Dual Channel, High IP3, 100 MHz to 6 GHz Active Mixer

FEATURES

Power conversion gain of 1.6 dB
Wideband RF, LO, and IF ports
SSB noise figure of 11 dB
Input IP3 of $\mathbf{2 8 ~ d B m}$
Input P1dB of 12 dBm
Typical LO drive of 0 dBm
Low LO leakage
Single supply operation: 5 V @ 240 mA
Exposed paddle, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 24-lead LFCSP package

APPLICATIONS

Cellular base station receivers
 Main and diversity receiver designs
 Radio link downconverters

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADL5802 uses high linearity, double-balanced, active mixer cores with integrated LO buffer amplifiers to provide high dynamic range frequency conversion from 100 MHz to 6 GHz . The mixers benefit from a proprietary linearization architecture that provides enhanced input IP3 performance when subject to high input levels. A bias adjust feature allows the input linearity, SSB noise figure, and dc current to be optimized using a single control pin. The high input linearity allows the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in degradation in dynamic performance. The balanced active mixer arrangement provides superb LO to RF and LO to IF leakage, typically better than -30 dBm .

Rev. 0

Information fumished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registeredtrademarks are the property of their respective owners.

ADL5802

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Downconverter Mode Using a Broadband Balun 7
Downconverter Mode Using a Johanson 2.7 GHz Balun 12
Downconverter Mode Using a Johanson 3.5 GHz Balun 15
Downconverter Mode Using a Johanson 5.7 GHz Balun 18
REVISION HISTORY

11/09—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \operatorname{VSET}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{RF}}-153\right) \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Z}_{0}{ }^{1}=50 \Omega$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range	Tunable to >20 dB over a limited bandwidth	100	$\begin{aligned} & 18 \\ & 50 \end{aligned}$	6000	dB Ω MHz
OUTPUTINTERFACE Output Impedance IF Frequency Range DC Bias Voltage ${ }^{2}$	Differential impedance, $\mathrm{f}=200 \mathrm{MHz}$ Can be matched externally to 3000 MHz Externally generated	$\begin{aligned} & \text { LF } \\ & 4.75 \end{aligned}$	$\begin{aligned} & 240 \\ & V_{S} \end{aligned}$	$\begin{aligned} & 600 \\ & 5.25 \end{aligned}$	$\begin{aligned} & \Omega \\ & \mathrm{MHz} \\ & \mathrm{~V} \end{aligned}$
LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range		$\begin{aligned} & -10 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 18 \\ & 50 \end{aligned}$	$\begin{aligned} & +10 \\ & 6000 \end{aligned}$	dBm dB Ω MHz
POWER INTERFACE Supply Voltage Quiescent Current Disable Current Enable Time Disable Time	Resistor programmable ENBL pin low Time from ENBL pin low to power-up Time from ENBL pin high to power-down	4.75	$\begin{aligned} & 5 \\ & 220 \\ & 170 \\ & 182 \\ & 28 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 300 \end{aligned}$	V mA mA ns ns
YNAMIC PERFORMANCE at $\mathrm{f}_{\text {RF }}=900 \mathrm{MHz} / 1900 \mathrm{M}$					
Power Conversion Gain ${ }^{3}$	$\begin{aligned} & f_{\mathrm{RF}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$		dB dB
Voltage Conversion Gain ${ }^{4}$	$\begin{aligned} & f_{\mathrm{RF}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 7.5 \\ & 7.6 \end{aligned}$		dB dB
SSB Noise Figure	$\begin{aligned} & \mathrm{f}_{\text {CENT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CENT}}=1900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$		dB dB
SSB Noise Figure Under Blocking ${ }^{5}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CENT}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CENT}}=1900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 18 \\ & 22 \end{aligned}$		dB dB
Input Third Order Intercept ${ }^{6}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CENT}}=890 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CENT}}=1890 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 26 \\ & 28 \end{aligned}$		dBm dBm
Input Second Order Intercept ${ }^{7}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CENT}}=890 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CENT}}=1890 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 60 \\ & 45 \end{aligned}$		dBm dBm
Input 1 dB Compression Point	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		dBm
LO to IF Output Leakage	Unfiltered IF output		-35		dBm
LO to RF Input Leakage			-30		dBm
RF to IF Output Isolation			25		dBc
RFI1 to RFI2 Channel Isolation			45		dBc
IF/2 Spurious ${ }^{8}$	0 dBm input power, $\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}$		-68		dBc
IF/3 Spurious ${ }^{8}$	0 dBm input power, $\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}$		-67		dBc
IF/2 Spurious ${ }^{8}$	0 dBm input power, $\mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}$		-53		dBc
IF/3 Spurious ${ }^{8}$	0 dBm input power, $\mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}$		-59		dBc
DYNAMIC PERFORMANCE at $\mathrm{f}_{\mathrm{RF}}=2500 \mathrm{MHz}^{9}$					
Power Conversion Gain ${ }^{10}$ Voltage Conversion Gain ${ }^{4}$ SSB Noise Figure SSB Noise Figure Under Blocking ${ }^{11}$ Input Third Order Intercept ${ }^{6}$	$\begin{aligned} & \mathrm{f}_{\text {CENT }}=2145 \mathrm{MHz} \\ & \mathrm{f}_{\text {CENT }}=2500 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -0.5 \\ & 5.67 \\ & 11.5 \\ & 18 \\ & 30 \end{aligned}$		dB dB dB dB dBm

