LME49860

44V Dual High Performance, High Fidelity Audio Operational Amplifier

General Description

The LME49860 is part of the ultra-low distortion, low noise, high slew rate operational amplifier series optimized and fully specified for high performance, high fidelity applications. Combining advanced leading-edge process technology with state-of-the-art circuit design, the LME49860 audio operational amplifiers deliver superior audio signal amplification for outstanding audio performance. The LME49860 combines extremely low voltage noise density ($2.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) with vanishingly low THD+N (0.00003%) to easily satisfy the most demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LME49860 has a high slew rate of $\pm 20 \mathrm{~V} / \mu \mathrm{s}$ and an output current capability of $\pm 26 \mathrm{~mA}$. Further, dynamic range is maximized by an output stage that drives $2 \mathrm{k} \Omega$ loads to within 1 V of either power supply voltage and to within 1.4 V when driving 600Ω loads.
The LME49860's outstanding CMRR (120dB), PSRR (120 dB), and $\mathrm{V}_{\mathrm{OS}}(0.1 \mathrm{mV})$ give the amplifier excellent operational amplifier DC performance.
The LME49860 has a wide supply range of $\pm 2.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. Over this supply range the LME49860 maintains excellent common-mode rejection, power supply rejection, and low input bias current. The LME49860 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads with values as high as 100 pF .
The LME49860 is available in 8-lead narrow body SOIC and 8-lead Plastic DIP packages. Demonstration boards are available for each package.

Key Specifications

- Power Supply Voltage Range
$\pm 2.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- THD $+N$

$$
\left(\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}\right)
$$

Typical Application

Note: 1\% metal film resistors, 5% polypropylene capacitors
Passively Equalized RIAA Phono Preamplifier

Connection Diagrams

Absolute Maximum Ratings (Notes 1, 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Power Supply Voltage $\left(V_{S}=V^{+}-V^{-}\right)$	46 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Input Voltage	(V-) - 0.7V to (V+) + 0.7V
Output Short Circuit (Note 3)	Continuous
ESD Susceptibility (Note 4)	2000V
ESD Susceptibility (Note 5)	
Pins 1, 4, 7 and 8	200

Pins 2, 3, 5 and 6
100 V Junction Temperature $150^{\circ} \mathrm{C}$ Thermal Resistance
$\theta_{\mathrm{JA}}(\mathrm{SO})$
$145^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA} (NA)
$102^{\circ} \mathrm{C} / \mathrm{W}$

Operating Ratings

Temperature Range

$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Supply Voltage Range	$\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 22 \mathrm{~V}$

Electrical Characteristics for the LME49860 (Note 1) The following specifications apply for $\mathrm{V}_{\mathrm{S}}=$ $\pm 18 \mathrm{~V}$ and $\pm 22 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{R}_{\text {SOURCE }}=10 \Omega, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	LME49860		Units (Limits)
			Typical	Limit	
			(Note 6)	(Note 7)	
THD+N	Total Harmonic Distortion + Noise	$\begin{aligned} & A_{V}=1, V_{O U T}=3 V_{r m s} \\ & R_{L}=2 k \Omega \\ & R_{L}=600 \Omega \end{aligned}$	$\begin{aligned} & 0.00003 \\ & 0.00003 \end{aligned}$	0.00009	\% (max)
IMD	Intermodulation Distortion	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {RMS }}$ Two-tone, $60 \mathrm{~Hz} \& 7 \mathrm{kHz} 4: 1$	0.00005		\%
GBWP	Gain Bandwidth Product		55	45	MHz (min)
SR	Slew Rate		± 20	± 15	$\mathrm{V} / \mathrm{\mu s}$ (min)
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }},-3 \mathrm{~dB}$ referenced to output magnitude at $\mathrm{f}=1 \mathrm{kHz}$	10		MHz
$\mathrm{t}_{\text {s }}$	Settling time	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1,10 \mathrm{~V} \text { step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 0.1 \% \text { error range } \end{aligned}$	1.2		$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\mathrm{f}_{\mathrm{BW}}=20 \mathrm{~Hz}$ to 20 kHz	0.34	0.65	$\mu \mathrm{V}_{\text {RMS }}$ (max)
	Equivalent Input Noise Density	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 6.4 \end{aligned}$	4.7	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ (max)
i_{n}	Current Noise Density	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 1.6 \\ & 3.1 \end{aligned}$		$\mathrm{pA} \sqrt{ } \sqrt{\mathrm{Hz}}$
V_{OS}	Offset Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$	± 0.12	± 0.7	mV (max)
		$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$	± 0.14	± 0.7	mV (max)
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{Temp}$	Average Input Offset Voltage Drift vs Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	0.2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	(Note 8) $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 22 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{S}}=30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$	110	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB}(\mathrm{~min}) \\ \hline \end{gathered}$
$\mathrm{ISO}_{\mathrm{CH}-\mathrm{CH}}$	Channel-to-Channel Isolation	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \hline 118 \\ & 112 \end{aligned}$		dB
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	10	72	$n A$ (max)
$\Delta \mathrm{l}_{\text {OS }} / \Delta$ Temp	Input Bias Current Drift vs Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	0.1		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
I_{OS}	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	11	65	$n A$ (max)
$\mathrm{V}_{\mathrm{IN}-\mathrm{Cm}}$	Common-Mode Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$	$\begin{aligned} & \hline+17.1 \\ & -16.9 \end{aligned}$	$\begin{aligned} & \hline(V+)-2.0 \\ & (V-)+2.0 \end{aligned}$	$\begin{aligned} & \hline V(\min) \\ & V(\min) \end{aligned}$
		$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$	$\begin{aligned} & +21.0 \\ & -20.8 \end{aligned}$	$\begin{aligned} & (V+)-2.0 \\ & (V-)+2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}(\min) \\ & \mathrm{V}(\min) \end{aligned}$

