

16

H8S/2339 Group Hardware Manual

H8S Family/H8S/2300 Series

H8S/2339 HD64F2339 HD64F2339E

H8S/2338 HD6432338

HD64F2338

H8S/2337 HD6432337

H8S/2332 HD6412332

Renesas 16-Bit Single-Chip Microcomputer

Hardware Manu

Rev. 4.00 Revision Date: Sep. 07, 2007

RenesasTechnology www.renesas.com

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Preface

This LSI is a single-chip microcomputer made up of the H8S/2000 CPU with an internal 32-bit architecture as its core, and the peripheral functions required to configure a system.

This LSI is equipped with ROM, RAM, a bus controller, data transfer controller (DTC), a 16-bit timer pulse unit (TPU), a watchdog timer (WDT), a serial communication interface (SCI), a DMA controller (DMAC), a D/A converter, an A/D converter, and I/O ports as on-chip supporting modules. This LSI is suitable for use as an embedded processor for high-level control systems. Its on-chip ROM are flash memory (F-ZTAT^{TM*}) and mask ROM that provides flexibility as it can be reprogrammed in no time to cope with all situations from the early stages of mass production to full-scale mass production. This is particularly applicable to application devices with specifications that will most probably change.

Note: * F-ZTAT is a trademark of Renesas Technology Corp.

Target Users: This manual was written for users who will be using the H8S/2339 Group in the

design of application systems. Members of this audience are expected to understand

the fundamentals of electrical circuits, logical circuits, and microcomputers.

Objective: This manual was written to explain the hardware functions and electrical

characteristics of the H8S/2339 Group to the above audience. Refer to the

H8S/2600 Series, H8S/2000 Series Software Manual for a detailed description of

the instruction set.

Notes on Reading This Manual:

- In order to understand the overall functions of the chip
 Read the manual according to the contents. This manual can be roughly categorized into parts
 on the CPU, system control functions, peripheral functions and electrical characteristics.
- In order to understand the details of the CPU's functions Read the H8S/2600 Series, H8S/2000 Series Software Manual.
- In order to understand the details of a register when its name is known
 The addresses, bits, and initial values of the registers are summarized in appendix B, Internal I/O Registers.

Example: Bit order: The MSB is on the left and the LSB is on the right.

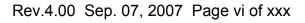
Related Manuals: The latest versions of all related manuals are available from our web site.

Please ensure you have the latest versions of all documents you require.

(http://www.renesas.com/eng/)

Rev.4.00 Sep. 07, 2007 Page v of xxx

H8S/2339 Group Manuals:


Document Title	Document No.
H8S/2339 Group Hardware Manual	This manual
H8S/2600 Series, H8S/2000 Series Software Manual	REJ09B0139

User's Manuals for Development Tools:

Document Title	Document No.
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimized Linkage Editor Compiler Package Ver.6.01 User's Manual	REJ10B0161
H8S, H8/300 Series Simulator/Debugger (for Windows) User's Manual	ADE-702-037
H8S, H8/300 Series High-performance Embedded Workshop User's Manual	ADE-702-201

Application Notes:

Document Title	Document No.
H8S Family Technical Q & A	REJ05B0397

Main Revisions for This Edition

Item	Page	Revision (Se	e Manua	I for Details)		
1.1 Overview	6	Table amende	ed			
Table 1.1 Overview		Item	Specific	cation		
		Product lineup			Condition A	Condition B
			Model	HD64F2339E*	—	0
				HD64F2339	_	0
				HD6432338	0	0
1.3.1 Pin Arrangement Figure 1.4 HD64F2339E Pin Arrangement (TFP- 144G: Top View)	10	P5 ₅ /AN ₁₄ /DA ₂ □ P5 ₆ /AN ₁₄ /DA ₂ □ P5 ₇ /AN ₁₅ /DA ₃ □ AV _{CC} □ V _{rof} □	10 10 10 10 10 10 10 10	Pe_4/A_ 10	22. 25. 27. 27. 28. 28. 29. 33. 33. 34. 35. 36. 37. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38	27 27 28 27 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20

Item	Page	Revision (See	Manual fo	r Det	ails)		
6.3.5 Chip Select	153	Description amended					
Signals		Enabling or disabling of \overline{CS}_n signal output is performed by setting the data direction register (DDR) bit for the port corresponding to the particular \overline{CS}_n pin, the CS/67 enable bit (CS/67E), and the CS25 enable bit (CS25E).					
		placed in the oplaced in the i	output state nput state a rell as bits <u>C</u>	after a fter a S/67E	a reset. reset, s <u>and</u> C	Pins \overline{CS} so the co	
		In expanded nare all placed corresponding should be set details,	in the input DDR bits a	state s well	after a I as bits	reset, so CS/67E	and CS25E
•	579 to 594	594 Note shown below deleted					
Timer		Note: The WDTOVF pin function cannot be used in the F-ZTAT version.					
14.2.8 Bit Rate Register (BRR)	616	Table 14.3 am	ended				
Table 14.3 BRR					φ = 25	MHz	
Settings for Various Bit Rates (Asynchronous			Bit Rate (bits/s)	n	N	Error (%)	
Mode)			110	3	110	-0.02	
			150	3	80	0.47	
			300	2	162	-0.15	
			600	2	80	0.47	
			1200	1	162	-0.15	
			2400	1	80	0.47	
			4800	0	162	-0.15	
			9600	0	80	0.47	
			19200	0	40	-0.76	
			31250	0	24	1.00	
			38400	0	19	1.73	
19.4.1 Features	738	Description an	nended				
		• Reprogran	nming capal	oility			
		The flash men	nory can be	repro	gramm	ed min. 1	100 times.

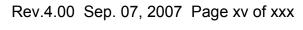
Item	Page	Revision	(See Manual for D	etails)				
19.13.1 Features	789	Description	n amended					
		Reprogramming capability						
		The flash i	memory can be rep	rogrami	med r	min. 100) time	es.
22.2.6 Flash Memory	910	Table 22.2	21 amended					
Characteristics		Item		Symbol	Min	Тур	Max	Unit
Table 22.21 Flash		Erase time*1*3*	······································	t _E	_	50	1000	ms/block
Memory Characteristics		Reprogramming count		N_{WEC}	100*7	10000*8		Times
		Data retention t	ime ^{*9}	t _{DRP}	10	_	_	Years
		Programming	Wait time after SWE b	oit x	1	_	_	μS
	911	Notes 7 to 9 added						
		Notes: 7. Minimum number of times for which all characteristics are guaranteed after rewriting (Guarantee range is 1 to minimum value).						
		 Reference value for 25°C (as a guideline, rewriting should normally function up to this value). 						
		Data retention characteristic when rewriting is performed within the specification range, including the minimum value.						
D.1 Port States in	1207	Note *1 de	eleted					
Each Mode		(Before) W	/DTOVF*1 → (After	r) WDT	OVF			
Table D.1 I/O Port States in Each	1208	Note 1 shown below deleted						
Processing State		Note: 1. The WDTOVF pin function cannot be used in the F-ZTAT version.						

Contents

Secti	on 1	Overview	1				
1.1		iew	1				
1.2 Block Diagram							
1.3	Pin De	escription	8				
	1.3.1	Pin Arrangement	8				
	1.3.2	Pin Functions in Each Operating Mode	11				
1.4	Pin Fu	inctions	17				
Secti	on 2	CPU	25				
2.1			25				
2.1	2.1.1		25				
	2.1.1		26				
	2.1.2		27				
	2.1.3		27				
2.2			28				
2.3			31				
2.4		1	32				
4 , 1	2.4.1	E	32				
	2.4.2		33				
	2.4.3	\mathcal{E}	34				
	2.4.4		36				
2.5	Data F		36				
	2.5.1		37				
	2.5.2		39				
2.6	Instruction Set						
	2.6.1	Overview	40				
	2.6.2	Instructions and Addressing Modes	41				
	2.6.3	Table of Instructions Classified by Function	42				
	2.6.4	Basic Instruction Formats	52				
2.7	Addre	ssing Modes and Effective Address Calculation	53				
	2.7.1	Addressing Mode	53				
	2.7.2	Effective Address Calculation	56				
2.8	Proces	ssing States	60				
	2.8.1	Overview	60				
	2.8.2	Reset State	61				
	2.8.3	Exception-Handling State	62				
	2.8.4	Program Execution State	64				

	2.8.5	Bus-Released State	64
	2.8.6	Power-Down State	65
2.9	Basic 7	Гiming	65
	2.9.1	Overview	65
	2.9.2	On-Chip Memory (ROM, RAM)	65
	2.9.3	On-Chip Supporting Module Access Timing	67
	2.9.4	External Address Space Access Timing	68
2.10	Usage	Note	68
	2.10.1	TAS Instruction	68
Sect	ion 3	MCU Operating Modes	69
3.1		iew	
	3.1.1	Operating Mode Selection (H8S/2338 F-ZTAT)	
	3.1.2	Operating Mode Selection (Mask ROM and ROMless Versions, H8S/2339 F-ZTAT)	
	3.1.3	Register Configuration	
3.2	Registe	er Descriptions	
	3.2.1	Mode Control Register (MDCR)	72
	3.2.2	System Control Register (SYSCR)	73
	3.2.3	System Control Register 2 (SYSCR2) (F-ZTAT Version Only)	74
3.3	Operat	ing Mode Descriptions	75
	3.3.1	Mode 1	75
	3.3.2	Mode 2 (H8S/2339 F-ZTAT Only)	75
	3.3.3	Mode 3 (H8S/2339 F-ZTAT Only)	75
	3.3.4	Mode 4 (Expanded Mode with On-Chip ROM Disabled)	75
	3.3.5	Mode 5 (Expanded Mode with On-Chip ROM Disabled)	75
	3.3.6	Mode 6 (Expanded Mode with On-Chip ROM Enabled)	76
	3.3.7	Mode 7 (Single-Chip Mode)	76
	3.3.8	Modes 8 and 9 (H8S/2338 F-ZTAT Only)	76
	3.3.9	Mode 10 (H8S/2338 F-ZTAT Only)	
	3.3.10	Mode 11 (H8S/2338 F-ZTAT Only)	76
	3.3.11	Modes 12 and 13 (H8S/2338 F-ZTAT Only)	76
	3.3.12	Mode 14 (H8S/2338 F-ZTAT Only)	77
	3.3.13	Mode 15 (H8S/2338 F-ZTAT Only)	77
3.4	Pin Fu	nctions in Each Operating Mode	78
3.5	Memor	ry Map in Each Operating Mode	78
Sect	ion 4	Exception Handling	
4.1	Overvi	iew	
	4.1.1	Exception Handling Types and Priority	87

Rev.4.00 Sep. 07, 2007 Page xii of xxx



	4.1.2	Exception Handling Operation.	88
	4.1.3	Exception Vector Table	
4.2	Reset		90
	4.2.1	Overview	90
	4.2.2	Reset Sequence	90
	4.2.3	Interrupts after Reset	91
	4.2.4	State of On-Chip Supporting Modules after Reset Release	91
4.3	Traces	s	92
4.4	Interru	upts	93
4.5	Trap I	nstruction	94
4.6	Stack	Status after Exception Handling	94
4.7	Notes	on Use of the Stack	95
Sec	tion 5	Interrupt Controller	97
5.1	Overv	riew	97
	5.1.1	Features	97
	5.1.2	Block Diagram	98
	5.1.3	Pin Configuration	99
	5.1.4	Register Configuration	99
5.2	Regist	ter Descriptions	100
	5.2.1	System Control Register (SYSCR)	100
	5.2.2	Interrupt Priority Registers A to K (IPRA to IPRK)	101
	5.2.3	IRQ Enable Register (IER)	102
	5.2.4	IRQ Sense Control Registers H and L (ISCRH, ISCRL)	103
	5.2.5	IRQ Status Register (ISR)	104
5.3	Interru	upt Sources	105
	5.3.1	External Interrupts	105
	5.3.2	Internal Interrupts	107
	5.3.3	Interrupt Exception Vector Table	107
5.4	Interru	upt Operation	113
	5.4.1	Interrupt Control Modes and Interrupt Operation	113
	5.4.2	Interrupt Control Mode 0	116
	5.4.3	Interrupt Control Mode 2	118
	5.4.4	Interrupt Exception Handling Sequence	120
	5.4.5	Interrupt Response Times	122
5.5	Usage	Notes	
	5.5.1	Contention between Interrupt Generation and Disabling	123
	5.5.2	Instructions That Disable Interrupts	
	5.5.3	Times when Interrupts Are Disabled	124
	5.5.4	Interrupts during Execution of EEPMOV Instruction	124

5.6	DTC a	and DMAC Activation by Interrupt	125
	5.6.1	Overview	125
	5.6.2	Block Diagram	126
	5.6.3	Operation	127
Sec	tion 6	Bus Controller	129
6.1	Overv	iew	129
	6.1.1	Features	129
	6.1.2	Block Diagram	131
	6.1.3	Pin Configuration	132
	6.1.4	Register Configuration	133
6.2	Regist	er Descriptions	134
	6.2.1	Bus Width Control Register (ABWCR)	134
	6.2.2	Access State Control Register (ASTCR)	135
	6.2.3	Wait Control Registers H and L (WCRH, WCRL)	135
	6.2.4	Bus Control Register H (BCRH)	140
	6.2.5	Bus Control Register L (BCRL)	142
	6.2.6	Memory Control Register (MCR)	144
	6.2.7	DRAM Control Register (DRAMCR)	
	6.2.8	Refresh Timer Counter (RTCNT)	148
	6.2.9	Refresh Time Control Register (RTCOR)	
6.3	Overv	iew of Bus Control	149
	6.3.1	Area Partitioning	149
	6.3.2	Bus Specifications.	150
	6.3.3	Memory Interfaces	151
	6.3.4	Advanced Mode	152
	6.3.5	Chip Select Signals	153
6.4	Basic	Bus Interface	154
	6.4.1	Overview	154
	6.4.2	Data Size and Data Alignment	
	6.4.3	Valid Strobes	
	6.4.4	Basic Timing	157
	6.4.5	Wait Control	
6.5	DRAN	M Interface	167
	6.5.1	Overview	167
	6.5.2	Setting DRAM Space	167
	6.5.3	Address Multiplexing.	168
	6.5.4	Data Bus	169
	6.5.5	Pins Used for DRAM Interface	169
	6.5.6	Basic Timing	170

	6.5.7	Precharge State Control	171
	6.5.8	Wait Control	172
	6.5.9	Byte Access Control	174
	6.5.10	Burst Operation	176
	6.5.11	Refresh Control	179
6.6	DMAC	C Single Address Mode and DRAM Interface	183
	6.6.1	When $DDS = 1$	183
	6.6.2	When $DDS = 0$	184
6.7	Burst I	ROM Interface	185
	6.7.1	Overview	185
	6.7.2	Basic Timing	185
	6.7.3	Wait Control	
6.8	Idle Cy	ycle	188
	6.8.1	Operation	188
	6.8.2	Pin States in Idle Cycle	192
6.9	Write 1	Data Buffer Function	193
6.10	Bus Re	elease	194
	6.10.1	Overview	194
	6.10.2	Operation	194
	6.10.3	Pin States in External-Bus-Released State	195
	6.10.4	Transition Timing	196
	6.10.5	Usage Note	197
6.11	Bus Aı	rbitration	197
	6.11.1	Overview	197
	6.11.2	Operation	
	6.11.3	Bus Transfer Timing	198
	6.11.4	External Bus Release Usage Note	
6.12	Resets	and Bus Controller	199
Sect	ion 7	DMA Controller	201
7.1	Overvi	iew	201
	7.1.1	Features	201
	7.1.2	Block Diagram	202
	7.1.3	Overview of Functions	203
	7.1.4	Pin Configuration	205
	7.1.5	Register Configuration	206
7.2	Registe	er Descriptions (1) (Short Address Mode)	207
	7.2.1	Memory Address Registers (MAR)	208
	7.2.2	I/O Address Register (IOAR)	209
	723	Execute Transfer Count Register (ETCR)	209

	7.2.4	DMA Control Register (DMACR)	211
	7.2.5	DMA Band Control Register (DMABCR)	215
7.3	Registe	er Descriptions (2) (Full Address Mode)	221
	7.3.1	Memory Address Register (MAR)	221
	7.3.2	I/O Address Register (IOAR)	221
	7.3.3	Execute Transfer Count Register (ETCR)	222
	7.3.4	DMA Control Register (DMACR)	224
	7.3.5	DMA Band Control Register (DMABCR)	228
7.4	Registe	er Descriptions (3)	234
	7.4.1	DMA Write Enable Register (DMAWER)	234
	7.4.2	DMA Terminal Control Register (DMATCR)	237
	7.4.3	Module Stop Control Register (MSTPCR)	238
7.5	Operat	ion	239
	7.5.1	Transfer Modes	239
	7.5.2	Sequential Mode	241
	7.5.3	Idle Mode	244
	7.5.4	Repeat Mode	247
	7.5.5	Single Address Mode	251
	7.5.6	Normal Mode	254
	7.5.7	Block Transfer Mode	257
	7.5.8	DMAC Activation Sources	263
	7.5.9	Basic DMAC Bus Cycles	
	7.5.10	DMAC Bus Cycles (Dual Address Mode)	267
	7.5.11	DMAC Bus Cycles (Single Address Mode)	275
	7.5.12	Write Data Buffer Function	281
		DMAC Multi-Channel Operation	
	7.5.14	Relation Between the DMAC and External Bus Requests, Refresh Cycles,	
		and the DTC	
		NMI Interrupts and DMAC	
		Forced Termination of DMAC Operation	
		Clearing Full Address Mode	
7.6		pts	
7.7	Usage	Notes	289
Sect	tion 8	Data Transfer Controller	295
8.1		ew	
	8.1.1	Features	295
	8.1.2	Block Diagram	296
	8.1.3	Register Configuration	297
8.2	Registe	er Descriptions	298

	8.2.1	DTC Mode Register A (MRA)	298
	8.2.2	DTC Mode Register B (MRB)	
	8.2.3	DTC Source Address Register (SAR)	301
	8.2.4	DTC Destination Address Register (DAR)	301
	8.2.5	DTC Transfer Count Register A (CRA)	302
	8.2.6	DTC Transfer Count Register B (CRB)	302
	8.2.7	DTC Enable Registers (DTCER)	303
	8.2.8	DTC Vector Register (DTVECR)	304
	8.2.9	Module Stop Control Register (MSTPCR)	
8.3	Operat	ion	305
	8.3.1	Overview	305
	8.3.2	Activation Sources	309
	8.3.3	DTC Vector Table	310
	8.3.4	Location of Register Information in Address Space	313
	8.3.5	Normal Mode	314
	8.3.6	Repeat Mode	315
	8.3.7	Block Transfer Mode	316
	8.3.8	Chain Transfer	318
	8.3.9	Operation Timing	319
	8.3.10	Number of DTC Execution States	
	8.3.11	Procedures for Using DTC	322
	8.3.12	-	
8.4	Interru	pts	327
8.5	Usage	Notes	328
Sect	tion 9	I/O Ports	329
9.1	Overvi	ew	329
9.2	Port 1.		334
	9.2.1	Overview	334
	9.2.2	Register Configuration	335
	9.2.3	Pin Functions	337
9.3	Port 2.		345
	9.3.1	Overview	345
	9.3.2	Register Configuration	346
	9.3.3	Pin Functions	
9.4	Port 3.		356
	9.4.1	Overview	
	9.4.2	Register Configuration	
	9.4.3	Pin Functions	
9.5	Port 4.		361

	9.5.1	Overview	361
	9.5.2	Register Configuration	361
	9.5.3	Pin Functions	362
9.6	Port 5.		362
	9.6.1	Overview	362
	9.6.2	Register Configuration	364
	9.6.3	Pin Functions	368
9.7	Port 6.		370
	9.7.1	Overview	370
	9.7.2	Register Configuration	371
	9.7.3	Pin Functions	374
9.8	Port 7.		376
	9.8.1	Overview	376
	9.8.2	Register Configuration	377
	9.8.3	Pin Functions	379
9.9	Port 8.		381
	9.9.1	Overview	381
	9.9.2	Register Configuration	382
	9.9.3	Pin Functions	385
9.10	Port 9.		387
	9.10.1	Overview	387
	9.10.2	Register Configuration	388
	9.10.3	Pin Functions	391
9.11	Port A		393
	9.11.1	Overview	393
	9.11.2	Register Configuration	394
	9.11.3	Pin Functions	398
	9.11.4	MOS Input Pull-Up Function.	400
9.12	Port B		401
	9.12.1	Overview	401
	9.12.2	Register Configuration	402
	9.12.3	Pin Functions	404
	9.12.4	MOS Input Pull-Up Function.	406
9.13	Port C		407
	9.13.1	Overview	407
	9.13.2	Register Configuration	408
	9.13.3	Pin Functions	410
	9.13.4	MOS Input Pull-Up Function.	412
9.14	Port D		413
	9.14.1	Overview	413

	9.14.2	Register Configuration	414
	9.14.3	Pin Functions	416
	9.14.4	MOS Input Pull-Up Function	418
9.15	Port E		419
	9.15.1	Overview	419
	9.15.2	Register Configuration	420
	9.15.3	Pin Functions	423
	9.15.4	MOS Input Pull-Up Function	425
9.16	Port F.		426
	9.16.1	Overview	426
	9.16.2	Register Configuration	427
	9.16.3	Pin Functions	431
9.17	Port G		433
	9.17.1	Overview	433
	9.17.2	Register Configuration	434
	9.17.3	Pin Functions	437
Sect	ion 10	16-Bit Timer Pulse Unit (TPU)	439
10.1		iew	
	10.1.1	Features	439
	10.1.2	Block Diagram	443
	10.1.3	Pin Configuration	444
	10.1.4	Register Configuration	446
10.2	Registe	er Descriptions	448
	10.2.1	Timer Control Registers (TCR)	448
	10.2.2	Timer Mode Registers (TMDR)	453
	10.2.3	Timer I/O Control Registers (TIOR)	455
	10.2.4	Timer Interrupt Enable Registers (TIER)	468
	10.2.5	Timer Status Registers (TSR)	471
	10.2.6	Timer Counters (TCNT)	474
	10.2.7	Timer General Registers (TGR)	475
	10.2.8	Timer Start Register (TSTR)	476
	10.2.9	Timer Synchro Register (TSYR)	477
	10.2.10	0 Module Stop Control Register (MSTPCR)	478
10.3	Interfa	ce to Bus Master	479
	10.3.1	16-Bit Registers	479
	10.3.2	8-Bit Registers	479
10.4	Operat	tion	481
	10.4.1	Overview	481
	10.4.2	Basic Functions	482

