

LC²MOS **High Speed, Quad SPST Switch**

ADG201HS

FEATURES

50ns max Switching Time Over Full Temperature Range Low R_{ON} (30 Ω typ) Single Supply Specifications for +10.8V to + 16.5V Operation **Extended Plastic Temperature Range** (-40°C to +85°C) **Break-Before-Make Switching** Low Leakage (100pA typ) 44V Supply max Rating Available in 16-Lead DIP/SOIC and 20-Lead LCCC/PLCC Packages ADG201HS (K, B, T) Replaces HI-201HS ADG201HS (J, A, S) Replaces DG271

GENERAL DESCRIPTION

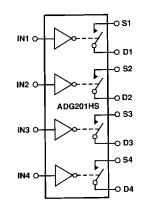
The ADG201HS is a monolithic CMOS device comprising four independently selectable SPST switches. It is designed on an enhanced LC²MOS process which gives very fast switching speeds and low R_{ON}.

The switches also feature break-before-make switching action for use in multiplexer applications and low charge injection for minimum transients on the output when switching the digital inputs.

Model ¹	Temperature Range	Package Option ²
ADG201HSJN	-40° C to $+85^{\circ}$ C	N-16
ADG201HSKN	-40° C to $+85^{\circ}$ C	N-16
ADG201HSKR	-40° C to $+85^{\circ}$ C	R-16
ADG201HSAQ	-40° C to $+85^{\circ}$ C	Q-16
ADG201HSBQ	-40° C to $+85^{\circ}$ C	Q-16
ADG201HSJP	-40° C to $+85^{\circ}$ C	P-20A
ADG201HSKP	-40° C to $+85^{\circ}$ C	P-20A
ADG201HSSQ	-55° C to $+125^{\circ}$ C	Q-16
ADG201HSTQ ³	-55° C to $+125^{\circ}$ C	Q-16
ADG201HSTE ³	-55° C to $+125^{\circ}$ C	E-20A

ORDERING GUIDE

NOTES


¹To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers. See the Analog Devices Military Products Databook (1994) for military data sheet. ${}^{2}E =$ Leadless Ceramic Chip Carrier; N = Narrow Plastic DIP; P = Plastic Leaded Chip Carrier; Q = Cerdip; R = 0.15'' Small Outline IC (SOIC).

³Standard Military Drawing (SMD) approved by DESC. SMD numbers are

5962-86716012X (ADG201HSTE/883B) 5962-8671601EX (ADG201HSTQ/883B)

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. 50ns max ton and toFF:
 - The ADG201HS top grades (K, B, T) have guaranteed 50ns max turn-on and turn-off times over the full operating temperature range. The lower grades (J,A,S) have guaranteed 75ns switching times over the full operating temperature range.
- 2. Single Supply Specifications:

The ADG201HS is fully specified for applications which require a single positive power supply in the +10.8V to +16.5V range.

3. Low Leakage:

Leakage currents in the range of 100pA make these switches suitable for high precision circuits. The added feature of break-before-make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

IN	Switch Condition
0	ON
1	OFF

Truth Table

ADG201HS — SPECIFICATIONS

DUAL SUPPLY $(V_{DD} = +13.5V \text{ to } +16.5V, = -13.5V \text{ to } -16.5V, \text{ GND} = 0V,$ $V_{IN} 3V \text{ [Logic High Level] or } 0.8 V \text{ [Logic Low Level] unless otherwise noted)}$

