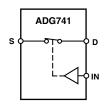


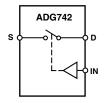
CMOS Low Voltage 2 Ω SPST Switches in SC70 Packages

ADG741/ADG742

FEATURES

1.8 V to 5.5 V Single Supply 2 Ω (Typ) On Resistance Low On-Resistance Flatness -3 dB Bandwidth >200 MHz Rail-to-Rail Operation 6-Lead SC70 Fast Switching Times


t_{ON} 18 ns t_{OFF} 12 ns


Typical Power Consumption (<0.01 μ W) TTL/CMOS Compatible

APPLICATIONS

Battery Powered Systems
Communication Systems
Sample Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG741/ADG742 are monolithic CMOS SPST switches. These switches are designed on an advanced submicron process that provides low power dissipation yet high switching speed, low on resistance, low leakage currents and –3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG741/ADG742 can operate from a single 1.8 V to 5.5 V supply, making it ideal for use in battery-powered instruments and with Analog Devices' new generation of DACs and ADCs.

As can be seen from the Functional Block Diagrams, with a logic input of "1" the switch of the ADG741 is closed, while that of the ADG742 is open. Each switch conducts equally well in both directions when ON.

The ADG741/ADG742 are available in 6-lead SC70 package.

PRODUCT HIGHLIGHTS

- 1. 1.8 V to 5.5 V Single Supply Operation. The ADG741/ADG742 offer high performance, including low on resistance and fast switching times and is fully specified and guaranteed with 3 V and 5 V supply rails.
- 2. Very Low R_{ON} (3 Ω max at 5 V, 5 Ω max at 3 V). At 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.
- 3. On-Resistance Flatness $R_{FLAT(ON)}$ (1 Ω max).
- 4. -3 dB Bandwidth >200 MHz.
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- 6. Fast t_{ON}/t_{OFF.}
- 7. Tiny 6-Lead SC70 package.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2000

$\label{eq:ADG741} \textbf{ADG742-SPECIFICATIONS}^{1} \ \ \substack{(V_{DD} \,=\, 5 \ V \,\pm\, 10\%, \ \text{GND} \,=\, 0 \ V. \ \text{All specifications} \, -40^{\circ}\text{C to} \, +85^{\circ}\text{C} \\ \text{unless otherwise noted.})$

	B Version				
Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}	V		
On Resistance (R _{ON})	2	· · · · · · · · · · · · · · · · · · ·	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA};$	
0 == 0	3	4	Ω max	Test Circuit 1	
On-Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
(PLAT(ON))		1.0	Ω max		
LEAKAGE CURRENTS ²				V _{DD} = 5.5 V	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$	
bource of t Leakage is (OTT)	±0.25	±0.35	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.23	±0.55	nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$	
Diam Off Leakage ip (Off)	±0.25	±0.35	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.23	±0.55	nA typ	$V_{\rm S} = V_{\rm D} = 1 \text{ V, or } 4.5 \text{ V;}$	
Chaimer Olv Leakage 1D, 15 (Olv)	±0.01 ±0.25	±0.35	nA max	Test Circuit 3	
	±0.23	±0.55	III IIIax	Test Circuit 9	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.1	μA max		
DYNAMIC CHARACTERISTICS ²					
t_{ON}	12		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$	
		18	ns max	$V_S = 3 \text{ V}$; Test Circuit 4	
$t_{ m OFF}$	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
		12	ns max	$V_S = 3 V$; Test Circuit 4	
Charge Injection	5		pC typ	$V_S = 2 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$	
-				Test Circuit 5	
Off Isolation	-55		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$	
	-75		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$	
				Test Circuit 6	
Bandwidth -3 dB	200		MHz typ	$R_{L} = 50 \Omega, C_{L} = 5 pF;$	
				Test Circuit 7	
C_{S} (OFF)	17		pF typ		
$C_{\rm D}$ (OFF)	17		pF typ		
C_D , C_S (ON)	38		pF typ		
POWER REQUIREMENTS				V _{DD} = 5.5 V	
				Digital Inputs = 0 V or 5 V	
${ m I_{DD}}$	0.001		μA typ	Digital inputs – 0 v of 5 v	
- DD	0.001	1.0	μΑ typ μΑ max		
		1.0	μιπιαλ		

NOTES

Specifications subject to change without notice.

 $^{^{1}}Temperature$ ranges are as follows: B Versions: $-40^{\circ}C$ to +85°C.

²Guaranteed by design, not subject to production test.

