

March 2008

FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch

Description

FSUSB22 is a low-power, high-bandwidth switch

specially designed for applications switching high-speed

USB 2.0 signals in handset and consumer applications; such as cell phone, digital camera, and notebook with

hubs or controllers of limited USB I/O. The wide

bandwidth (750MHz) allows signals to pass with minimum edge and phase distortion. Superior channel-

to-channel crosstalk results in minimal interference. It is

compatible with the USB2.0 Hi-Speed standard.

Features

- -40dB Off Isolation at 250MHz
- -40dB Non-adjacent Channel Crosstalk at 250MHz
- On Resistance: 4.5Ω Typical (Ron)
- -3dB Bandwidth: 750MHz
- Low-Power Consumption: 1µA Maximum
- Control Input: TTL Compatible
- Bi-directional Operation
- USB High-Speed and Full-Speed Signaling Capability

Applications

 Cell Phones, PDAs, Digital Cameras, Notebook Computers

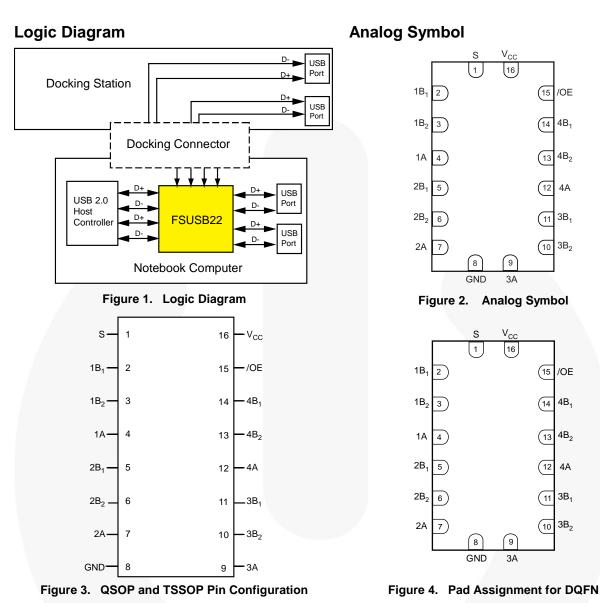
-			
Part Number	Operating nber Temperature Range		Packing Method
FSUSB22BQX	-40 to +85°C	16-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.5mm	Tape and Reel
FSUSB22QSC	-40 to +85°C	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide	Tube
FSUSB22QSCX	-40 to +85°C	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide	Tape and Reel
FSUSB22MTC	-40 to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tube
FSUSB22MTCX	-40 to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel

Ordering Information

All packages are lead free per JEDEC: J-STD-020B standard.

©2005Fairchild Semiconductor Corporation FSUSB22 • Rev. 1.0.3

www.fairchildsemi.com


4B₁

4B₂

 $4B_2$

4A

3B₁

Pin Descriptions

Pin #	Pin Names	Description	
1	S	Select Input	
2,3,5,6,10,11,13,14	1B ₁ ,1B ₂ , 2B ₁ ,2B ₂ ,3B ₂ ,3B ₁ ,4B ₂ ,4B ₁	Bus B	
8	GND	Ground	
4,7,9,12	1A,2A,3A,4A	Bus A	
15	/OE	Bus Switch Enable	
16	Vcc	Supply Voltage	

Truth Table

S	OE	Function
Don't Care	HIGH	Disconnect
LOW	LOW	A=B ₁
HIGH	LOW	A=B ₂

© 2005 Fairchild Semiconductor Corporation FSUSB22 • Rev. 1.0.3

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	4.6	V
Vs	DC Switch Voltage	-0.5	V _{CC} + 0.05	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	4.6	V
I _{IK}	DC Input Diode Current, V _{IN} <0V		-50	mA
l _{оит}	DC Output Sink Current		128	mA
I _{CC} / I _{GND}	DC V _{CC} / GND Current		±100	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
ESD	Human Body Model, JESD22-A114		4	kV

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Power Supply Operating		3.0	3.6	V
V _{IN}	Input Voltage		0	Vcc	V
V _{OUT}	Output Voltage		0	Vcc	V
+ +	Input Pice and Fall Time	Switch Control Input ⁽²⁾	0	5	ns/V
t _r , t _f Input Rise and Fall Time		Switch I/O	0	DC	115/ V
T _A	Operating Temperature, F	Operating Temperature, Free Air		+85	°C

Note:

2. Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Typical values are at V_{CC} = 3.0V and T_A = 25°C.

