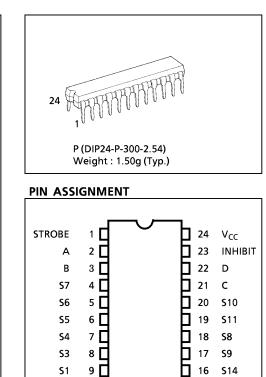
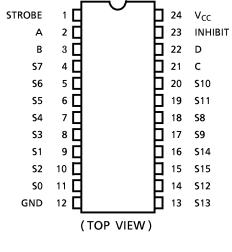
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74HC4514AP

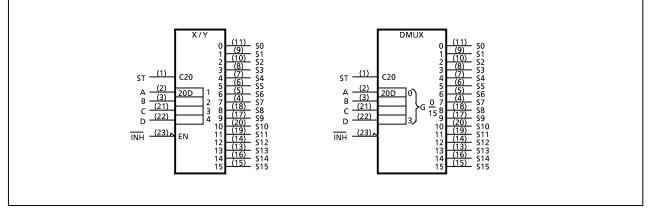
4-TO-16 LINE DECODER/LATCH

The TC74HC4514A are high speed CMOS 4 - LINE TO 16 -LINE DECODER WITH LATCHED INPUTs fabricated with silicon gate C²MOS technology.


It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation. The selected output is enabled by a low on the inhibit input (INHIBIT). A binary code stored in the four input latches (A thru D) is decided and provides a high level at the corresponding one of sixteen outputs. When the INHIBIT is held low, all outputs are kept low however, the latch function is available.

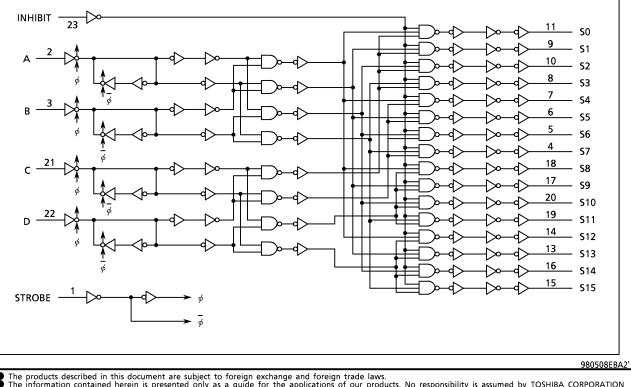

The data applied to the data inputs are transferred to the outputs of latches when the strobe input is held high. When the strobe input is taken low, the data is retained at the output of the latches.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


FEATURES:

- High Speed------t_{pd} = 18ns(typ.) at V_{CC} = 5V
- Low Power Dissipation $\dots I_{CC} = 4\mu A(Max.)$ at Ta = 25°C
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Output Drive Capability 10 LSTTL Loads
- Symmetrical Output Impedance... $|I_{OH}| = I_{OL} = 4mA(Min.)$
- Balanced Propagation Delays $\cdots t_{pLH} \simeq t_{pHL}$
- Wide Operating Voltage Range W_{CC} (opr.) = 2V~6V
- Pin and Function Compatible with 4514B

IEC LOGIC SYMBOL


980508EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

TRUTH TABLE

	INPUTS				SELECTED OUTPUT]					
INHIBIT	А	В	С	D	"H"	○ X : Don't Care					
L	L	L	L	L	SO	\bigcirc STROBE = "H"; REFER TO					
L	Н	L	L	L	S1	TRUTH TABLE					
L	L	Н	L	L	S2	○ STROBE = "L"					
L	Н	Н	L	L	S3						
L	L	L	н	L	S4	tn - 1 ───> <mark><</mark> ─── tn					
L	Н	L	Н	L	S5	STROBE					
L	L	Н	Н	L	S6						
L	Н	Н	Н	L	S7						
L	L	L	L	Н	S8						
L	Н	L	L	Н	S9	Data at the negative going					
L	L	Н	L	Н	S10	transition of strobe shall be					
L	Н	Н	L	Н	S11	provided on each output while					
L	L	L	н	Н	S12	strobe is held low.					
L	Н	L	н	Н	S13						
L	L	Н	Н	Н	S14						
L	Н	Н	н	Н	S15						
н	х	х	х	х	ALL OUTPUT "L"						

SYSTEM DIAGRAM

The products described in this document are subject to foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

TOSHIBA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	VALUE	UNIT
V _{cc}	-0.5~7	V
VIN	$-0.5 \sim V_{CC} + 0.5$	V
V _{OUT}	-0.5~V _{CC} +0.5	V
Ι _{ικ}	± 20	mA
Ι _{οκ}	± 20	mA
I _{OUT}	± 25	mA
I _{cc}	± 50	mA
P _D	500 (DIP)*	mW
T _{stg}	-65~150	°C
	V _{cc} V _{IN} V _{OUT} I _{IK} I _{OK} I _{OUT} I _{cc} P _D	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

