

CMOS, 2.5 Ω Low-Voltage, 8-/16-Channel Multiplexers

ADG706/ADG707

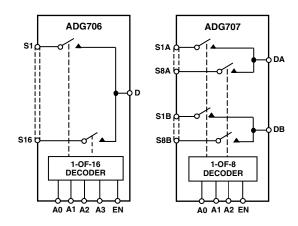
FEATURES

1.8 V to 5.5 V Single Supply
±3 V Dual Supply
2.5 Ω On Resistance
0.5 Ω On-Resistance Flatness
100 pA Leakage Currents
40 ns Switching Times
Single 16-to-1 Multiplexer ADG706
Differential 8-to-1 Multiplexer ADG707
28-Lead TSSOP Package
Low-Power Consumption
TTL/CMOS-Compatible Inputs

APPLICATIONS

Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery-Powered Systems

GENERAL DESCRIPTION


The ADG706 and ADG707 are low-voltage, CMOS analog multiplexers comprising 16 single channels and eight differential channels respectively. The ADG706 switches one of 16 inputs (S1–S16) to a common output, D, as determined by the 4-bit binary address lines A0, A1, A2, and A3. The ADG707 switches one of eight differential inputs to a common differential output as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low-power consumption and operating supply range of 1.8 V to 5.5 V make the ADG706 and ADG707 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. These devices are also designed to operate from a dual supply of ± 3 V.

These multiplexers are designed on an enhanced submicron process that provides low-power dissipation yet gives high-switching speed, very low on resistance and leakage currents. On resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range which extends to the supplies.

The ADG706 and ADG707 are available in small 28-lead TSSOP packages.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- 1. Single/Dual Supply Operation. The ADG706 and ADG707 are fully specified and guaranteed with 3 V and 5 V single supply and ±3 V dual supply rails.
- 2. Low On Resistance (2.5 Ω typical).
- 3. Low-Power Consumption ($<0.01 \mu W$).
- 4. Guaranteed Break-Before-Make Switching Action.
- 5. Small 28-Lead TSSOP Package.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2000

$ADG706/ADG707 - SPECIFICATIONS^1 \ (v_{DD} = 5 \ V \ \pm \ 10\%, \ v_{SS} = 0 \ V, \ \text{GND} = 0 \ V, \ \text{unless otherwise noted.})$

Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	2.5	- · · · · · DD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
The state of the s	4.5	5	Ω max	Test Circuit 1
On Resistance Match Between		0.3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		0.8	Ω max	13 0 1 to 1 _{DD} , 2 _{D3} 10 mm
On-Resistance Flatness $(R_{FLAT(ON)})$	0.5	0.0	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
on resistance rathess (relation)	0.5	1.2	Ω max	VS OVEO VDD, IDS TO IMI
LEAKAGE CURRENTS				V _{DD} = 5.5 V
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
2 3 ()	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
ADG706	±0.4	±1.5	nA max	Test Circuit 3
ADG707	±0.1	±1	nA max	Tost Great 9
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$
ADG706	± 0.4	±1.5	nA max	Test Circuit 4
ADG700 ADG707	±0.4 ±0.1	±1.5 ±1	nA max	1 est Cheult 4
DIGITAL INPUTS	20.1	<u> </u>	III IIIux	
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
		0.6	VIIIax	
Input Current	0.005			37 - 37 - 37
I _{INL} or I _{INH}	0.005	101	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
C. Digital Imput Compaitance	_	± 0.1	μA max	
C _{IN} , Digital Input Capacitance DYNAMIC CHARACTERISTICS ²	5		pF typ	
	40			D = 200 O C = 25 vF Tox Circuit 5
t _{TRANSITION}	40	60	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
D I D C W L T' D L .	20	60	ns max	$V_{S1} = 3 \text{ V/O V}, V_{S16} = 0 \text{ V/3 V}$
Break-Before-Make Time Delay, t _D	30		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(F) I	22	1	ns min	$V_S = 3 \text{ V}$, Test Circuit 6
t_{ON} (EN)	32	=0	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(E) D	10	50	ns max	$V_S = 3 \text{ V}$, Test Circuit 7
t_{OFF} (EN)	10	1.4	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		14	ns max	$V_S = 3 \text{ V}$, Test Circuit 7
Charge Injection	±5		pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
OCCI 1 :	60		10.	Test Circuit 8
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
01 1 01 10 11	60		ID.	Test Circuit 9
Channel-to-Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
2 dD Dan dani deb				Test Circuit 10
-3 dB Bandwidth	25		NATT .	D = 50 0 C = 5 E T + C + 10
ADG706	25		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
ADG707	36		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _s (OFF)	13		pF typ	
$C_{\rm D}$ (OFF)	100		г.	
ADG706	180		pF typ	
ADG707	90		pF typ	
$C_D, C_S (ON)$			_	
ADG706	200		pF typ	
ADG707	100		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = 5.5 \text{ V}$
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