Rev.4.00 Sep. 07, 2007 Page xix of xxx

	10.4.3	Synchronous Operation	488
	10.4.4	Buffer Operation	490
	10.4.5	Cascaded Operation	494
	10.4.6	PWM Modes	496
	10.4.7	Phase Counting Mode	502
10.5	Interru	pts	508
	10.5.1	Interrupt Sources and Priorities	508
	10.5.2	DTC/DMAC Activation	510
	10.5.3	A/D Converter Activation	510
10.6	Operat	ion Timing	511
	10.6.1	Input/Output Timing	511
	10.6.2	Interrupt Signal Timing	515
10.7	Usage	Notes	519
Sect	ion 11	Programmable Pulse Generator (PPG)	529
11.1	Overvi	ew	529
	11.1.1	Features	529
	11.1.2	Block Diagram	530
	11.1.3	Pin Configuration	531
	11.1.4	Registers	532
11.2	Registe	er Descriptions	533
	11.2.1	Next Data Enable Registers H and L (NDERH, NDERL)	533
	11.2.2	Output Data Registers H and L (PODRH, PODRL)	534
	11.2.3	Next Data Registers H and L (NDRH, NDRL)	535
	11.2.4	Notes on NDR Access	535
		PPG Output Control Register (PCR)	
	11.2.6	PPG Output Mode Register (PMR)	539
	11.2.7	Port 1 Data Direction Register (P1DDR)	541
	11.2.8	Port 2 Data Direction Register (P2DDR)	542
	11.2.9	Module Stop Control Register (MSTPCR)	542
11.3	Operat	ion	543
	11.3.1	Overview	543
	11.3.2	Output Timing	544
	11.3.3	Normal Pulse Output	545
	11.3.4	Non-Overlapping Pulse Output	547
	11.3.5	Inverted Pulse Output	550
		Pulse Output Triggered by Input Capture	
11.4		Notes	
		Operation of Pulse Output Pins	
	11.4.2	Note on Non-Overlapping Output	552

Sect	ion 12	8-Bit Timers	555
12.1	Overvi	ew	555
	12.1.1	Features	555
	12.1.2	Block Diagram	556
	12.1.3	Pin Configuration	557
	12.1.4	Register Configuration	557
12.2	Registe	er Descriptions	558
	12.2.1	Timer Counters 0 and 1 (TCNT0, TCNT1)	558
	12.2.2	Time Constant Registers A0 and A1 (TCORA0, TCORA1)	558
	12.2.3	Time Constant Registers B0 and B1 (TCORB0, TCORB1)	559
	12.2.4	Time Control Registers 0 and 1 (TCR0, TCR1)	559
	12.2.5	Timer Control/Status Registers 0 and 1 (TCSR0, TCSR1)	561
	12.2.6	Module Stop Control Register (MSTPCR)	564
12.3	Operat	ion	565
	12.3.1	TCNT Incrementation Timing	565
	12.3.2	Compare Match Timing	566
	12.3.3	Timing of TCNT External Reset	568
	12.3.4	Timing of Overflow Flag (OVF) Setting	568
	12.3.5	Operation with Cascaded Connection	569
12.4	Interru	pts	570
	12.4.1	Interrupt Sources and DTC Activation	570
	12.4.2	A/D Converter Activation	570
12.5	Sample	e Application	571
12.6	Usage	Notes	572
	12.6.1	Contention between TCNT Write and Clear	572
		Contention between TCNT Write and Increment	
	12.6.3	Contention between TCOR Write and Compare Match	574
	12.6.4	Contention between Compare Matches A and B	575
	12.6.5	Switching of Internal Clocks and TCNT Operation	575
	12.6.6	Interrupts and Module Stop Mode	577
Sect	ion 13	Watchdog Timer	579
13.1		iew	
	13.1.1	Features	579
	13.1.2	Block Diagram	580
		Pin Configuration	
	13.1.4	Register Configuration	581
13.2		er Descriptions	
		Timer Counter (TCNT)	
	13.2.2	Timer Control/Status Register (TCSR)	583

	13.2.3	Reset Control/Status Register (RSTCSR)	585
	13.2.4	Notes on Register Access	586
13.3	Operat	ion	587
	13.3.1	Operation in Watchdog Timer Mode	587
	13.3.2	Operation in Interval Timer Mode	589
	13.3.3	Timing of Overflow Flag (OVF) Setting	590
	13.3.4	Timing of Watchdog Timer Overflow Flag (WOVF) Setting	591
13.4	Interru	pts	592
13.5	Usage	Notes	592
	13.5.1	Contention between Timer Counter (TCNT) Write and Increment	592
	13.5.2	Changing Value of CKS2 to CKS0	593
	13.5.3	Switching between Watchdog Timer Mode and Interval Timer Mode	593
	13.5.4	System Reset by WDTOVF Signal	593
	13.5.5	Internal Reset in Watchdog Timer Mode	594
Sect	ion 14	Serial Communication Interface (SCI)	595
14.1		ew	
	14.1.1	Features	595
	14.1.2	Block Diagram	597
	14.1.3	Pin Configuration	598
	14.1.4	Register Configuration	599
14.2	Registe	er Descriptions	600
	14.2.1	Receive Shift Register (RSR)	600
	14.2.2	Receive Data Register (RDR)	600
	14.2.3	Transmit Shift Register (TSR)	601
	14.2.4	Transmit Data Register (TDR)	601
	14.2.5	Serial Mode Register (SMR)	602
	14.2.6	Serial Control Register (SCR)	605
	14.2.7	Serial Status Register (SSR)	609
	14.2.8	Bit Rate Register (BRR)	613
	14.2.9	Smart Card Mode Register (SCMR)	621
	14.2.10	Module Stop Control Register (MSTPCR)	623
14.3	Operat	ion	624
	14.3.1	Overview	624
	14.3.2	Operation in Asynchronous Mode	626
	14.3.3	Multiprocessor Communication Function.	637
	14.3.4	Operation in Synchronous Mode	645
14.4	SCI Int	terrupts	654
14 5	Usage	Notes	656

Sect	ion 15	Smart Card Interface	665
15.1	Overvi	ew	665
	15.1.1	Features	665
	15.1.2	Block Diagram	666
	15.1.3	Pin Configuration	667
	15.1.4	Register Configuration	668
15.2	Registe	er Descriptions	669
	15.2.1	Smart Card Mode Register (SCMR)	669
	15.2.2	Serial Status Register (SSR)	671
	15.2.3	Serial Mode Register (SMR)	673
	15.2.4	Serial Control Register (SCR)	675
15.3	Operat	ion	676
	15.3.1	Overview	676
	15.3.2	Pin Connections	676
	15.3.3	Data Format	678
	15.3.4	Register Settings	680
	15.3.5	Clock	682
	15.3.6	Data Transfer Operations	684
	15.3.7	Operation in GSM Mode	692
	15.3.8	Operation in Block Transfer Mode	693
15.4	Usage	Notes	694
Sect	ion 16	A/D Converter (12 Analog Input Channel Version)	699
16.1	Overvi	ew	699
	16.1.1	Features	699
		Block Diagram	
	16.1.3	Pin Configuration	701
	16.1.4	Register Configuration	702
16.2	Registe	er Descriptions	703
	16.2.1	A/D Data Registers A to D (ADDRA to ADDRD)	703
	16.2.2	A/D Control/Status Register (ADCSR)	704
	16.2.3	A/D Control Register (ADCR)	706
	16.2.4	Module Stop Control Register (MSTPCR)	707
16.3	Interfa	ce to Bus Master	708
16.4	-	ion	
	16.4.1	Single Mode ($SCAN = 0$)	709
	16.4.2	Scan Mode (SCAN = 1)	711
	16.4.3	Input Sampling and A/D Conversion Time	713
	16.4.4	External Trigger Input Timing	714
16.5	Interru	pts	715

16.6	Usage	Notes	716
Sect	ion 17	D/A Converter	721
17.1		iew	
	17.1.1	Features	721
	17.1.2	Block Diagram	722
	17.1.3	Pin Configuration	723
		Register Configuration	
17.2	Registe	er Descriptions	724
	17.2.1	D/A Data Registers 0 to 3 (DADR0 to DADR3)	724
	17.2.2	D/A Control Registers 01 and 23 (DACR01, DACR23)	724
	17.2.3	Module Stop Control Register (MSTPCR)	726
17.3	Operat	ion	727
Sect	ion 18	RAM	729
18.1	Overvi	iew	729
	18.1.1	Block Diagram	729
		Register Configuration	
18.2	Registe	er Descriptions	730
	18.2.1	System Control Register (SYSCR)	730
18.3	Operat	ion	731
18.4	Usage	Note	731
Sect	ion 19	ROM	733
19.1		iew	
	19.1.1	Block Diagram	733
		Register Configuration	
19.2		er Descriptions	
	_	Mode Control Register (MDCR)	
	19.2.2	Bus Control Register L (BCRL)	735
19.3	Operat	ion	735
19.4	Overvi	iew of Flash Memory (H8S/2339 F-ZTAT)	738
	19.4.1	Features	738
	19.4.2	Overview	739
	19.4.3	Flash Memory Operating Modes	740
	19.4.4	On-Board Programming Modes	741
	19.4.5	Flash Memory Emulation in RAM	743
	19.4.6	Differences between Boot Mode and User Program Mode	744
	19.4.7	Block Configuration	745
	19.4.8	Pin Configuration	746

	19.4.9 Register Configuration	747
19.5	Register Descriptions	748
	19.5.1 Flash Memory Control Register 1 (FLMCR1)	748
	19.5.2 Flash Memory Control Register 2 (FLMCR2)	751
	19.5.3 Erase Block Register 1 (EBR1)	752
	19.5.4 Erase Block Registers 2 (EBR2)	752
	19.5.5 System Control Register 2 (SYSCR2)	753
	19.5.6 RAM Emulation Register (RAMER)	754
19.6	On-Board Programming Modes	756
	19.6.1 Boot Mode	757
	19.6.2 User Program Mode	761
19.7	Programming/Erasing Flash Memory	763
	19.7.1 Program Mode	763
	19.7.2 Program-Verify Mode	764
	19.7.3 Erase Mode	766
	19.7.4 Erase-Verify Mode	766
19.8	Flash Memory Protection	768
	19.8.1 Hardware Protection	768
	19.8.2 Software Protection	768
	19.8.3 Error Protection.	769
19.9	Flash Memory Emulation in RAM	
	19.9.1 Emulation in RAM	771
	19.9.2 RAM Overlap	772
19.10	Interrupt Handling when Programming/Erasing Flash Memory	773
19.11	Flash Memory PROM Mode	
	19.11.1 PROM Mode Setting.	
	19.11.2 Socket Adapters and Memory Map	
	19.11.3 PROM Mode Operation	
	19.11.4 Memory Read Mode	
	19.11.5 Auto-Program Mode	
	19.11.6 Auto-Erase Mode	
	19.11.7 Status Read Mode	
	19.11.8 Status Polling	
	19.11.9 PROM Mode Transition Time	
	19.11.10 Notes on Memory Programming	
	Flash Memory Programming and Erasing Precautions	
19.13	Overview of Flash Memory (H8S/2338 F-ZTAT)	
	19.13.1 Features	
	19.13.2 Overview	
	19.13.3 Flash Memory Operating Modes	791

	19.13.4 On-Board Programming Modes	792
	19.13.5 Flash Memory Emulation in RAM	794
	19.13.6 Differences between Boot Mode and User Program Mode	795
	19.13.7 Block Configuration	796
	19.13.8 Pin Configuration	797
	19.13.9 Register Configuration	798
19.14	Register Descriptions	799
	19.14.1 Flash Memory Control Register 1 (FLMCR1)	799
	19.14.2 Flash Memory Control Register 2 (FLMCR2)	802
	19.14.3 Erase Block Register 1 (EBR1)	803
	19.14.4 Erase Block Registers 2 (EBR2)	803
	19.14.5 System Control Register 2 (SYSCR2)	804
	19.14.6 RAM Emulation Register (RAMER)	805
19.15	On-Board Programming Modes	807
	19.15.1 Boot Mode	807
	19.15.2 User Program Mode	813
19.16	Programming/Erasing Flash Memory	815
	19.16.1 Program Mode	815
	19.16.2 Program-Verify Mode	816
	19.16.3 Erase Mode	818
	19.16.4 Erase-Verify Mode	818
19.17	Flash Memory Protection.	820
	19.17.1 Hardware Protection	820
	19.17.2 Software Protection	820
	19.17.3 Error Protection.	821
19.18	Flash Memory Emulation in RAM	823
	19.18.1 Emulation in RAM	823
	19.18.2 RAM Overlap	824
19.19	Interrupt Handling when Programming/Erasing Flash Memory	825
19.20	Flash Memory PROM Mode	
	19.20.1 PROM Mode Setting.	826
	19.20.2 Socket Adapters and Memory Map	827
	19.20.3 PROM Mode Operation	829
	19.20.4 Memory Read Mode	830
	19.20.5 Auto-Program Mode	834
	19.20.6 Auto-Erase Mode	836
	19.20.7 Status Read Mode	838
	19.20.8 Status Polling	839
	19.20.9 PROM Mode Transition Time	840
	19.20.10 Notes on Memory Programming.	841

19.21	Flash N	Memory Programming and Erasing Precautions	841
Secti	on 20	Clock Pulse Generator	847
20.1		ew	
	20.1.1	Block Diagram	847
	20.1.2	Register Configuration	848
20.2	Registe	er Descriptions	848
	20.2.1	System Clock Control Register (SCKCR)	848
20.3	Oscilla	tor	850
	20.3.1	Connecting a Crystal Resonator	850
	20.3.2	External Clock Input	852
20.4		djustment Circuit	
20.5	Mediu	n-Speed Clock Divider	854
20.6		aster Clock Selection Circuit	
Secti	on 21	Power-Down Modes	855
21.1		ew	
		Register Configuration	
21.2		er Descriptions	
	_	Standby Control Register (SBYCR)	
	21.2.2	•	
	21.2.3	Module Stop Control Register (MSTPCR)	
21.3		n-Speed Mode	
21.4		Mode	
21.5		e Stop Mode	
		Module Stop Mode	
		Usage Notes	
21.6		re Standby Mode	
	21.6.1		
	21.6.2	Clearing Software Standby Mode	
	21.6.3	·	
	21.6.4	Software Standby Mode Application Example	
		Usage Notes	
21.7		are Standby Mode	
		Hardware Standby Mode	
		Hardware Standby Mode Timing	
21.8		Coutput Disabling Function	

Sect	tion 22 Electrical Characteristics	871
22.1	Electrical Characteristics of Mask ROM Version (H8S/2338, H8S/2337)	
	and ROMless Version (H8S/2332)	871
	22.1.1 Absolute Maximum Ratings	871
	22.1.2 DC Characteristics	872
	22.1.3 AC Characteristics	874
	22.1.4 A/D Conversion Characteristics	898
	22.1.5 D/A Conversion Characteristics	899
22.2	Electrical Characteristics of F-ZTAT Version (H8S/2339, H8S/2339E, H8S/2	338) 900
	22.2.1 Absolute Maximum Ratings	900
	22.2.2 DC Characteristics	901
	22.2.3 AC Characteristics	904
	22.2.4 A/D Conversion Characteristics	909
	22.2.5 D/A Conversion Characteristics	909
	22.2.6 Flash Memory Characteristics	910
22.3	Usage Note	911
Ann	pendix A Instruction Set	913
A.1	Instruction List	
A.2	Instruction Codes	
A.3	Operation Code Map	
A.4	Number of States Required for Instruction Execution	
A.5	Bus States during Instruction Execution	
A.6	Condition Code Modification	
Ann	pendix B Internal I/O Registers	990
	List of Registers (Address Order)	
B.2	List of Registers (By Module)	
B.3	Functions	
	pendix C I/O Port Block Diagrams	
C.1	Port 1	
C.2	Port 2	
C.3	Port 3	
C.4	Port 4	
C.5	Port 5	
C.6	Port 6	
C.7	Port 7	
C.8	Port 8	
C.9	Port 9	1180

C.10 P	ort A	1182
C.11 P	ort B	1185
C.12 P	Port C	1186
C.13 P	ort D	1187
C.14 P	ort E	1188
C.15 P	ort F	1189
C.16 P	Port G	1197
Appen	dix D Pin States	1201
D.1 P	Port States in Each Mode	1201
Appen	dix E Product Lineup	1209
Appen	dix F Package Dimensions	1210

Section 1 Overview

1.1 Overview

The H8S/2339 Group is a series of microcomputers (MCUs: microcomputer units), built around the H8S/2000 CPU, employing Renesas' proprietary architecture, and equipped with peripheral functions on-chip.

The H8S/2000 CPU has an internal 32-bit architecture, is provided with sixteen 16-bit general registers and a concise, optimized instruction set designed for high-speed operation, and can address a 16-Mbyte linear address space. The instruction set is upward-compatible with H8/300 and H8/300H CPU instructions at the object-code level, facilitating migration from the H8/300, H8/300L, or H8/300H Series.

On-chip peripheral functions required for system configuration include DMA controller (DMAC) and data transfer controller (DTC) bus masters, ROM, RAM, a 16-bit timer pulse unit (TPU), programmable pulse generator (PPG), 8-bit timer, watchdog timer (WDT), serial communication interface (SCI), A/D converter, D/A converter, and I/O ports.

A high-functionality bus controller is also provided, enabling fast and easy connection of DRAM and other kinds of memory.

Single-power-supply flash memory (F-ZTAT^{TM*}) and mask ROM versions are available, providing a quick and flexible response to conditions from ramp-up through full-scale volume production, even for applications with frequently changing specifications. ROM is connected to the CPU via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching is thus speeded up, and processing speed increased.

The features of the H8S/2339 Group are shown in table 1.1.

Note: * F-ZTAT is a trademark of Renesas Technology Corp.

Table 1.1 **Overview**

Item CPU

General-register machine

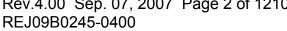
Specification

- Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- High-speed operation suitable for realtime control
 - Maximum clock rate: 25 MHz
 - High-speed arithmetic operations

8/16/32-bit register-register add/subtract: 40 ns (at 25-MHz operation)

16 × 16-bit register-register multiply: 800 ns (at 25-MHz operation)

32 ÷ 16-bit register-register divide: 800 ns (at 25-MHz operation)


- Instruction set suitable for high-speed operation
 - Sixty-five basic instructions
 - 8/16/32-bit data transfer, arithmetic, and logic instructions
 - Unsigned/signed multiply and divide instructions
 - Powerful bit-manipulation instructions
- CPU operating mode
 - Advanced mode: 16-Mbyte address space

Bus controller

- Address space divided into 8 areas, with bus specifications settable independently for each area
- Chip select output possible for each area
- Choice of 8-bit or 16-bit access space for each area
- 2-state or 3-state access space can be designated for each area
- Number of program wait states can be set for each area
- Maximum 8-Mbyte DRAM directly connectable (or use of interval timer possible)
- External bus release function

DMA controller (DMAC)

- Choice of short address mode or full address mode
- 4 channels in short address mode 2 channels in full address mode
- Transfer possible in repeat mode, block transfer mode, etc.
- Single address mode transfer possible
- Can be activated by internal interrupt

Downloaded from Elcodis.com electronic components distributor

Item	Specification			
Data transfer controller (DTC)	 Can be activated by internal interrupt or software Multiple transfers or multiple types of transfer possible for one activation source 			
	 Transfer possible in repeat mode, block transfer mode, etc. Request can be sent to CPU for interrupt that activated DTC 			
16-bit timer pulse unit (TPU)	 6-channel 16-bit timer on-chip Pulse I/O processing capability for up to 16 pins Automatic 2-phase encoder count capability 			
Programmable pulse generator (PPG)	 Maximum 16-bit pulse output possible with TPU as time base Output trigger selectable in 4-bit groups Non-overlap margin can be set Direct output or inverse output setting possible 			
8-bit timer, 2 channels	 8-bit up-counter (external event count capability) Two time constant registers Two-channel connection possible 			
Watchdog timer • Watchdog timer or interval timer selectable				
Serial communication interface (SCI), 3 channels	 Asynchronous mode or synchronous mode selectable Multiprocessor communication function Smart card interface function 			
A/D converter	 Resolution: 10 bits Input: 12 channels 6.7-µs minimum conversion time (at 20-MHz operation) Single or scan mode selectable Sample-and-hold function A/D conversion can be activated by external trigger or timer trigger 			
D/A converter	Resolution: 8 bitsOutput: 4 channels			
I/O ports	106 input/output pins, 12 input-only pins			

Item	Specification					
Memory	Flash memory and mask ROM					
	High-speed static RAM					
	Product Name	ROM	RAM			
	H8S/2339	384 kbytes	32 kbytes			
	H8S/2338	256 kbytes	8 kbytes			
	H8S/2337	128 kbytes	8 kbytes			
	H8S/2332	_	8 kbytes	-		
			_			
Interrupt	 Nine external interrupt pins (NMI, IRQ₀ to IRQ₇) 					
controller	52 internal interrupt sources					
	Eight priority levels settable					
Power-down state	Medium-speed mode					
	Sleep mode					
	Module stop mode					
	Software stand	by mode				
	Hardware stand	dby mode				
	Variable clock division ratio					

Item Specification

Operating modes

• Eight MCU operating modes (H8S/2338 F-ZTAT)

	CPU Operating			External Data Bus	
Mode	Mode	Description	On-Chip ROM	Initial Value	Maximum Value
1		_	_	_	_
2					
3					
4	Advanced	Expanded mode with on-chip ROM disabled	Disabled	16 bits	16 bits
5	_			8 bits	16 bits
6	_	Expanded mode with on-chip ROM enabled	Enabled	8 bits	16 bits
7	_	Single-chip mode		_	_
8	_	_	_	_	_
9					
10	Advanced	Boot mode	Enabled	8 bits	16 bits
11	_			_	_
12	_	_	_	_	_
13					
14	Advanced	User program mode	Enabled	8 bits	16 bits
15				_	

• Four MCU operating modes (H8S/2339 F-ZTAT, Mask ROM, and ROMless versions)

	CPU Operating			External Data Bus		
Mode	. •	Description	On-Chip ROM	Initial Value	Maximum Value	
1	_	_	_	_	_	
2						
3	_					
4*	Advanced	Expanded mode with on-chip ROM disabled	Disabled	16 bits	16 bits	
5*	_	Expanded mode with on-chip ROM disabled	Disabled	8 bits	16 bits	
6	_	Expanded mode with on-chip ROM enabled	Enabled	8 bits	16 bits	
7	_	Single-chip mode	Enabled	_	_	
Note: * Only modes 4 and 5 are provided in the ROMless version.						

Item	Specification				
Clock pulse generator	Built-in duty correction circuit				
Product lineup			Condition A	Condition B	
	Operati	ing power supply voltage	2.7 to 3.6 V	3.0 to 3.6 V	
	Operati	ing frequency	2 to 20 MHz	2 to 25 MHz	
	Model	HD64F2339E*	_	0	
		HD64F2339	_	0	
		HD6432338	0	0	
		HD64F2338	_	0	
		HD6432337	0	0	
		HD6412332	0	0	
	O: Prod	ducts in the current lineup			
	Note: * The on-chip debug function can be used with the E10-A emulator (E10-A compatible version). However, some function modules and pin functions are unavailable when the on-chip debug function is in use. Refer to figure 1.2, Pin Arrangement.				
Package	• 144	-pin plastic QFP (FP-144	G)		

1.2 Block Diagram

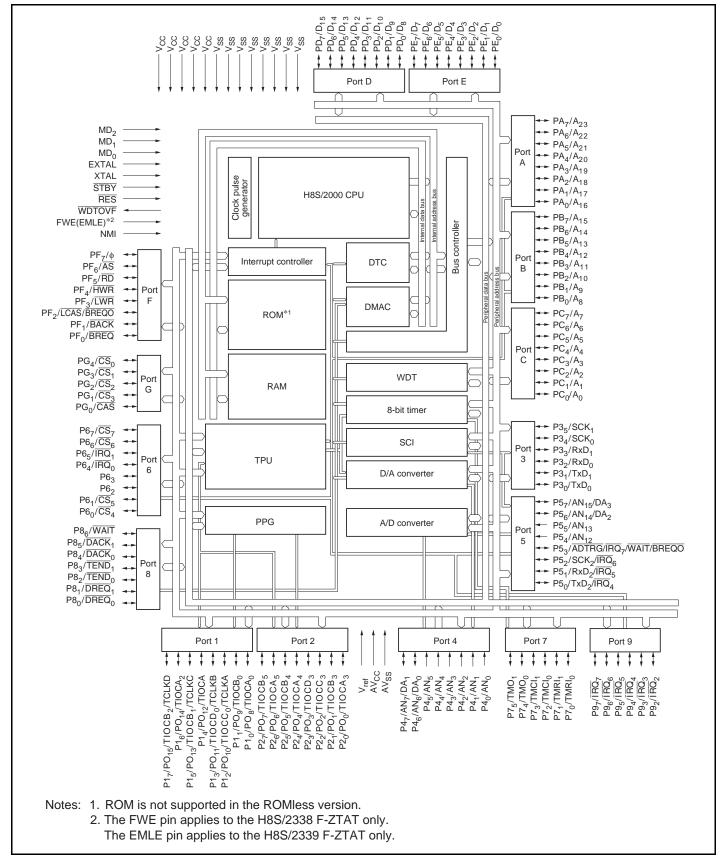


Figure 1.1 Internal Block Diagram

1.3 Pin Description

1.3.1 Pin Arrangement

Figures 1.2 and 1.3 show the pin arrangement of the H8S/2339 Group.