Symbol	Peremeter	Conditions	Conditions V _{cc} (V)		T _A =-40 to +85°C		
Symbol	Parameter	Conditions			Тур.	Max.	Units
VIK	Clamp Diode Voltage	I _{IN} = -18mA	3.0			-1.2	V
V _{IH}	High-Level Input Voltage		3.0 to 3.6	2.0			V
VIL	Low-Level Input Voltage		3.0 to 3.6			0.8	V
l _{IN}	Input Leakage Current	$0 \le V_{IN} \le 3.6V$	3.6			±1.0	μA
I _{OFF}	Off-state Leakage Current	$0 \le A, B \le V_{CC}$	3.6			±1.0	μA
P	Switch On Resistance ⁽³⁾	$V_{\text{IN}}=0.8V,\ I_{\text{ON}}=8\text{mA}$	3.0		5	7	0
R _{ON}	Switch On Resistance	$V_{IN} = 3.0V$, $I_{ON} = 8mA$	3.0		4.5	6.5	Ω
ΔR_{ON}	Delta R _{ON}		3.0		0.3		Ω
R _{FLAT(ON)}	On Resistance Flatness ⁽⁴⁾	I _{OUT} = 8mA	3.0		1		Ω
Icc	Quiescent Supply Current	$V_{IN} = V_{CC} \text{ or } GND,$ $I_{OUT} = 0$	3.6			1	μA

Notes:

3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

4. Flatness is defines as the difference between the maximum and the minimum value on resistance over the specified range of conditions.

AC Electrical Characteristics

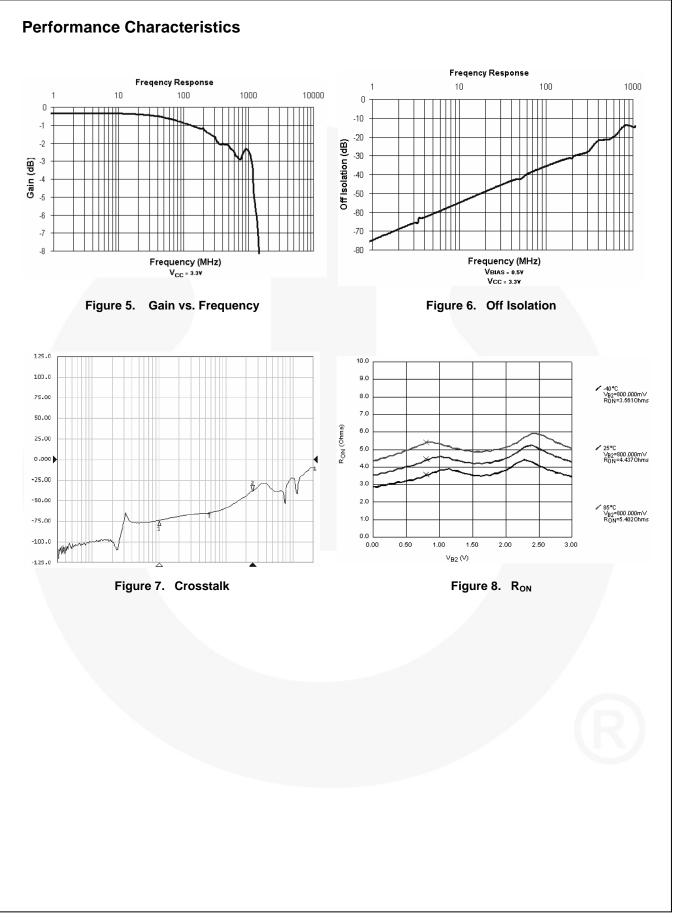
Typical values are at V_{CC} = 3.0V and T_A = 25°C.

Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	Figure
t _{ON}	Turn-on Time S-to-Bus B		3.0 to 3.6		4.5	6.0	ns	Figure 9 Figure 10
toff	Turn-off Time S-to-Bus B		3.0 to 3.6		2.5	4.0	ns	Figure 9 Figure 10
t _{PD}	Propagation Delay	C _L = 10pF	3.0 to 3.6		0.25		ns	Figure 14
O _{IRR}	Non-Adjacent Off Isolation	f = 250 MHz, $R_L = 50 \Omega$	3.0 to 3.6		-30		dB	Figure 11
X _{TALK}	Non-Adjacent Channel Crosstalk	f = 250 MHz, $R_L = 50 \Omega$	3.0 to 3.6		-38		dB	Figure 12
BW	-3dB Bandwidth	$R_L = 50\Omega$	3.0 to 3.6		750		MHz	Figure 13

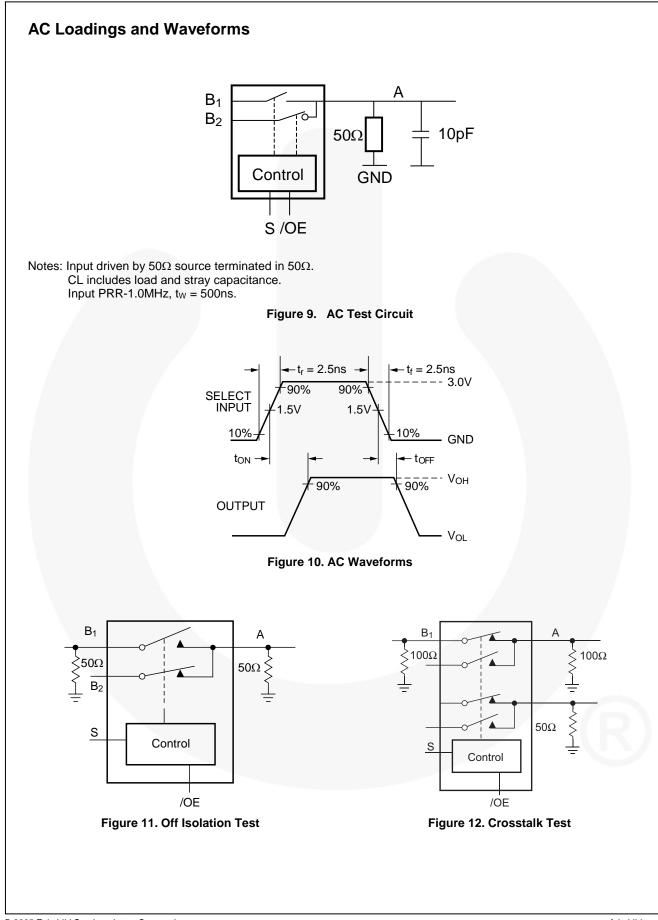
USB Related AC Electrical Characteristics

Typical values are at V_{CC} = 3.0V and T_A = 25°C.

Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	Figure
t _{SK(O)}	Channel-to Channels Skew	$C_L = 10 pF$	3.0 to 3.6		0.051		pF	Figure 14 Figure 16
t _{SK(P)}	Skew of Opposite Transition of the Same Output	C _L = 10pF	3.0 to 3.6		0.020		pF	Figure 14 Figure 16
TJ	Total Jitter	$\begin{array}{l} R_{L} = 50\Omega, \\ C_{L} = 10pF \\ t_{R} = t_{F} = 750ps \\ at \; 480MPs \end{array}$	3.0 to 3.6		0.210			

