TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

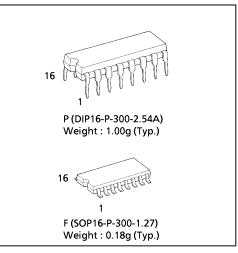
TC74HC4511AP, TC74HC4511AF

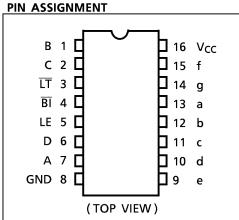
BCD - TO - 7 SEGMENT LATCH / DECODER / DRIVER

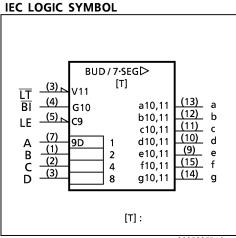
The TC74HC4511A is a high speed CMOS BCD-TO-7 SEGMENT LATCH / DECODER / DRIVER fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

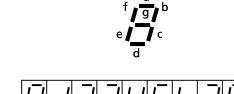
The segment output driver, which is of CMOS construction, has a large $I_{\rm OH}$ capability which permits the device to drive cathode common LED directly.

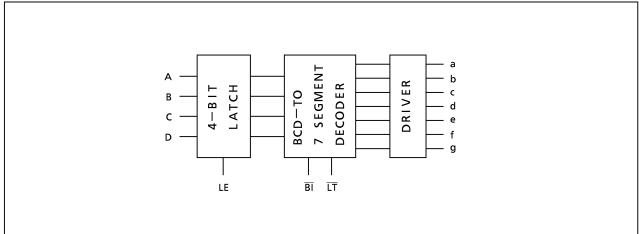

When lamp test (LT) is held low, all segment outputs will go high, and when the blanking input (BI) is held low and LT is held high, all segment outputs will go low. These functions are independent of other inputs and used to test the display.


BI is used to pulse-modulate the brightness of the display. When error code (over 10) is applied to BCD inputs, all segment outputs will go to low (turn off).


All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES:

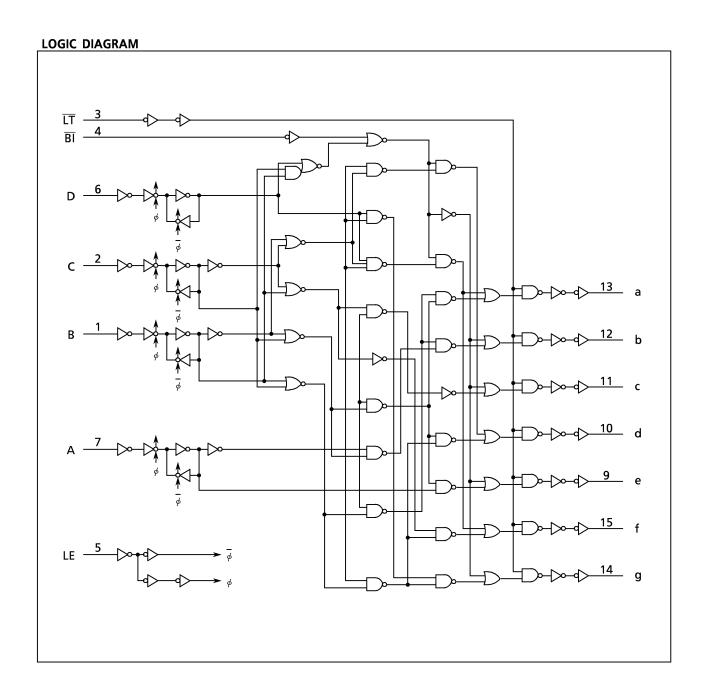

- High Speed······ t_{pd} = 28ns(typ.) at V_{CC} = 5V
- Low Power Dissipation ············· $I_{CC} = 4\mu A(Max.)$ at $Ta = 25^{\circ}C$
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Output Drive Capability 10 LSTTL Loads
- Symmetrical Output Impedance --- | I_{OH} | = 20mA
- Wide Operating Voltage Range.... V_{CC} (opr.) = 2V~6V
- Pin and Function Compatible with TC4511B


DISPLAY MODE

980508EBA2

● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

BLOCK DIAGRAM



TRUTH TABLE

INPUTS						0	UTPUT	<u> </u>			DISPLAY			
LE	BI	ĪΤ	D	С	В	Α	а	b	С	d	e	f	g	MODE
*	*	L	*	*	*	*	Н	Н	Н	Н	Н	Н	Н	8
*	L	Н	*	*	*	*	L	L	L	L	L	L	L	BLANK
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	Н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	Н	Н	L	Н	*	L	L	L	L	L	L	L	BLANK
L	Н	Н	Н	Н	*	*	L	L	L	L	L	L	L	BLANK
Н	Н	Н	*	*	*	*	Hold	Hold the stage at the leading edege of LE					of LE	