Parameter	Version	+25℃	$T_{min} - T_{max}^{1}$	Units	Comments
ANALOG SWITCH					
Analog Signal Range	All	Vss	V _{ss}	Vmin	
	All	V _{DD}	V_{DD}	V max	
R _{ON}	All	30	-	Ωtyp	$-10V \le V_S \le +10V, I_{DS} = 1mA;$ Test Circuit 1
	All	50	75	Ω max	
R _{ON} Drift	All	0.5	-	%/°C typ	$-10V \leq V_{S} \leq +10V, I_{DS} = 1mA$
R _{ON} Match	All	3	-	% typ	$-10V \leq V_{S} \leq +10V, I_{DS} = 1mA$
I _S (OFF), Off Input Leakage ²	All	0.1		nA typ	$V_D = \pm 14V; V_S = \mp 14V;$ Test Circuit 2
-3(0), 0	J, K, A, B	1	20	nA max	
	S, T	1	60	nA max	
I _D (OFF), Off Output Leakage ²	All	0.1		nA typ	$V_D = \pm 14V$; $V_S = \mp 14V$; Test Circuit 2
ID(OI I), OII Output Leakage	J, K, A, B	1	20	nA max	
	S,T	1	60	nA max	
$I_D(ON)$, On Channel Leakage ²	All	0.1		nA typ	$V_D = V_S = \pm 14V$; Test Circuit 3
ID (OIV), OII Onalinei Leakage	J, K, A, B	1	20	nA max	
	S,T	1	60	nA max	
DIGITAL CONTROL					
V _{INH} , Input High Voltage	All	2.4	2.4	Vmin	
V _{INL} , Input Low Voltage	All	0.8	0.8	V max	
I _{INL} or I _{INH}	All	1	1	µA max	
C _{IN}	All	8	8	pFmax	
DYNAMIC CHARACTERISTICS					
t _{on}	K, B, T	50	50	ns max	Test Circuit 4
-010	J, A, S	75	75	ns max	
t _{OFFI}	K, B, T	50	50	ns max	Test Circuit 4
Vert	J, A, S	75	75	ns max	
LOFF2	All	150	-	ns typ	Test Circuit 4
LOPEN	All	5	5	ns typ	t _{ON} -t _{OFF1} ; Test Circuit 4
Output Settling Time to 0.1%	All	180	-	ns typ	$V_{IN} = 3V \text{ to } 0V$; Test Circuit 4
OFF Isolation	All	72	- ·	dBtyp	$V_s = 3V \text{ rms}, f = 100 \text{ kHz}, R_1 = 1 \text{ k}\Omega;$
					$C_L = 10 pF$; Test Circuit 5
Channel-to-Channel Crosstalk	All	86	_	dB typ	$V_{s} = 3V \text{ rms}, f = 100 \text{ kHz}, R_{L} = 1 \text{ k}\Omega;$
Character to Character Crossenine		••		••	$C_L = 10 pF$; Test Circuit 6
Q _{INI} , Charge Injection	All	10	-	pC typ	$R_s = 0\Omega$, $V_s = 0V$; Test Circuit 7
$C_{S}(OFF)$	All	10	-	pF typ	
$C_{\rm D}({\rm OFF})$	All	10	_	pFtyp	
$C_{\rm D}, C_{\rm S}({\rm ON})$	All	30	-	pFtyp	
$C_{DS}(OFF)$	All	0.5	_	pF typ	
POWER SUPPLY					
IDD	A11	10	10	mA max	
I _{SS}	All	6	6	mA max	
		240	240	mW max	$V_{DD} = +15V, V_{SS} = -15V$
Power Dissipation	All	240	240		· UU = + 15+3+35 + 15+

NOTES

¹Temperature ranges are as follows: ADG201HSJ, K; -40°C to +85°C ADG201HSA, B; -40°C to +85°C ADG201HSS, T; -55°C to +125°C

²Leakage specifications apply with a V_D (V_S) of $\pm 14V$ or with a V_D (V_S) of 0.5V within the supply voltages (V_{DD}, V_{SS}), whichever is the minimum.

Specifications subject to change without notice.

ADG201HS

SINGLE SUPPLY ($V_{DD} = +10.8V$ to +16.5V, $V_{SS} = GND = 0V$, $V_{IN} = 3V$ [Logic High Level] or 0.8V [Logic Low Level] unless otherwise noted)