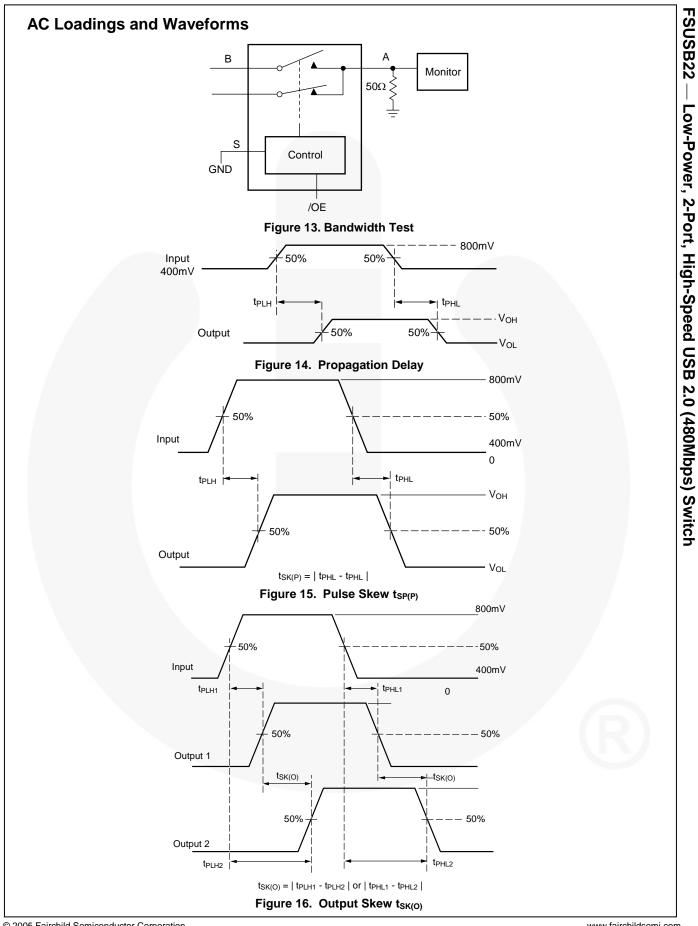

Capacitance

Typical values are at $V_{CC} = 3.0V$ and $T_A = 25^{\circ}C$.

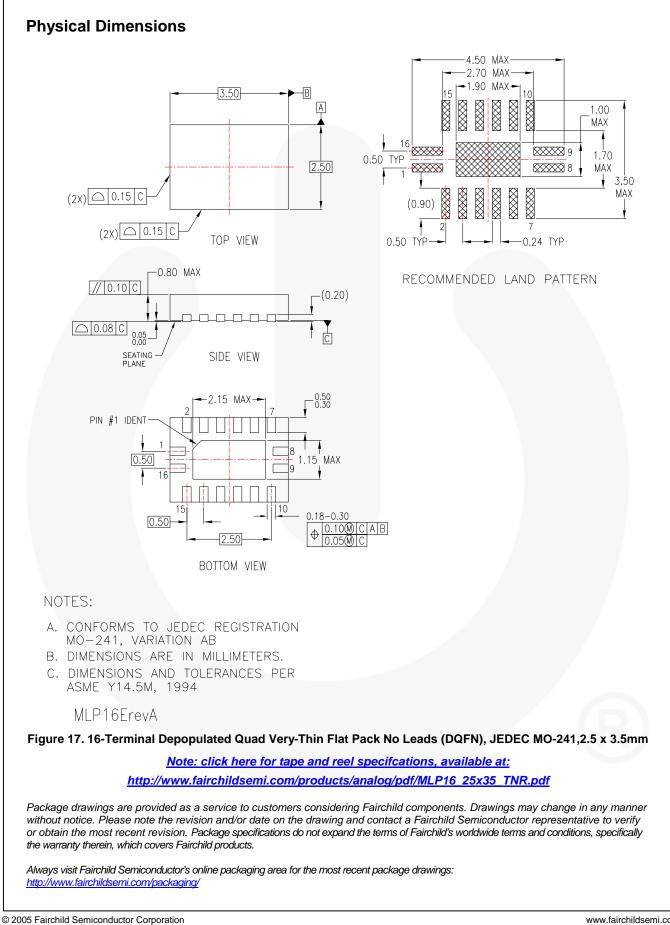

Symbol	Parameter	Conditions	Тур.	Unists
C _{IN}	Control Pin Input Capacitance	$V_{CC} = 0V$	2.5	pF
Con	A/B On Capacitance	$V_{CC} = 3.3V, /OE = 0V$	12	pF
C _{OFF}	Port B Off Capacitance	V_{CC} and /OE = 3.3V	4.5	pF