-2-

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\label{eq:special_special} SPECIFICATIONS^{1} \; (v_{DD} = 3 \; v \; \pm \; 10\%, \; v_{SS} = 0 \; v, \; \text{GND} = 0 \; v, \; \text{unless otherwise noted})$

B Version				
Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V_{DD}	V	
On Resistance (R _{ON})	6	o v to vDD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
COLO	11	12	Ω max	Test Circuit 1
On-Resistance Match Between		0.4	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		1.2	Ω max	22, 20
On-Resistance Flatness (R _{FLAT(ON)})		3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{\rm DD} = 3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
ADG706	±0.4	± 1.5	nA max	Test Circuit 3
ADG707	±0.1	± 1	nA max	
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_{S} = V_{D} = 1 \text{ V or } 3 \text{ V};$
ADG706	±0.4	± 1.5	nA max	Test Circuit 4
ADG707	±0.1	± 1	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INI}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
TRINSPITOR		75	ns max	$V_{S1} = 2 \text{ V/0 V}, V_{S16} = 0 \text{ V/2 V}$
Break-Before-Make Time Delay, t _D	30		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$
• -		1	ns min	$V_S = 2 \text{ V}$, Test Circuit 6
t_{ON} (EN)	40		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		70	ns max	$V_S = 2 V$, Test Circuit 7
t_{OFF} (EN)	20		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		28	ns max	$V_S = 2 V$, Test Circuit 7
Charge Injection	±5		pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 8
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
				Test Circuit 9
Channel-to-Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	R _L = 50Ω , C _L = $5 pF$, f = $1 MHz$; Test Circuit 10
-3 dB Bandwidth				
ADG706	25		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
ADG707	36		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_{S} (OFF)	13		pF typ	
C_D (OFF)				
ADG706	180		pF typ	
ADG707	90		pF typ	
$C_D, C_S (ON)$				
ADG706	200		pF typ	
ADG707	100		pF typ	
POWER REQUIREMENTS				$V_{\rm DD}$ = 3.3 V
$ m I_{DD}$	0.001		μA typ	Digital Inputs = 0 V or 3.3 V
		1.0	μA max	

NOTES

 $^{^1}Temperature$ ranges are as follows: B Versions: –40 $^{\circ}C$ to +85 $^{\circ}C.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\textbf{Dual Supply}^{1} \; (v_{DD} = +3 \; V \; \pm \; 10\%, \; V_{SS} = -3 \; V \; \pm \; 10\%, \; \text{GND} = 0 \; V, \; \text{unless otherwise noted.})$