Symbol	Parameter	Conditions	LME49860		Units (Limits)
			Typical	Limit	
			(Note 6)	(Note 7)	
CMRR	Common-Mode Rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ & -12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V} \\ & \hline \end{aligned}$	120		dB
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V} \\ & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V} \\ & \hline \end{aligned}$	120	110	dB (min)
Z_{IN}	Differential Input Impedance		30		$\mathrm{k} \Omega$
	Common Mode Input Impedance	$-10 \mathrm{~V}<\mathrm{Vcm}<10 \mathrm{~V}$	1000		$\mathrm{M} \Omega$
$\mathrm{A}_{\text {VOL }}$	Open Loop Voltage Gain	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ &-12 \mathrm{~V} \leq \mathrm{Vout} \leq 12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & 140 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V} \\ &-15 \mathrm{~V} \leq \mathrm{Vout} \leq 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & 140 \\ & \hline \end{aligned}$	125	$\mathrm{dB}(\min)$ dB dB
$\mathrm{V}_{\text {OUtMAX }}$	Maximum Output Voltage Swing	$\begin{array}{r} \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 22 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \pm 16.7 \\ & \pm 20.4 \end{aligned}$	± 19.0	$\begin{gathered} V \\ \mathrm{~V}(\mathrm{~min}) \end{gathered}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 22 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 17.0 \\ \pm 21.0 \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 22 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 17.1 \\ \pm 21.2 \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {OUt }}$	Output Current	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =600 \Omega \\ \mathrm{~V}_{\mathrm{S}} & = \pm 20 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}} & = \pm 22 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 31 \\ & \pm 37 \end{aligned}$	± 30	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{~min}) \end{gathered}$
Iout-cc	Instantaneous Short Circuit Current		$\begin{aligned} & +53 \\ & -42 \end{aligned}$		mA
$\mathrm{R}_{\text {OUT }}$	Output Impedance	$\begin{array}{\|l} \hline \mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz} \\ \text { Closed-Loop } \\ \text { Open-Loop } \\ \hline \end{array}$	$\begin{gathered} 0.01 \\ 13 \\ \hline \end{gathered}$		Ω
$\mathrm{C}_{\text {LOAD }}$	Capacitive Load Drive Overshoot	100pF	16		\%
$\mathrm{I}_{\text {S }}$	Total Quiescent Current	$\begin{gathered} \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 22 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10.2 \\ & 10.5 \end{aligned}$	13	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: Amplifier output connected to GND, any number of amplifiers within a package.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50Ω).
Note 6: Typical specifications are specified at $+25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: PSRR is measured as follows: For $\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}$ is measured at two supply voltages, $\pm 7 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. $\mathrm{PSRR}=\left|20 \log \left(\Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{V}_{\mathrm{S}}\right)\right|$.