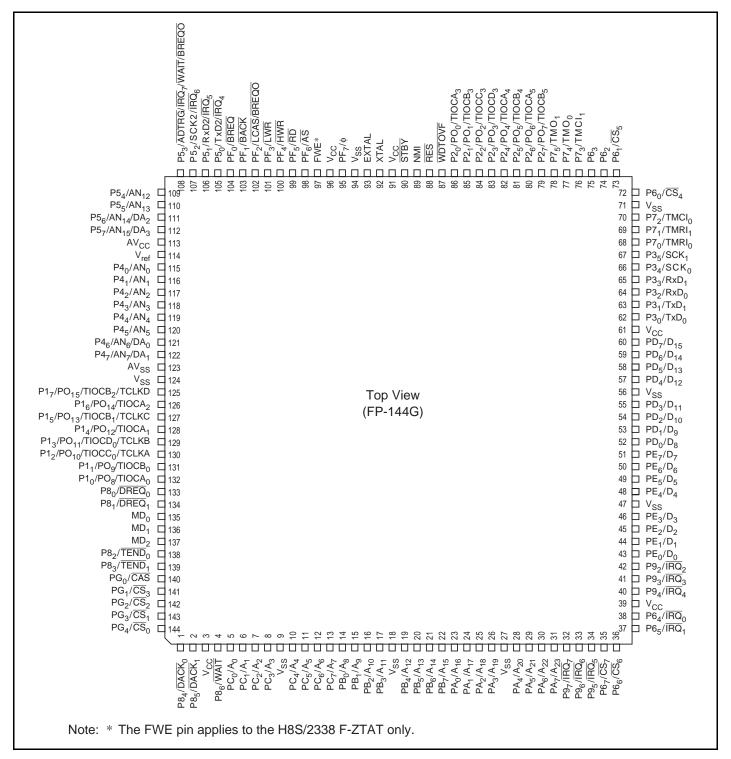


Figure 1.2 H8S/2338, H8S/2337, H8S/2332 Pin Arrangement (TFP-144G: Top View)

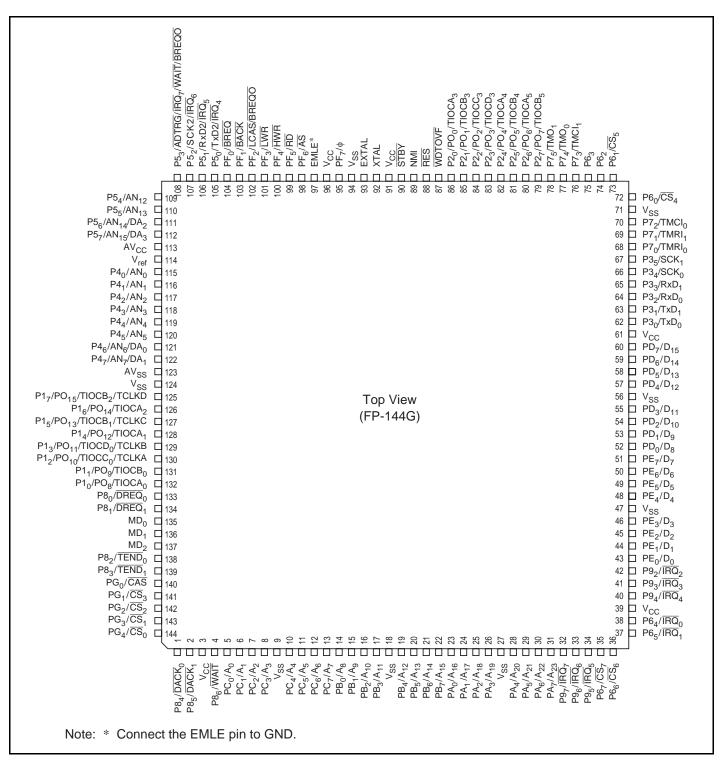


Figure 1.3 HD64F2339 Pin Arrangement (TFP-144G: Top View)

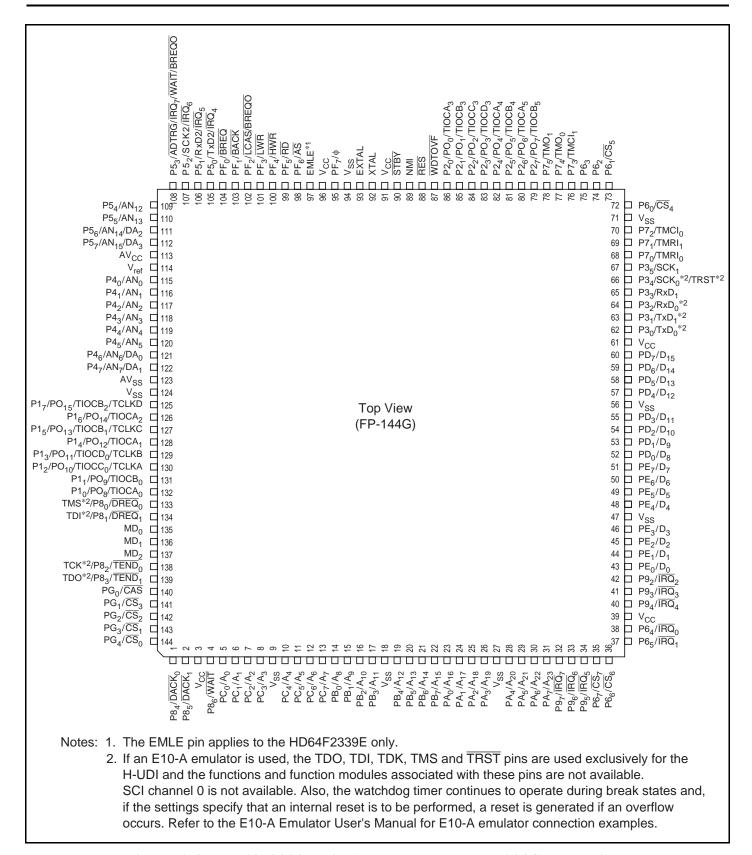


Figure 1.4 HD64F2339E Pin Arrangement (TFP-144G: Top View)

1.3.2 Pin Functions in Each Operating Mode

Table 1.2 Pin Functions in Each Operating Mode

Pin No. Pin Name

FP-144G	Mode 4*1	Mode 5 ^{*1}	Mode 6	Mode 7	Flash Memory Programmer Mode	
1	P8 ₄ /DACK ₀	NC				
2	P8 ₅ /DACK ₁	NC				
3	V _{CC}					
4	P8 ₆ /WAIT	P8 ₆ /WAIT	P8 ₆ /WAIT	P8 ₆	NC	
5	A ₀	A ₀	PC ₀ /A ₀	PC ₀	A ₀	
6	A ₁	A ₁	PC ₁ /A ₁	PC ₁	A ₁	
7	A ₂	A ₂	PC ₂ /A ₂	PC ₂	A ₂	
8	A ₃	A ₃	PC ₃ /A ₃	PC ₃	A ₃	
9	V _{SS}					
10	A ₄	A ₄	PC ₄ /A ₄	PC ₄	A ₄	
11	A ₅	A ₅	PC ₅ /A ₅	PC ₅	A ₅	
12	A ₆	A ₆	PC ₆ /A ₆	PC ₆	A ₆	
13	A ₇	A ₇	PC ₇ /A ₇	PC ₇	A ₇	
14	A ₈	A ₈	PB ₀ /A ₈	PB ₀	A ₈	
15	A ₉	A ₉	PB ₁ /A ₉	PB₁	A ₉	
16	A ₁₀	A ₁₀	PB ₂ /A ₁₀	PB ₂	A ₁₀	
17	A ₁₁	A ₁₁	PB ₃ /A ₁₁	PB ₃	A ₁₁	
18	V _{SS}					
19	A ₁₂	A ₁₂	PB ₄ /A ₁₂	PB ₄	A ₁₂	
20	A ₁₃	A ₁₃	PB ₅ /A ₁₃	PB ₅	A ₁₃	
21	A ₁₄	A ₁₄	PB ₆ /A ₁₄	PB ₆	A ₁₄	
22	A ₁₅	A ₁₅	PB ₇ /A ₁₅	PB ₇	A ₁₅	
23	A ₁₆	A ₁₆	PA ₀ /A ₁₆	PA ₀	A ₁₆	
24	A ₁₇	A ₁₇	PA ₁ /A ₁₇	PA ₁	A ₁₇	
25	A ₁₈	A ₁₈	PA ₂ /A ₁₈	PA ₂	A ₁₈	
26	A ₁₉	A ₁₉	PA ₃ /A ₁₉	PA ₃	NC	
27	V _{SS}	V _{SS}	V _{SS}	V_{SS}	V _{SS}	

Din No	Pin Name
Pin No.	Pin Name

FP-144G	Mode 4*1	ode 4 ^{*1} Mode 5 ^{*1}		Mode 7	Flash Memory Programmer Mode	
28	A ₂₀	A ₂₀	Mode 6 PA ₄ /A ₂₀	PA ₄	NC	
29	PA ₅ /A ₂₁	PA ₅ /A ₂₁	PA ₅ /A ₂₁	PA ₅	NC	
30	PA ₆ /A ₂₂	PA ₆ /A ₂₂	PA ₆ /A ₂₂	PA ₆	NC	
31	PA ₇ /A ₂₃	PA ₇ /A ₂₃	PA ₇ /A ₂₃	PA ₇	NC	
32	P9 ₇ /IRQ ₇	P9 ₇ /IRQ ₇	P9 ₇ /IRQ ₇	P9 ₇ /IRQ ₇	NC	
33	P9 ₆ /IRQ ₆	P9 ₆ /IRQ ₆	P9 ₆ /IRQ ₆	P9 ₆ /IRQ ₆	NC	
34	P9 ₅ /IRQ ₅	P9 ₅ /IRQ ₅	P9 ₅ /IRQ ₅	P9 ₅ /IRQ ₅	NC	
35	P6 ₇ / CS ₇	P6 ₇ /CS ₇	P6 ₇ /CS ₇	P6 ₇	NC	
36	P6 ₆ /CS ₆	P6 ₆ /CS ₆	P6 ₆ /CS ₆	P6 ₆	Vcc	
37	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	V_{SS}	
38	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	V_{SS}	
39	V _{CC}	V_{CC}	V_{CC}	V _{CC}	V_{CC}	
40	P9 ₄ /IRQ ₄	P9 ₄ /IRQ ₄	P9 ₄ /IRQ ₄	P9 ₄ /IRQ ₄	NC	
41	P9 ₃ /IRQ ₃	P9 ₃ /IRQ ₃	P9 ₃ /IRQ ₃	P9 ₃ /IRQ ₃	NC	
42	P9 ₂ /IRQ ₂	P9 ₂ /IRQ ₂	P9 ₂ /IRQ ₂	P9 ₂ /IRQ ₂	NC	
43	PE ₀ /D ₀	PE ₀ /D ₀	PE ₀ /D ₀	PE ₀	NC	
44	PE ₁ /D ₁	PE ₁ /D ₁	PE ₁ /D ₁	PE ₁	NC	
45	PE ₂ /D ₂	PE ₂ /D ₂	PE ₂ /D ₂	PE ₂	NC	
46	PE ₃ /D ₃	PE ₃ /D ₃	PE ₃ /D ₃	PE ₃	NC	
47	V _{SS}	V_{SS}	V _{SS}	V _{SS}	V_{SS}	
48	PE ₄ /D ₄	PE ₄ /D ₄	PE ₄ /D ₄	PE ₄	NC	
49	PE ₅ /D ₅	PE ₅ /D ₅	PE ₅ /D ₅	PE ₅	NC	
50	PE ₆ /D ₆	PE ₆ /D ₆	PE ₆ /D ₆	PE ₆	NC	
51	PE ₇ /D ₇	PE ₇ /D ₇	PE ₇ /D ₇	PE ₇	NC	
52	D ₈	D ₈	D ₈	PD ₀	I/O ₀	
53	D ₉	D ₉	D ₉	PD ₁	I/O ₁	
54	D ₁₀	D ₁₀	D ₁₀	PD ₂	I/O ₂	
55	D ₁₁	D ₁₁	D ₁₁	PD ₃	I/O ₃	
56	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	

Pin No. Pin Name

FP-144G	Mode 4*1	Mode 5*1	Mode 6	Mode 7	Flash Memory Programmer Mode	
57	D ₁₂	D ₁₂	D ₁₂	PD ₄	I/O ₄	
58	D ₁₃	D ₁₃	D ₁₃	PD ₅	I/O ₅	
59	D ₁₄	D ₁₄	D ₁₄	PD ₆	I/O ₆	
60	D ₁₅	D ₁₅	D ₁₅	PD ₇	I/O ₇	
61	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	
62	P3 ₀ /TxD ₀	NC				
63	P3 ₁ /TxD ₁	NC				
64	P3 ₂ /RxD ₀	V _{CC}				
65	P3 ₃ /RxD ₁	NC				
66	P3 ₄ /SCK ₀	NC				
67	P3 ₅ /SCK ₁	NC				
68	P7 ₀ /TMRI ₀	NC				
69	P7 ₁ /TMRI ₁	NC				
70	P7 ₂ /TMCI ₀	NC				
71	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	
72	P6 ₀ /CS ₄	P6 ₀ /CS ₄	P6 ₀ /CS ₄	P6 ₀	NC	
73	P6 ₁ / \overline{CS}_5	P6 ₁ /CS ₅	P6 ₁ /CS ₅	P6 ₁	NC	
74	P6 ₂	P6 ₂	P6 ₂	P6 ₂	NC	
75	P6 ₃	P6 ₃	P6 ₃	P6 ₃	NC	
76	P7 ₃ /TMCI ₁	NC				
77	P7 ₄ /TMO ₀	NC				
78	P7 ₅ /TMO ₁	NC				
79	P2 ₇ /PO ₇ /TIOCB ₅	NC				
80	P2 ₆ /PO ₆ /TIOCA ₅	NC				
81	P2 ₅ /PO ₅ /TIOCB ₄	V _{SS}				
82	P2 ₄ /PO ₄ /TIOCA ₄	WE				
83	P2 ₃ /PO ₃ /TIOCD ₃	CE				
84	P2 ₂ /PO ₂ /TIOCC ₃	ŌĒ				
85	P2 ₁ /PO ₁ /TIOCB ₃	NC				

Pin No.		Pin Name

FP-144G	Mode 4*1	Mode 5 ^{*1}	Mode 6	Mode 7	Flash Memory Programmer Mode	
86	P2 ₀ /PO ₀ /TIOCA ₃	P2 ₀ /PO ₀ /TIOCA ₃	P2 ₀ /PO ₀ /TIOCA ₃	P2 ₀ /PO ₀ /TIOCA ₃	NC	
87	WDTOVF	WDTOVF	WDTOVF	WDTOVF	NC	
88	RES	RES	RES	RES	RES	
89	NMI	NMI	NMI	NMI	V _{CC}	
90	STBY	STBY	STBY	STBY	V _{CC}	
91	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	
92	XTAL	XTAL	XTAL	XTAL	XTAL	
93	EXTAL	EXTAL	EXTAL	EXTAL	EXTAL	
94	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	
95	PF ₇ /φ	PF ₇ /φ	PF ₇ /φ	PF ₇ /φ	NC	
96	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	
97	FWE (EMLE)*2	FWE (EMLE)*2	FWE (EMLE)*2	FWE (EMLE)*2	FWE (EMLE)*2	
98	PF ₆ /AS	PF ₆ /AS	PF ₆ /AS	PF ₆	NC	
99	RD	RD	RD	PF ₅	NC	
100	HWR	HWR	HWR	PF ₄	NC	
101	PF ₃ / LWR	PF ₃ /LWR	PF ₃ /LWR	PF ₃	NC	
102	PF ₂ /LCAS/ BREQO	PF ₂ /LCAS/ BREQO	PF ₂ /LCAS/ PF ₂ BREQO		NC	
103	PF₁/BACK	PF₁/BACK	PF₁/BACK	PF ₁	NC	
104	PF ₀ /BREQ	PF ₀ /BREQ	PF ₀ /BREQ	PF ₀	NC	
105	P5 ₀ /TxD ₂ /IRQ ₄	P5 ₀ /TxD ₂ /IRQ ₄	P5 ₀ /TxD ₂ /IRQ ₄	P5 ₀ /TxD ₂ /IRQ ₄	NC	
106	P5 ₁ /RxD ₂ /IRQ ₅	P5 ₁ /RxD ₂ /IRQ ₅	P5 ₁ /RxD ₂ /IRQ ₅	P5 ₁ /RxD ₂ /IRQ ₅	NC	
107	P5 ₂ /SCK ₂ /IRQ ₆	P5 ₂ /SCK ₂ /IRQ ₆	P5 ₂ /SCK ₂ /IRQ ₆	P5 ₂ /SCK ₂ /IRQ ₆	NC	
108	P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	P5 ₃ /ADTRG/ IRQ ₇	NC	
109	P5 ₄ /AN ₁₂	P5 ₄ /AN ₁₂	P5 ₄ /AN ₁₂	P5 ₄ /AN ₁₂	NC	
110	P5 ₅ /AN ₁₃	P5 ₅ /AN ₁₃	P5 ₅ /AN ₁₃	P5 ₅ /AN ₁₃	NC	
111	P5 ₆ /AN ₁₄ /DA ₂	P5 ₆ /AN ₁₄ /DA ₂	P5 ₆ /AN ₁₄ /DA ₂	P5 ₆ /AN ₁₄ /DA ₂	NC	
112	P5 ₇ /AN ₁₅ /DA ₃	P5 ₇ /AN ₁₅ /DA ₃	P5 ₇ /AN ₁₅ /DA ₃	P5 ₇ /AN ₁₅ /DA ₃	NC	

Pin No. Pin Name

FP-144G	Mode 4*1	Mode 5 ^{*1}	Mode 6	Mode 7	Flash Memory Programmer Mode	
113	AV _{CC}	AV _{CC}	AV _{CC}	AV _{CC}	V _{CC}	
114	V_{ref}	V _{ref}	V _{ref}	V_{ref}	V _{CC}	
115	P4 ₀ /AN ₀	P4 ₀ /AN ₀	P4 ₀ /AN ₀	P4 ₀ /AN ₀	NC	
116	P4 ₁ /AN ₁	P4 ₁ /AN ₁	P4 ₁ /AN ₁	P4 ₁ /AN ₁	NC	
117	P4 ₂ /AN ₂	P4 ₂ /AN ₂	P4 ₂ /AN ₂	P4 ₂ /AN ₂	NC	
118	P4 ₃ /AN ₃	P4 ₃ /AN ₃	P4 ₃ /AN ₃	P4 ₃ /AN ₃	NC	
119	P4 ₄ /AN ₄	P4 ₄ /AN ₄	P4 ₄ /AN ₄	P4 ₄ /AN ₄	NC	
120	P4 ₅ /AN ₅	P4 ₅ /AN ₅	P4 ₅ /AN ₅	P4 ₅ /AN ₅	NC	
121	P4 ₆ /AN ₆ /DA ₀	P4 ₆ /AN ₆ /DA ₀	P4 ₆ /AN ₆ /DA ₀	P4 ₆ /AN ₆ /DA ₀	NC	
122	P4 ₇ /AN ₇ /DA ₁	P4 ₇ /AN ₇ /DA ₁	P4 ₇ /AN ₇ /DA ₁	P4 ₇ /AN ₇ /DA ₁	NC	
123	AV _{SS}	AV _{SS}	AV _{SS}	AV _{SS}	V _{SS}	
124	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	
125	P1 ₇ /PO ₁₅ / TIOCB ₂ /TCLKD	P1 ₇ /PO ₁₅ / TIOCB ₂ /TCLKD	P1 ₇ /PO ₁₅ / TIOCB ₂ /TCLKD	P1 ₇ /PO ₁₅ / TIOCB ₂ /TCLKD	NC	
126	P1 ₆ /PO ₁₄ / TIOCA ₂	P1 ₆ /PO ₁₄ / TIOCA ₂	P1 ₆ /PO ₁₄ / TIOCA ₂	P1 ₆ /PO ₁₄ / TIOCA ₂	NC	
127	P1 ₅ /PO ₁₃ / TIOCB ₁ /TCLKC	P1 ₅ /PO ₁₃ / TIOCB ₁ /TCLKC	P1 ₅ /PO ₁₃ / P1 ₅ /PO ₁₃ / TIOCB ₁ /TCLKC TIOCB ₁ /TCLI		NC	
128	P1 ₄ /PO ₁₂ / TIOCA ₁	P1 ₄ /PO ₁₂ / TIOCA ₁	P1 ₄ /PO ₁₂ / TIOCA ₁	P1 ₄ /PO ₁₂ / TIOCA ₁	NC	
129	P1 ₃ /PO ₁₁ / TIOCD ₀ /TCLKB	P1 ₃ /PO ₁₁ / TIOCD ₀ /TCLKB	P1 ₃ /PO ₁₁ / P1 ₃ /PO ₁₁ / TIOCD ₀ /TCLKB		NC	
130	P1 ₂ /PO ₁₀ / TIOCC ₀ /TCLKA	P1 ₂ /PO ₁₀ / TIOCC ₀ /TCLKA	P1 ₂ /PO ₁₀ / TIOCC ₀ /TCLKA	P1 ₂ /PO ₁₀ / TIOCC ₀ /TCLKA	NC	
131	P1 ₁ /PO ₉ /TIOCB ₀	P1 ₁ /PO ₉ /TIOCB ₀	P1 ₁ /PO ₉ /TIOCB ₀	P1 ₁ /PO ₉ /TIOCB ₀	NC	
132	P1 ₀ /PO ₈ /TIOCA ₀	P1 ₀ /PO ₈ /TIOCA ₀	P1 ₀ /PO ₈ /TIOCA ₀	P1 ₀ /PO ₈ /TIOCA ₀	NC	
133	P8 ₀ /DREQ ₀	P8 ₀ /DREQ ₀	P8 ₀ /DREQ ₀	P8 ₀ /DREQ ₀	NC	
134	P8 ₁ /DREQ ₁	P8 ₁ /DREQ ₁	P8 ₁ /DREQ ₁	P8 ₁ /DREQ ₁	NC	
135	MD_0	MD_0	MD_0	MD_0	V _{SS}	
136	MD_1	MD_1	MD_1	MD_1	V _{SS}	

Pin No.	Pin Name

FP-144G	Mode 4*1	Mode 5 ^{*1}	Mode 6	Mode 7	Flash Memory Programmer Mode
137	MD ₂	MD ₂	MD ₂	MD ₂	V _{SS}
138	P8 ₂ /TEND ₀	P8 ₂ /TEND ₀	P8 ₂ /TEND ₀	P8 ₂ /TEND ₀	NC
139	P8 ₃ /TEND ₁	P8 ₃ /TEND ₁	P8 ₃ /TEND ₁	P8 ₃ /TEND ₁	NC
140	PG ₀ /CAS	PG ₀ /CAS	PG ₀ /CAS	PG ₀	NC
141	PG₁/ CS ₃	PG₁/ CS ₃	PG₁/ CS ₃	PG₁	NC
142	PG ₂ / CS ₂	PG_2/\overline{CS}_2	PG ₂ / CS ₂	PG ₂	NC
143	PG ₃ / CS ₁	PG ₃ / CS ₁	PG ₃ / CS ₁	PG ₃	NC
144	PG ₄ /CS ₀	PG ₄ /CS ₀	PG ₄ /CS ₀	PG ₄	NC

Notes: 1. Only modes 4 and 5 are provided in the ROMless version.