ADL5802

Parameter	Test Conditions/Comments	Min Typ	Max	Unit
Input Second Order Intercept ${ }^{7}$	$\mathrm{f}_{\text {CENT }}=2500 \mathrm{MHz}$	47		dBm
Input 1 dB Compression Point		13		dBm
LO to IF Output Leakage	Unfiltered IF output	36		dBm
LO to RF Input Leakage		31		dBm
RF to IF Output Isolation		26		dBC
RFI1 to RFI2 Channel Isolation		42		dBC
IF/2 Spurious ${ }^{8}$	0 dBm input power	-52		dBC
IF/3 Spurious ${ }^{8}$	0 dBm input power	-56		dBc
DYNAMIC PERFORMANCE at $\mathrm{f}_{\text {RF }}=3500 \mathrm{MHz}^{12}$				
Power Conversion Gain ${ }^{13}$		-0.5		dB
Voltage Conversion Gain ${ }^{4}$		5.5		dB
SSB Noise Figure		12.5		dB
SSB Noise Figure Under Blocking ${ }^{14}$	$\mathrm{f}_{\text {CENT }}=3500 \mathrm{MHz}$	18		dB
Input Third Order Intercept ${ }^{5}$	$\mathrm{f}_{\text {CENT }}=3500 \mathrm{MHz}$	25		dBm
Input Second Order Intercept ${ }^{7}$	$\mathrm{f}_{\text {CENT }}=3500 \mathrm{MHz}$	39		dBm
Input 1 dB Compression Point		13		dBm
LO to IF Output Leakage	Unfiltered IF output	33		dBm
LO to RF Input Leakage		28		dBm
RF to IF Output Isolation		31		dBC
RFI1 to RFI2 Channel Isolation		39		dBC
IF/2 Spurious ${ }^{8}$	0 dBm input power	-46		dBC
IF/3 Spurious ${ }^{8}$	0 dBm input power	-63		dBC
DYNAMIC PERFORMANCE at $\mathrm{f}_{\text {RF }}=5500 \mathrm{MHz}^{15}$				
Power Conversion Gain ${ }^{16}$		-3		dB
Voltage Conversion Gain ${ }^{4}$		5.67		dB
SSB Noise Figure		14		dB
SSB Noise Figure Under Blocking ${ }^{17}$	$\mathrm{f}_{\text {CENT }}=5800 \mathrm{MHz}$	17		dB
Input Third Order Intercept ${ }^{5}$	$\mathrm{f}_{\text {CENT }}=5500 \mathrm{MHz}$	23		dBm
Input Second Order Intercept ${ }^{7}$	$\mathrm{f}_{\text {CENT }}=5500 \mathrm{MHz}$	35		dBm
Input 1 dB Compression Point		13		dBm
LO to IF Output Leakage	Unfiltered IF output	42		dBm
LO to RF Input Leakage		27		dBm
RF to IF Output Isolation		50		dBC
RFI1 to RFI2 Channel Isolation		33		dBC
IF/2 Spurious ${ }^{8}$	0 dBm input power	-49		dBC
IF/3 Spurious ${ }^{8}$	0 dBm input power	-64		dBc