Typical Performance Characteristics

THD+N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{L}=2 k \Omega$

THD+N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=2 k \Omega$

20215163
THD+N vs Frequency
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$
$R_{L}=2 k \Omega$

20215164
THD+N vs Frequency
$V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\text {RMS }}$
$R_{L}=600 \Omega$

THD+N vs Frequency
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {RMS }}$ $R_{L}=600 \Omega$

20215159
THD+N vs Frequency
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\text {RMS }}$
$R_{L}=600 \Omega$

Hz

THD+N vs Frequency
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$
$R_{L}=10 \mathrm{k} \Omega$

IMD vs Output Voltage
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=2 k \Omega$

IMD vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}$
$R_{L}=2 k \Omega$

Current Noise Density vs Frequency

Voltage Noise Density vs Frequency

202151h6

202151c9

202151c7
Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-22 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}_{\text {RMS }}$
$A_{V}=0 d B, R_{L}=2 k \Omega$

Crosstalk vs Frequency

202151c6

202151d0
Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {RMS }}$
$A_{V}=0 d B, R_{L}=2 k \Omega$

FREQUENCY (Hz)
202151n8

202151d6
Crosstalk vs Frequency
$V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$
$A_{V}=0 d B, R_{L}=600 \Omega$

202151 d 4
Crosstalk vs Frequency
$V_{C C}=22 V, V_{\text {EE }}=-22 V, V_{\text {OUT }}=3 V_{\text {RMS }}$
$A_{V}=0 d B, R_{L}=600 \Omega$

202151d8

202151d7

202151d5

$$
\begin{gathered}
\text { Crosstalk vs Frequency } \\
\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{RMS}}
\end{gathered}
$$

$$
A_{V}=0 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=600 \Omega
$$

 FREQUENCY (Hz)

20215100

Crosstalk vs Frequency

$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 \mathrm{~dB}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$

FREQUENCY (Hz)
202151n5

Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {RIPPLE }}=200 \mathrm{mVpp}$

 FREQUENCY (Hz)

202151m6

FREQUENCY (Hz)
202151m1

FREQUENCY (Hz)
202151m0

$202151 f 7$

20215109

> CMRR vs Frequency
> $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}$
> $\mathrm{R}_{\mathrm{L}}=600 \Omega$

202151g5

CMRR vs Frequency

$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=10 k \Omega$

CMRR vs Frequency
$V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{\mathrm{L}}=600 \Omega$

202151f9

> CMRR vs Frequency
> $\mathrm{v}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
> $\mathrm{R}_{\mathrm{L}}=600 \Omega$

$202151 f 6$
CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{L}=10 \mathrm{k} \Omega$

$V_{\text {CC }}=15 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-15 \mathrm{~V}$
$\mathrm{THD}+\mathrm{N}=1 \%$

202151h1

Output Voltage vs Load Resistance
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-22 \mathrm{~V}$
$T H D+N=1 \%$

CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=10 \mathrm{k} \Omega$

Output Voltage vs Load Resistance
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$T H D+N=1 \%$

Output Voltage vs Load Resistance
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$T H D+N=1 \%$

Output Voltage vs Total Power Supply Voltage
$R_{L}=2 k \Omega, T H D+N=1 \%$

20215107
Output Voltage vs Total Power Supply Voltage

TOTAL POWER SUPPLY VOLTAGE (V)
20215108
Power Supply Current vs Total Power Supply Voltage $R_{L}=600 \Omega$

TOTAL POWER SUPPLY VOLTAGE (V)
20215106

Output Voltage vs Total Power Supply Voltage $R_{L}=600 \Omega, T H D+N=1 \%$

20215109
Power Supply Current vs Total Power Supply Voltage $R_{L}=2 k \Omega$

TOTAL POWER SUPPLY VOLTAGE (V) 20215104

Power Supply Current vs Total Power Supply Voltage $R_{L}=10 \mathrm{k} \Omega$

TOTAL POWER SUPPLY VOLTAGE (V)
20215105

202151j0

Small-Signal Transient Response

$A_{V}=1, C_{L}=10 \mathrm{pF}$

Small-Signal Transient Response

Application Information

DISTORTION MEASUREMENTS

The vanishingly low residual distortion produced by LME49860 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.
The LME49860's low residual distortion is an input referred internal error. As shown in Figure 1, adding the 10Ω resistor connected between the amplifier's inverting and non-inverting
inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 1.
This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

FIGURE 1. THD+N and IMD Distortion Test Circuit

The LME49860 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.
Capacitive loads greater than 100 pF must be isolated from the output. The most straightforward way to do this is to put
a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

20215127
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.
Noise Measurement Circuit
Total Gain: $115 \mathrm{~dB} @ \mathrm{f}=1 \mathrm{kHz}$
Input Referred Noise Voltage: $\mathrm{e}_{\mathrm{n}}=\mathrm{V} 0 / 560,000(\mathrm{~V})$