Parameter	Version	+25℃	$T_{min} - T_{max}$	Units	Comments
ANALOG SWITCH					
Analog Signal Range	All	Vss	V _{ss}	Vmin	
	All	V _{DD}	V _{DD}	V max	
R _{ON}	A11	65	_	Ωtyp	$0V \le V_S \le +10V$, $I_{DS} = 1mA$; Test Circuit 1
FON	All	90	120	Ω max	······································
R _{ON} Drift	All	0.5	_	%/°C typ	$0V \leq V_S \leq +10V, I_{DS} = 1mA$
R _{ON} Match	All	3	-	% typ	$0V \le V_S \le +10V, I_{DS} = 1mA$
I _s (OFF), Off Input Leakage ¹	All	0.1		nA tvp	$V_{\rm D} = +10V/+0.5V; V_{\rm S} = +0.5V/+10V;$ Test Circuit
-3(01 -), 011	J, K, A, B	1	20	nA max	
	S, T	1	60	nA max	
I _D (OFF), Off Output Leakage ¹	All	0.1		nA typ	$V_{D} = +10V/+0.5V; V_{S} = +0.5V/+10V;$ Test Circuit
ID(OI I), OII Output Leakage	J, K, A, B	1	20	nA max	
	S, T	1	60	nA max	
$I_D(ON)$, On Channel Leakage ¹	All	0.1	00	nA typ	$V_{\rm D} = V_{\rm S} = +10V/+0.5V$; Test Circuit 3
ID (OII), OII Chamiel Leakage	J, K, A, B	1	20	nA max	$v_{\rm D} = v_{\rm S} = +1007 + 0.50$, rescondures
	S, T	1	60	nA max	
DIGITAL CONTROL	-,-		_		
V _{INH} , Input High Voltage	All	2.4	2.4	V min	
V _{INL} , Input Low Voltage	All	0.8	0.8	V max	
I _{INL} or I _{INH}	All	1	1	μA max	
C _{IN}	All	8	8	pF max	
DYNAMIC CHARACTERISTICS					
t _{on}	K, B, T	50	70	ns max	Test Circuit 4
ON	J, A, S	75	90	ns max	
t _{off1}	K, B, T	50	70	ns max	Test Circuit 4
OFFI	J, A, S	75	90	ns max	
t _{OFF2}	All	150	_	ns typ	Test Circuit 4
topen	All	5	5	ns typ	t _{ON} -t _{OFF1} ; Test Circuit 4
Output Settling Time to 0.1%	All	180	_	ns typ	$V_{IN} = 3V \text{ to } 0V; \text{ Test Circuit 4}$
OFF Isolation	All	72	_	dB typ	$V_{\rm S} = 3V {\rm rms}, f = 100 {\rm kHz}, R_{\rm L} = 1 {\rm k}\Omega;$
	7111			un typ	$C_{\rm T} = 10 {\rm pF}$; Test Circuit 5
Channel-to-Channel Crosstalk	All	86	_	d B typ	$V_{\rm S} = 3V \text{ rms}, f = 100 \text{ kHz}, R_{\rm L} = 1 \text{ k}\Omega;$
Chaline-to-Chaliner Crosstark	7311	00	_	dbtyp	$C_{\rm L} = 10 {\rm pF}$; Test Circuit 6
Q _{INJ} , Charge Injection	All	10	-	pCtyp	$R_{\rm S} = 0\Omega$, $V_{\rm S} = 0V$; Test Circuit 7
$C_{\rm S}(\rm OFF)$	All	10	_	pF typ	5
C _D (OFF)	A11	10	_	pFtyp	
$C_{\rm D}, C_{\rm S}({\rm ON})$	All	30	_	pF typ	
C _{DS} (OFF)	A 11	0.5	_	pF typ	
POWER SUPPLY					
I _{DD}	All	10	10	mA max	
Power Dissipation	All	150	150	mW max	$V_{DD} = +15V$

NOTE NOTE The leakage specifications degrade marginally (typically 1nA at 25°C) with $V_D(V_S) = V_{SS}$.

Specifications subject to change without notice.

ADG201HS

ABSOLUTE MAXIMUM RATINGS*

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

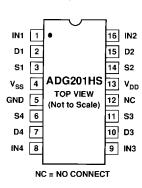
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Voltage at S, D $V_{SS} - 2V$ to
$V_{DD} + 2V \text{ or}$
20mA, Whichever Occurs First
Continuous Current, S or D
Pulsed Current S or D
1ms Duration, 10% Duty Cycle 70mA
Digital Inputs ²
Voltage at IN
20mA, Whichever Occurs First

Power Dissipation (Any Package)	
Up to $+75^{\circ}$ C	$\ldots \ldots \ldots \ldots \ldots 470 \mathrm{mW}$
Derates above $+75^{\circ}$ C by	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots 6 m W/^{\circ}C$
Operating Temperature	
Commerical (J, K Version)	
Industrial (A, B Version)	$ 40^{\circ}C \text{ to } + 85^{\circ}C$
Extended (S, T Version)	$ 55^{\circ}C \text{ to } + 125^{\circ}C$
Storage Temperature Range	$ 65^{\circ}C \text{ to } + 150^{\circ}C$
Lead Temperature (Soldering 10sec)	$\cdots \cdots \cdots \cdots \cdots \cdots + 300^{\circ}C$

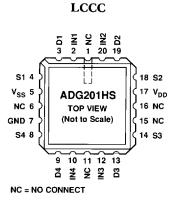
NOTES

 1 If V_{SS} is open circuited with V_{DD} and GND applied, the V_{SS} pin will be pulled positive, exceeding the Absolute Maximum Ratings. If this possibility exists, a Schottky diode from V_{SS} to GND (cathode end to GND) ensures that the Absolute Maximum Ratings will be observed. 2 Overvoltage at IN, S or D, will be clamped by diodes. Current

should be limited to the maximum rating above.