2. The FWE pin applies to the H8S/2338 F-ZTAT only. The EMLE pin applies to the H8S/2339 F-ZTAT only.

1.4 Pin Functions

Table 1.3 Pin Functions

		Pin No.		
Туре	Symbol	FP-144G	I/O	Name and Function
Power	V _{CC}	3, 39, 61, 91, 96	Input	Power supply: For connection to the power supply. All V_{CC} pins should be connected to the system power supply.
	V _{SS}	9, 18, 27, 47, 56, 71, 94, 124	Input	Ground: For connection to ground (0 V). All V _{SS} pins should be connected to the system power supply (0 V).
Clock	XTAL	92	Input	Connects to a crystal resonator. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal resonator and external clock input.
	EXTAL	93	Input	Connects to a crystal resonator. The EXTAL pin can also input an external clock. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal resonator and external clock input.
	ф	95	Output	System clock: Supplies the system clock to an external device.

		Pin No.							
Туре	Symbol	FP-144G	I/O	Name	and F	unctio	า		
Operating mode control	MD ₂ to	137 to 135	Input	The re MD ₀ a These is ope	Mode pins: These pins set the operating mode. The relation between the settings of pins MD ₂ to MD ₀ and the operating mode is shown below. These pins should not be changed while the chip is operating. H8S/2338 F-ZTAT:				
				FWE	MD_2	MD ₁	MD_0	Operating Mode	
				0	0	0	1	_	
						1	0	_	
							1	_	
					1	0	0	Mode 4	
							1	Mode 5	
						1	0	Mode 6	
							1	Mode 7	
				1	0	0	0	_	
							1		
						1	0	Mode 10	
							1	Mode 11	
					1	0	0	_	
							1	_	
						1	0	Mode 14	
							1	Mode 15	

		Pin No.						
Туре	Symbol	FP-144G	I/O	Name a	nd Func	tion		
Operating mode control	MD ₂ to MD ₀	137 to 135	Input	H8S/23 versions		T, Mask	ROM, and ROMless	
				MD_2	MD_1	MD_0	Operating Mode	
				0	0	1	_	
					1	0	_	
						1	_	
				1	0	0	Mode 4	
						1	Mode 5	
					1	0	Mode 6*	
						1	Mode 7*	
					Modes 6 ROMless		e not provided in the	
System control	RES	88	Input	Reset input: When this pin is driven low, the chip is reset.				
	STBY	90	Input		-	•	s driven low, a ware standby mode.	
	BREQ	104	Input		quest: Us bus requ	•	external bus master to chip.	
	BREQO	102,108	Output	Bus request output: The external bus request signal used when an internal bus master accesses external space in the external busreleased state.				
	BACK	103	Output		Bus request acknowledge: Indicates that the bus has been released to an external bus master.			
	FWE*1	97	Input	memory	/ program Mless ve	ming. In	oles/disables flash the mask ROM version nnect this pin to	
	EMLE*2	97	Input	Emulat (0 V).	or enable	e: For cor	nnection to ground	

		Pin No.		
Туре	Symbol	FP-144G	I/O	Name and Function
Interrupts	NMI	89	Input	Nonmaskable interrupt: Requests a nonmaskable interrupt. When this pin is not used, it should be fixed high.
	IRQ ₇ to	32 to 34, 40 to 42, 37, 38 108 to 105	Input	Interrupt request 7 to 0: These pins request a maskable interrupt.
Address bus	A ₂₃ to A ₀	31 to 28, 26 to 19, 17 to 10, 8 to 5	Output	Address bus: These pins output an address.
Data bus	D_{15} to D_0	60 to 57, 55 to 48, 46 to 43	I/O	Data bus: These pins constitute a bidirectional data bus.
Bus control	$\overline{\text{CS}}_7$ to $\overline{\text{CS}}_0$	35, 36, 61, 60, 141 to 144	-	Chip select: Signals for selecting areas 7 to 0.
	ĀS	98	Output	Address strobe: When this pin is low, it indicates that address output on the address bus is enabled.
	RD	99	Output	Read: When this pin is low, it indicates that the external address space can be read.
	HWR	100	Output	High write/write enable: A strobe signal that writes to external space and indicates that the upper half (D_{15} to D_8) of the data bus is enabled. The 2-CAS type DRAM write enable signal.
	<u>LWR</u>	101	Output	Low write: A strobe signal that writes to external space and indicates that the lower half (D ₇ to D ₀) of the data bus is enabled.
	CAS	140	Output	Upper column address strobe/column address strobe: The 2-CAS type DRAM upper column address strobe signal.
	LCAS	102	Output	Lower column address strobe: The 2-CAS type DRAM lower column address strobe signal.

		Pin No.		
Туре	Symbol	FP-144G	I/O	Name and Function
Bus control	WAIT	4,108	Input	Wait: Requests insertion of a wait state in the bus cycle when accessing external 3-state address space.
DMA controller (DMAC)	DREQ ₁ ,	134,133	Input	DMA request 1 and 0: These pins request DMAC activation.
	TEND ₁ , TEND ₀	139,138	Output	DMA transfer end 1 and 0: These pins indicate the end of DMAC data transfer.
	DACK ₁ ,	2,1	Output	DMA transfer acknowledge 1 and 0: These are the DMAC single address transfer acknowledge pins.
16-bit timer pulse unit (TPU)	TCLKD to TCLKA	125, 127, 129, 130	Input	Clock input D to A: These pins input an external clock.
,	TIOCA ₀ , TIOCB ₀ , TIOCC ₀ , TIOCD ₀	132 to 129) I/O	Input capture/output compare match A0 to D0: The TGR0A to TGR0D input capture input or output compare output, or PWM output pins.
	TIOCA ₁ , TIOCB ₁	128, 127	I/O	Input capture/output compare match A1 and B1: The TGR1A and TGR1B input capture input or output compare output, or PWM output pins.
	TIOCA ₂ , TIOCB ₂	126, 125	I/O	Input capture/output compare match A2 and B2: The TGR2A and TGR2B input capture input or output compare output, or PWM output pins.
	TIOCA ₃ , TIOCB ₃ , TIOCC ₃ , TIOCD ₃	86 to 83	I/O	Input capture/output compare match A3 to D3: The TGR3A to TGR3D input capture input or output compare output, or PWM output pins.
	TIOCA ₄ , TIOCB ₄	82, 81	I/O	Input capture/output compare match A4 and B4: The TGR4A and TGR4B input capture input or output compare output, or PWM output pins.
	TIOCA ₅ , TIOCB ₅	80, 79	I/O	Input capture/output compare match A5 and B5: The TGR5A and TGR5B input capture input or output compare output, or PWM output pins.

		Pin No.		
Туре	Symbol	FP-144G	I/O	Name and Function
Programmable pulse generator (PPG)	PO ₁₅ to PO ₀	125 to 132, 79 to 86	Output	Pulse output 15 to 0: Pulse output pins.
8-bit timer	TMO ₀ , TMO ₁	77, 78	Output	Compare match output: The compare match output pins.
	TMCI ₀ , TMCI ₁	70, 76	Input	Counter external clock input: Input pins for the external clock input to the counter.
	TMRI ₀ , TMRI ₁	68, 69	Input	Counter external reset input: The counter reset input pins.
Watchdog timer (WDT)	WDTOVF	87	Output	Watchdog timer overflow: The counter overflow signal output pin in watchdog timer mode.
Serial communication interface (SCI)/	TxD ₂ , TxD ₁ , TxD ₀	105, 63, 62	Output	Transmit data (channel 0, 1, 2): Data output pins.
smart card interface	RxD ₂ , RxD ₁ , RxD ₀	106, 65, 64	Input	Receive data (channel 0, 1, 2): Data input pins.
	SCK ₂ , SCK ₁ , SCK ₀	107, 67, 66	I/O	Serial clock (channel 0, 1, 2): Clock I/O pins.
A/D converter	AN_{15} to AN_{12} , AN_7 to AN_0	112 to 109, 122 to 115	Input	Analog 15 to 12, and 7 to 0: Analog input pins.
	ADTRG	108	Input	A/D conversion external trigger input: Pin for input of an external trigger to start A/D conversion.
D/A converter	DA ₃ , DA ₂ , DA ₁ , DA ₀	112, 111, 122, 121	Output	Analog output: D/A converter analog output pins.

		Pin No.		
Туре	Symbol	FP-144G	I/O	Name and Function
A/D converter and D/A converter	AV _{CC}	113	Input	This is the power supply pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+3 V).
	AV _{SS}	123	Input	This is the ground pin for the A/D converter and D/A converter. This pin should be connected to the system power supply (0 V).
	V _{ref}	114	Input	This is the reference voltage input pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+3 V).
I/O ports	P1 ₇ to P1 ₀	125 to 132	I/O	Port 1: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 1 data direction register (P1DDR).
	P2 ₇ to P2 ₀	79 to 86	I/O	Port 2: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 2 data direction register (P2DDR).
	P3 ₅ to P3 ₀	67 to 62	I/O	Port 3: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 3 data direction register (P3DDR).
	P4 ₇ to	122 to 115	Input	Port 4: An 8-bit input port.
	P5 ₇ to P5 ₀	112 to 109, 108 to 105	Input I/O	Port 5: A 4-bit input port and a 4-bit I/O port. For P5 ₃ to P5 ₀ , input or output can be designated for each bit by means of the port 5 data direction register (P5DDR).
	P6 ₇ to P6 ₀	35 to 38, 75 to 72	I/O	Port 6: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 6 data direction register (P6DDR).
	P7 ₅ to P7 ₀	78 to 76, 70 to 68	I/O	Port 7: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 7 data direction register (P7DDR).
	P8 ₆ to P8 ₀	4, 2, 1, 139, 138, 134, 133	I/O	Port 8: A 7-bit I/O port. Input or output can be designated for each bit by means of the port 8 data direction register (P8DDR).

		Pin No.		
Туре	Symbol	FP-144G	I/O	Name and Function
I/O ports	P9 ₇ to P9 ₂	32 to 34, 40 to 42	I/O	Port 9: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 9 data direction register (P9DDR).
	PA ₇ to PA ₀	31 to 28, 26 to 23	I/O	Port A: An 8-bit I/O port. Input or output can be designated for each bit by means of the port A data direction register (PADDR).
	PB ₇ to PB ₀	22 to 19, 17 to 14	I/O	Port B: An 8-bit I/O port. Input or output can be designated for each bit by means of the port B data direction register (PBDDR).
	PC ₇ to PC ₀	13 to 10, 8 to 5	I/O	Port C: An 8-bit I/O port. Input or output can be designated for each bit by means of the port C data direction register (PCDDR).
	PD ₇ to PD ₀	60 to 57, 55 to 52	I/O	Port D: An 8-bit I/O port. Input or output can be designated for each bit by means of the port D data direction register (PDDDR).
	PE ₇ to PE ₀	51 to 48, 46 to 43	I/O	Port E: An 8-bit I/O port. Input or output can be designated for each bit by means of the port E data direction register (PEDDR).
	PF ₇ to PF ₀	95, 98 to 104	I/O	Port F: An 8-bit I/O port. Input or output can be designated for each bit by means of the port F data direction register (PFDDR).
	PG ₄ to PG ₀	144 to 140	I/O	Port G: A 5-bit I/O port. Input or output can be designated for each bit by means of the port G data direction register (PGDDR).

Notes: 1. Applies to the H8S/2338 F-ZTAT only.

2. Applies to the H8S/2339 F-ZTAT only.

Section 2 CPU

2.1 Overview

The H8S/2000 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the H8/300 and H8/300H CPUs. The H8S/2000 CPU has sixteen 16-bit general registers, can address a 16-Mbyte (architecturally 4-Gbyte) linear address space, and is ideal for realtime control.

2.1.1 Features

The H8S/2000 CPU has the following features.

- Upward-compatible with H8/300 and H8/300H CPUs
 - Can execute H8/300 and H8/300H object programs
- General-register architecture
 - Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- Sixty-five basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 16-Mbyte address space
 - Program: 16 Mbytes
 - Data: 16 Mbytes (4 Gbytes architecturally)

- High-speed operation
 - All frequently-used instructions execute in one or two states
 - Maximum clock rate: 25 MHz
 - 8/16/32-bit register-register add/subtract: 40 ns
 - 8×8 -bit register-register multiply: 480 ns
 - $16 \div 8$ -bit register-register divide: 480 ns
 - 16×16 -bit register-register multiply: 800 ns
 - $-32 \div 16$ -bit register-register divide: 800 ns
- CPU operating mode
 - Advanced mode
- Power-down state
 - Transition to power-down state by SLEEP instruction
 - CPU clock speed selection

2.1.2 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are as shown below.

- Register configuration
 - The MAC register is supported only by the H8S/2600 CPU.
- Basic instructions
 - The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported only by the H8S/2600 CPU.
- Number of execution states

The number of exection states of the MULXU and MULXS instructions.

Instruction	Mnemonic	H8S/2600	H8S/2000	
MULXU	MULXU.B Rs, Rd	3	12	
	MULXU.W Rs, ERd	4	20	
MULXS	MULXS.B Rs, Rd	4	13	
	MULXS.W Rs, ERd	5	21	

There are also differences in the address space, CCR and EXR functions, power-down state, etc., depending on the product.

2.1.3 Differences from H8/300 CPU

In comparison to the H8/300 CPU, the H8S/2000 CPU has the following enhancements.

- More general registers and control registers
 - Eight 16-bit expanded registers, and one 8-bit control register, have been added.
- Expanded address space
 - Advanced mode supports a maximum 16-Mbyte address space.
- Enhanced addressing
 - The addressing modes have been enhanced to make effective use of the 16-Mbyte address space.
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced.
 - Signed multiply and divide instructions have been added.
 - Two-bit shift instructions have been added.
 - Instructions for saving and restoring multiple registers have been added.
 - A test and set instruction has been added.
- Higher speed
 - Basic instructions execute twice as fast.

2.1.4 Differences from H8/300H CPU

In comparison to the H8/300H CPU, the H8S/2000 CPU has the following enhancements.

- Additional control register
 - One 8-bit control register has been added.
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced.
 - Two-bit shift instructions have been added.
 - Instructions for saving and restoring multiple registers have been added.
 - A test and set instruction has been added.
- Higher speed
 - Basic instructions execute twice as fast.

2.2 **CPU Operating Modes**

The H8S/2339 Group CPU has advanced operating mode. Advanced mode supports a maximum 16-Mbyte total address space (architecturally a maximum 16-Mbyte program area and a maximum of 4 Gbytes for program and data areas combined). The mode is selected by the mode pins of the microcontroller.

Advanced Mode

Address Space: Linear access is provided to a 16-Mbyte maximum address space (architecturally a maximum 16-Mbyte program area and a maximum 4-Gbyte data area, with a maximum of 4 Gbytes for program and data areas combined).

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers or address registers.

RENESAS

Instruction Set: All instructions and addressing modes can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top area starting at H'000000000 is allocated to the exception vector table in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 2.1). For details of the exception vector table, see section 4, Exception Handling.

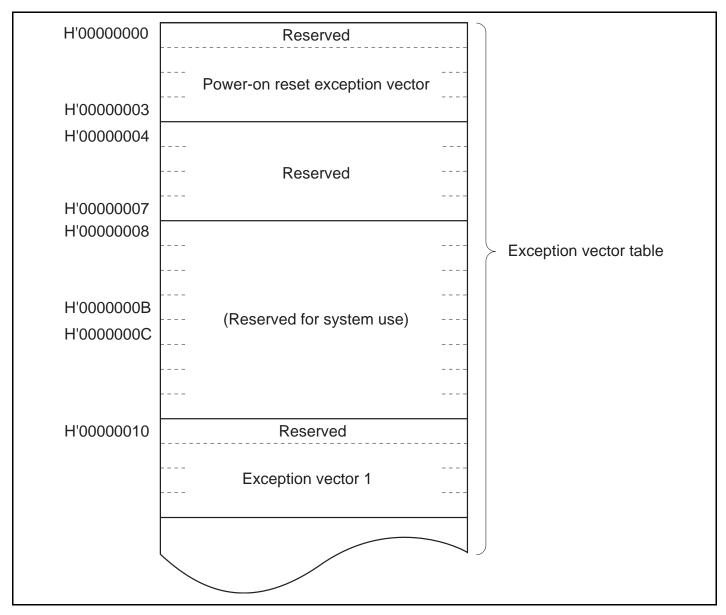


Figure 2.1 Exception Vector Table (Advanced Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In advanced mode the operand is a 32-bit longword operand, providing a 32-bit branch address. The upper 8 bits of these 32 bits are a reserved area that is regarded as H'00. Branch addresses can be stored in the area from H'000000000 to H'000000FF. Note that the first part of this range is also the exception vector table.

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.2. When EXR is invalid, it is not pushed onto the stack. For details, see section 4, Exception Handling.

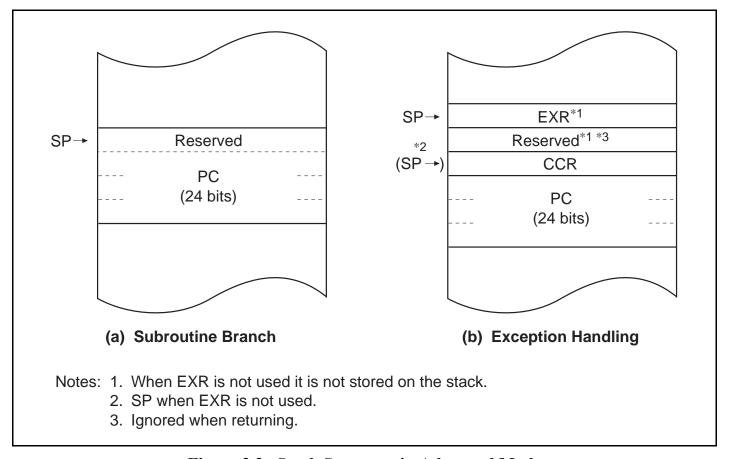


Figure 2.2 Stack Structure in Advanced Mode

RENESAS

Address Space 2.3

Figure 2.3 shows a memory map of the H8S/2000 CPU. The H8S/2000 CPU provides linear access to a maximum 16-Mbyte (architecturally 4-Gbyte) address space in advanced mode.

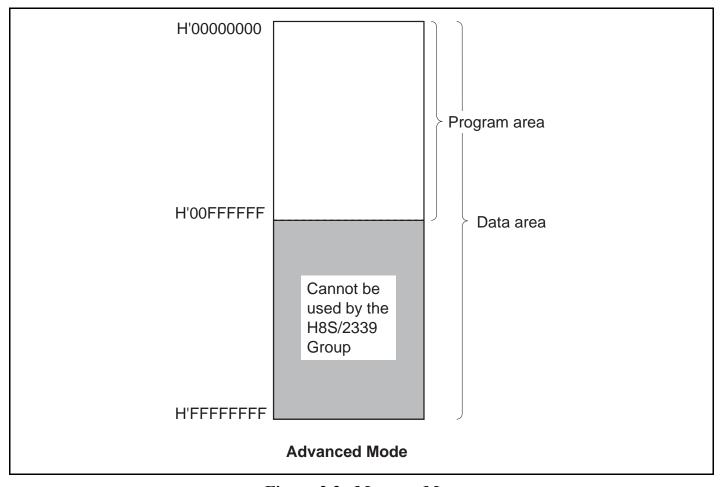


Figure 2.3 Memory Map

2.4 Register Configuration

2.4.1 Overview

The CPU has the internal registers shown in figure 2.4. There are two types of registers: general registers and control registers.

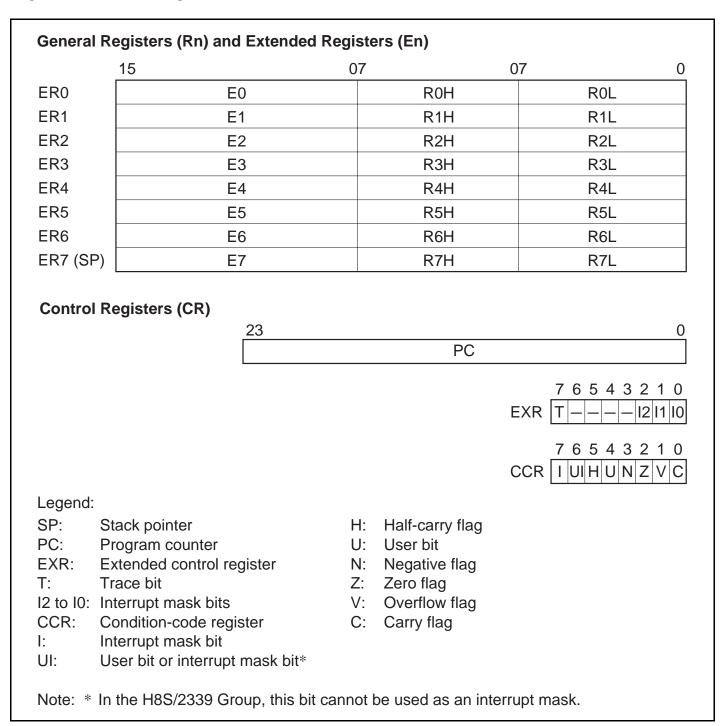


Figure 2.4 CPU Registers

RENESAS

2.4.2 General Registers

The CPU has eight 32-bit general registers. These general registers are all functionally alike and can be used as both address registers and data registers. When a general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. When the general registers are used as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit registers.

Figure 2.5 illustrates the usage of the general registers. The usage of each register can be selected independently.

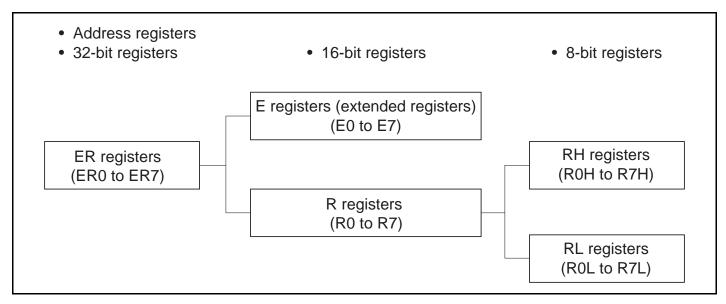


Figure 2.5 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 2.6 shows the stack.