		Version -40°C		
Parameter	25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	2.5	133 10 100	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;
On Resistance (R _{ON})		5	Ω max	Test Circuit 1
O. D. L. W. I.D.	4.5	5		
On-Resistance Match Between		0.3	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
Channels (ΔR_{ON})		0.8	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
` ,		1.2	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +3.3 \text{ V}, V_{SS} = -3.3 \text{ V}$
	+0.01		^ 4	
Source OFF Leakage I _S (OFF)	±0.01	100	nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V}$
	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01		nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V}$
ADG706	±0.4	± 1.5	nA max	Test Circuit 3
ADG707	±0.1	±1	nA max	
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_S = V_D = +2.25 \text{ V/}-1.25 \text{ V}$, Test Circuit 4
ADG706	±0.4	±1.5	nA max	75 7D 12.23 77 1.23 73 1656 Ghedit 1
ADG700 ADG707	±0.1	±1.5 ±1	nA max	
	±0.1	<u>1</u>	IIA IIIax	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INI}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
IINL OF IINH	0.003	± 0.1	μA max	VIN - VINL OF VINH
C Distract Consider	_	±0.1		
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
		60	ns max	$V_{S1} = 1.5 \text{ V/0 V}, V_{S16} = 0 \text{ V/1.5 V}$
Break-Before-Make Time Delay, t _D	15		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$
Д		1	ns min	$V_S = 1.5 \text{ V}$, Test Circuit 6
t_{ON} (EN)	32	•	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
ton (Ert)	32	50	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 7
+ (ENI)	1.6	50		
t_{OFF} (EN)	16	0.6	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		26	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 7
Charge Injection	±8		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
				Test Circuit 8
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			""	Test Circuit 9
Channel-to-Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
Chamber to Chamber Crossean	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			ab typ	Test Circuit 10
−3 dB Bandwidth				1550 0110410 10
ADG706	25		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
ADG707	36		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_{S} (OFF)	13		pF typ	
C_D (OFF)				
ADG706	180		pF typ	
ADG707	90		pF typ	
$C_D, C_S (ON)$				
ADG706	200		pF typ	
ADG707	100		pF typ	
	100		Pr typ	
POWER REQUIREMENTS	0.005		١.	N 122N
$I_{ m DD}$	0.001		μA typ	$V_{\rm DD} = +3.3 \text{ V}$
		1.0	μA max	Digital Inputs = 0 V or 3.3 V
I_{SS}	0.001		μA typ	$V_{SS} = -3.3 \text{ V}$
		1.0	μA max	Digital Inputs = 0 V or 3.3 V

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Storage Temperature Range65°C	to +150°C
Junction Temperature	150°C
TSSOP Package	
θ_{IA} Thermal Impedance	97.9°C/W
θ _{IC} Thermal Impedance	14°C/W
Lead Temperature, Soldering (10 seconds)	300°C
IR Reflow, Peak Temperature	220°C

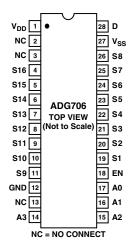
NOTES

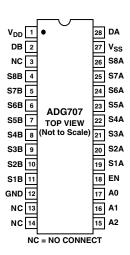
¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG706/ADG707 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.




ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG706BRU	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP) Thin Shrink Small Outline Package (TSSOP)	RU-28
ADG707BRU	-40°C to +85°C		RU-28

PIN CONFIGURATIONS

28-Lead TSSOP

REV. 0 —5—

Table I. ADG706 Truth Table

A3	A2	A1	A0	EN	ON Switch
\overline{X}	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

X = Don't Care.

Table II. ADG707 Truth Table

A2	A1	A0	EN	ON Switch Pair
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

X = Don't Care.