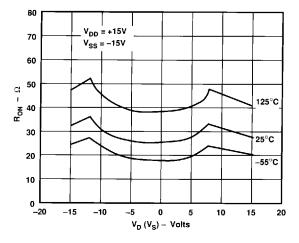

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION:

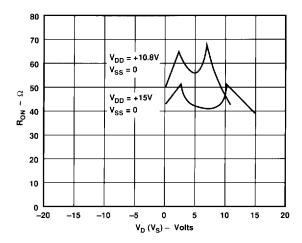

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are inserted.


DIP, SOIC

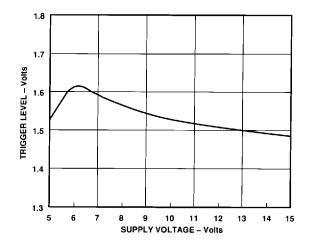
PIN CONFIGURATIONS

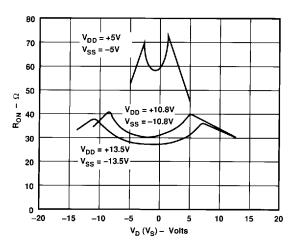


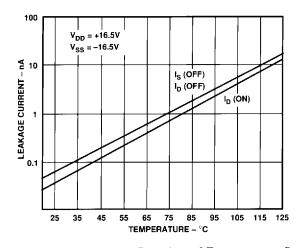
PLCC

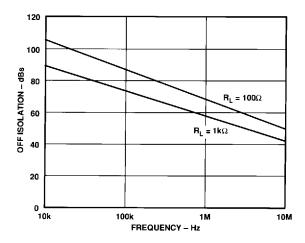


Typical Performance Characteristics—ADG201HS

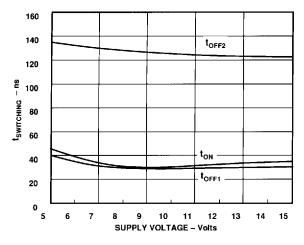

The switches are guaranteed functional with reduced single or dual supplies down to 4.5V.


 R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

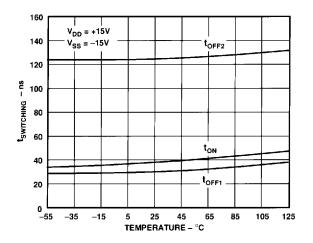

 R_{ON} as a Function of V_D (V_S): Single Supply Voltage, $T_A = +25^{\circ}C$


Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_A = +25^{\circ}C$

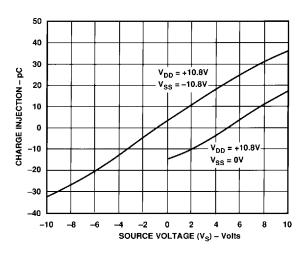
 R_{ON} as a Function of V_D (V_S): Dual Supply Voltage, $T_A = +25^{\circ}C$

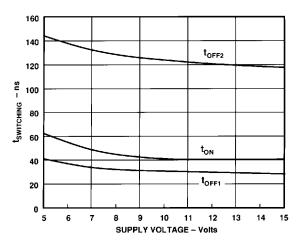


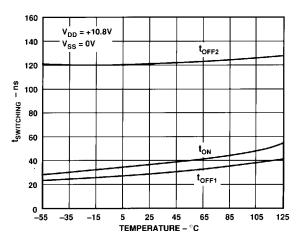
Leakage Current as a Function of Temperature Dual Supply Voltage. (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

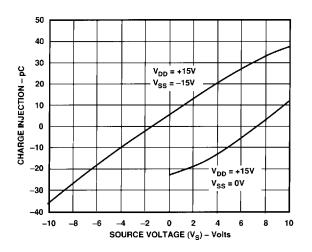


Off Isolation vs. Signal Frequency; Dual or Single 15V Supplies, $T_A = +25^{\circ}C$

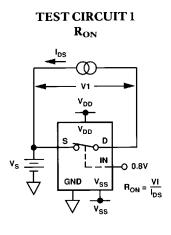

ADG201HS—Typical Performance Characteristics (Continued)


Switching Time vs. Supply Voltage (Dual Supply): $T_A = +25^{\circ}C.$ (Note: See Test Circuit 4. For $V_{DD} < 10V, V_S = V_{DD}$)