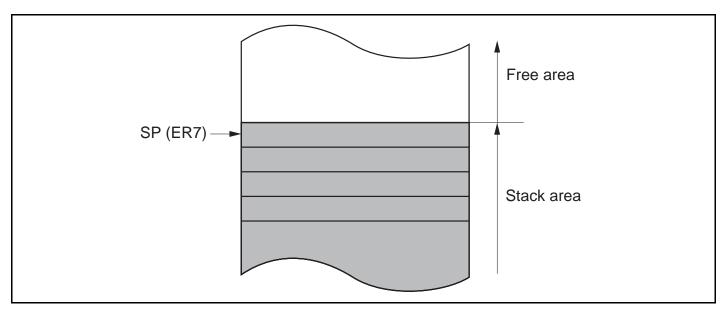


Figure 2.6 Stack

2.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR), and 8-bit condition-code register (CCR).

(1) Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an instruction is fetched, the least significant PC bit is regarded as 0.)

(2) Extended Control Register (EXR)

This 8-bit register contains the trace bit (T) and three interrupt mask bits (I2 to I0).

Bit 7—Trace Bit (T): Selects trace mode. When this bit is cleared to 0, instructions are executed in sequence. When this bit is set to 1, a trace exception is generated each time an instruction is executed.

Bits 6 to 3—Reserved: These bits are reserved. They are always read as 1.

Bits 2 to 0—Interrupt Mask Bits (I2 to I0): These bits designate the interrupt mask level (0 to 7). For details, refer to section 5, Interrupt Controller.

Operations can be performed on the EXR bits by the LDC, STC, ANDC, ORC, and XORC instructions. All interrupts, including NMI, are disabled for three states after one of these instructions is executed, except for STC.

(3) Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1. (NMI is accepted regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-handling sequence. For details, refer to section 5, Interrupt Controller.

Bit 6—User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. With the H8S/2339 Group, this bit cannot be used as an interrupt mask bit.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.

Bit 3—Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.

Bit 2—Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to appendix A.1, Instruction List.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions.

2.4.4 Initial Register Values

Reset exception handling loads the CPU's program counter (PC) from the vector table, clears the trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset.

2.5 Data Formats

The CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

Downloaded from Elcodis.com electronic components distributor

2.5.1 General Register Data Formats

Figure 2.7 shows the data formats in general registers.

Data Type	Register Number	Data Format
1-bit data	RnH	7 0 7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD data	RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD data	RnL	7 4 3 0 Don't care Upper Lower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	Don't care MSB LSB

Figure 2.7 General Register Data Formats

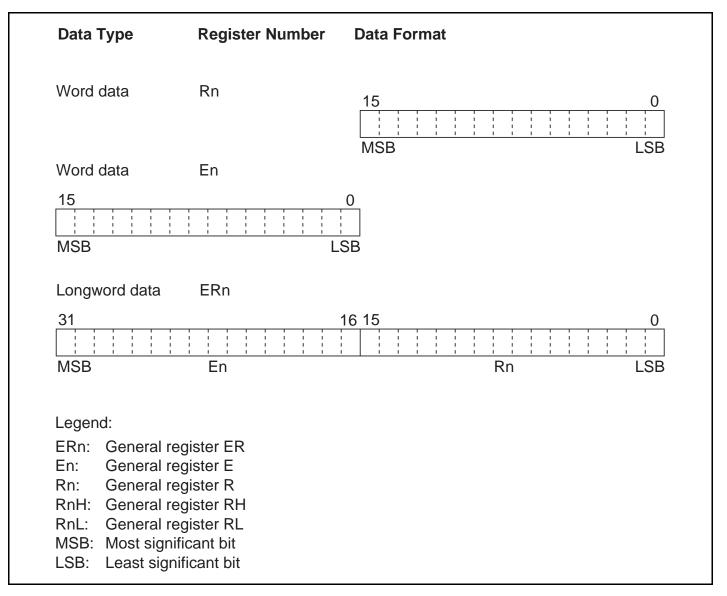


Figure 2.7 General Register Data Formats (cont)

2.5.2 Memory Data Formats

Figure 2.8 shows the data formats in memory. The CPU can access word data and longword data in memory, but word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, no address error occurs but the least significant bit of the address is regarded as 0, so the access starts at the preceding address. This also applies to instruction fetches.

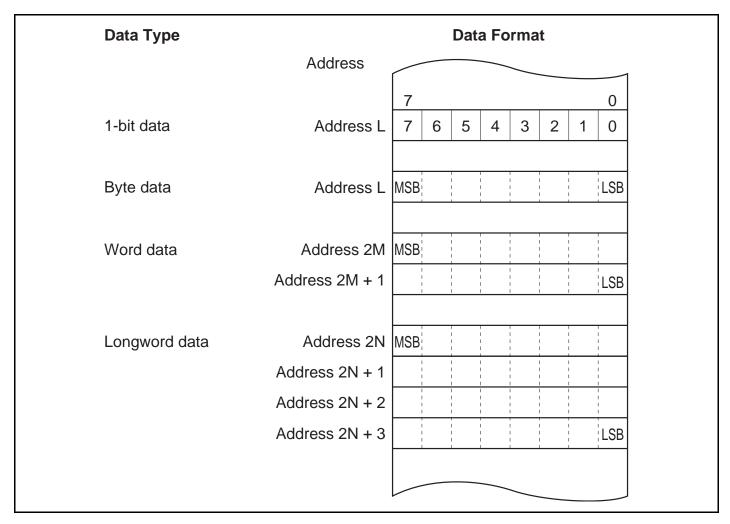


Figure 2.8 Memory Data Formats

When ER7 is used as an address register to access the stack, the operand size should be word size or longword size.

2.6 Instruction Set

2.6.1 Overview

The H8S/2000 CPU has 65 types of instructions. The instructions are classified by function in table 2.1.

Table 2.1 Instruction Classification

Function	Instructions	Size	Types
Data transfer	MOV	BWL	5
	POP*1, PUSH*1	WL	
	LDM, STM	L	
	MOVFPE, MOVTPE*3	В	
Arithmetic	ADD, SUB, CMP, NEG	BWL	19
operations	ADDX, SUBX, DAA, DAS	В	
	INC, DEC	BWL	_
	ADDS, SUBS	L	
	MULXU, DIVXU, MULXS, DIVXS	BW	
	EXTU, EXTS	WL	
	TAS*4	В	
Logic operations	AND, OR, XOR, NOT	BWL	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	BWL	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В	14
Branch	Bcc*2, JMP, BSR, JSR, RTS	_	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	_	9
Block data transfer	EEPMOV	_	1
		Tota	I· 65

Total: 65

Legend:

B: Byte W: Word

L: Longword

Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn, @-SP.

- 2. Bcc is the general name for conditional branch instructions.
- 3. Cannot be used in the H8S/2339 Group.
- 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

2.6.2 Instructions and Addressing Modes

Table 2.2 indicates the combinations of instructions and addressing modes that the H8S/2600 CPU can use.

Table 2.2 Combinations of Instructions and Addressing Modes

		Addressing Modes													
Function	Instruction	XX#	Rn	@ERn	@(d:16,ERn)	@(d:32,ERn)	@-ERn/@ERn+	@aa:8	@aa:16	@aa:24	@aa:32	@(d:8,PC)	@(d:16,PC)	@ @aa:8	ı
Data	MOV	BWL	BWL	BWL	BWL	BWL	BWL	В	BWL	_	BWL	_	_	_	_
transfer	POP, PUSH	_	_	_	_	_	_	_	_	_	_	_	_	_	WL
	LDM, STM	_	_	_	_	_	—	_	_	_	_	_	_	_	L
	MOVFPE, MOVTPE*1	_	_	_	_	_	_	_	В	_	_	_	_	_	_
Arithmetic	ADD, CMP	BWL	BWL	_	_	_	l —	_	_	_	_	_	_	_	_
operations	SUB	WL	BWL	_	_	_	_	_	_	_	_	_	_	_	_
	ADDX, SUBX	В	В	_	_	_	l —	_	_	_	_	_	_	_	_
	ADDS, SUBS	_	L	_	_	_		_	_	_	_	_	_	_	_
	INC, DEC	_	BWL	_	_	_	l —	_	_	_	_	_	_	_	_
	DAA, DAS	_	В	_	_	_	_	_	_	_	_	_	_	_	_
	MULXU, DIVXU	_	BW	_	_	_	_	_	_	_	_	_	_	_	_
	MULXS, DIVXS	_	BW	_	_	_	_	_	_	_	_	_	_	_	_
	NEG	_	BWL	_	_	_	_	_	_	_	_	_	_	_	_
	EXTU, EXTS	_	WL	_	_	_	_	_	_	_	_	_	_	_	_
	TAS*2	_	_	В	_	_	_	_	_	_	_	_	_	_	_
Logic operations	AND, OR, XOR	BWL	BWL	_	_	_	_	_	_	_	_	_	_	_	-
	NOT	_	BWL	_	_	_	_	_	_	_	_	_	_	_	_
Shift		_	BWL	_	_	_	_	_	_	_	_	_	_	_	_
Bit manipula	tion	_	В	В	_	_	_	В	В	_	В	_	_	_	_
Branch	Bcc, BSR	_	_	_	_	_	_	_	_	_	_	0	0	_	_
	JMP, JSR	_	_	_	_	_	—	_	_	0	_	_	_	0	_
	RTS	_	_	_	_	_	_	_	_	_	_	_	_	_	0
System	TRAPA	_	_	_	_				_	_	_	_	_		0
control	RTE	_	_	_	_	_	_	_	_	_	_	_	_	_	0
	SLEEP	_	_	_	_				_	_	_	_	_		0
	LDC	В	В	W	W	W	W	_	W	_	W	_	_	_	_
	STC	_	В	W	W	W	W		W	_	W	_	_		_
	ANDC, ORC, XORC	В	_	_	_	_	_	_	_	_	_	_	_	_	_
	NOP	_						_	_	_	_	_	_	_	0
Block data tr	ansfer	_		_		_		_	_	_	_	_	_	_	BW

Legend:
B: Byte
W: Word
L: Longword

Notes: 1. Cannot be used in the H8S/2339 Group.

2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Rev.4.00 Sep. 07, 2007 Page 41 of 1210

2.6.3 Table of Instructions Classified by Function

Table 2.3 summarizes the instructions in each functional category. The notation used in table 2.3 is defined below.

Operation Notation

Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
<u></u>	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Move
7	NOT (logical complement)
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Table 2.3 Instructions Classified by Function

Туре	Instruction	Size*1	Function
Data transfer	MOV	B/W/L	(EAs) → Rd, Rs → (Ead) Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.
	MOVFPE	В	Cannot be used in the H8S/2339 Group.
	MOVTPE	В	Cannot be used in the H8S/2339 Group.
	POP	W/L	@SP+ → Rn Pops a register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.
	PUSH	W/L	Rn → @–SP Pushes a register onto the stack. PUSH.W Rn is identical to MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP.
	LDM	L	@SP+ → Rn (register list) Pops two or more general registers from the stack.
	STM	L	Rn (register list) \rightarrow @–SP Pushes two or more general registers onto the stack.

Туре	Instruction	Size*1	Function
Arithmetic operations	ADD SUB	B/W/L	Rd \pm Rs \rightarrow Rd, Rd \pm #IMM \rightarrow Rd Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register. (Immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction.)
	ADDX SUBX	В	Rd \pm Rs \pm C \rightarrow Rd, Rd \pm #IMM \pm C \rightarrow Rd Performs addition or subtraction with carry or borrow on byte data in two general registers, or on immediate data and data in a general register.
	INC DEC	B/W/L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)
	ADDS SUBS	L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd, Rd \pm 4 \rightarrow Rd Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.
	DAA DAS	В	Rd decimal adjust → Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data.
	MULXU	B/W	Rd \times Rs \rightarrow Rd Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
	MULXS	B/W	Rd \times Rs \rightarrow Rd Performs signed multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
	DIVXU	B/W	Rd \div Rs \to Rd Performs unsigned division on data in two general registers: either 16 bits \div 8 bits \to 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \to 16-bit quotient and 16- bit remainder.

Туре	Instruction	Size*1	Function
Arithmetic operations	DIVXS	B/W	Rd \div Rs \to Rd Performs signed division on data in two general registers: either 16 bits \div 8 bits \to 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \to 16-bit quotient and 16- bit remainder.
	CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
	NEG	B/W/L	0 – Rd → Rd Takes the two's complement (arithmetic complement) of data in a general register.
	EXTU	W/L	Rd (zero extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
	EXTS	W/L	Rd (sign extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
	TAS	В	@ERd – 0, 1 \rightarrow (<bit 7=""> of @ERd)*2 Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>

Туре	Instruction	Size*1	Function
Logic operations	AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.
	OR	B/W/L	Rd ∨ Rs → Rd, Rd ∨ #IMM → Rd Performs a logical OR operation on a general register and another general register or immediate data.
	XOR	B/W/L	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus \#IMM \rightarrow Rd$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.
	NOT	B/W/L	¬ (Rd) → (Rd) Takes the one's complement of general register contents.
Shift operations	SHAL SHAR	B/W/L	Rd (shift) → Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shift is possible.
	SHLL SHLR	B/W/L	Rd (shift) → Rd Performs a logical shift on general register contents. 1-bit or 2-bit shift is possible.
	ROTL ROTR	B/W/L	Rd (rotate) → Rd Rotates general register contents. 1-bit or 2-bit rotation is possible.
	ROTXL ROTXR	B/W/L	Rd (rotate) → Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotation is possible.

Туре	Instruction	Size*1	Function
Bit- manipulation instructions	BSET	В	1 → (<bit-no.> of <ead>) Sets a specified bit in a general register or memory operand to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>
	BCLR	В	0 → (<bit-no.> of <ead>) Clears a specified bit in a general register or memory operand to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>
	BNOT	В	¬ (<bit-no.> of <ead>) → (<bit-no.> of <ead>) Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.></ead></bit-no.>
	BTST	В	¬ (<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>
	BAND	В	$C \land (\text{sit-No.}) \to C$ ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIAND	В	$C \land \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
	BOR	В	$C \lor (\text{sit-No.> of } \text{-EAd>}) \to C$ ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIOR	В	$C \lor \neg$ (<bit-no.> of <ead>) $\to C$ ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>

Туре	Instruction	Size*1	Function
Bit- manipulation instructions	BXOR	В	$C \oplus (\text{-bit-No} \text{ of -EAd}) \to C$ Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIXOR	В	C ⊕ ¬ (<bit-no.> of <ead>) → C Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
	BLD	В	(<bit-no.> of <ead>) → C Transfers a specified bit in a general register or memory operand to the carry flag.</ead></bit-no.>
	BILD	В	¬ (<bit-no.> of <ead>) → C Transfers the inverse of a specified bit in a general register or memory operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
	BST	В	C → (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general register or memory operand.</ead></bit-no.>
	BIST	В	¬ C → (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>

Туре	Instruction	Size*1	Function				
Branch instructions	Всс	_	Branches to a specified address if a specified condition is true. The branching conditions are listed below.				
			Mnemonic	Description	Condition		
			BRA(BT)	Always (true)	Always		
			BRN(BF)	Never (false)	Never		
			BHI	High	C ∨ Z = 0		
			BLS	Low or same	C ∨ Z = 1		
			BCC(BHS)	Carry clear (high or same)	C = 0		
			BCS(BLO)	Carry set (low)	C = 1		
			BNE	Not equal	Z = 0		
			BEQ	Equal	Z = 1		
			BVC	Overflow clear	V = 0		
			BVS	Overflow set	V = 1		
			BPL	Plus	N = 0		
			BMI	Minus	N = 1		
			BGE	Greater or equal	N ⊕ V = 0		
			BLT	Less than	N ⊕ V = 1		
			BGT	Greater than	$Z\lor(N\oplus V)=0$		
			BLE	Less or equal	$Z_{\vee}(N \oplus V) = 1$		
	JMP		Branches unco	nditionally to a specified	I address.		
	BSR	_	Branches to a subroutine at a specified address				
	JSR	_		subroutine at a specified			
	RTS		Returns from a subroutine.				

Туре	Instruction	Size*1	Function
System control	TRAPA	_	Starts trap-instruction exception handling.
instructions	RTE	_	Returns from an exception-handling routine.
	SLEEP	_	Causes a transition to a power-down state.
	LDC	B/W	(EAs) → CCR, (EAs) → EXR Moves the source operand contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.
	STC	B/W	CCR → (EAd), EXR → (EAd) Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.
	ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR or EXR contents with immediate data.
	ORC	В	CCR \vee #IMM \rightarrow CCR, EXR \vee #IMM \rightarrow EXR Logically ORs the CCR or EXR contents with immediate data.
	XORC	В	CCR \oplus #IMM \rightarrow CCR, EXR \oplus #IMM \rightarrow EXR Logically exclusive-ORs the CCR or EXR contents with immediate data.
	NOP	_	PC + 2 → PC Only increments the program counter.

Туре	Instruction	Size*1	Function
Block data transfer instruction	EEPMOV.B		if R4L \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4L-1 \rightarrow R4L Until R4L = 0 else next;
	EEPMOV.W	_	if R4 \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4-1 \rightarrow R4 Until R4 = 0 else next;
			Transfers a data block according to parameters set in general registers R4L or R4, ER5, and ER6.
			R4L or R4: size of block (bytes) ER5: starting source address ER6: starting destination address
			Execution of the next instruction begins as soon as the transfer is completed.

Notes: 1. Size refers to the operand size.

B: ByteW: WordL: Longword

2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

2.6.4 Basic Instruction Formats

The CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc).

Figure 2.9 shows examples of instruction formats.

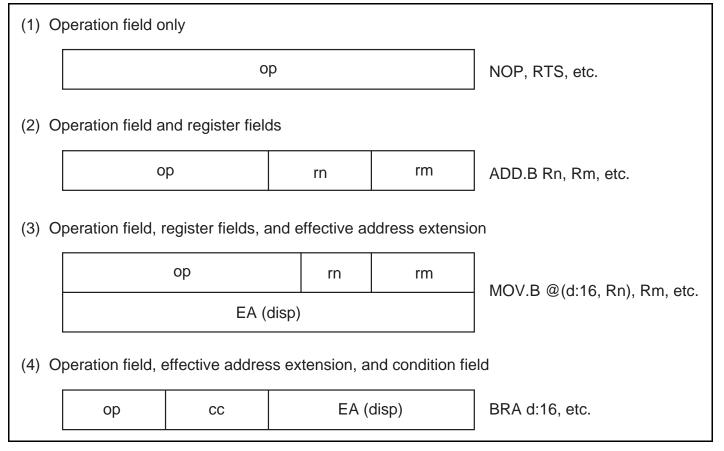


Figure 2.9 Instruction Formats (Examples)

- (1) Operation Field: Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.
- (2) Register Field: Specifies a general register. Address registers are specified by 3 bits, data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.
- **(3) Effective Address Extension:** Eight, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.
- (4) Condition Field: Specifies the branching condition of Bcc instructions.

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Mode

The CPU supports the eight addressing modes listed in table 2.4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2.4 Addressing Modes

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

- (1) Register Direct—Rn: The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.
- (2) Register Indirect—@ERn: The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).
- (3) Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn): A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added.

(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn:

- Register indirect with post-increment—@ERn+
 The register field of the instruction code specifies an address register (ERn) which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is stored in the address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
- Register indirect with pre-decrement—@-ERn

 The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the result becomes the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
- (5) Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32: The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32).

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can access the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits are all assumed to be 0 (H'00).

Table 2.5 indicates the accessible absolute address ranges.

 Table 2.5
 Absolute Address Access Ranges

Absolute Address		Advanced Mode	
Data address	8 bits (@aa:8)	H'FFFF00 to H'FFFFFF	
	16 bits (@aa:16)	H'000000 to H'007FFF, H'FF8000 to H'FFFFFF	
	32 bits (@aa:32)	H'000000 to H'FFFFFF	
Program instruction address	24 bits (@aa:24)		

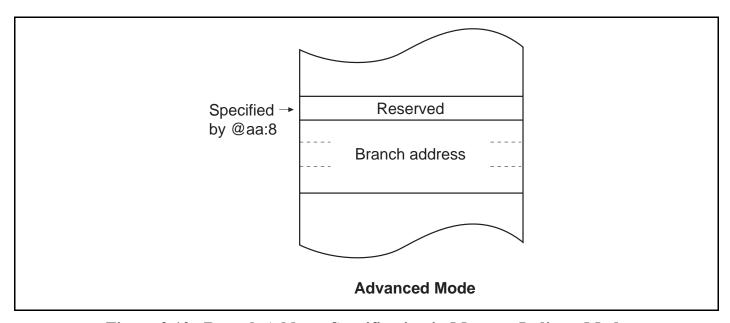
(6) Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

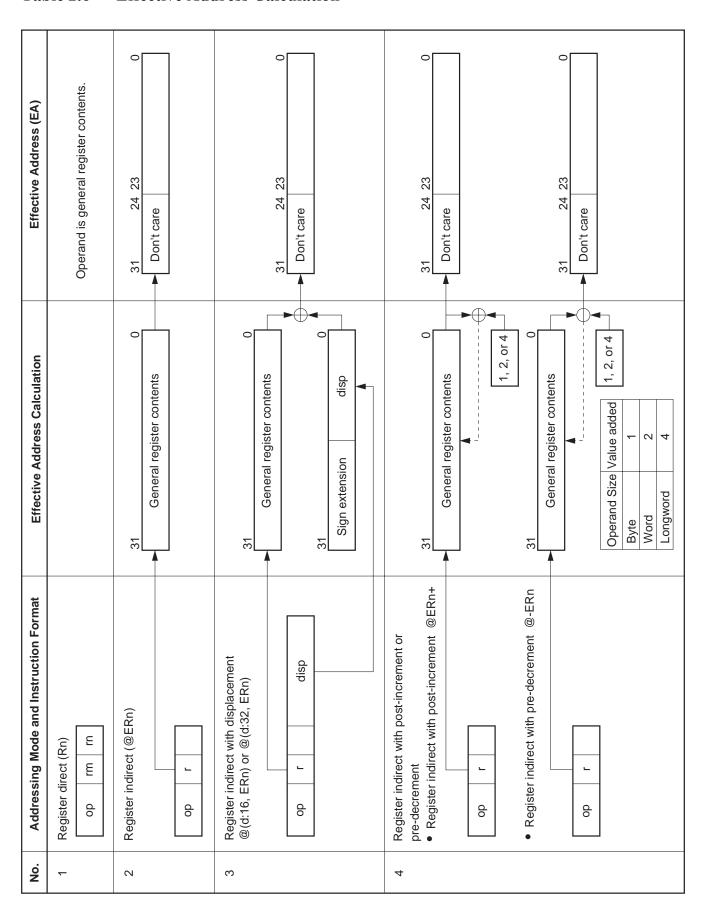
The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

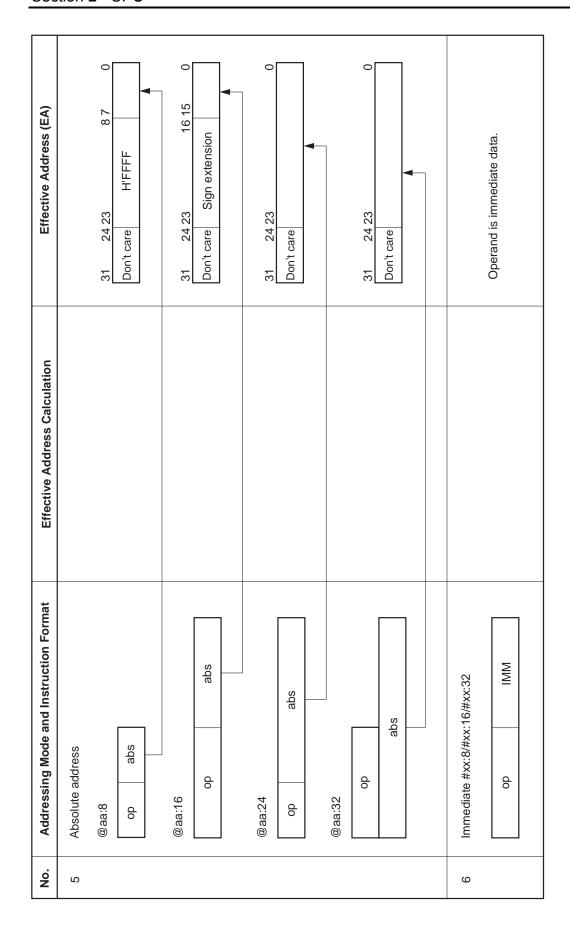
- (7) **Program-Counter Relative**—@(d:8, PC) or @(d:16, PC): This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768 bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an even number.
- **(8) Memory Indirect**—@@aa:8: This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand. This memory operand contains a branch address. The upper bits of the absolute address are all assumed to be 0, so the address range is 0 to 255 (H'000000 to H'0000FF).

