SN: MCP6H02T-E/MNY: MCP6H04-E/SL:	8LD SOIC pkg Tape and Reel, 8LD SOIC pkg Tape and Reel 8LD 2x3 TDFN pkg 14LD SOIC pkg Tape and Reel, 14LD SOIC pkg 14LD SOIC pkg Tape and Reel, 14LD SOIC pkg Tape and Reel, 14LD SOIC pkg
Package:	MNY * = Plastic Dual Flat, No Lead, (2x3 TDFN) 8-lead SN = Lead Plastic Small Outline (150 mil Body), 8-lead SL = Plastic Small Outline, (150 mil Body), 14-lead ST = Plastic Thin Shrink Small Outline (150 mil Body), 14-lead * Y = Nickel palladium gold manufacturing designator. Only available on the TDFN package.			

^{© 2011} Microchip Technology Inc.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-946-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIO[®] MCUs and dsPIO[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

© 2011 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820