${ }^{1} Z_{0}$ is the characteristic impedance assumed for all measurements and the PCB.
${ }^{2}$ Supply voltage must be applied from an external circuit through choke inductors.
${ }^{3}$ Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-13M+), and PCB loss.
${ }^{4} Z_{\text {SOURCE }}=50 \Omega$, differential; $Z_{\text {LOAD }}=200 \Omega$, differential $5 \mathrm{dBm} ; Z_{\text {SOURCE }}$ is the impedance of the source instrument; $Z_{\text {LOAD }}$ is the load impedance at the output.
${ }^{5} f_{\text {RF1 }}=f_{\text {CENT }}, f_{\text {BLOCKER }}=\left(f_{\text {CENT }}-5\right) \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\text {CENT }}-153\right) \mathrm{MHz}$, blocker level $=0 \mathrm{dBm}$.
${ }^{6} \mathrm{f}_{\mathrm{RF} 1}=\left(\mathrm{f}_{\mathrm{CENT}}-1\right) \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 2}=\mathrm{f}_{\text {CENT }}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{CENT}}-153\right) \mathrm{MHz}$, each RF tone at -10 dBm .
${ }^{7} f_{\text {RF1 }}=f_{\text {CENT }} f_{\text {RF } 2}=\left(f_{\text {CENT }}+100\right) \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\text {CENT }}-153\right) \mathrm{MHz}$, each RF tone at -10 dBm .
${ }^{8}$ For details, see the Spur Performance section.
${ }^{9} \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{RF}}-211\right) \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega$.
${ }^{10}$ Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (2500BL14M050), and PCB loss.
${ }^{11} \mathrm{f}_{\text {RF1 }}=\mathrm{f}_{\text {CENT }}, \mathrm{f}_{\text {BLOCKER }}=\left(\mathrm{f}_{\text {CENT }}-5\right) \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\text {CENT }}-235\right) \mathrm{MHz}$, blocker level $=0 \mathrm{dBm}$.
${ }^{12} \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{RF}}-153\right) \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega$.
${ }^{13}$ Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (3600BL14M050), and PCB loss.
${ }^{14} \mathrm{f}_{\mathrm{RF} 1}=\mathrm{f}_{\text {CENT }}, \mathrm{f}_{\mathrm{BLOCKER}}=\left(\mathrm{f}_{\mathrm{CENT}}-5\right) \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{CENT}}-153\right) \mathrm{MHz}$, blocker level $=-20 \mathrm{dBm}$.
${ }^{15} \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=4.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{RF}}-380\right) \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega$.
${ }^{16}$ Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (5400BL15B050), and PCB loss.
${ }^{17} \mathrm{f}_{\mathrm{RF} 1}=\mathrm{f}_{\mathrm{CENT}}, \mathrm{f}_{\mathrm{BLOCKER}}=\left(\mathrm{f}_{\mathrm{CENT}}-5\right) \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\left(\mathrm{f}_{\mathrm{CENT}}-300\right) \mathrm{MHz}$, blocker level $=-20 \mathrm{dBm}$.

ADL5802

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	5.5 V
VSET, ENBL	5.5 V
OP1+, OP1-, OP2+, OP2-	5.5 V
RF Input Power	20 dBm
Internal Power Dissipation	1.6 W
θ_{JA} (Exposed Paddle Soldered Down) ${ }^{1}$	$26.5^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (at Exposed Paddle)	$8.7^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
As measured on the evaluation board. For details, see the Evaluation Board	
section.	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADL5802

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Function
$\begin{aligned} & 1,2,5,8,11 \\ & 14,17,18,21 \end{aligned}$	GND	Device Common (DC Ground).
3,4	OP1+, OP1-	Channel 1 Mixer Differential Output Terminals. Bias must be applied through pull-up choke inductors or the center tap of the IF transformer.
6,13,24	VPOS	Positive Supply Voltage. 5.0 V nominal.
7	ENBL	Device Enable. Pull low or leave disconnected to enable the device; pull high to disable the device.
9, 10	LOIP, LOIN	Differential LO Input Terminals. Internally matched to 50Ω; must be ac-coupled.
12	VSET	High Input IP3 Bias Control. For high input IP3 performance, apply $\sim 4 \mathrm{~V}$ to 5 V . Improved noise figure (NF) performance and lower supply current can be set by applying $\sim 2 \mathrm{~V}$ to 3 V to the VSET pin. A resistor can be connected to the supply to raise the voltage, whereas a resistor to GND lowers the voltage.
15,16	OP2-, OP2+	Channel 2 Mixer Differential Output Terminals. Bias must be applied through pull-up choke inductors or the center tap of the IF transformer.
19, 20	RF2-, RF2+	Differential RF Input Terminals for Channel 2. Internally matched to 50Ω; must be ac-coupled.
22, 23	RF1-, RF1+ EPAD	Differential RF Input Terminals for Channel 1. Internally matched to 50Ω; must be ac-coupled. Exposed Paddle. Must be soldered to ground.