In advanced mode the memory operand is a longword operand, the first byte of which is assumed to be all 0 (H'00).

Note that the first part of the address range is also the exception vector area. For further details, refer to section 4, Exception Handling.




Figure 2.10 Branch Address Specification in Memory Indirect Mode


If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing data to be accessed or instruction code to be fetched at the address preceding the specified address. (For further information, see section 2.5.2, Memory Data Formats.)

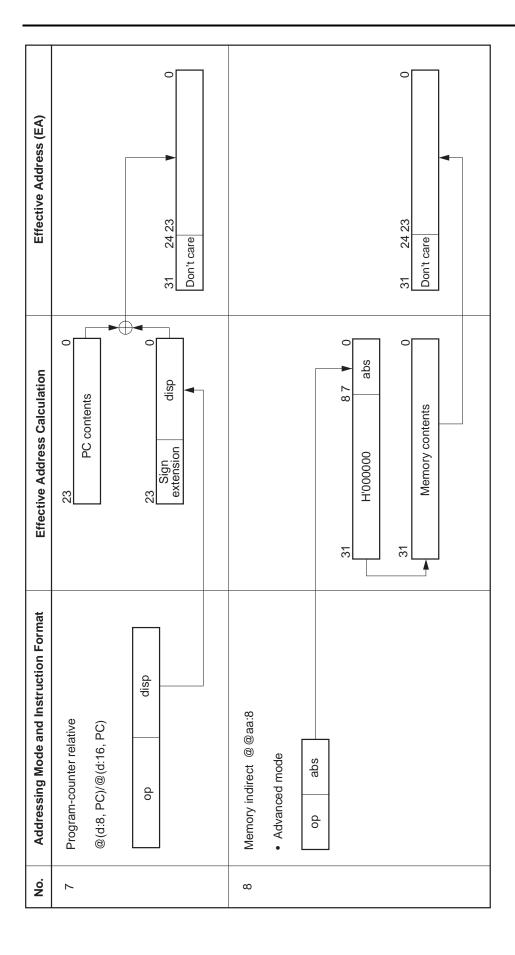

2.7.2 Effective Address Calculation

Table 2.6 indicates how effective addresses are calculated in each addressing mode.

Table 2.6 Effective Address Calculation

2.8 Processing States

2.8.1 Overview

The CPU has five main processing states: the reset state, exception handling state, program execution state, bus-released state, and power-down state. Figure 2.11 shows a diagram of the processing states. Figure 2.12 indicates the state transitions.

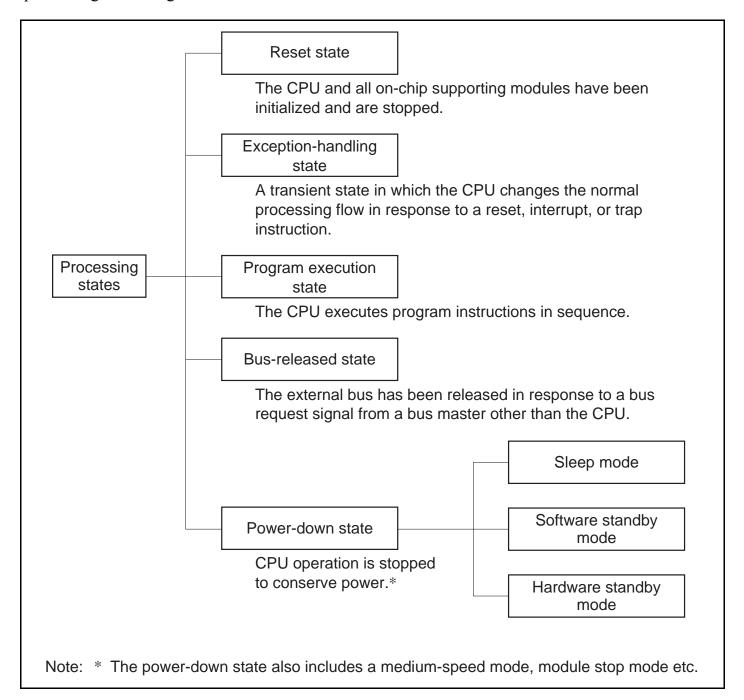


Figure 2.11 Processing States

RENESAS

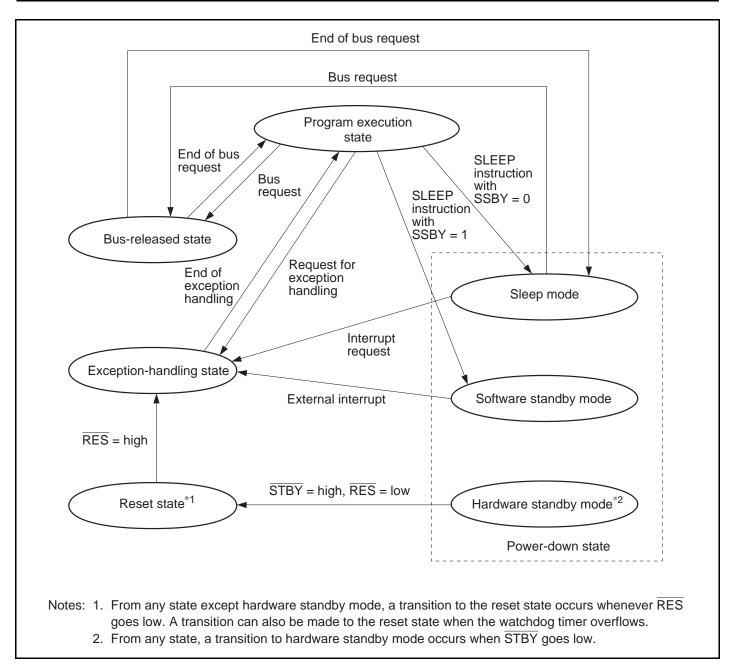


Figure 2.12 State Transitions

2.8.2 Reset State

When the \overline{RES} input goes low all current processing stops and the CPU enters the reset state. All interrupts are masked in the reset state. Reset exception handling starts when the \overline{RES} signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to section 13, Watchdog Timer.

2.8.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to a reset, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address.

(1) Types of Exception Handling and Their Priority

Exception handling is performed for traces, resets, interrupts, and trap instructions. Table 2.7 indicates the types of exception handling and their priority. Trap instruction exception handling is always accepted, in the program execution state.

Exception handling and the stack structure depend on the interrupt control mode set in SYSCR.

Table 2.7 Exception Handling Types and Priority

Priority	Type of Exception	Detection Timing	Start of Exception Handling
High	Reset	Synchronized with clock	Exception handling starts immediately after a low-to-high transition at the RES pin, or when the watchdog timer overflows
	Trace	End of instruction execution or end of exception-handling sequence*1	When the trace (T) bit is set to 1, the trace starts at the end of the current instruction or current exception-handling sequence
	Interrupt	End of instruction execution or end of exception-handling sequence*2	When an interrupt is requested, exception handling starts at the end of the current instruction or current exception-handling sequence
Low	Trap instruction	When TRAPA instruction is executed	Exception handling starts when a trap (TRAPA) instruction is executed*3

Notes: 1. Traces are enabled only in interrupt control mode 2. Trace exception-handling is not executed at the end of the RTE instruction.

- 2. Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or immediately after reset exception handling.
- 3. Trap instruction exception handling is always accepted, in the program execution state.

(2) Reset Exception Handling

After the \overline{RES} pin has gone low and the reset state has been entered, when \overline{RES} goes high again, reset exception handling starts. When reset exception handling starts the CPU fetches a start address (vector) from the exception vector table and starts program execution from that address. All interrupts, including NMI, are disabled during reset exception handling and after it ends.

(3) Traces

Traces are enabled only in interrupt control mode 2. Trace mode is entered when the T bit of EXR is set to 1. When trace mode is established, trace exception handling starts at the end of each instruction.

At the end of a trace exception-handling sequence, the T bit of EXR is cleared to 0 and trace mode is cleared. Interrupt masks are not affected.

The T bit saved on the stack retains its value of 1, and when the RTE instruction is executed to return from the trace exception-handling routine, trace mode is entered again. Trace exception-handling is not executed at the end of the RTE instruction.

Trace mode is not entered in interrupt control mode 0, regardless of the state of the T bit.

(4) Interrupt Exception Handling and Trap Instruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer (ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU alters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start address (vector) from the exception vector table and program execution starts from that start address.

Figure 2.13 shows the stack after exception handling ends.

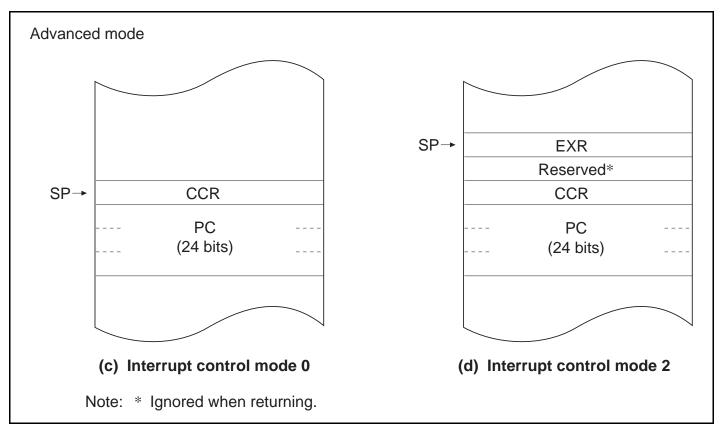


Figure 2.13 Stack Structure after Exception Handling (Examples)

2.8.4 Program Execution State

In this state the CPU executes program instructions in sequence.

2.8.5 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts.

There is one other bus master in addition to the CPU: the DMA controller (DMAC) and data transfer controller (DTC).

RENESAS

For further details, refer to section 6, Bus Controller.

2.8.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which the CPU does not stop. There are three modes in which the CPU stops operating: sleep mode, software standby mode, and hardware standby mode. There are also two other power-down modes: medium-speed mode, and module stop mode. In medium-speed mode the CPU and other bus masters operate on a medium-speed clock. Module stop mode permits halting of the operation of individual modules, other than the CPU. For details, refer to section 21, Power-Down Modes.

- (1) Sleep Mode: A transition to sleep mode is made if the SLEEP instruction is executed while the software standby bit (SSBY) in the standby control register (SBYCR) is cleared to 0. In sleep mode, CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU registers are retained.
- (2) Software Standby Mode: A transition to software standby mode is made if the SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1. In software standby mode, the CPU and clock halt and all MCU operations stop. As long as a specified voltage is supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain in their existing states.
- (3) Hardware Standby Mode: A transition to hardware standby mode is made when the STBY pin goes low. In hardware standby mode, the CPU and clock halt and all MCU operations stop. The on-chip supporting modules are reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

2.9 Basic Timing

2.9.1 Overview

The CPU is driven by a system clock, denoted by the symbol ϕ . The period from one rising edge of ϕ to the next is referred to as a "state." The memory cycle or bus cycle consists of one, two, or three states. Different methods are used to access on-chip memory, on-chip supporting modules, and the external address space.

2.9.2 On-Chip Memory (ROM, RAM)

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and word transfer instruction. Figure 2.14 shows the on-chip memory access cycle. Figure 2.15 shows the pin states.

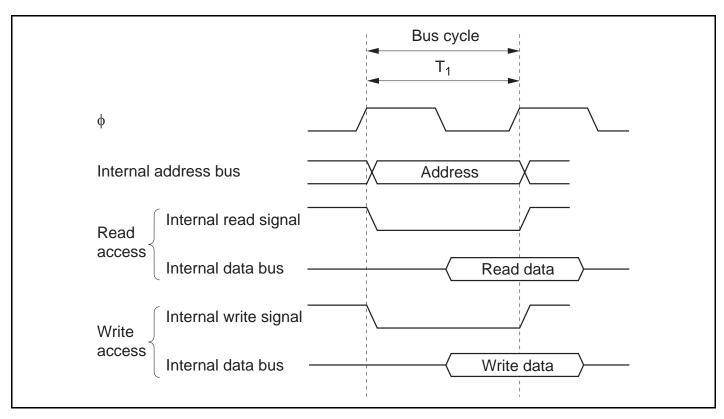


Figure 2.14 On-Chip Memory Access Cycle

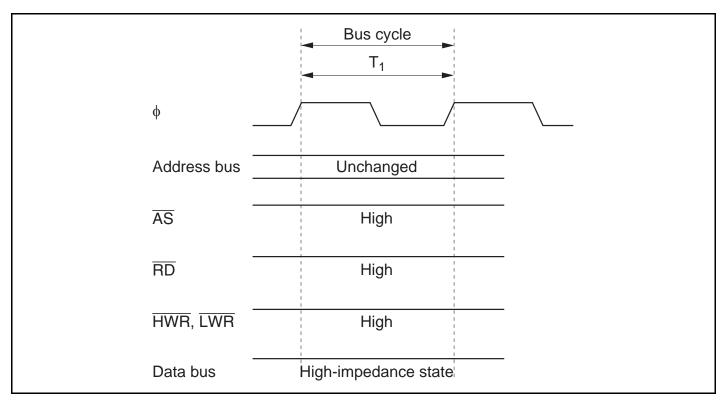


Figure 2.15 Pin States during On-Chip Memory Access

2.9.3 **On-Chip Supporting Module Access Timing**

The on-chip supporting modules are accessed in two states. The data bus is either 8 bits or 16 bits wide, depending on the particular internal I/O register being accessed. Figure 2.16 shows the access timing for the on-chip supporting modules. Figure 2.17 shows the pin states.

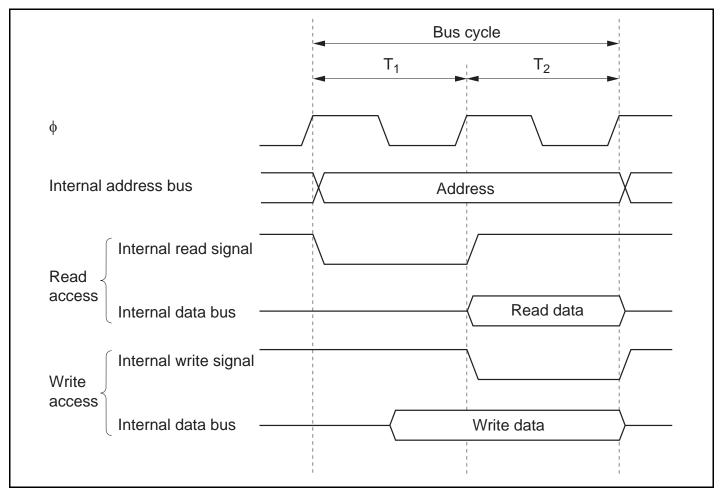


Figure 2.16 On-Chip Supporting Module Access Cycle

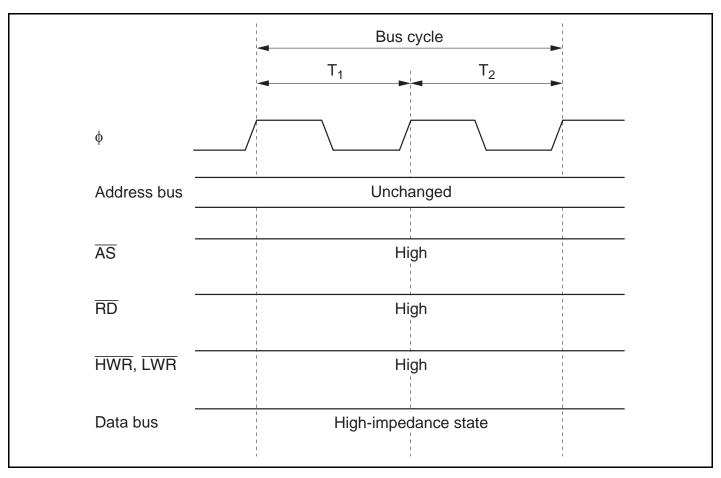


Figure 2.17 Pin States during On-Chip Supporting Module Access

2.9.4 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-state or three-state bus cycle. In three-state access, wait states can be inserted. For further details, refer to section 6, Bus Controller.

2.10 Usage Note

2.10.1 TAS Instruction

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. The TAS instruction is not generated by the Renesas H8S and H8/300 Series C/C++ compilers. If the TAS instruction is used as a user-defined intrinsic function, ensure that only register ER0, ER1, ER4, or ER5 is used.

Section 3 MCU Operating Modes

3.1 Overview

3.1.1 Operating Mode Selection (H8S/2338 F-ZTAT)

This version has eight operating modes (modes 4 to 7, 10, 11, 14, and 15). These modes are determined by the mode pin (MD_2 to MD_0) and flash write enable pin (FWE) settings. The CPU operating mode and initial bus width can be selected as shown in table 3.1.

Table 3.1 lists the MCU operating modes.

Table 3.1 MCU Operating Mode Selection (H8S/2338 F-ZTAT)

MCU					CPU				nal Data Sus
Operating Mode		MD_2	MD ₁	MD_0	Operating Mode	Description	On-Chip ROM	Initial Value	Max Value
1	0	0	0	1	_	_	_	_	_
2	_		1	0	_				
3	_			1	_				
4	_	1	0	0	Advanced	Expanded mode with	Disabled	16 bits	16 bits
5	_			1	_	on-chip ROM disabled		8 bits	16 bits
6	_		1	0	_	Expanded mode with on-chip ROM enabled	Enabled	8 bits	16 bits
7	=			1	_	Single-chip mode	_	_	_
8	1	0	0	0	_	_		_	_
9	_			1	_				
10	=		1	0	Advanced	Boot mode	Enabled	8 bits	16 bits
11	=			1	_			_	_
12	_	1	0	0	_	_	_	_	_
13	_			1	_				
14	_		1	0	Advanced	User program mode	Enabled	8 bits	16 bits
15	_			1	_			_	_

The CPU's architecture allows for 4 Gbytes of address space, but this version actually accesses a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set. Note that the functions of each pin depend on the operating mode.

Modes 10, 11, 14, and 15 are boot modes and user program modes in which the flash memory can be programmed and erased. For details, see section 19, ROM.

This version can only be used in modes 4 to 7, 10, 11, 14, and 15. This means that the flash write enable pin and mode pins must be set to select one of these modes.

Do not change the inputs at the mode pins during operation.

3.1.2 Operating Mode Selection (Mask ROM and ROMless Versions, H8S/2339 F-ZTAT)

The ROMless and Mask ROM versions have four operating modes (modes 4 to 7). H8S/2339 F-ZTAT has six operating modes (modes 2 to 7). The operating mode is determined by the mode pins (MD_2 to MD_0). The CPU operating mode, enabling or disabling of on-chip ROM, and the initial bus width setting can be selected as shown in table 3.2.

RENESAS

Table 3.2 lists the MCU operating modes.

Table 3.2 MCU Operating Mode Selection (Mask ROM and ROMless Versions, H8S/2339 F-ZTAT)

MCU				CPU			Extern	al Data Bus
Operating Mode	MD_2	MD ₁	MD_0	Operating Mode	Description	On-Chip ROM	Initial Value	Max Value
1	0	0	1	_	_	_	_	_
2	_	1	0	_				
3	_		1	_				
4*	1	0	0	Advanced	Expanded mode with	Disabled	16 bits	16 bits
5*	_		1	_	on-chip ROM disabled		8 bits	16 bits
6	_	1	0	_	Expanded mode with on-chip ROM enabled	Enabled	8 bits	16 bits
7	_		1	_	Single-chip mode	_		_

Note: * Only modes 4 and 5 are provided in the ROMless version.

The CPU's architecture allows for 4 Gbytes of address space, but these versions actually access a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set. Note that the functions of each pin depend on the operating mode.

The ROMless and Mask ROM versions can only be used in modes 4 to 7. This means that the mode pins must be set to select one of these modes. However, note that only mode 4 or 5 can be set for the ROMless version.

H8S/2339 F-ZTAT can only be used in modes 2 to 7. This means that the mode pins must be set to select one of these modes.

Do not change the inputs at the mode pins during operation.

3.1.3 Register Configuration

The chip has a mode control register (MDCR) that indicates the inputs at the mode pins (MD₂ to MD₀), and a system control register (SYSCR) and system control register 2 (SYSCR2)*2 that control the operation of the chip. Table 3.3 summarizes these registers.

Table 3.3 Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Mode control register	MDCR	R	Undefined	H'FF3B
System control register	SYSCR	R/W	H'01	H'FF39
System control register 2*2	SYSCR2	R/W	H'00	H'FF42

Notes: 1. Lower 16 bits of the address.

2. The SYSCR2 register can only be used in the F-ZTAT version. In the mask ROM and ROMless versions this register will return an undefined value if read, and cannot be modified.

3.2 Register Descriptions

3.2.1 Mode Control Register (MDCR)

Bit	:	7	6	5	4	3	2	1	0	
		_				_	MDS2	MDS1	MDS0	
Initial value	:	1	0	0	0	0	*	*	*	
R/W	:	_	_		_		R	R	R	

Note: * Determined by pins MD₂ to MD₀.

MDCR is an 8-bit read-only register that indicates the current operating mode of the H8S/2339 Group chip.

Bit 7—Reserved: This bit is always read as 1, and cannot be modified.

Bits 6 to 3—Reserved: These bits are always read as 0, and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD_2 to MD_0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD_2 to MD_0 . MDS2 to MDS0 are read-only bits, and cannot be written to. The mode pin (MD_2 to MD_0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

RENESAS

3.2.2 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		_		INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7—Reserved: Only 0 should be written to this bit.

Bit 6—Reserved: This bit is always read as 0, and cannot be modified.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 5.4.1, Interrupt Control Modes and Interrupt Operation.

