Preliminary Technical Data

FEATURES

Dual Channel Up/Down Converter
Power Conversion Gain of 1.5 dB
Wideband RF, LO, and IF ports
SSB Noise Figure of 11dB
SSB NF with +10dBm blocker of 20 dB
Input IP3 of $\mathbf{2 7 d B m}$
Input $P_{1 d B}$ of 12 dBm
Typical LO Drive of 0 dBm
-40dBm LO Leakage at RF
Low Current Operation: 5 V @ 200 mA
Adjustable Bias for Low Power Operation
Exposed Paddle 4×4 mm, 24 Lead LFCSP Package

APPLICATIONS

Cellular Base Station Receivers

Main and Diversity Receiver Designs

Radio Link Downconverters

GENERAL DESCRIPTION

The ADL5802 utilizes high linearity doubly balanced active mixer cores with integrated LO buffer amplifiers to provide high dynamic range frequency conversion from 100 MHz to 6 GHz . The mixers benefit from a proprietary linearization architecture which provides enhanced IP3 performance when subject to high input levels. A bias adjust feature allows the input linearity, SSB Noise Figure, and DC current to be optimized using a single control pin. The high input linearity allows the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in degradation in dynamic performance. The balanced active mixer arrangement provides superb LO to RF and LO to IF leakage, typically better than -40 dBm . The IF outputs are internally terminated to a $200-\Omega$ source impedance and provide a typical voltage conversion gain of 7.5 dB when loaded into a $200-\Omega$ load.

Figure 1. Functional Block Diagram

The ADL5802 is fabricated using a SiGe high performance IC process. The device is available in a compact $4 \mathrm{~mm} \times 4 \mathrm{~mm} 24-$ lead LFCSP package and operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. An evaluation board is also available.

REV. PrA
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

[^0]
ADL5802-Specifications

Table 1. $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{Lo}}=703 \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Zo}=50 \Omega$, unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Unit
RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range	Tunable to >20dB over a limited bandwidth	100	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	6000	dB Ω MHz
OUTPUT INTERFACE Output Impedance IF Frequency Range DC Bias Voltage ${ }^{1}$	Differential impedance, $\mathrm{f}=200 \mathrm{MHz}$ Can be matched externally to 3000 MHz	LF 4.75	$\begin{aligned} & 200 \\ & \mathrm{~V}_{\mathrm{s}} \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 5.25 \end{aligned}$	Ω MHz V
LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range		-6 100	$\begin{aligned} & 0 \\ & 12 \\ & 50 \end{aligned}$	$+6$ 6000	dBm dB Ω MHz
DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain	Excluding Transformer and PCB Losses $Z_{\text {SOURCE }}=50 \Omega$, Differential $Z_{\text {LOAD }}=200 \Omega$ Differential		$\begin{aligned} & 1.5 \\ & 7.5 \end{aligned}$		dB dB
SSB Noise Figure			11		dB
SSB Noise Figure Under-Blocking	+10 dBm Blocker present $+/-3 \mathrm{MHz}$ from wanted RF input, LO source filtered		20		dB
Input Third Order Intercept	$\begin{aligned} & f_{\mathrm{RF} 1}=889 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 2}=890 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=690 \mathrm{MHz}, \\ & \text { each RF tone at }-10 \mathrm{dBm} \end{aligned}$		27		dBm
Input Second Order Intercept	$\begin{aligned} & f_{R F 1}=889 \mathrm{MHz}, f_{\text {RF2 }}=890 \mathrm{MHz}, f_{\mathrm{LO}}=690 \mathrm{MHz}, \\ & \text { each RF tone at }-10 \mathrm{dBm} \end{aligned}$		56		dBm
Input 1 dB Compression Point			12		dBm
LO to IF Output Leakage	Unfiltered IF Output		-65		dBm
LO to RF Input Leakage			-40		dBm
RF to IF Output Isolation	Unfiltered IF Output		-28		dB
RFI1 to RFI2 Channel Isolation IF/2 Spurious	-10 dBm Input Power		$\begin{gathered} 50 \\ -65 \end{gathered}$		dB dBc
POWER INTERFACE					
Supply Voltage Quiescent Current Disable Current	Resistor Programmable ENBL pin low.		$\begin{gathered} 5 \\ 200 \\ 160 \end{gathered}$		V mA mA

[^1]
Preliminary Technical Data

ADL5802

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	5.5 V
PWDN, VSET	TBD
RF Input Power, RF1+, RF1-, RF2+, RF2-	TBD
Internal Power Dissipation	TBD
ӨjA $^{\text {(Exposed Paddle Soldered Down) }}$	TBD
Өл (At Exposed Paddle) $_{\text {Maximum Junction Temperature }}$	TBD
Operating Temperature Range	TBD
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 2. Pin Function Descriptions

Pin No.	Mnemonic	Function		
$1,2,5,8,14$,	GND	Device Common (DC Ground).		
$17,18,21$	OP1+, OP1-	Channel 1Mixer differential output terminals. Need to apply bias through pull-up choke inductors or center tap of the IF transfomer.		
3,4	VPOS	Positive Supply Voltage. 5.0V Nominal Device Enable. Pull low to enable the device, pull high to disable.		
7	ENBL	LOIP, LOIN		Differential LO input terminals. Internally matched to 50Ω. Must be ac-coupled.
:---				
High IP3 bias control. For high IP3 performance apply $\sim 4 V$ V. Improved NF performance and lower supply				
current can be set by applying $\sim 2 V-3 V$ to the VSET pin. A resistor can be connected to the supply to raise				
the voltage while a resistor to GND will lower the voltage.				
Channel 2 Mixer differential output terminals. Need to apply bias through pull-up choke inductors or center				
tap of the IF transfomer.				