TYPICAL PERFORMANCE CHARACTERISTICS

DOWNCONVERTER MODE USING A BROADBAND BALUN

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, VSET $=4 \mathrm{~V}, \mathrm{IF}=153 \mathrm{MHz}$, as measured using a typical circuit schematic with low-side local oscillator (LO), unless otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-1W+) is extracted from the gain measurement.

Figure 3. Power Conversion Gain vs. RF Frequency

Figure 4. Power Conversion Gain vs. IF Frequency

Figure 5. Power Conversion Gain and $I_{\text {POS }}$ VS. VSET

Figure 6. Power Conversion Gain and Input IP3 vs. LO Power

Figure 7. Power Conversion Gain Distribution

Figure 8. Power Conversion Gain vs. Supply Voltage

ADL5802

Figure 9. Input IP3 vs. RF Frequency

Figure 10. Input IP3 vs. IF Frequency

Figure 11. Input IP3, Noise Figure vs. VSET

Figure 12. Input IP2 vs. RF Frequency

Figure 13. Input IP2 vs. IF Frequency

Figure 14. Input IP2 vs. VSET

Figure 15. Input P1dB vs. RF Frequency

Figure 16. Input P1dB vs. IF Frequency

Figure 17. SSB Noise Figure vs. RF Frequency

Figure 18. SSB Noise Figure vs. IF Frequency

Figure 19. SSB Noise Figure vs. Blocker Level

Figure 20. SSB Noise Figure vs. LO Drive

ADL5802

Figure 21. RF Return Loss Measured Differentially at the RF Port

Figure 22. LO Return Loss Measured Differentially at the LO Port

Figure 23. IF Differential Output Impedance (R Parallel C Equivalent)

Figure 24. LO to IF Leakage vs. LO Frequency

Figure 25. LO to RF Leakage vs. LO Frequency

Figure 26. RF to IF Output Isolation vs. RF Frequency

Figure 27. RF Channel Isolation

ADL5802

DOWNCONVERTER MODE USING A JOHANSON 2.7 GHZ BALUN

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VSET}=4.5 \mathrm{~V}, \mathrm{IF}=211 \mathrm{MHz}$, as measured using a typical circuit schematic with low-side LO, unless otherwise noted. Insertion loss of input and output baluns (2500BL14M050, TC4-1W+) is included in the gain measurement.

Figure 28. Power Conversion Gain vs. RF Frequency

Figure 29. Power Conversion Gain and $I_{\text {pos }}$ vs. VSET

Figure 30. Input IP3 vs. RF Frequency

Figure 31. Input IP3, Noise Figure vs. VSET

Figure 32. Input IP2 vs. RF Frequency

Figure 33. Input IP2 vs. VSET

Figure 34. Input P1dB vs. RF Frequency

Figure 35. SSB Noise Figure vs. RF Frequency

Figure 36. SSB Noise Figure vs. Blocker Level

Figure 37. LO to IF Leakage vs. LO Frequency

Figure 38. LO to RF Leakage vs. LO Frequency

Figure 39. RF to IF Output Isolation vs. RF Frequency

ADL5802

Figure 40. RF Channel Isolation

DOWNCONVERTER MODE USING A JOHANSON 3.5 GHZ BALUN

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, VSET $=5 \mathrm{~V}, \mathrm{IF}=153 \mathrm{MHz}$, as measured using a typical circuit schematic with low-side LO, unless otherwise noted. Insertion loss of input and output baluns ($3600 \mathrm{BL} 14 \mathrm{M} 050, \mathrm{TC} 4-1 \mathrm{~W}+$) is included in the gain measurement.

Figure 41. Power Conversion Gain vs. RF Frequency

Figure 42. Power Conversion Gain and $I_{\text {POS }}$ VS. VSET

Figure 43. Input IP3 vs. RF Frequency

Figure 44. Input IP3, Noise Figure vs. VSET

Figure 45. Input IP2 vs. RF Frequency

Figure 46. Input IP2 vs. VSET

ADL5802

Figure 47. Input P1dB vs. RF Frequency

Figure 48. SSB Noise Figure vs. RF Frequency

Figure 49. SSB Noise Figure vs. Blocker Level

Figure 50. LO to IF Leakage vs. LO Frequency

Figure 51. LO to RF Leakage vs. LO Frequency

Figure 52. RF to IF Output Isolation vs. RF Frequency

Figure 53. RF Channel Isolation

ADL5802

DOWNCONVERTER MODE USING A JOHANSON 5.7 GHZ BALUN

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VSET}=4.8 \mathrm{~V}, \mathrm{IF}=380 \mathrm{MHz}$, as measured using a typical circuit schematic with low-side LO , unless otherwise noted. Insertion loss of input and output baluns (5400BL15B050, TC4-1W+) is included in the gain measurement.