Bit 5 INTM1	Bit 4 INTM0	Interrupt Control Mode	Description	
0	0	0	Control of interrupts by I bit	(Initial value)
	1	_	Setting prohibited	
1	0	2	Control of interrupts by I2 to I0 bits	and IPR
	1	_	Setting prohibited	

Bit 3—NMI Edge Select (NMIEG): Selects the valid edge of the NMI interrupt input.

Bit 3 NMIEG	Description	
0	An interrupt is requested at the falling edge of NMI input	(Initial value)
1	An interrupt is requested at the rising edge of NMI input	

Bit 2—LWR Output Disable (LWROD): Enables or disables LWR output.

Bit 2 LWROD	Description	
0	PF ₃ is designated as LWR output pin	(Initial value)
1	PF_3 is designated as I/O port, and does not function as \overline{LWR} output pin	

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for $\overline{IRQ_4}$ to $\overline{IRQ_7}$. $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	P9 ₄ to P9 ₇ are used for $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input	(Initial value)
1	P5 ₃ to P5 ₀ are used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset state is released. It is not initialized in software standby mode.

RAME	Description	
0	On-chip RAM is disabled	
1	On-chip RAM is enabled	(Initial value)

3.2.3 System Control Register 2 (SYSCR2) (F-ZTAT Version Only)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	FLSHE	_	_	_
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	_	_	— (R/W)*

Note: * R/W in the H8S/2339 F-ZTAT.

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset, and in hardware standby mode.

Bits 7 to 4—Reserved: These bits are always read as 0, and cannot be modified.

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). For details, see section 19, ROM.

Bit 3 FLSHE	Description
0	Flash control registers are not selected for addresses H'FFFFC8 to H'FFFFCB (Initial value)
1	Flash control registers are selected for addresses H'FFFFC8 to H'FFFFCB

Bits 2 and 1—Reserved: These bits are always read as 0, and cannot be modified.

Bit 0—Reserved: In the H8S/2338 F-ZTAT, this bit is always read as 0 and should only be written with 0. In the H8S/2339 F-ZTAT, this bit is reserved and should only be written with 0.

3.3 Operating Mode Descriptions

3.3.1 Mode 1

Mode 1 is not supported in the H8S/2339 Group, and must not be set.

3.3.2 Mode 2 (H8S/2339 F-ZTAT Only)

This is a flash memory boot mode. See section 19, ROM, for details. This is the same as advanced on-chip ROM enabled expansion mode, except when erasing and reprogramming flash memory.

3.3.3 Mode 3 (H8S/2339 F-ZTAT Only)

This is a flash memory boot mode. See section 19, ROM, for details. This is the same as advanced single-chip ROM mode, except when erasing and reprogramming flash memory.

3.3.4 Mode 4 (Expanded Mode with On-Chip ROM Disabled)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Ports A, B, and C function as an address bus, ports D and E function as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 16 bits, with 16-bit access to all areas. However, note that if 8-bit access is designated by the bus controller for all areas, the bus mode switches to 8 bits.

3.3.5 Mode 5 (Expanded Mode with On-Chip ROM Disabled)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Ports A, B, and C function as an address bus, port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if at least one area is designated for 16-bit access by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.6 Mode 6 (Expanded Mode with On-Chip ROM Enabled)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled.

Ports A, B, and C function as input ports immediately after a reset. These pins can be set to output addresses by setting the corresponding data direction register (DDR) bits to 1. Port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if at least one area is designated for 16-bit access by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.7 Mode 7 (Single-Chip Mode)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled, but external addresses cannot be accessed.

All I/O ports are available for use as input/output ports.

3.3.8 Modes 8 and 9 (H8S/2338 F-ZTAT Only)

Modes 8 and 9 are not supported and must not be set.

3.3.9 Mode 10 (H8S/2338 F-ZTAT Only)

This is a flash memory boot mode. For details, see section 19, ROM.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced expanded mode with on-chip ROM enabled.

3.3.10 Mode 11 (H8S/2338 F-ZTAT Only)

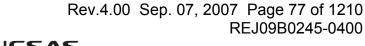
This is a flash memory boot mode. For details, see section 19, ROM.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced single-chip mode.

3.3.11 Modes 12 and 13 (H8S/2338 F-ZTAT Only)

Modes 12 and 13 are not supported and must not be set.

3.3.12 Mode 14 (H8S/2338 F-ZTAT Only)


This is a flash memory user program mode. For details, see section 19, ROM.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced expanded mode with on-chip ROM enabled.

3.3.13 Mode 15 (H8S/2338 F-ZTAT Only)

This is a flash memory user program mode. For details, see section 19, ROM.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced single-chip mode.

3.4 Pin Functions in Each Operating Mode

The pin functions of ports A to F vary depending on the operating mode. Table 3.4 shows their functions in each operating mode.

Table 3.4 Pin Functions in Each Mode

Port		Mode 2*4	Mode 3*4	Mode 4	Mode 5	Mode 6*2	Mode 7*2	Mode 10*3	Mode 11*3	Mode 14*3	Mode 15 ^{*3}
Port A	PA ₇ to PA ₅	P*1/A	Р	P*1/A	P*1/A	P*1/A	Р	P*1/A	Р	P*1/A	Р
	PA ₄ to PA ₀			A	Α						
Port B		P*1/A	Р	Α	Α	P*1/A	Р	P*1/A	Р	P*1/A	Р
Port C		P*1/A	Р	Α	Α	P*1/A	Р	P*1/A	Р	P*1/A	Р
Port D		D	Р	D	D	D	Р	D	Р	D	Р
Port E		P*1/D	Р	P/D*1	P*1/D	P*1/D	Р	P*1/D	Р	P*1/D	Р
Port F	PF ₇	P*1/C	P*1/C	P/C*1	P/C*1	P/C*1	P*1/C	P/C*1	P*1/C	P/C*1	P*1/C
	PF ₆	_	Р	_			Р	_	Р	_	P
	PF ₅ to PF ₄	С	_	С	С	С	_	С	_	С	_
	PF ₃	P/C*1	_	P/C*1	P/C*1	P/C*1	_	P/C*1	_	P/C*1	_
	PF ₂ to PF ₀	P*1/C		P*1/C	P*1/C	P*1/C		P*1/C	_	P*1/C	

Legend

P: I/O port

A: Address bus output

D: Data bus I/O

C: Control signals, clock I/O

Notes: 1. After reset.

- 2. Setting is prohibited in the ROMless versions.
- 3. Setting prohibited except in case of the H8S/2338 F-ZTAT.
- 4. Valid only in the H8S/2339 F-ZTAT.

3.5 Memory Map in Each Operating Mode

Figures 3.1 to 3.4 show memory maps for each of the operating modes.

The address space is 16 Mbytes.

The address space is divided into eight areas.

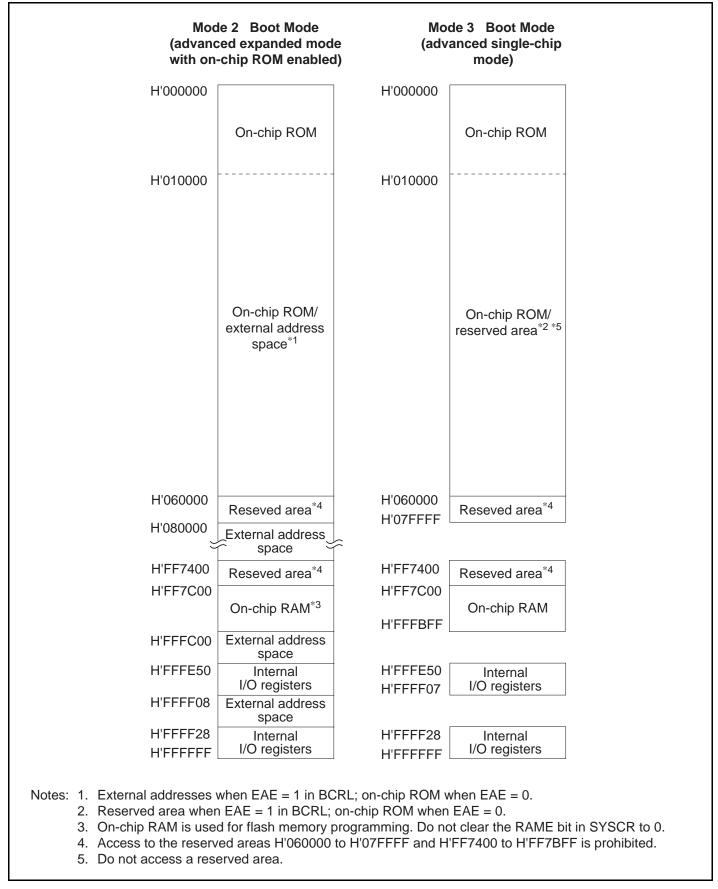


Figure 3.1 (a) H8S/2339 Memory Map in Each Operating Mode

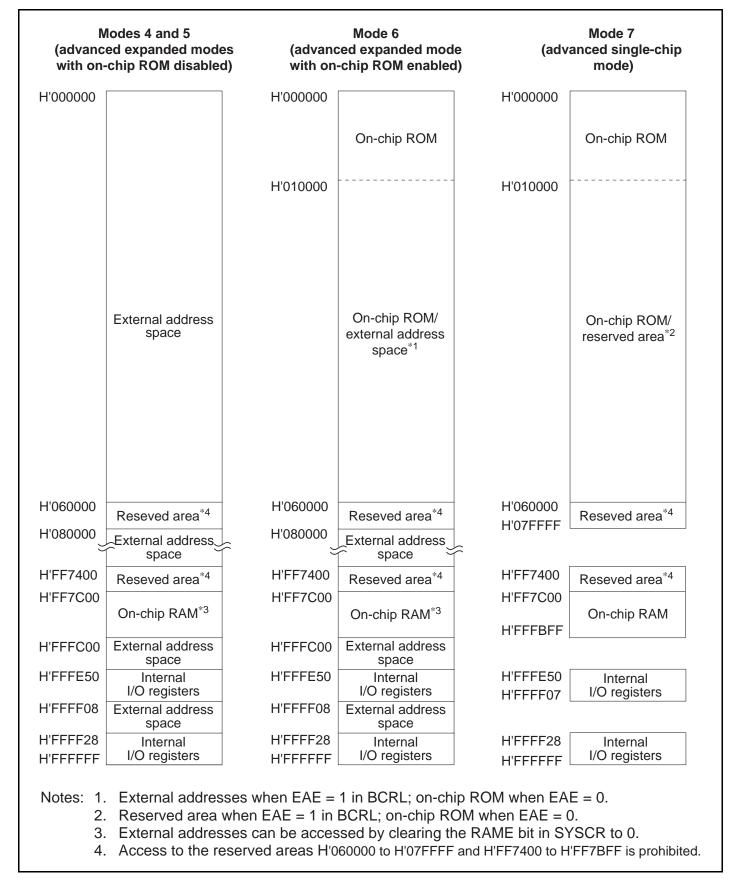


Figure 3.1 (b) H8S/2339 Memory Map in Each Operating Mode

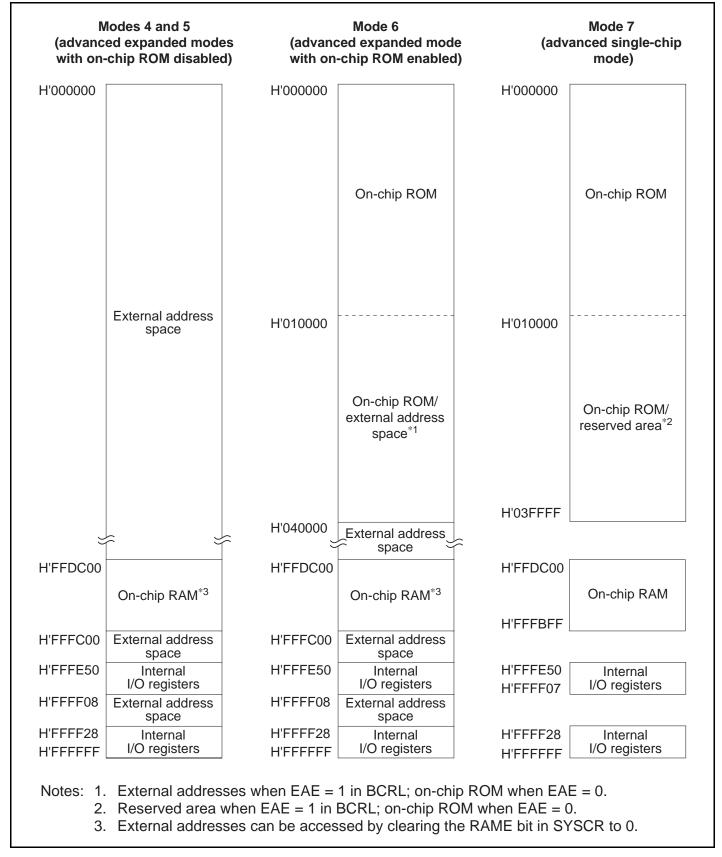


Figure 3.2 H8S/2338 Memory Map in Each Operating Mode

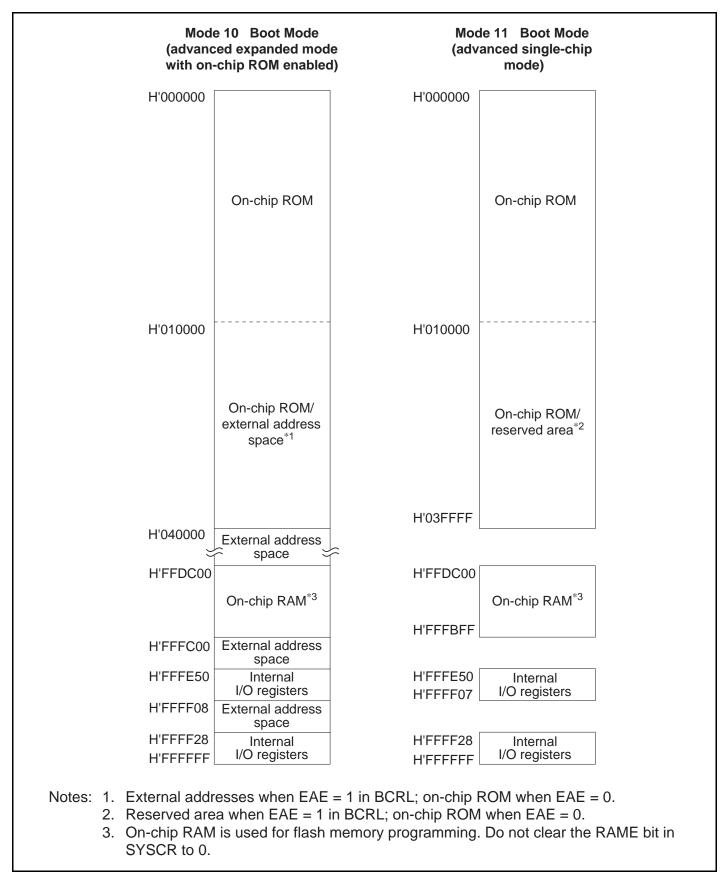


Figure 3.2 H8S/2338 Memory Map in Each Operating Mode (cont) (F-ZTAT Version Only)

Rev.4.00 Sep. 07, 2007 Page 82 of 1210 REJ09B0245-0400

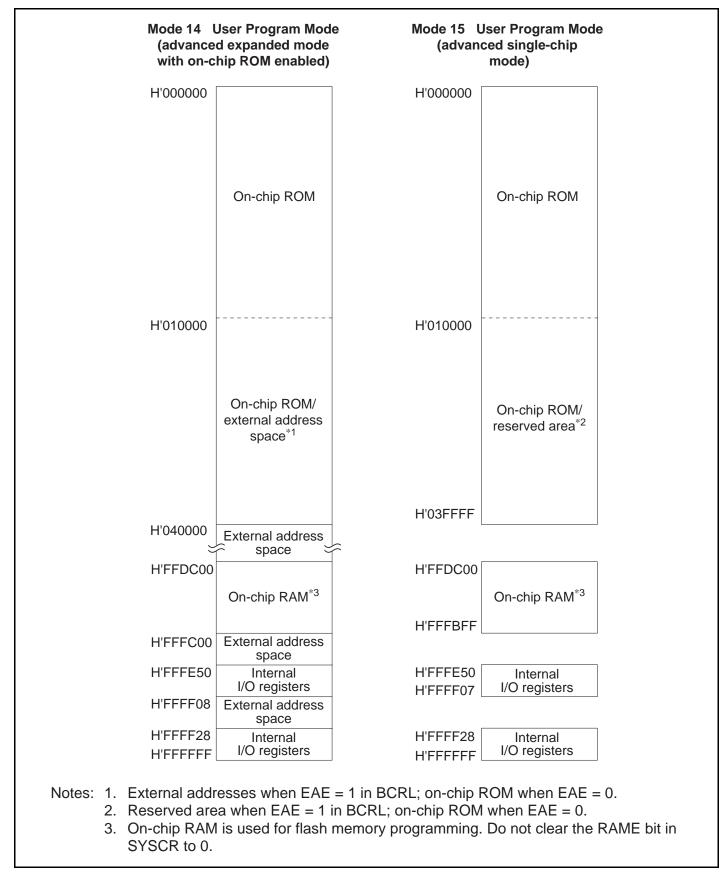


Figure 3.2 H8S/2338 Memory Map in Each Operating Mode (cont) (F-ZTAT Version Only)

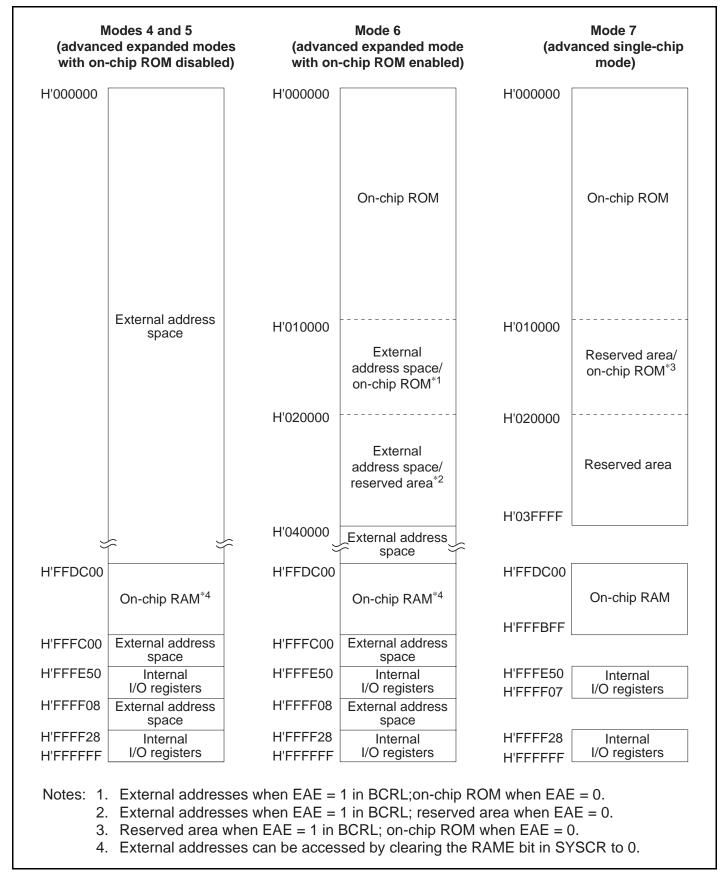


Figure 3.3 H8S/2337 Memory Map in Each Operating Mode

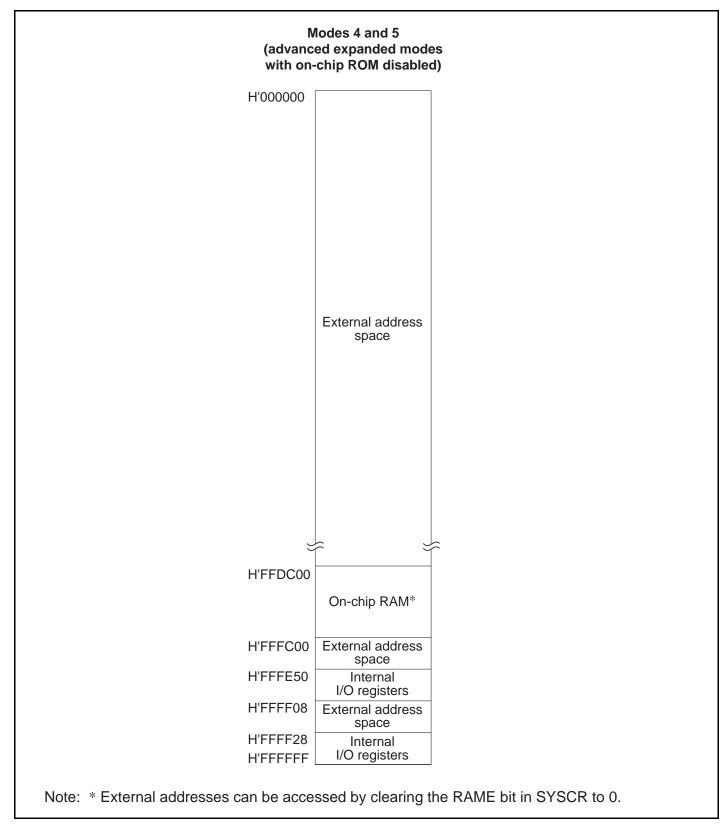


Figure 3.4 H8S/2332 Memory Map in Each Operating Mode

RENESAS

Section 4 Exception Handling

4.1 Overview

4.1.1 Exception Handling Types and Priority

As table 4.1 indicates, exception handling may be caused by a reset, trap instruction, or interrupt. Exception handling is prioritized as shown in table 4.1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority. Trap instruction exceptions are accepted at all times in the program execution state.

Exception handling sources, the stack structure, and the operation of the CPU vary depending on the interrupt control mode set by the INTM0 and INTM1 bits of SYSCR.

Table 4.1 Exception Types and Priority

Priority	Exception Type	Start of Exception Handling			
High	Reset	Starts immediately after a low-to-high transition at the RES pin, or when the watchdog timer overflows			
	Trace*1	Starts when execution of the current instruction or exception handling ends, if the trace (T) bit is set to 1			
	Interrupt	Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued*2			
Low Trap instruction (TRAPA) *3		Started by execution of a trap instruction (TRAPA)			

Notes: 1. Traces are enabled only in interrupt control mode 2. Trace exception handling is not executed after execution of an RTE instruction.

- 2. Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.
- 3. Trap instruction exception handling requests are accepted at all times in the program execution state.

4.1.2 Exception Handling Operation

Exceptions originate from various sources. Trap instructions and interrupts are handled as follows:

- 1. The program counter (PC), condition code register (CCR), and extend register (EXR) are pushed onto the stack.
- 2. The interrupt mask bits are updated. The T bit is cleared to 0.
- 3. A vector address corresponding to the exception source is generated, and program execution starts from that address.

For a reset exception, steps 2 and 3 above are carried out.

4.1.3 Exception Vector Table

The exception sources are classified as shown in figure 4.1. Different vector addresses are assigned to different exception sources.

Table 4.2 lists the exception sources and their vector addresses.

