2 pF Off Capacitance, 1 pC Charge Injection, $\pm 15 \mathrm{~V} / 12 \mathrm{~V}$ iCMOSTM Dual SPDT Switch

FEATURES

2 pF off capacitance
1 pC charge injection
33 V supply range
120Ω on resistance
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 12-lead LFCSP packages
Typical power consumption: $<0.03 \mu \mathrm{~W}$

APPLICATIONS

Automatic test equipment
Data aquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Communication systems

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADG1236 is a monolithic CMOS device containing two independently selectable SPDT switches. It is designed on an i CMOS process. i CMOS (industrial-CMOS) is a modular manufacturing process combining high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 30 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of the part make it an ideal solution for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the part suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

PRODUCT HIGHLIGHTS

1. 2 pF off capacitance ($\pm 15 \mathrm{~V}$ supply).
2. 1 pC charge injection.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 16 -lead TSSOP and 12 -lead $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP packages.

TABLE OF CONTENTS

Pin Configurations and Function Descriptions 7
Terminology .. 8
Typical Performance Characteristics ... 9
Test Circuits.. 12
Outline Dimensions ... 14
Ordering Guide ... 14

REVISION HISTORY

11/04—Revision PrD: Preliminary Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameters	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflation)	$\begin{aligned} & 120 \\ & 5 \\ & 25 \end{aligned}$	220	$V_{D D}$ to $V_{S S}$ 260 50	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{Is}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \\ & \hline \end{aligned}$	± 1 ± 1 ± 2	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current, Inlo or linh Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $C_{D}, C_{s}(O n)$	50 20 15 1 75 85 0.002 700 2 2 5		$\begin{aligned} & 100 \\ & 40 \\ & 1 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text { Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, 5 \mathrm{~V}, \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \end{aligned}$
POWER REQUIREMENTS ldo ldD Iss	$\begin{aligned} & 0.001 \\ & 150 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 300 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital Input }=5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

Parameters	$\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
IGND	0.001		5.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	Digital Inputs $=0 \mathrm{~V}$ or VDD IGND

${ }^{1}$ Temperature range for Y Version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameters	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflation)	$\begin{aligned} & 220 \\ & 10 \\ & 40 \\ & \hline \end{aligned}$		0 V to V_{DD}	V Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; Figure 21 $\mathrm{V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{s}}=+3 \mathrm{~V} /+6 \mathrm{~V} /+9 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, I_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \\ & \hline \end{aligned}$	± 1 ± 1 ± 2	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {, Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, IInl or linh Digital Input Capacitance, $\mathrm{Clin}^{\mathrm{I}}$	$\begin{aligned} & 0.001 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$	± 0.5	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {InL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{s} (Off) CD (Off) $\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	50 15 15 5 75 85 700 2 2 5		1	ns typ ns max ns typ ns max ns typ ns min pC typ pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; Figure } 26 \\ & \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz} \text {; Figure 27; } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz} \text {; Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \end{aligned}$

Parameters	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Y Version ${ }^{1}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
I_{DD}	0.001			$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}
IDD	150		5.0	$\mu \mathrm{A}$ max	
				$\mu \mathrm{A}$ typ	Digital Inputs $=5 \mathrm{~V}$
			300	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature range for Y Version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Ratings
$V_{\text {DD }}$ to V $\mathrm{V}_{\text {S }}$	38 V
Vod to GND	-0.3 V to +25 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, θ_{JA} Thermal Impedance	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
12-Lead LFCSP, θ_{JA} Thermal Impedance	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 s)	$215^{\circ} \mathrm{C}$
Infrared (15 s)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TRUTH TABLE FOR SWITCHES

Table 4.

IN	Switch A	Switch B
0	Off	On
1	On	Off

${ }^{1}$ Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2.TSSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Function
1	11	IN1	Logic Control Input.
2	12	S1A	Source Terminal. Can be an input or output.
3	1	D1	Drain Terminal. Can be an input or output.
4	2	S1B	Source Terminal. Can be an input or output.
5	3	VSS	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
$7,8,14-16$	10	NC	No Connect.
9	5	IN2	Logic Control Input.
10	6	S2A	Source Terminal. Can be an input or output.
11	7	D2	Drain Terminal. Can be an input or output.
12	8	S2B	Source Terminal. Can be an input or output.
13	9	VDD	Most Positive Power Supply Potential.

TERMINOLOGY

I_{DD}
The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.
Ron
The ohmic resistance between D and S .
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

I_{s} (Off)

The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$

The channel leakage current with the switch on.
Vinl
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}$ (On)
The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 24.
toff
The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 5, On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 8, On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Dual Supply

Figure 9. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 11. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$

Figure 12. Leakage Currents as a Function of Temperature

Figure 13. Leakage Currents as a Function of Temperature

Figure 14. Supply Currents vs. Input Switching Frequency

Figure 15. Charge Injection vs. Source Voltage

Figure 16. $t_{\mathrm{O}} /$ toff Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

TEST CIRCUITS

Figure 21. Test Circuit 1—On Resistance

Figure 24. Test Circuit 4—Switching Times

Figure 25. Test Circuit 5—Break-before-Make Time Delay

Figure 26. Test Circuit 6—Charge Injection

Figure 27. Test Circuit 7—Off Isolation

Figure 28. Test Circuit 8—Channel-to-Channel Crosstalk

Figure 29. Test Circuit 9—Bandwidth

Figure 30. Test Circuit 10—THD + Noise

OUTLINE DIMENSIONS

Figure 31. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in inches and (millimeters

Figure 32. 12-Lead Lead Frame Chip Scale Package [VQ_LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin Quad
(CP-12-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1236YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1236YCP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	CP-12-1

Preliminary Technical Data	ADG1236

NOTES

NOTES