Figure 54. Power Conversion Gain vs. RF Frequency

Figure 55. Power Conversion Gain and $I_{\text {POS }}$ VS. VSET

Figure 56. Input IP3 vs. RF Frequency

Figure 57. Input IP3, Noise Figure vs. VSET

Figure 58. Input IP2 vs. RF Frequency

Figure 59. Input IP2 vs. VSET

Figure 60. Input P1dB vs. RF Frequency

Figure 61. SSB Noise Figure vs. RF Frequency

Figure 62. SSB Noise Figure vs. Blocker Level

Figure 63. LO to IF Leakage vs. LO Frequency

Figure 64. LO to RF Leakage vs. LO Frequency

Figure 65. RF to IF Output Isolation vs. RF Frequency

ADL5802

Figure 66. RF Channel Isolation

ADL5802

SPUR PERFORMANCE

All spur tables are $\left(N \times f_{\text {RF }}\right)-\left(M \times f_{\text {LO }}\right)$ and were measured using the standard evaluation board (see the Evaluation Board section). Mixer spurious products are measured in decibels relative to the carrier (dBc) from the IF output power level. Data was measured for frequencies less than 6 GHz only. The typical noise floor of the measurement system is -100 dBm .

900 MHz Performance

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}$ power $=0 \mathrm{dBm}, \mathrm{LO}$ power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=703 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$.

		M														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	0		-35.9	-25.5	-47.3	-27.4	-51.5	-37.5	-62.1	-47.5						
	1	-34.3	0.0	-46.3	-19.8	-64.3	-30.0	-75.6	-45.0	-67.8	-55.3					
	2	-49.1	-69.2	-68.2	-61.6	-68.7	-80.7	-67.5	-88.1	-79.1	-82.6	-91.5	≤ 100			
	3	-86.7	-79.6	≤ 100	-67.3	-98.0	-71.0	≤ 100	-86.3	≤ 100	≤ 100	≤ 100	-98.4	≤ 100		
	4	-91.8	≤ 100	-96.4	≤ 100											
	5	≤ 100														
	6	≤ 100														
	7		≤ 100													
	8			≤ 100												
	9				≤ 100											
	10						≤ 100									
	11							≤ 100								
	12								≤ 100							
	13										≤ 100					
	14											≤ 100				
	15												≤ 100	≤ 100	≤ 100	≤ 100

2090 MHz Performance

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}$ power $=0 \mathrm{dBm}$, LO power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2090 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1842 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$.

		M														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	0		-43.0	-23.7	-52.9											
	1	-26.8	0.0	-59.6	-42.2	-80.5										
	2	-59.8	-71.9	-53.8	-67.5	-68.2	-84.1									
	3		-67.6	-97.6	-59.3	-92.2	-79.3	≤ 100								
	4			≤ 100	≤ 100	-93.7	-97.8	≤ 100	≤ 100							
	5				≤ 100	≤ 100	-96.1	≤ 100	≤ 100	≤ 100						
	6					≤ 100										
	7						≤ 100									
	8							≤ 100								
	9								≤ 100							
	10										≤ 100					
	11											≤ 100				
	12												≤ 100	≤ 100	≤ 100	≤ 100
	13													≤ 100	≤ 100	≤ 100
	14														≤ 100	≤ 100
	15															≤ 100

ADL5802

2600 MHz Performance

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RF power $=0 \mathrm{dBm}$, LO power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2350 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$.

		M														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	0		-37.9	-31.5												
	1	-27.5	0.0	-62.6	-36.3											
	2	-75.5	-59.7	-52.2	-65.8	-68.8										
	3		-75.0	-88.7	-56.3	-86.8	-90.5									
	4			≤ 100	≤ 100	-82.5	-92.1	≤ 100								
	5				≤ 100	≤ 100	-94.4	≤ 100	≤ 100	≤ 100						
	6						≤ 100									
	7							≤ 100								
	8								≤ 100							
	9									≤ 100						
	10										≤ 100					
	11											≤ 100				
	12												≤ 100	≤ 100	≤ 100	≤ 100
	13													≤ 100	≤ 100	≤ 100
	14														≤ 100	≤ 100
	15															

3500 MHz Performance
$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}$ power $=0 \mathrm{dBm}$, LO power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=3800 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$.