*500mW in the range of Ta= -40°C~65°C. From Ta=65°C to 85°C a derating factor of -10mW/°C shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	V _{OUT}	0~V _{cc}	V
Operating Temperature	T _{opr}	-40~85	°C
Input Rise and Fall Time	t _r , t _f	$\begin{array}{r} 0 \sim 1000 \ (V_{CC} = 2.0V) \\ 0 \sim 500 \ (V_{CC} = 4.5V) \\ 0 \sim 400 \ (V_{CC} = 6.0V) \end{array}$	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		V _{cc}	Ta =		a = 25°C		Ta = -40~85°C	
PARAIVIETER	STIVIBUL			(V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High - Level Input Voltage	VIH			2.0 4.5 6.0	1.50 3.15 4.20			1.50 3.15 4.20		v
Low - Level Input Voltage	VIL			2.0 4.5 6.0			0.50 1.35 1.80	 	0.50 1.35 1.80	v
High - Level Output Voltage	V _{OH}	V _{I N} = V _{I H} or V _{I L}	I _{OH} = -20μA	2.0 4.5 6.0	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		v
Output Voltage			$I_{OH} = -4 \text{ mA}$ $I_{OH} = -5.2 \text{ mA}$	4.5 6.0	4.18 5.68	4.31 5.80	_	4.13 5.63	-	
Low - Level Output Voltage	V _{OL}	V _{I N} = V _{I H} or V _{II}	I _{OL} = 20μA	2.0 4.5 6.0		0.0 0.0 0.0	0.1 0.1 0.1	 	0.1 0.1 0.1	v
Sulput Voltage			$I_{OL} = 4 \text{ mA}$ $I_{OL} = 5.2 \text{ mA}$	4.5 6.0		0.17 0.18	0.26 0.26	-	0.33 0.33	
Input Leakage Current	I _{I N}	$V_{1N} = V_{CC}$ or GND		6.0		_	±0.1	—	± 1.0	
Quiescent Supply Current	I _{cc}	$\overline{V_{IN}} = V_C$	_c or GND	6.0		_	4.0	—	40.0	μA

TIMING REQUIREMENTS (Input $t_r = t_f = 6ns$)

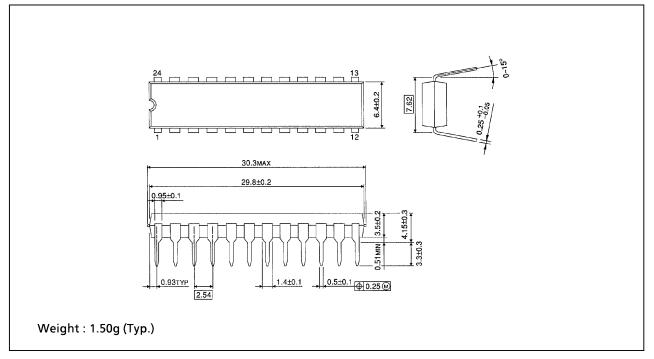
PARAMETER	SYMBOL	TEST CONDITION		Ta =	25°C	Ta = −40~85°C	UNIT
FARAIVIETER	STIVIBUL		$V_{cc}(V)$	TYP.	LIMIT	LIMIT	
Minimum Pulse Width (STROBE)	t _{w(H)}		2.0 4.5 6.0		75 15 13	95 19 16	
Minimum Set—up Time (DATA)	ts		2.0 4.5 6.0		50 10 9	65 13 11	ns
Minimum Hold Time (DATA)	t _h		2.0 4.5 6.0		5 5 5	5 5 5	

AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, $Ta = 25^{\circ}C$, Input $t_r = t_f = 6ns$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}		_	4	8	
Propagation Delay Time (DATA—Sn)	t _{pLH} t _{pHL}		—	18	30	- ns
Propagation Delay Time (STROBE—Sn)	t _{pLH} t _{pHL}		_	20	30	- 115
Propagation Delay Time (INHIBIT—Sn)	t _{pLH} t _{pHL}		_	16	30	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

	_								
PARAMETER	SYMBOL	TEST		Ta = 25°C			Ta = −4	UNIT	
PARAMETER	STIVIBUL	CONDITION	$V_{cc}(V)$	MIN.	TYP.	MAX.	MIN.	MAX.	
	t _{TLH}		2.0	—	30	75	-	95	
Output Transition Time			4.5	—	8	15	-	19	
	t _{THL}		6.0	—	7	13	-	16	
Propagation Delay Time	+		2.0	-	65	175	-	220	
	t _{pLH}		4.5	—	22	35	-	44	
(DATA—Sn)	t _{pHL}		6.0	—	19	30	-	37	ns
Propagation Delay Time	t		2.0	-	75	175	-	220	115
	t _{pLH}		4.5	—	24	35	-	44	
(STROBE—Sn)	t _{pHL}		6.0	-	20	30	-	37	
Propagation Dolay Time	+		2.0	—	60	175	-	220	
Propagation Delay Time	t _{pLH}		4.5	-	20	35	-	44	
(INHIBIT— Sn)	t _{pHL}		6.0	—	17	30	-	37	
Input Capacitance	C _{IN}			_	5	10	_	10	nE
Power Dissipation Capacitance	C _{PD} (1)			-	61	—	-	_	pF


Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

DIP 24PIN OUTLINE DRAWING (DIP24-P-300-2.54)

Unit in mm

