

EL5825C - Preliminary

8-Channel TFT-LCD Reference Voltage Generator

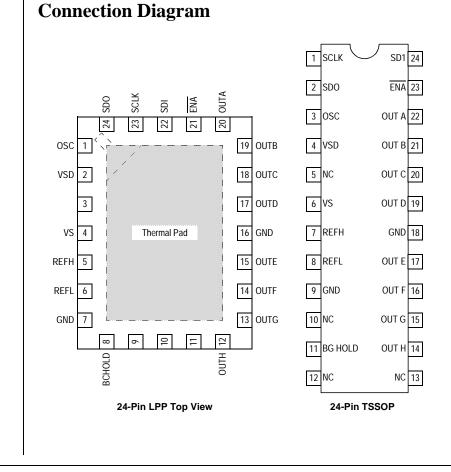
Features

- 8-channel reference outputs
- Accuracy of ±0.1%
- Supply voltage of 5V to 16V
- Digital supply 3.3V to 5V
- Low supply current of 10mA
- Rail-to-rail capability

Applications

- TFT-LCD drive circuits
- Reference voltage generators

Ordering Information


Part No	Package	Tape & Reel	Outline #
EL5825CU	24-Pin LPP	-	MDP0046
EL5825CR	24-Pin TSSOP	-	MDP0044

General Description

The EL5825C is designed to produce the reference voltages required in TFT-LCD applications. Each output is programmed to the required voltage with 10 bits of resolution. Reference pins determine the high and low voltages of the output range, which are capable of swinging to either supply rail. Programming of each output is performed using the serial interface. A serial out pin enables daisy chaining of multiple devices.

A number of the EL5825C can be stacked for applications requiring more than 8 outputs. The reference inputs can be tied to the rails, enabling each part to output the full voltage range, or alternatively, they can be connected to external resistors to split the output range and enable finer resolutions of the outputs.

The EL5825C has 8 outputs and is available in both the 24-pin TSSOP and the 24-pin LPP packages. It is specified for operation over the full -40° C to $+85^{\circ}$ C temperature range.

Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.

© 2001 Elantec Semiconductor, Inc.

EL5825C - Preliminary

8-Channel TFT-LCD Reference Voltage Generator

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Values beyond absolute maximum ratings can cause the device to be pre- maturely damaged. Absolute maximum ratings are stress ratings only and		Maximum Die Temperature	+125°C
		Storage Temperature	-65°C to +150°C
functional device operation is not implied.		Operating Temperature	-40°C to +85°C
Supply Voltage between V _S and GND	+18V	Lead Temperature	260°C
Supply Voltage between VSD and GND	V _S and +7V (min)	Power Dissipation	See Curves
Maximum Continuous Output Current	30mA	1	2kV
		ESD Voltage	ZKV

Important Note:

All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$.

Electrical Characteristics

 $V_S = 15V, V_{SD} = 5V, V_{REFH} = 13V, V_{REFL} = 2V, R_L = 1.5 k\Omega \text{ and } C_L = 200 pF \text{ to } 0V, T_A = 25^{\circ} C \text{ unless otherwise specified.}$

Parameter	Description	Condition	Min	Тур	Max	Unit
Supply						
Is	Supply Current	No load		10	TBD	mA
I _{SD}	Digital Supply Current				1	mA
Analog						
V _{OL}	Output Swing Low	$R_L = 1.5 k\Omega$ to 7.5V, after 1mS		100	200	mV
V _{OH}	Output Swing High	$R_L = 1.5 k\Omega$ to 7.5V, after 1mS	14.75	14.9		V
I _{SC}	Short Circuit Current	$R_L = 10\Omega$	100			mA
PSRR	Power Supply Rejection Ratio	V _S + is moved from 14V to 16V	TBD	TBD		dB
V _{OS}	Offset Voltage	$V_{OUT} = V_S / 2$		2	5	mV
tD	Program to Out Delay			TBD		mS
V _{AC}	Accuracy			TBD	12	mV
VDROOP	Droop Voltage			TBD	15	mV/mS
R _{INH}	Input Resistance @ VREFH	$V_{REFH} = 15V$		32		kΩ
R _{INL}	Input Resistance @ VREFL	$V_{REFL} = 0V$		32		kW
REG	Load Regulation	$I_{OUT} = 5mA$ step			2	mV
Digital						
V _{IH}	Logic 1 Input Voltage		V _{SD} -20%			V
V _{IL}	Logic 0 Input Voltage				20%*V _{SD}	V
F _{CLK}	Clock Frequency				5	MHz
t _S	Setup Time			10		ns
t _H	Hold Time			10		ns
t _{LC}	Load to Clock Time			10		ns
t _{CE}	Clock to Load Line			10		ns
tDCO	Clock to Out Delay Time					ns
R _{SDIN}	S _{DIN} Input Resistance			1		GΩ

EL5825C - Preliminary

8-Channel TFT-LCD Reference Voltage Generator

General Disclaimer

Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Elantec Semiconductor, Inc.

675 Trade Zone Blvd. Milpitas, CA 95035 Telephone: (408) 945-1323 (800) ELANTEC Fax: (408) 945-9305 European Office: 44-118-977-6020 Japan Technical Center: 81-45-682-5820

WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms & conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.