		M														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	0		-43.0	-23.7	-52.9											
	1	-26.8	0.0	-59.6	-42.2	-80.5										
	2	-59.8	-71.9	-53.8	-67.5	-68.2	-84.1									
	3		-67.6	-97.6	-59.3	-92.2	-79.3	≤ 100								
	4			≤ 100	≤ 100	-93.7	-97.8	≤ 100	≤ 100							
	5				≤ 100	≤ 100	-96.1	≤ 100	≤ 100	≤ 100						
	6					≤ 100										
	7						≤ 100									
	8							≤ 100								
	9								≤ 100							
	10										≤ 100					
	11											≤ 100				
	12												≤ 100	≤ 100	≤ 100	≤ 100
	13													≤ 100	≤ 100	≤ 100
	14														≤ 100	≤ 100
	15															≤ 100

ADL5802

5800 MHz Performance

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{VSET}=4.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RF power $=-10 \mathrm{dBm}$, LO power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=5800 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=5600 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$.

		M														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0		-28.3													
	1	-63.6	0.0	-80.5												
	2			-48.6	-92.6											
	3				-64.2	-98.7										
	4					-90.5	-98.3									
	5						≤ 100	-99.4								
	6							-81.6	-98.0							
N	7								-87.2	-95.9						
	8									-84.0	-99.5					
	9										≤ 100	≤ 100				
	10											≤ 100	≤ 100			
	11												≤ 100	≤ 100		
	12													≤ 100	-99.6	
	13														≤ 100	-99.8
	14															≤ 100
	15															

ADL5802

CIRCUIT DESCRIPTION

The ADL5802 provides two double-balanced active mixers. These mixers are designed for a 50Ω input impedance and a 200Ω output impedance. Both are driven from a common local oscillator (LO) amplifier. The RF inputs and LO outputs are differential, providing maximum usable bandwidth at the input and output ports. The LO also operates with a 50Ω input impedance and can, optionally, be operated differentially or single-ended. The input, output, and LO ports can be operated over an exceptionally wide frequency range. The ADL5802 can be configured as a downconvert mixer or as an upconvert mixer.

The ADL5802 can be divided into the following sections: the local oscillator (LO) amplifier and splitter, the RF voltage-tocurrent (V-to-I) converter, the mixer cores, the output loads, and the bias circuit. A simplified block diagram of the device is shown in Figure 67. The LO block generates a pair of differential LO signals to drive two mixer cores. The RF input is converted into current by the V-to-I converters that then feed into the two mixer cores. The internal differential load of the mixers is designed for a wideband 200Ω output impedance from the mixer. Reference currents to each section are generated by the bias circuit, which can be enabled or disabled using the ENBL pin. A detailed description of each section of the ADL5802 follows.

Figure 67. ADL5802 Block Diagram

LO AMPLIFIER AND SPLITTER

The LO input is amplified using a broadband LNA and is then split and followed by separate LO limiting amplifiers. The LNA input impedance is nominally 50Ω. The LO is designed to accommodate a wide range of LO input power levels. The LO input is conditioned by the series of amplifiers to provide a well controlled and limited LO swing to the mixer core, resulting in excellent IP3. The LO circuit exhibits low additive noise, resulting in an excellent mixer noise figure and output noise under RF blocking. For optimal performance, the LO inputs should be driven differentially but at lower frequencies; singleended drive is acceptable.

RF VOLTAGE TO CURRENT (V-TO-I) CONVERTER

The differential RF input signal is applied to a voltage-to-current converter that converts the differential input voltage to output currents. The V-to-I converter provides a 50Ω input impedance. The V-to-I section bias current can be adjusted up or down using the VSET pin. Adjusting the current up improves IP3 and P1dB input but degrades SSB NF. Adjusting the current down improves SSB NF but degrades IP3 and P1dB input. The conversion gain remains nearly constant over a wide range of VSET pin settings, allowing the part to be adjusted dynamically without affecting the conversion gain. The current adjustment can be made by connecting a resistor from the VSET pin to the positive supply to increase the bias current or from the VSET pin to ground to decrease the bias current. The VSET pin impedance is approxi-mately 675Ω in series with two diodes and an internal current source.

MIXER CORES

The ADL5802 has two double-balanced mixers that use high performance SiGe NPN transistors. These mixers are based on the Gilbert cell design of four cross-connected transistors.