Preliminary Technical Data

TYPICAL PERFORMANCE CHARACTERISTICS-PRELIMINARY DATA

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, as measured using typical circuit schematic with low-side LO unless otherwise noted

Figure 3. Conversion Gain versus RF Frequency

Figure 4. IIP3 versus RF Frequency

Figure 5. IP1dB versus RF Frequency

Figure 6. Single-Sideband NF versus RF Frequency

Figure 7. Single-Sideband NF versus Blocker Level at 1950MHz

Figure 8. LO to RF Leakage versus LO Frequency

Figure 9. Supply Current vs. Vset

Figure 10. Channel to Channel Isolation vs. RF Frequency

EVALUATION BOARD SCHEMATIC

Figure 11. Evaluation Board Schematic.
Table 3. Eval Board Configuration

Components	Function	Default Conditions
$\begin{aligned} & \text { C1, C4, C6, C7, C8, C9, C10, } \\ & \text { C11, C17, C18, R10, R12, } \\ & \text { R19, R20, R21 } \end{aligned}$	Power Supply Decoupling. Nominal supply decoupling consists a $0.01 \mu \mathrm{~F}$ capacitor to ground in parallel with 10 pF capacitors to ground positioned as close to the device as possible. Series resistors are provided for enhanced supply decoupling using optional ferrite chip inductors.	$\begin{aligned} & C 6, C 7, C 8=10 p F \text { (size 0402) } \\ & C 9, C 10, C 11=0.01 \mu F(\text { size } 0402) \\ & C 1, C 4, C 17, C 18=\text { open (size } 0402 \text {) } \\ & \text { R10, R12, R19, R20, R21 }=0 \Omega \text { (size } \\ & 0402 \text {) } \end{aligned}$
$\begin{aligned} & \text { C5, C12, C13, C14, T3, T5, } \\ & \text { RF1, RF2 } \end{aligned}$	RF Channel 1 and Channel 2 Input Interfaces. Input channels are accoupled through C5, C12, C13 and C14. T3 and T4 are 1:1 baluns used to interface to the $50-\Omega$ differential inputs.	$\begin{aligned} & \text { C5, C12, C13, C14 = 1nF (size 0402) } \\ & \text { T3, T5 = ETC1-1-13 (M/A-Com) } \end{aligned}$
$\begin{aligned} & \text { C15, C16, } \\ & \text { L1, L2, L3, L4, } \\ & \text { R2, R3, R6, R7, R13, R14, } \\ & \text { R15, R16, R20, R21, } \\ & \text { T2, T4, } \\ & \text { IF1, IF2 } \end{aligned}$	IF Channel 1 and Channel 2 Output Interfaces. The $200-\Omega$ open collector IF output interfaces are biased through the center taps of 4:1 impedance transformers at T2 and T4. C15 and C16 provide local bypassing with R20 and R21 available for additional supply bypassing. L1, L2, L3, and L4 provide the options when pull-up choke inductors are used to bias the open-collector outputs. R6, R7, R13, R14, R15, and R16 are provided for IF filtering and matching options.	$\begin{aligned} & \text { C15, C16 = 100pF (size 0402) } \\ & \text { L1, L2, L3, L4 = open (size 0805) } \\ & \text { R2, R3, R13, R14, R15, R16, R20, R21 = } \\ & 0 \Omega \text { (size 0402) } \\ & \text { R6, R7 = open (size 0402) } \\ & \text { T2, T4 = TC4-1W+ (MiniCircuits) } \end{aligned}$
C2, C3, R4, R5, T1, LO	LO Interface. C2 and C3 provide ac-coupling for the local oscillator input. T1 is a $1: 1$ balun to allow single-ended interfacing to the differential $50-\Omega$ local oscillator input. R4 and R5 provide the options when differential LO interfaces are needed.	$\begin{aligned} & \hline \mathrm{C} 2, \mathrm{C} 3=1 \mathrm{nF}(\text { size 0402) } \\ & \mathrm{R} 4, \mathrm{R} 5=0 \Omega(\text { size 0402) } \\ & \mathrm{T} 1=\mathrm{ETC} 1-1-13(\mathrm{M} / \mathrm{A}-\mathrm{Com}) \end{aligned}$
R1, R9, R11, ENBL1	ENABLE Interface. The ADL5802 can be disabled using the 3-pin ENBL1 header. The ENBL pin is pulled up to VPOS through R9. R1 is provided as an optional termination for the high impendace enable interface.	$\begin{aligned} & \text { R9 }=10 \mathrm{k} \Omega(\text { size } 0402) \\ & \mathrm{R} 11=0 \Omega \text { (size 0402) } \\ & \mathrm{R} 1=\text { open }(\text { size } 0402) \\ & \mathrm{ENBL} 1=3 \text {-pin header and shunt } \end{aligned}$
R22, R23, VSET	VSET Bias Control. R22 and R23 form an optional resistor divider network between VPOS and GND, allowing for a fixed bias setting. The default values are set up for 3.8 V at the VSET pin.	$\begin{aligned} & \mathrm{R} 22=866 \Omega(\text { size } 0402) \\ & \mathrm{R} 23=10 \mathrm{k} \Omega(\text { size 0402 }) \end{aligned}$

OUTLINE DIMENSIONS

24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 \times 4 \mathrm{~mm}$ Body, Very Thin Quad
(CP-24-3)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8

Figure 12. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-24-2))

Dimensions shown in millimeters

ORDERING GUIDE

| Models | Temperature
 Range | Package Description | Package
 Option | Transport
 Branding |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Media Quantity | | | | |

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
 www.analog.com Fax: 781.326.8703 © 2008 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Supply voltage should be applied from external circuit through choke inductors or IF Transformer center tap.