X Don't Care

The products described in this document are subject to foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

TOSHIBA TC74HC4511AP/AF

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	-0.5~7	V
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	V _{OUT}	−0.5~V _{CC} + 0.5	V
Input Diode Current	I _{IK}	± 20	mA
Output Diode Current	I _{OK}	± 20	mA
DC Output Current	I _{OUT}	+ 25 (Sinc) / -35 (Source)	mA
DC V _{CC} / Ground Current	I _{cc}	+ 150 (I _{CC}) / -50 (I _{GND})	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP)	mW
Storage Temperature	T _{stg}	−65~150	°C

*500mW in the range of Ta= $-40^{\circ}\text{C}\sim65^{\circ}\text{C}$. From Ta=65°C to 85°C a derating factor of $-10\text{mW}/^{\circ}\text{C}$ shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	2~6	V
Input Voltage	V _{IN}	0~V _{cc}	V
Output Voltage	V _{OUT}	0~V _{cc}	٧
Operating Temperature	Topr	−40~85	°C
Input Rise and Fall Time	t _r , t _f	$0 \sim 1000 (V_{CC} = 2.0V)$ $0 \sim 500 (V_{CC} = 4.5V)$ $0 \sim 400 (V_{CC} = 6.0V)$	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CO	NDITION	Vec	V _{CC} Ta = 25°C Ta = -40~85°			.0~85°C	UNIT	
PANAIVIETEN	STIVIBOL	1231 CC	MUITION	ÿS)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High - Level Input Voltage	VIH				1.50 3.15 4.20	_ _ _	_ _ _	1.50 3.15 4.20	_ _ _	>
Low - Level Input Voltage	VIL			2.0 4.5 6.0			0.50 1.35 1.80	_ _ _	0.50 1.35 1.80	>
High - Level		V _{I N} =	$I_{OH} = -20\mu A$	2.0 4.5 6.0	1.9 4.4 5.9	2.0 4.5 6.0	_ _ _	1.9 4.4 5.9	_ _ _	>
Output Voltage	V _{OH}	V_{IH} or V_{IL}	$I_{OH} = -6$ mA $I_{OH} = -20$ mA $I_{OH} = -7.8$ mA	4.5 4.5 6.0	4.18 3.20 5.68	4.31 3.80 5.80		4.13 2.90 5.63		\
Low - Level Output Voltage	V _{OL} V _{I H}	V _{I N} =	I _{OL} = 20μA	2.0 4.5 6.0		0.0 0.0 0.0	0.1 0.1 0.1	_ _ _	0.1 0.1 0.1	<
Output Voltage		V _{IH} or V _{IL}	$I_{OL} = 4 mA$ $I_{OL} = 5.2 mA$	4.5 6.0	1 1	0.17 0.18	0.26 0.26	_	0.33 0.33	
Input Leakage Current	I _{I N}	$V_{1N} = V_{C}$	6.0	-	_	± 0.1	_	± 1.0		
Quiescent Supply Current	I _{cc}	$V_{1N} = V_{C}$	_C or GND	6.0	_		4.0		40.0	μ A

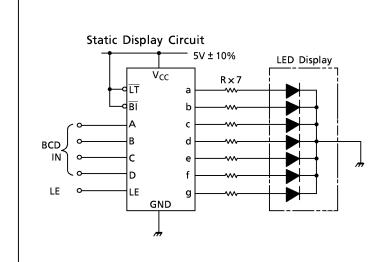
TIMING REQUIREMENTS (Input $t_r = t_f = 6ns$)

PARAMETER	SYMBOL	MBOL TEST CONDITION 15. CO.			25°C	Ta = −40~85°C	UNIT
FARAIVIETER	STIVIBUL	TEST CONDITION	$V_{CC}(V)$	TYP.	LIMIT	LIMIT	CIVII
Minimum Pulse Width			2.0	_	75	95	
	$ \mathbf{t}_{W(L)} $		4.5	_	15	19	
(LE)	` ′		6.0	_	13	16	
			2.0	_	75	95	
Minimum Set-up Time	l t _s		4.5	_	15	19	ns
'			6.0	_	13	16	
			2.0	_	0	0	
Minimum Hold Time	l t _h		4.5	_	0	0	
			6.0	_	0	0	