TERMINOLOGY

$\overline{V_{DD}}$	Most Positive Power Supply Potential.	C _D (OFF)	"OFF" Switch Drain Capacitance. Measured
V_{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground at the device.	C_D , C_S (ON)	with reference to ground. "ON" Switch Capacitance. Measured with reference to ground.
I_{DD}	Positive Supply Current.	C_{IN}	Digital Input Capacitance.
I_{SS}	Negative Supply Current.	t _{TRANSITION}	Delay Time Measured Between the 50% and
GND	Ground (0 V) Reference.		90% Points of the Digital Inputs and the Switch
S	Source Terminal. May be an input or output.		"ON" Condition when Switching from One Address State to Another.
D	Drain Terminal. May be an input or output.	t _{on} (EN)	Delay Time Between the 50% and 90% Points
IN	Logic Control Input.	ton (EN)	of the EN Digital Input and the Switch "ON
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S.		Condition.
R_{ON}	Ohmic Resistance Between D and S.	t_{OFF} (EN)	Delay Time Between the 50% and 90% Points
$\Delta R_{\rm ON}$	On Resistance Match Between any Two Channels, i.e., R_{ON} max – R_{ON} min.		of the EN Digital Input and the Switch "OFF" Condition.
$R_{FLAT(ON)} \\$	Flatness is defined as the difference between the maximum and minimum value of on	t _{OPEN}	"OFF" Time Measured Between the 80% Points of Both Switches when Switching from One Address State to Another.
	resistance as measured over the specified analog signal range.	Charge	A Measure of the Glitch Impulse Transferred
I _S (OFF)	Source Leakage Current with the Switch "OFF."	Injection	from the Digital Input to the Analog Output During Switching.
I _D (OFF)	Drain Leakage Current with the Switch "OFF."	Off Isolation	A Measure of Unwanted Signal Coupling through an "OFF" Switch.
$I_D, I_S (ON)$	Channel Leakage Current with the Switch "ON."	Crosstalk	A Measure of Unwanted Signal which is Coupled through from One Channel to
V_{INL}	Maximum Input Voltage for Logic "0."		Another as a Result of Parasitic Capacitance.
V_{INH}	Minimum Input Voltage for Logic "1."	Bandwidth	The Frequency at which the Output Is
$I_{\rm INL}(I_{\rm INH})$	Input Current of the Digital Input.		Attenuated by 3 dBs.
C _S (OFF)	"OFF" Switch Source Capacitance. Measured	On Response	The Frequency Response of the "ON" Switch.
	with reference to ground.	Insertion Loss	The Loss Due to the ON Resistance of the Switch.

Typical Performance Characteristics—ADG706/ADG707

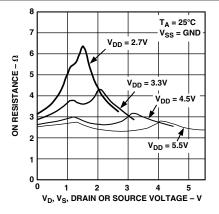


Figure 1. On Resistance as a Function of V_D (V_S) for Single Supply

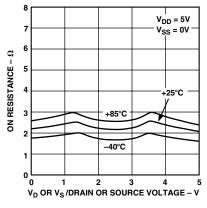


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

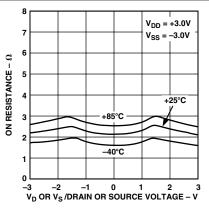


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

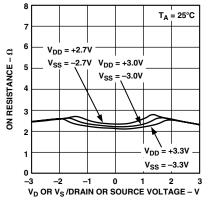


Figure 4. On Resistance as a Function of V_D (V_S) for Dual Supply

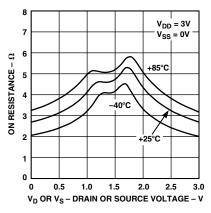


Figure 5. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

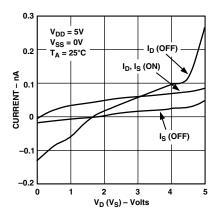


Figure 6. Leakage Currents as a Function of V_D (V_S)