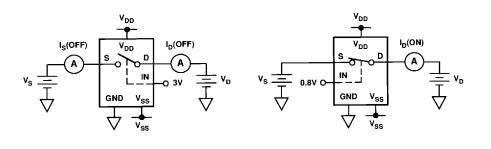

Switching Time vs. Temperature: Dual Supply Voltage


Charge Injection vs. Source Voltage (V_S) for Dual and Single 10.8V Supplies: $T_A = +25^{\circ}C$

Switching Time vs. Supply Voltage (Single Supply): $T_A - +25^{\circ}C$. (Note: See Test Circuit 4. For $V_{DD} < 10V$, $V_S = V_{DD}$)

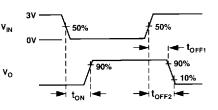


Switching Time vs. Temperature: Single Supply Voltage

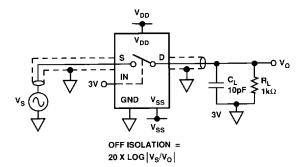


Charge Injection vs. Source Voltage (V_S) for Dual and Single 15V Supplies: $T_A = +25^{\circ}C$

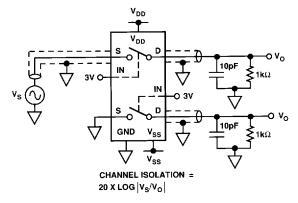
Note: All digital input signal rise and fall times measured from 10% to 90% of 3V. $t_R = t_F = 5$ ns. Decoupling capacitors (0.01 μ F min) from V_{DD} and V_{SS} to GND are recommended to achieve specified performance.

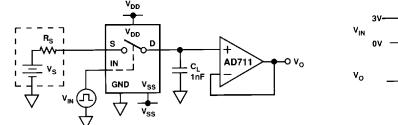


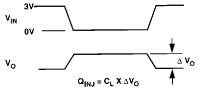
TEST CIRCUIT 2 I_S(OFF), I_D(OFF) $\frac{\text{TEST CIRCUIT 3}}{I_{D}(\text{ON})}$



TEST CIRCUIT 4 t_{on}, t_{off}, t_{open}, settling time

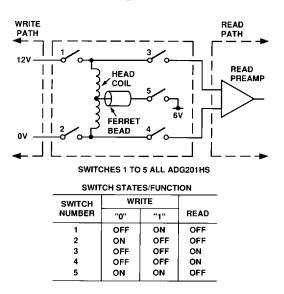



TEST CIRCUIT 5 OFF ISOLATION



TEST CIRCUIT 6 CHANNEL-TO-CHANNEL CROSSTALK

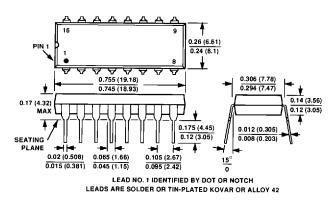
TEST CIRCUIT 7 CHARGE INJECTION



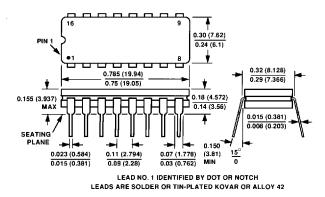
ADG201HS

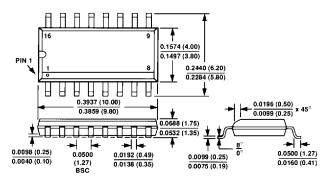
SINGLE SUPPLY DISK DRIVE APPLICATION

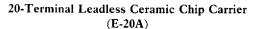

The excellent performance of the ADG201HS with single supply operation makes it suitable in applications such as disk drives where only positive power supply voltages are normally available. The accompanying circuit shows a typical application for the ADG201HS in the read/write head switching section of a disk drive. The circuit allows data (0s and 1s) to be written to and read from a disk. The principal advantage offered by the ADG201HS is that it retains very fast switching speed with single supply operation (see Single Supply Specifications). This allows disk drives to run at higher data rates.

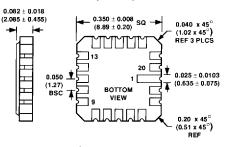

ADG201HS in the Read/Write Head Switching Circuit of a Disk Drive

OUTLINE DIMENSIONS


Dimensions shown in inches and (mm).


16-Pin Plastic DIP (N-16)




16-Pin Cerdip (Q-16)

16-Lead Narrow Body SOIC (R-16A)