AC ELECTRICAL CHARACTERISTICS ($C_L = 15 pF$, $V_{CC} = 5 V$, $Ta = 25 ^{\circ}C$, Input $t_r = t_f = 6 ns$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{TLH}		_	4	8	
Output Transition Time	t _{THL}		_	4	8	
Propagation Delay Time (BCD—Segment)	t _{pLH} t _{pHL}		_	28	45]
Propagation Delay Time (BI — Segment)	t _{pLH} t _{pHL}		_	18	31	ns
Propagation Delay Time (LT — Segment)	t _{pLH} t _{pHL}		_	12	21	
Propagation Delay Time (LE— Segment)	t _{pLH} t _{pHL}		_	26	44	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

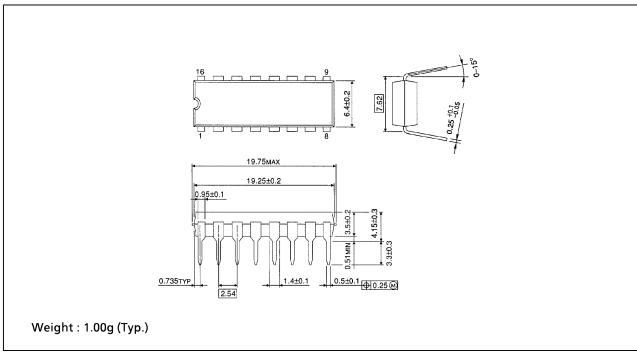

PARAMETER	SYMBOL	TEST CONDITION		Ta = 25°C		C Ta = −40~		0~85°C	UNIT
PARAIVIETER	STIVIBUL	TEST CONDITION	$V_{CC}(V)$	MIN.	TYP.	MAX.	MIN.	MAX.	
Output Transition Time			2.0	1	25	60	-	75	
Low to High	t _{TLH}		4.5 6.0		6	12 11	=	15 13	
Output Transition Time			2.0	_	30	75	_	95	
High to Low	t _{THL}		4.5	_	8	15	-	19	
Thigh to Low			6.0	_	/	13	_	16	
Propagation Delay Time	t _{pLH}		2.0	_	125	255	-	320	
	l .		4.5	_	33	51	-	64	
(BCD—Segment)	t _{pHL}		6.0	I	23	43	_	54	ns
Propagation Delay Time	+		2.0	1	70	175	_	220	'''
	t _{pLH}		4.5	_	22	35	-	44	
(BI — Segment)	t _{pHL}		6.0	_	17	30	_	37	
Propagation Delay Time	t _{pLH}		2.0	_	60	120	-	150	
	l .'		4.5	_	15	24	_	30	
(\overline{LT} — Segment)	t _{pHL}		6.0	I	12	20	_	26	
Propagation Delay Time	+		2.0	-	95	240	-	300	
	t _{pLH}		4.5	_	32	48	-	60	
(LE — Segment)	t _{pHL}		6.0	-	23	41	-	51	
Input Capacitance	C _{IN}			_	5	10	_	10	n E
Power Dissipation Capacitance	C _{PD} (1)	(Note 1))		95	_	_	_	pF

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

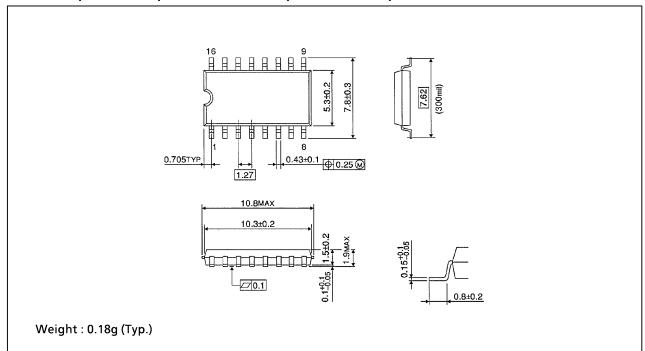
$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

APPLICATION CIRCUIT



Recommended Resistance R

DISPLAY	COLOR	LETTER HIGHT	R
TLR358T	Red	13.4mm	390 Ω
TLR362T	"	14.2	"
TLR332T	"	7.6	"
TLR342T	11	10.9	"
TLG358T	Green	13.4mm	160Ω
TLG362T	11	14.2	"
TLG332T	11	7.6	"
TLG342T	11	10.9	"


DIP 16PIN OUTLINE DRAWING (DIP16-P-300-2.54A)

Unit in mm

SOP 16PIN (200mil BODY) OUTLINE DRAWING (SOP16-P-300-1.27)

Unit in mm