MIXER LOAD

Each mixer load is designed to use a pair of 100Ω resistors connected to the positive supply. This provides a 200Ω differential output resistance. The mixer output should be pulled to the positive supply externally using a pair of RF chokes or using an output transformer with the center tap connected to the positive supply. It is possible to exclude these components when the mixer core current is low, but both P1dB and IP3 are then reduced.

The mixer load output can operate from direct current (dc) up to approximately 500 MHz into a 200Ω load. For upconversion applications, the mixer load can be matched using off-chip matching components. Transmit operation up to 2 GHz is possible. See the Applications Information section for matching circuit details.

BIAS CIRCUIT

A band gap reference circuit generates the reference currents used by the mixers. The bias circuit can be enabled and disabled using the ENBL pin. If the ENBL pin is grounded or left open, the part is enabled. Pulling the ENBL pin high shuts off the bias circuit and disables the part. However, the ENBL pin does not alter the current in the LO section and, therefore, does not provide a true power-down feature. Certain configurations may require the VSET pin to be connected to the positive supply through a resistor. This will result in an increased mixer core current. Unless this resistor to positive supply is removed, bias current will continue to be supplied to the mixer core.

APPLICATIONS INFORMATION

BASIC CONNECTIONS

The ADL5802 features dual channel mixers with a common local oscillator (LO). The mixer is designed to translate between radio frequencies (RF) and intermediate frequencies (IF). For both upconversion and downconversion applications, RF1+ (Pin 23), RF1- (Pin 22), RF2+ (Pin 20), and RF2- (Pin 19) must be configured as the input interfaces. OP1+ (Pin 3), OP1(Pin 4), OP2+ (Pin 16), and OP2- (Pin 15) must be configured as the output interfaces. Figure 68 illustrates the basic connections for ADL5802 operation.

RF AND LO PORTS

The RF and LO input ports are designed for differential input impedance of approximately 50Ω. Figure 69 and Figure 70 illustrate the RF and LO interfaces, respectively. It is recommended that each of the RF and LO differential ports be driven through a balun for optimum performance. It is also necessary to accouple both RF and LO ports with the proper size capacitors. Table 4 lists the recommended components for various RF frequency bands. The characterization data is available in the Typical Performance Characteristics section.

Figure 68. Basic Connections Schematic

ADL5802

Figure 69. ADL5802 RF Interface

Figure 70. ADL5802 LO Interface
Table 4. Suggested Components for the RF and LO Interfaces

RF and LO Frequency	T1, T3, T5	C2, C3, C5,
900 MHz	Mini-Circuits $^{\oplus}$ TC1-1-13M+ $\mathbf{C 1 3 , C 1 4}$	
1900 MHz	Mini-Circuits TC1-1-13M +	100 pF
2500 MHz	Johanson Technology 2500BL14M050	3 pF
3500 MHz	Johanson Technology 3600BL14M050 Johanson Technology 5500 MHz	1.5 pF
	3 pF	

IF PORT

The IF port features an open-collector differential output interface. It is necessary to bias the open collector outputs using one of the schemes presented in Figure 71 and Figure 72.
Figure 71 shows the use of center-tapped impedance transformers. The turns ratio of the transformer should be selected to provide the desired impedance transformation. In the case of a 50Ω load impedance, a 4:1 impedance ratio transformer should be used to transform the 50Ω load into a 200Ω differential load at the IF output pins.
Figure 72 shows a differential IF interface where pull-up choke inductors are used to bias the open-collector outputs. The shunting impedance of the choke inductors used to couple dc current into the mixer core should be large enough at the IF frequency of operation so as not to load down the output current before it reaches the intended load. Additionally, the dc current handling capability of the selected choke inductors must be at least 45 mA . The self-resonant frequency of the selected choke inductors must be higher than the intended IF
frequency. A variety of suitable choke inductors is commercially available from manufacturers such as Coilcraft and Murata. An impedance transforming network may be required to transform the final load impedance to 200Ω at the IF outputs.

Figure 72. Biasing the IF Port Open-Collector Outputs Using Pull-Up Choke Inductors

EVALUATION BOARD

An evaluation board is available for the ADL5802. The standard evaluation board is fabricated using Rogers ${ }^{\circ}$ RO3003 material. Each of the RF, LO, and IF ports is configured for single-ended signaling via a balun transformer. The schematic for the evaluation board is shown in Figure 73. Table 5 describes the various configuration options for the evaluation board. Layout for the board is shown in Figure 74 and Figure 75.

