CMOS $\pm 5 \mathrm{~V} / 5 \mathrm{~V}$ 4Ω Dual SPST Switches

ADG621/ADG622/ADG623

FEATURES

5.5Ω (Max) On Resistance
0.9Ω (Max) On-Resistance Flatness
2.7 V to 5.5 V Single Supply
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ Dual Supply
Rail-to-Rail Operation
10-Lead μ SOIC Package
Typical Power Consumption ($<0.01 \mu \mathrm{~W}$)
TTL/CMOS Compatible Inputs
APPLICATIONS
Automatic Test Equipment
Power Routing
Communication Systems
Data Acquisition Systems
Sample and Hold Systems
Avionics
Relay Replacement
Battery-Powered Systems

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "0" INPUT

PRODUCT HIGHLIGHTS

1. Low On Resistance (R_{ON}) (4 Ω typ)
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or Single 2.7 V to 5.5 V
3. Low Power Dissipation. CMOS construction ensures low power dissipation.
4. Tiny 10-Lead μ SOIC Package

ADG621/ADG622/ADG623-SPECIFICATIONS

DUAL SUPPLY ${ }^{1}\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	B Version		Unit	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 4 \\ & 5.5 \\ & \\ & 0.25 \\ & 0.35 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 7 \\ & \\ & \\ & 0.4 \\ & 0.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \end{aligned}$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}, \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {, Test Circuit } 3$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	0.005 2	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$ (ADG623 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 75 \\ & 120 \\ & 45 \\ & 70 \\ & 30 \\ & 110 \\ & -65 \\ & \\ & -90 \\ & \\ & 230 \\ & 20 \\ & 20 \\ & 70 \end{aligned}$	155 85 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3.3 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \end{aligned}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ Test Circuit 10 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 9 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD} $\mathrm{I}_{\text {SS }}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]SINGLE SUPPLY ${ }^{1}$ $\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. $)$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG621/ADG622/ADG623

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
 30 mA , Whichever Occurs First
Peak Current, S or D . 100 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D . 50 mA
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $150^{\circ} \mathrm{C}$
μ SOIC Package
θ_{JA} Thermal Impedance . $206^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} Thermal Impedance . $44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 seconds) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature . $220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. Truth Table for the ADG621/ADG622

ADG621 INx	ADG622 INx	Switch x Condition
0	1	OFF
1	0	ON

Table II. Truth Table for the ADG623

IN1	IN2	Switch S1	Switch S2
0	0	OFF	ON
0	1	OFF	OFF
1	0	ON	ON
1	1	ON	OFF

ORDERING GUIDE

Model Option	Temperature Range	Description	Package	Branding Information*
ADG621BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	μ SOIC (microSmall Outline IC)	$\mathrm{RM}-10$	SXB
ADG622BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	μ SOIC (microSmall Outline IC)	RM-10	SYB
ADG623BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	μ SOIC (microSmall Outline IC)	RM-10	SZB

*Branding on μ SOIC packages is limited to three characters due to space constraints.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG621/ADG622/ADG623 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

10-Lead μ SOIC

(RM-10)

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential. Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied V_{SS}
to ground at the device. $^{\text {Ground (0 V) Reference }}$	

ADG621/ADG622/ADG623-Typical Performance Characteristics

TPC 1. On Resistance vs. $V_{D}\left(V_{S}\right)$. (Dual Supply)

TPC 2. On Resistance vs. $V_{D}\left(V_{S}\right)$. (Single Supply)

TPC 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures. (Dual Supply)

TPC 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperature. (Single Supply)

TPC 5. Leakage Currents vs. Temperature. (Dual Supply)

TPC 6. Leakage Currents vs. Temperature. (Single Supply)

TPC 7. Charge Injection vs. Source Voltage

TPC 8. $t_{O N} / t_{\text {OFF }}$ Times vs. Temperature

TPC 9. OFF Isolation vs. Frequency

TPC 10. Crosstalk vs. Frequency

TPC 11. On Response vs. Frequency

ADG621/ADG622/ADG623

Test Circuits

Test Ciruit 1. On Resistance

Test Ciruit 2. Off Leakage

Test Ciruit 3. On Leakage

Test Ciruit 4. Switching Times

Test Ciruit 5. Break-Before-Make Time Delay, $t_{B B M}(A D G 623$ Only)

Test Ciruit 6. Charge Injection

OFF ISOLATION $=20$ LOG $\frac{V_{\text {OUT }}}{V_{S}}$
Test Ciruit 7. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Test Ciruit 8. Channel-to-Channel Crosstalk

INSERTION LOSS $=20$ LOG $\frac{V_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {OUT }} \text { WITHOUT SWITCH }}$
Test Ciruit 9. Bandwidth

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Lead μ SOIC Package
(RM-10)

[^0]: NOTES
 ${ }^{1}$ Temperature ranges are as follows: B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