 $\label{eq:continuous} \textbf{SPECIFICATIONS}^{1} \ (\textbf{V}_{DD} = 3 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}. \ \textbf{All specifications} \ -40^{\circ} \textbf{C} \ to \ +85^{\circ} \textbf{C} \ unless \ otherwise \ noted.)$

	B Version			
Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	3.5		Ω typ	$V_{S} = 0 \text{ V to } V_{DD}, I_{S} = -10 \text{ mA};$
	5	6	Ω max	Test Circuit 1
On-Resistance Flatness (R _{FLAT(ON)})	1.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS ²				$V_{DD} = 3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.25	±0.35	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.25	± 0.35	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V, or } 3 \text{ V;}$
	±0.25	±0.35	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ²				
t_{ON}	14		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		20	ns max	$V_S = 2 V$, Test Circuit 4
$t_{ m OFF}$	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		13	ns max	$V_S = 2 V$, Test Circuit 4
Charge Injection	4		pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
0.007				Test Circuit 5
Off Isolation	-55 55		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
	-75		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Bandwidth –3 dB	200		MUz tres	Test Circuit 6 $R_L = 50 \Omega$, $C_L = 5 pF$;
Bandwidth –3 dB	200		MHz typ	$R_L = 30 \Omega_2$, $C_L = 3 \text{ pr}$; Test Circuit 7
C_{S} (OFF)	17		pF typ	rest Gircuit 1
$C_{\rm D}$ (OFF)	17		pF typ	
$C_D, C_S(ON)$	38		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = 3.3 \text{ V}$
- 0 21(12(OH2))H1(10	1		1	
				Digital Inputs = 0 V or 3 V
${ m I}_{ m DD}$	0.001		μA typ	Digital Inputs = 0 V or 3 V

NOTES

Specifications subject to change without notice.

 $^{^1}Temperature$ ranges are as follows: B Versions: $-40\,^{\circ}C$ to $+85\,^{\circ}C.$

²Guaranteed by design, not subject to production test.

ADG741/ADG742

ABSOLUTE MAXIMUM RATINGS1

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +7 V
Analog, Digital Inputs ² 0.3 V to V _{DD} +0.3 V
or 30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature150°C
SC70 Package
θ_{IA} Thermal Impedance
θ_{IC} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
ESD

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table I. Truth Table

ADG741 In	ADG742 In	Switch Condition
0	1	OFF
1	0	ON

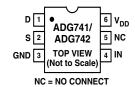
ORDERING GUIDE

Model	Temperature Range	Brand*	Package Description	Package Option
ADG741BKS	-40°C to +85°C	SFB	SC70	KS-6
ADG742BKS	-40°C to +85°C	SGB	SC70	KS-6

^{*}Brand = Brand on these packages is limited to three characters due to space constraints.

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG741/ADG742 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

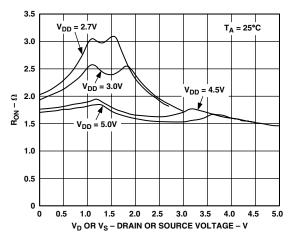


²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

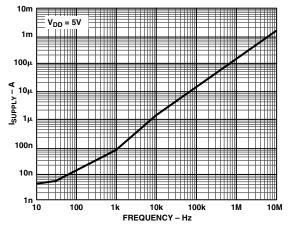
ADG741/ADG742

PIN CONFIGURATIONS

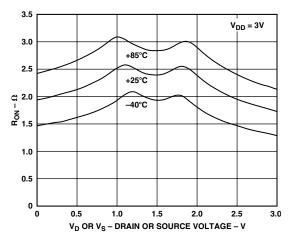
6-Lead Plastic Surface Mount (SC70)

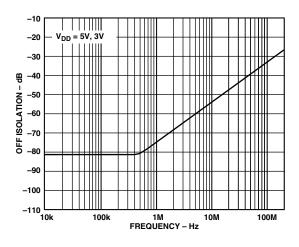


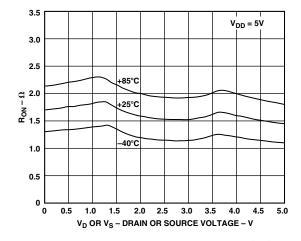
TERMINOLOGY

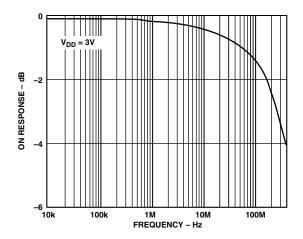

V_{DD}	Most Positive Power Supply Potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R _{ON}	Ohmic Resistance Between D and S.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the Switch "OFF."
I _D (OFF)	Drain Leakage Current with the Switch "OFF."
I_D , I_S (ON)	Channel Leakage Current with the Switch "ON."
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S.
C _S (OFF)	"OFF" Switch Source Capacitance.
C _D (OFF)	"OFF" Switch Drain Capacitance.
C_D , C_S (ON)	"ON" Switch Capacitance.
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
t _{OFF}	Delay between applying the digital control input and the output switching off.
Off Isolation	A measure of Unwanted Signal Coupling Through an "OFF" Switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by -3 dBs.
On Response	The frequency response of the "ON" switch.
On Loss	The voltage drop across the "ON" switch seen on the On Response vs. Frequency plot as how many dBs the signal is away from 0 dB at very low frequencies.