Table 5. Evaluation Board Configuration

Components	Function	Default Conditions
$\begin{aligned} & \text { C1, C4, C6, C7, C8, C9, } \\ & \text { C10, C11, C17, C18, } \\ & \text { R10, R12, R19, R20, } \\ & \text { R21 } \end{aligned}$	Power supply decoupling. Nominal supply decoupling consists of a $0.01 \mu \mathrm{~F}$ capacitor to ground in parallel with 10 pF capacitors to ground, positioned as close to the device as possible. Series resistors are provided for enhanced supply decoupling using optional ferrite chip inductors.	$\begin{aligned} & \text { C6, C7, C8 = } 10 \mathrm{pF} \text { (size 0402) } \\ & \text { C9, C10, C11 = } 0.01 \mu \mathrm{~F} \text { (size 0402) } \\ & \text { C1, C4, C17, C18 = open (size 0402) } \\ & \text { R10, R12, R19, R20, R21 }=0 \Omega \text { (size 0402) } \end{aligned}$
$\begin{aligned} & \text { C5, C12, C13, C14, T3, } \\ & \text { T5, RF1, RF2 } \end{aligned}$	RF Channel 1 and RF Channel 2 input interfaces. Input channels are ac-coupled through C5, C12, C13, and C14.T3 and $T 4$ are 1:1 baluns used to interface to the 50Ω differential inputs.	$\begin{aligned} & \text { C5, C12, C13, C14 = } 100 \mathrm{pF} \text { (size 0402) } \\ & \text { T3, T5 = TC1-1-13M+ (Mini-Circuits) } \end{aligned}$
C15, C16, L1, L2, L3, L4, R2, R3, R6, R7, R13, R14, R15, R16, R20, R21, T2, T4, IF1, IF2	IF Channel 1 and IF Channel 2 output interfaces. The 200Ω open-collector IF output interfaces are biased through the center taps of T2 and T4 4:1 impedance transformers. C15 and C16 provide local bypassing with R20 and R21 available for additional supply bypassing. R6, R7, R13, R14, R15, and R16 are provided for IF filtering and matching options.	$\begin{aligned} & \text { C15, C16 = } 100 \text { pF (size 0402) } \\ & \text { L1, L2, L3, L4 = open (size 0805) } \\ & \text { R2, R3, R13, R14, R15, R16, R20, R21 = } 0 \Omega \text { (size 0402) } \\ & \text { R6, R7 = open (size 0402) } \\ & \text { T2, T4 = TC4-1W+ (Mini-Circuits) } \end{aligned}$
C2, C3, R4, R5, T1, LO	LO interface. C2 and C3 provide ac coupling for the local oscillator input. T1 is a 1:1 balun to allow single-ended interfacing to the differential 50Ω local oscillator input.	$\begin{aligned} & \text { C2, C3 = } 1 \mathrm{nF} \text { (size 0402) } \\ & \text { R4, R5 = open (size 0402) } \\ & \text { T1 = TC1-1-13M + (Mini-Circuits) } \end{aligned}$
R1, R9, R11, ENBL1	Enable interface. The ADL5802 can be disabled using the 3pin ENBL1 header. The ENBL pin is pulled up to VPOS through R9. R1 is provided as an optional termination for the high impedance enable interface. If desired, the ENBL pin can be driven by an external source through the ENBL SMA connector.	$\begin{aligned} & \text { R9 = } 10 \mathrm{k} \Omega(\text { size 0402); R1, R11 = open (size 0402) } \\ & \text { Or R1 }=10 \mathrm{k} \Omega \text { (size 0402);R9, R11 = open (size 0402) } \\ & \text { Or R11 = } 10 \mathrm{k} \Omega(\text { size 0402); R1, R9 = open (size 0402) } \\ & \text { ENBL1 }=3 \text {-pin header and shunt } \end{aligned}$

ADL5802

Components	Function	Default Conditions
R22, R23,VSET	VSET bias control. R22 and R23 form an optional resistor divider network between VPOS and GND, allowing for a fixed bias setting. See the Typical Performance Characteristics section to choose the recommended VSET control voltage for the desired frequency band.	R22, R23 = open (size 0402)
EPAD (EP)	Exposed paddle. Must be soldered to ground.	

Figure 74. Evaluation Board Top Layer

Figure 75. Evaluation Board Bottom Layer

OUTLINE DIMENSIONS

Figure 76. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-24-3)
Dimensions shown in millimeters
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Ordering Quantity
ADL5802ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Evaluation Board	CP-24-3	1,500 per Reel
ADL5802-EVALZ ${ }^{1}$			1	

${ }^{1} Z=$ RoHS Compliant Part.

ADL5802

NOTES

NOTES

ADL5802

NOTES