© 2005 Fairchild Semiconductor Corporation FSUSB22 • Rev. 1.0.3

5

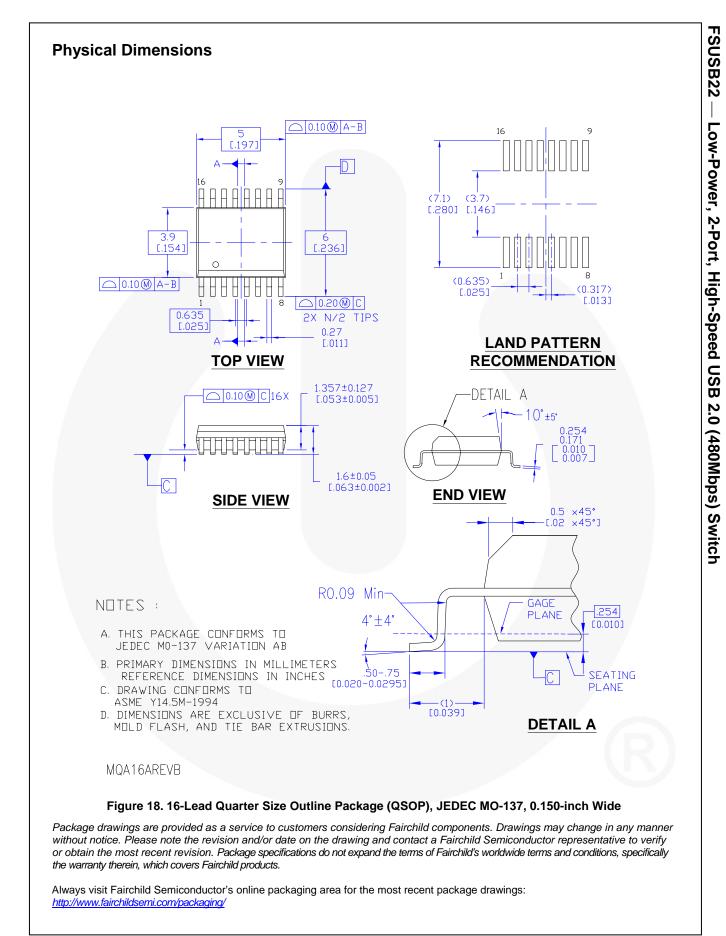


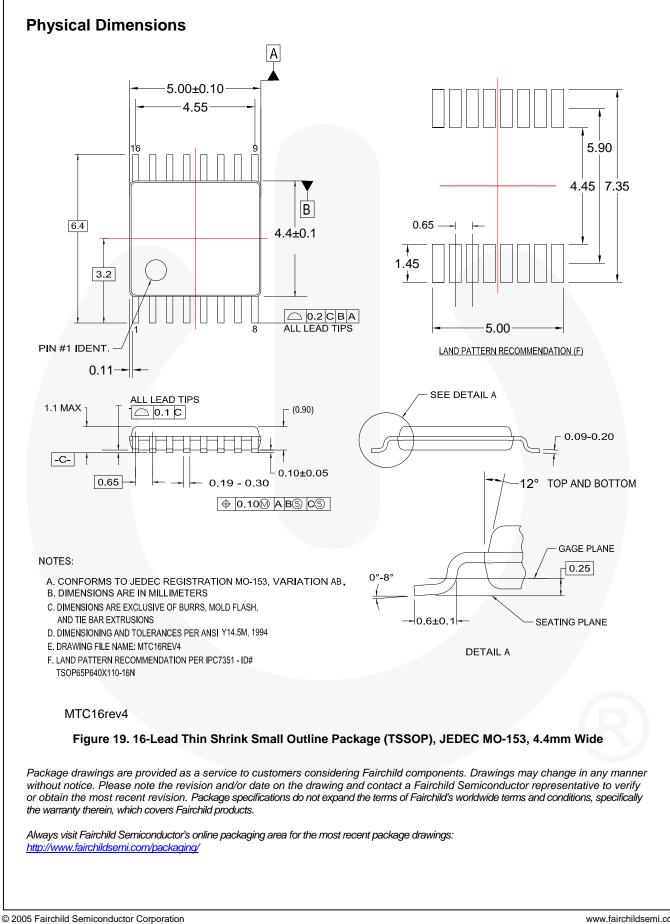
 $\ensuremath{\textcircled{O}}$ 2005 Fairchild Semiconductor Corporation FSUSB22 \bullet Rev. 1.0.3



© 2005 Fairchild Semiconductor Corporation FSUSB22 • Rev. 1.0.3

FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch




© 2005 Fairchild Semiconductor Corporation FSUSB22 • Rev. 1.0.3

FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch

FSUSB22 • Rev. 1.0.3

FSUSB22 —

FSUSB22 • Rev. 1.0.3

SEMICONDUCTOR

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEX[®] Build it Now[™] CorePLUS[™] CorePOWER[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

FastvCore™

FlashWriter[®]

F-PFS™ FRFET® Global Power Resourcesm Green FPS™ Green FPS™e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR®

FPS™

PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ Sm artMax ™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ® GENERAL

The Power Franchise[®] TinyBoost[™] TinyBuck[™] TinyLogic[®] TINYOPTO[™] TinyPower[™] TinyPVM[™] TinyWire[™] µSerDes[™]

UHC[®] Ultra FRFET™ UniFET™ VCX™

VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

© 2005 Fairchild Semiconductor Corporation FSUSB22 • Rev. 1.0.3