REV. 0 -5-

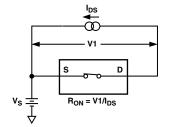

ADG741/ADG742—Typical Performance Characteristics

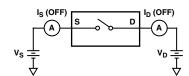

TPC 1. On Resistance as a Function of V_D (V_S) Single Supplies


TPC 4. Supply Current vs. Input Switching Frequency

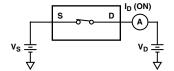

TPC 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 \ V$

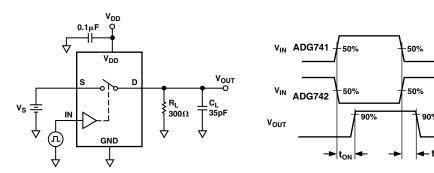
TPC 5. Off Isolation vs. Frequency

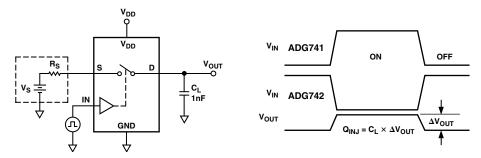

TPC 3. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 \ V$

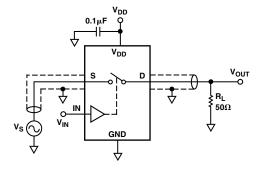

TPC 6. On Response vs. Frequency

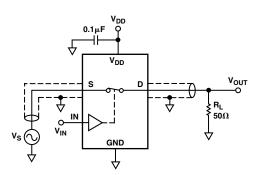
-6- REV. 0


Test Circuits


Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation

Test Circuit 7. Bandwidth

ADG741/ADG742

APPLICATIONS INFORMATION

The ADG741/ADG742 belongs to Analog Devices' new family of CMOS switches. This series of general-purpose switches have improved switching times, lower on resistance, higher bandwidth, low power consumption and low leakage currents.

ADG741/ADG742 Supply Voltages

Functionality of the ADG741/ADG742 extends from 1.8 V to 5.5 V single supply, which makes it ideal for battery-powered instruments, where important design parameters are power efficiency and performance.

It is important to note that the supply voltage effects the input signal range, the on resistance, and the switching times of the part. By looking at the typical performance characteristics and the specifications, the effects of the power supplies can be clearly seen.

For V_{DD} = 1.8 V operation, $R_{\rm ON}$ is typically 40 Ω over the temperature range.

On Response vs. Frequency

Figure 1 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk and system bandwidth.

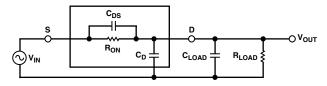


Figure 1. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (Figure 1) is of the form (A)s shown below.

$$A(s) = R_T \left[\frac{s(R_{ON} \ C_{DS}) + 1}{s(R_{ON} \ C_T \ R_T) + 1} \right]$$

where:

$$C_T = C_{LOAD} + C_D + C_{DS}$$

 $R_T = R_{LOAD}/(R_{LOAD} + R_{ON})$

The signal transfer characteristic is dependent on the switch channel capacitance, $C_{\rm DS}$. This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with $C_{\rm DS}$ and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C_D , causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth a switch must have a low input and output capacitance and low on resistance. The On Response vs. Frequency plot for the ADG741/ADG742 can be seen in TPC 6.

Off Isolation

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS} , couples the input signal to the output load, when the switch is off, as shown in Figure 2.

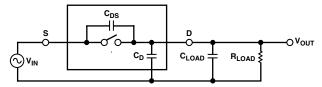
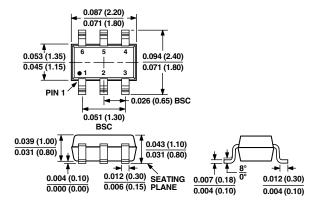


Figure 2. Off Isolation Is Affected by External Load Resistance and Capacitance


The larger the value of C_{DS} , larger values of feedthrough will be produced. The typical performance characteristic graph of TPC 5 illustrates the drop in off-isolation as a function of frequency. From dc to roughly 1 MHz, the switch shows better than –75 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than –55 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off-isolation can be maximized by choosing a switch with the smallest C_{DS} as possible. The values of load resistance and capacitance affect off isolation also, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$A(s) = \left[\frac{s(R_{LOAD} C_{DS})}{s(R_{LOAD})(C_T) + 1}\right]$$

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

6-Lead Plastic Surface Mount (SC70)

-8- REV. 0