RIAA Preamp Voltage Gain, RIAA

20215128

Flat Amp Voltage Gain vs
Frequency

20215129

20215130
$\mathrm{A}_{\mathrm{V}}=34.5$
$\mathrm{F}=1 \mathrm{kHz}$
$\mathrm{E}_{\mathrm{n}}=0.38 \mu \mathrm{~V}$
A Weighted

20215132
$\mathrm{V}_{\mathrm{O}}=\mathrm{V} 1-\mathrm{V} 2$

20215131

$f_{0}=\frac{1}{2 \pi R C}$

$$
\begin{aligned}
& \text { if } C 1=C 2=C \\
& R_{1}=\frac{\sqrt{2}}{2 \omega_{0} C} \\
& R 2=2 \bullet R 1
\end{aligned}
$$

Illustration is $f_{0}=1 \mathrm{kHz}$

20215136

$$
\text { if } \begin{aligned}
\mathrm{R} 1 & =\mathrm{R} 2=\mathrm{R} \\
\mathrm{C} 1 & =\frac{\sqrt{2}}{\omega_{0} \mathrm{R}} \\
\mathrm{C} 2 & =\frac{\mathrm{C} 1}{2}
\end{aligned}
$$

Illustration is $f_{0}=1 \mathrm{kHz}$

$$
f_{0}=\frac{1}{2 \pi C 1 R 1}, Q=\frac{1}{2}\left(1+\frac{R 2}{R 0}+\frac{R 2}{R G}\right), A_{B P}=Q A_{L P}=Q A_{L H}=\frac{R 2}{R G}
$$

Illustration is $f_{0}=1 \mathrm{kHz}, Q=10, A_{B P}=1$

20215141

$$
\begin{aligned}
& \mathfrak{f}_{\mathrm{L}}=\frac{1}{2 \pi \mathrm{R} 2 \mathrm{C} 1}, f_{\mathrm{LB}}=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1} \\
& \mathfrak{f}_{\mathrm{H}}=\frac{1}{2 \pi \mathrm{R} 5 \mathrm{C} 2}, f_{\mathrm{HB}}=\frac{1}{2 \pi(\mathrm{R} 1+\mathrm{R} 5+2 \mathrm{R} 3) \mathrm{C} 2}
\end{aligned}
$$

Illustration is:

$\mathrm{f}_{\mathrm{L}}=32 \mathrm{~Hz}, \mathrm{f}_{\mathrm{LB}}=320 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{H}}=11 \mathrm{kHz}, \mathrm{f}_{\mathrm{HB}}=1.1 \mathrm{kHz}$

RIAA Preamp

20215103
$\mathrm{A}_{\mathrm{v}}=35 \mathrm{~dB}$
$\mathrm{E}_{\mathrm{n}}=0.33 \mu \mathrm{~V}$
$\mathrm{S} / \mathrm{N}=90 \mathrm{~dB}$
$\mathrm{f}=1 \mathrm{kHz}$
A Weighted
A Weighted, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV}$

Illustration is:
V0 = 101(V2 - V1)

20215144

fo (Hz)	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
32	$0.12 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$75 \mathrm{k} \Omega$	500Ω
64	$0.056 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
125	$0.033 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	510Ω
250	$0.015 \mu \mathrm{~F}$	$0.82 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
500	8200 pF	$0.39 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
1 k	3900 pF	$0.22 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
2 k	2000 pF	$0.1 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
4 k	1100 pF	$0.056 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
8 k	510 pF	$0.022 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
16 k	330 pF	$0.012 \mu \mathrm{~F}$	$51 \mathrm{k} \Omega$	510Ω

Note 9: At volume of change $= \pm 12 \mathrm{~dB}$
$Q=1.7$
Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

Revision History

Rev	Date	Description
1.0	$06 / 01 / 07$	Initial release.
1.1	$06 / 11 / 07$	Added the LME49860MA and LME49860NA Top Mark Information.

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com

National Semiconductor	National Semiconductor Europe
Americas Customer	Customer Support Center
Support Center	Fax: +49 (0) 180-530-85-86
Email:	Email: europe.support@ nsc.com
new.feedback@nsc.com	Deutsch Tel: +49 (0) 69 95086208
Tel: 1-800-272-9959	English Tel: +49 (0) 8702402171
	Francais Tel: $+33(0) 141918790$

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