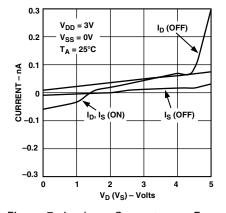


Figure 7. Leakage Currents as a Function of $V_D(V_S)$

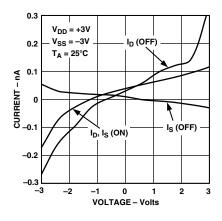


Figure 8. Leakage Currents as a Function of $V_D\left(V_S\right)$

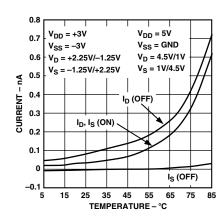


Figure 9. Leakage Currents as a Function of Temperature

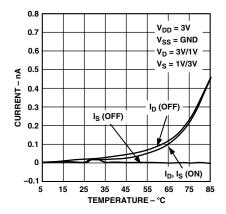


Figure 10. Leakage Currents as a Function of Temperature

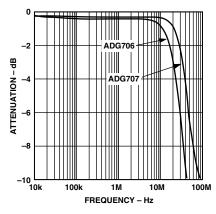


Figure 11. On Response vs. Frequency

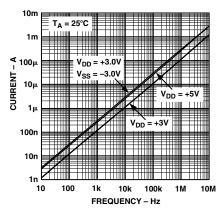


Figure 12. Supply Currents vs. Input Switching Frequency

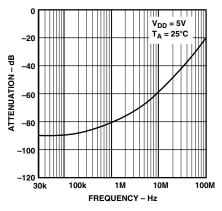


Figure 13. Off Isolation vs. Frequency

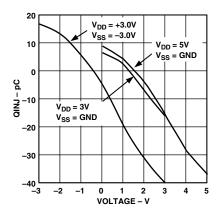
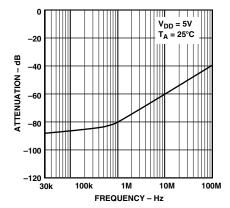
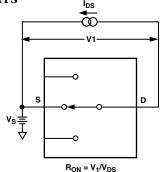
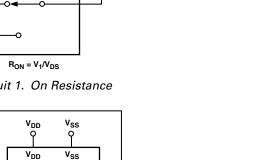


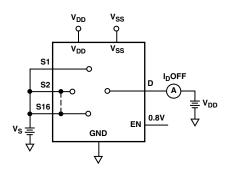
Figure 14. Charge Injection vs. Source Voltage

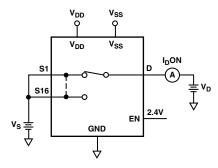




Figure 15. Crosstalk vs. Frequency

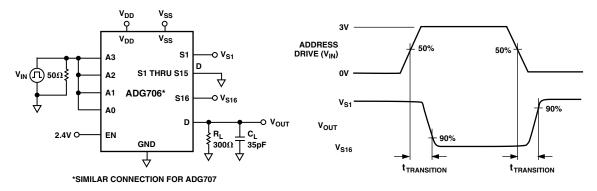
TEST CIRCUITS

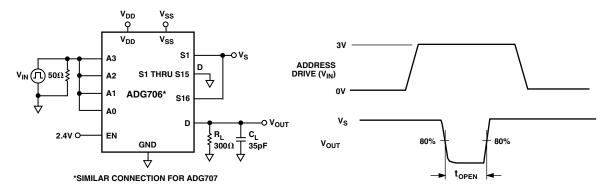
Test Circuit 1. On Resistance

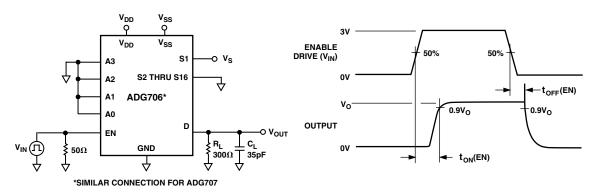

I_SOFF

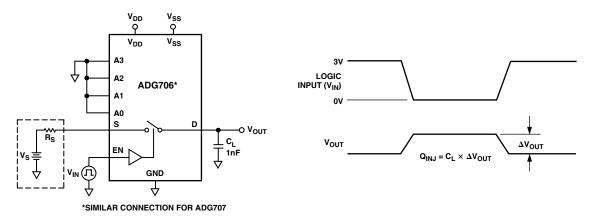

0.8V

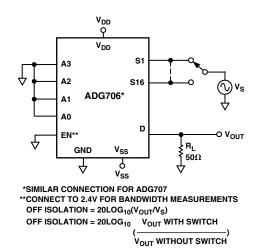
Test Circuit 2. Is (OFF)

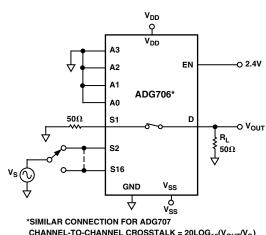

GND


Test Circuit 3. I_D (OFF)


Test Circuit 4. I_D (ON)

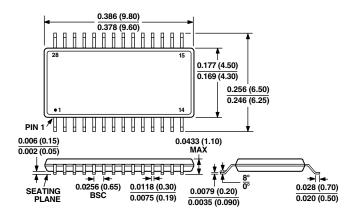

Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}


Test Circuit 6. Break-Before-Make Delay, topen


Test Circuit 7. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation and Bandwidth


CHANNEL-TO-CHANNEL CROSSTALK = 20LOG₁₀(V_{OUT}/V_S)

Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead TSSOP (RU-28)