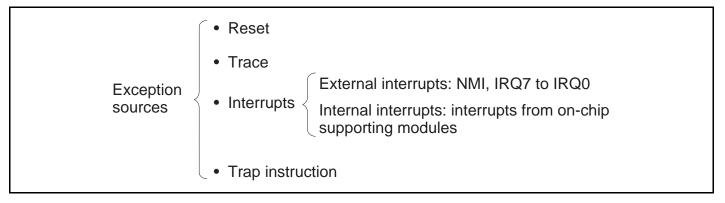


Figure 4.1 Exception Sources

In modes 6 and 7, the on-chip ROM available for use after a power-on reset is the 64-kbyte area comprising addresses H'000000 to H'00FFFF. Care is required when setting vector addresses. In this case, clearing the EAE bit in BCRL enables the 256-kbyte (128 kbytes/384 kbytes/512 kbytes)* area comprising addresses H'000000 to H'03FFFF (to H'01FFFF/H'05FFFF/H'07FFFF) to be used. For details, see section 6.2.5, Bus Control Register L (BCRL).

Note: * The amount of on-chip ROM differs depending on the product.

Table 4.2 Exception Vector Table

			Vector Address*1		
Exception Source		Vector Number	Advanced Mode		
Reset		0	H'0000 to H'0003		
Reserved		1	H'0004 to H'0007		
Reserved for system	m use	2	H'0008 to H'000B		
		3	H'000C to H'000F		
		4	H'0010 to H'0013		
Trace		5	H'0014 to H'0017		
Reserved for system	n use	6	H'0018 to H'001B		
External interrupt	NMI	7	H'001C to H'001F		
Trap instruction (4 s	sources)	8	H'0020 to H'0023		
		9	H'0024 to H'0027		
		10	H'0028 to H'002B		
		11	H'002C to H'002F		
Reserved for system	n use	12	H'0030 to H'0033		
		13	H'0034 to H'0037		
		14	H'0038 to H'003B		
		15	H'003C to H'003F		
External interrupt	IRQ0	16	H'0040 to H'0043		
	IRQ1	17	H'0044 to H'0047		
	IRQ2	18	H'0048 to H'004B		
	IRQ3	19	H'004C to H'004F		
	IRQ4	20	H'0050 to H'0053		
	IRQ5	21	H'0054 to H'0057		
	IRQ6	22	H'0058 to H'005B		
	IRQ7	23	H'005C to H'005F		
Internal interrupt*2		24 	H'0060 to H'0063		
		91	H'016C to H'016F		

Notes: 1. Lower 16 bits of the address.

2. For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Vector Table.

Rev.4.00 Sep. 07, 2007 Page 89 of 1210

4.2 Reset

4.2.1 Overview

A reset has the highest exception priority.

When the RES pin goes low, all processing halts and the chip enters the reset state. A reset initializes the internal state of the CPU and the registers of on-chip supporting modules. Immediately after a reset, interrupt control mode 0 is set.

Reset exception handling begins when the \overline{RES} pin changes from low to high.

A reset can also be caused by watchdog timer overflow. For details see section 13, Watchdog Timer.

4.2.2 Reset Sequence

The chip enters the reset state when the \overline{RES} pin goes low.

To ensure that the chip is reset, hold the RES pin low for at least 20 ms at power-up. To reset the chip during operation, hold the \overline{RES} pin low for at least 20 states.

When the \overline{RES} pin goes high after being held low for the necessary time, the chip starts reset exception handling as follows:

- 1. The internal state of the CPU and the registers of the on-chip supporting modules are initialized, the T bit is cleared to 0 in EXR, and the I bit is set to 1 in EXR and CCR.
- 2. The reset exception vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC.

Figure 4.2 shows an example of the reset sequence.

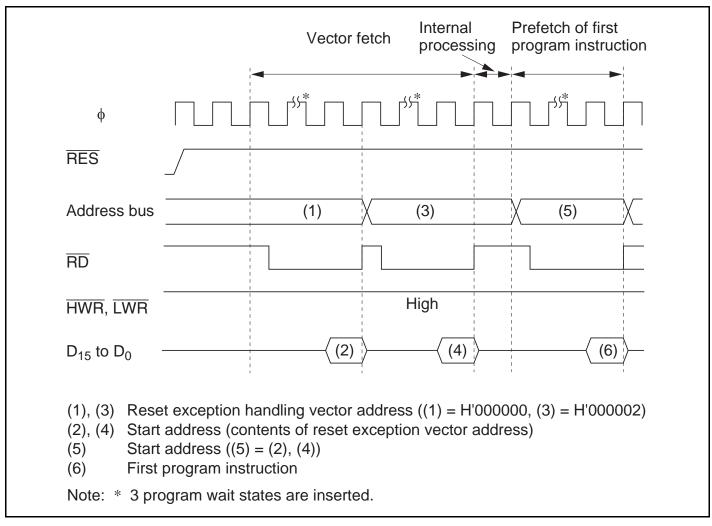


Figure 4.2 Reset Sequence (Mode 4)

4.2.3 Interrupts after Reset

If an interrupt is accepted after a reset but before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset. Since the first instruction of a program is always executed immediately after the reset state ends, make sure that this instruction initializes the stack pointer (example: MOV.L #xx:32, SP).

4.2.4 State of On-Chip Supporting Modules after Reset Release

After reset release, MSTPCR is initialized to H'3FFF and all modules except the DMAC and DTC enter module stop mode. Consequently, on-chip supporting module registers cannot be read or written to. Register reading and writing is enabled when module stop mode is exited.

4.3 Traces

Traces are enabled in interrupt control mode 2. Trace mode is not activated in interrupt control mode 0, irrespective of the state of the T bit. For details of interrupt control modes, see section 5, Interrupt Controller.

If the T bit in EXR is set to 1, trace mode is activated. In trace mode, a trace exception occurs on completion of each instruction.

Trace mode is canceled by clearing the T bit in EXR to 0. It is not affected by interrupt masking.

Table 4.3 shows the state of CCR and EXR after execution of trace exception handling.

Interrupts are accepted even within the trace exception handling routine.

The T bit saved on the stack retains its value of 1, and when control is returned from the trace exception handling routine by the RTE instruction, trace mode resumes.

Trace exception handling is not carried out after execution of the RTE instruction.

Table 4.3 Status of CCR and EXR after Trace Exception Handling

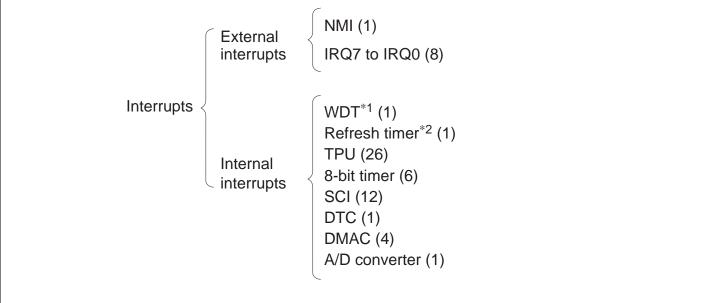
Interrupt Control Mode	CO	CR	EXR		
interrupt Control Mode	I	UI	12 to 10	Т	
0	Trace exception handling cannot be used.				
2	1	_	_	0	

Legend:

1: Set to 1

0: Cleared to 0

—: Retains value prior to execution.


4.4 Interrupts

Interrupt exception handling can be requested by nine external sources (NMI, IRQ7 to IRQ0) and 52 internal sources in the on-chip supporting modules. Figure 4.3 classifies the interrupt sources and the number of interrupts of each type.

The on-chip supporting modules that can request interrupts include the watchdog timer (WDT), refresh timer, 16-bit timer-pulse unit (TPU), 8-bit timer, serial communication interface (SCI), data transfer controller (DTC), DMA controller (DMAC), and A/D converter. Each interrupt source has a separate vector address.

NMI is the highest-priority interrupt. Interrupts are controlled by the interrupt controller. The interrupt controller has two interrupt control modes and can assign interrupts other than NMI to eight priority/mask levels to enable multiplexed interrupt control.

For details of interrupts, see section 5, Interrupt Controller.

Notes: Numbers in parentheses are the numbers of interrupt sources.

- 1. When the watchdog timer is used as an interval timer, it generates an interrupt request at each counter overflow.
- 2. When the refresh timer is used as an interval timer, it generates an interrupt request at each compare match.

Figure 4.3 Interrupt Sources and Number of Interrupts

4.5 Trap Instruction

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state.

The TRAPA instruction fetches a start address from a vector table entry corresponding to a vector number from 0 to 3, as specified in the instruction code.

Table 4.4 shows the status of CCR and EXR after execution of trap instruction exception handling.

Table 4.4 Status of CCR and EXR after Trap Instruction Exception Handling

Interrupt Central Made	С	CR	EXR		
Interrupt Control Mode	I	UI	12 to 10	Т	
0	1	_	_	_	
2	1	_	_	0	

Legend:

1: Set to 1

0: Cleared to 0

—: Retains value prior to execution.

4.6 Stack Status after Exception Handling

Figure 4.4 shows the stack after completion of trap instruction exception handling and interrupt exception handling.

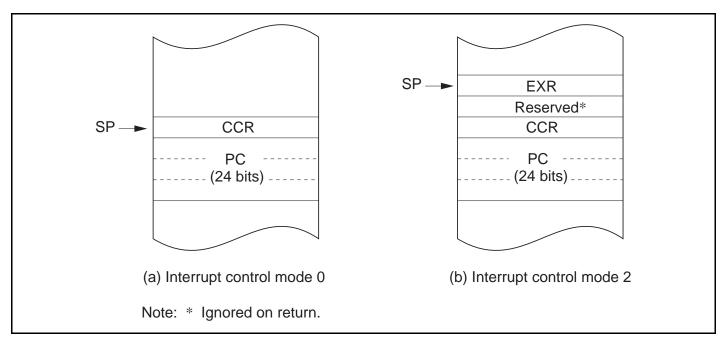


Figure 4.4 Stack Status after Exception Handling (Advanced Modes)

4.7 Notes on Use of the Stack

When accessing word data or longword data, the chip assumes that the lowest address bit is 0. The stack should always be accessed by word transfer instruction or longword transfer instruction, and the value of the stack pointer (SP, ER7) should always be kept even. Use the following instructions to save registers:

```
PUSH.W Rn (or MOV.W Rn, @-SP)
PUSH.L ERn (or MOV.L ERn, @-SP)
```

Use the following instructions to restore registers:

```
POP.W Rn (or MOV.W @SP+, Rn)
POP.L ERn (or MOV.L @SP+, ERn)
```

Setting SP to an odd value may lead to a malfunction. Figure 4.5 shows an example of what happens when the SP value is odd.

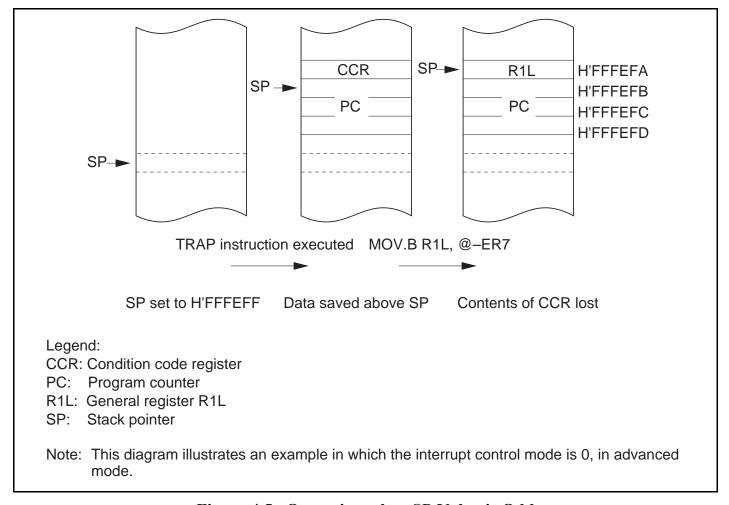


Figure 4.5 Operation when SP Value is Odd

RENESAS

Section 5 Interrupt Controller

5.1 Overview

5.1.1 Features

The chip controls interrupts by means of an interrupt controller. The interrupt controller has the following features. This chapter assumes the maximum number of interrupt sources available in these series—nine external interrupts and 52 internal interrupts.

- Two interrupt control modes
 - Either of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR)
- Priorities settable with IPRs
 - Interrupt priority registers (IPRs) are provided for setting interrupt priorities. Eight priority levels can be set for each module for all interrupts except NMI
 - NMI is assigned the highest priority level of 8, and can be accepted at all times
- Independent vector addresses
 - All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine
- Nine external interrupt pins
 - NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI
 - Falling edge, rising edge, or both edge detection, or level sensing, can be selected for IRQ7 to IRQ0
- DTC and DMAC control
 - DTC and DMAC activation is controlled by means of interrupts

Rev.4.00 Sep. 07, 2007 Page 97 of 1210

5.1.2 Block Diagram

A block diagram of the interrupt controller is shown in figure 5.1.

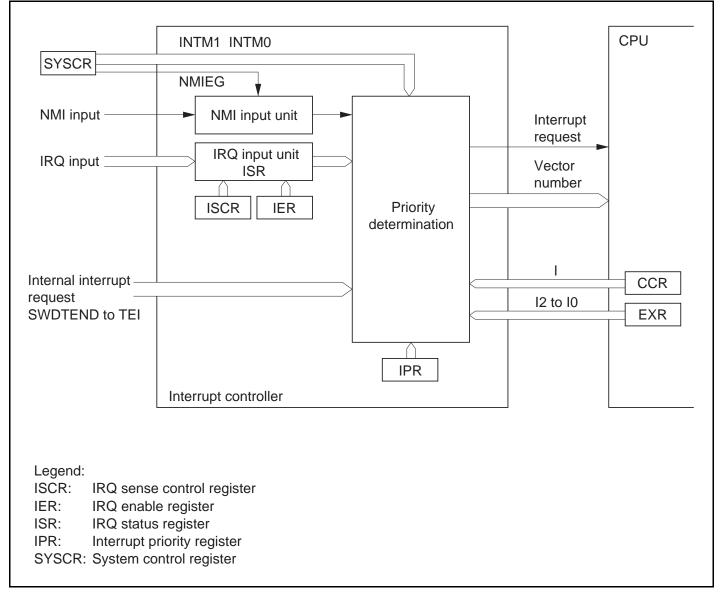


Figure 5.1 Block Diagram of Interrupt Controller

5.1.3 Pin Configuration

Table 5.1 summarizes the pins of the interrupt controller.

Table 5.1 Interrupt Controller Pins

Name	Symbol	I/O	Function
Nonmaskable interrupt	NMI	Input	Nonmaskable external interrupt; rising or falling edge can be selected
External interrupt requests 7 to 0	IRQ7 to IRQ0	Input	Maskable external interrupts; rising, falling, or both edges, or level sensing, can be selected

5.1.4 Register Configuration

Table 5.2 summarizes the registers of the interrupt controller.

Table 5.2 Interrupt Controller Registers

Name	Abbreviation	R/W	Initial Value	Address*1
System control register	SYSCR	R/W	H'01	H'FF39
IRQ sense control register H	ISCRH	R/W	H'00	H'FF2C
IRQ sense control register L	ISCRL	R/W	H'00	H'FF2D
IRQ enable register	IER	R/W	H'00	H'FF2E
IRQ status register	ISR	R/(W) *2	H'00	H'FF2F
Interrupt priority register A	IPRA	R/W	H'77	H'FEC4
Interrupt priority register B	IPRB	R/W	H'77	H'FEC5
Interrupt priority register C	IPRC	R/W	H'77	H'FEC6
Interrupt priority register D	IPRD	R/W	H'77	H'FEC7
Interrupt priority register E	IPRE	R/W	H'77	H'FEC8
Interrupt priority register F	IPRF	R/W	H'77	H'FEC9
Interrupt priority register G	IPRG	R/W	H'77	H'FECA
Interrupt priority register H	IPRH	R/W	H'77	H'FECB
Interrupt priority register I	IPRI	R/W	H'77	H'FECC
Interrupt priority register J	IPRJ	R/W	H'77	H'FECD
Interrupt priority register K	IPRK	R/W	H'77	H'FECE

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

Rev.4.00 Sep. 07, 2007 Page 99 of 1210

5.2 Register Descriptions

5.2.1 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
			_	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, and the detected edge for NMI.

Only bits 5 to 3, and 1 are described here; for details of the other bits, see section 3, MCU Operating Modes.

SYSCR is initialized to H'01 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select one of two interrupt control modes for the interrupt controller.

Bit 5 INTM1	Bit 4 INTM0	Interrupt Control Mode	Description
0	0	0	Interrupts are controlled by I bit (Initial value)
	1	_	Setting prohibited
1	0	2	Interrupts are controlled by bits I2 to I0, and IPR
	1	_	Setting prohibited

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin.

Bit 3 NMIEG	Decarintion	
NIVILEG	Description	
0	Interrupt request generated at falling edge of NMI input	(Initial value)
1	Interrupt request generated at rising edge of NMI input	

Bit 1—IRQ Input Pin Select (IRQPAS): Selects switching of the pins that can be used for input of $\overline{IRQ4}$ to $\overline{IRQ7}$. $\overline{IRQ4}$ to $\overline{IRQ7}$ input is always performed from one of the ports.

5.2.2 Interrupt Priority Registers A to K (IPRA to IPRK)

Bit	:	7	6	5	4	3	2	1	0
		_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0
Initial va	lue :	0	1	1	1	0	1	1	1
R/W	:	_	R/W	R/W	R/W	_	R/W	R/W	R/W

The IPR registers are eleven 8-bit readable/writable registers that set priorities (level 7 to 0) for interrupts other than NMI.

The correspondence between IPR settings and interrupt sources is shown in table 5.3.

The IPR registers set a priority (level 7 to 0) for each interrupt source other than NMI.

The IPR registers are initialized to H'77 by a reset and in hardware standby mode.

Bits 7 and 3—Reserved: Read-only bits, always read as 0.

Table 5.3 Correspondence between Interrupt Sources and IPR Settings

	Bits					
Register	6 to 4	2 to 0				
IPRA	IRQ0	IRQ1				
IPRB	IRQ2 IRQ3	IRQ4 IRQ5				
IPRC	IRQ6 IRQ7	DTC				
IPRD	Watchdog timer	Refresh timer				
IPRE	*	A/D converter				
IPRF	TPU channel 0	TPU channel 1				
IPRG	TPU channel 2	TPU channel 3				
IPRH	TPU channel 4	TPU channel 5				
IPRI	8-bit timer channel 0	8-bit timer channel 1				
IPRJ	DMAC	SCI channel 0				
IPRK	SCI channel 1	SCI channel 2				

Note: * Reserved bits.

As shown in table 5.3, multiple interrupts are assigned to one IPR. Setting a value in the range from H'0 to H'7 in the 3-bit groups of bits 6 to 4 and 2 to 0 sets the priority of the corresponding interrupt. The lowest priority level, level 0, is assigned by setting H'0, and the highest priority level, level 7, by setting H'7.

When interrupt requests are generated, the highest-priority interrupt according to the priority levels set in the IPR registers is selected. This interrupt level is then compared with the interrupt mask level set by the interrupt mask bits (I2 to I0) in the extend register (EXR) in the CPU, and if the priority level of the interrupt is higher than the set mask level, an interrupt request is issued to the CPU.

5.2.3 IRQ Enable Register (IER)

Bit	:	7	6	5	4	3	2	1	0
		IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

IER is an 8-bit readable/writable register that controls enabling and disabling of interrupt requests IRQ7 to IRQ0.

IER is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 to 0—IRQ7 to IRQ0 Enable (IRQ7E to IRQ0E): These bits select whether IRQ7 to IRQ0 are enabled or disabled.

Bit n IRQnE	Description	
0	IRQn interrupts disabled	(Initial value)
1	IRQn interrupts enabled	
		(n = 7 to 0)

RENESAS

5.2.4 IRQ Sense Control Registers H and L (ISCRH, ISCRL)

ISCRH

Bit :	15	14	13	12	11	10	9	8
	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W							
ISCRL								
Bit :	7	6	5	4	3	2	1	0
	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W							

ISCR (composed of ISCRH and ISCRL) is a 16-bit readable/writable register that selects rising edge, falling edge, or both edge detection, or level sensing, for the input at pins $\overline{IRQ7}$ to $\overline{IRQ0}$.

ISCR is initialized to H'0000 by a reset and in hardware standby mode.

Bits 15 to 0—IRQ7 Sense Control A and B (IRQ7SCA, IRQ7SCB) to IRQ0 Sense Control A and B (IRQ0SCA, IRQ0SCB)

Bits 15 to 0

IRQ7SCB to IRQ0SCB	IRQ7SCA to IRQ0SCA	
0	0	Interrupt request generated at $\overline{\text{IRQ7}}$ to $\overline{\text{IRQ0}}$ input low level (Initial value)
	1	Interrupt request generated at falling edge of IRQ7 to IRQ0 input
1	0	Interrupt request generated at rising edge of IRQ7 to IRQ0 input
	1	Interrupt request generated at both falling and rising edges of IRQ7 to IRQ0 input

5.2.5 IRQ Status Register (ISR)

Bit	:	7	6	5	4	3	2	1	0
		IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*							

Note: * Only 0 can be written, to clear the flag.

ISR is an 8-bit readable/writable register that indicates the status of IRQ7 to IRQ0 interrupt requests.

ISR is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 to 0—IRQ7 to IRQ0 flags (IRQ7F to IRQ0F): These bits indicate the status of IRQ7 to IRQ0 interrupt requests.

Bit n IRQnF Description

0 [Clearing conditions]

(Initial value)

- Cleared by reading IRQnF flag when IRQnF = 1, then writing 0 to IRQnF flag
- When interrupt exception handling including other interrupt exception handling is executed when low-level detection is set (IRQnSCB = IRQnSCA = 0) and IRQn input is high
- When IRQn interrupt exception handling is executed when falling, rising, or bothedge detection is set (IRQnSCB = 1 or IRQnSCA = 1)
- When the DTC is activated by an IRQn interrupt, and the DISEL bit in MRB of the DTC is cleared to 0

1 [Setting conditions]

- When IRQn input goes low when low-level detection is set (IRQnSCB = IRQnSCA = 0)
- When a falling edge occurs in IRQn input when falling edge detection is set (IRQnSCB = 0, IRQnSCA = 1)
- When a rising edge occurs in IRQn input when rising edge detection is set (IRQnSCB = 1, IRQnSCA = 0)

RENESAS

 When a falling or rising edge occurs in IRQn input when both-edge detection is set (IRQnSCB = IRQnSCA = 1)

(n = 7 to 0)

5.3 Interrupt Sources

Interrupt sources comprise external interrupts (NMI and IRQ7 to IRQ0) and internal interrupts (52 sources).

5.3.1 External Interrupts

There are nine external interrupts: NMI and IRQ7 to IRQ0. NMI and IRQ7 to IRQ0 can be used to restore the chip from software standby mode. (IRQ7 to IRQ3 can be designated for use as software standby mode clearing sources by setting the IRQ37S bit in SBYCR to 1.)

NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin.

The vector number for NMI interrupt exception handling is 7.

IRQ7 to IRQ0 Interrupts: Interrupts IRQ7 to IRQ0 are requested by an input signal at pins IRQ7 to IRQ0. Interrupts IRQ7 to IRQ0 have the following features:

- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins $\overline{IRQ7}$ to $\overline{IRQ0}$.
- Enabling or disabling of interrupt requests IRQ7 to IRQ0 can be selected with IER.
- The interrupt priority level can be set with IPR.
- The status of interrupt requests IRQ7 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

A block diagram of interrupts IRQ7 to IRQ0 is shown in figure 5.2.

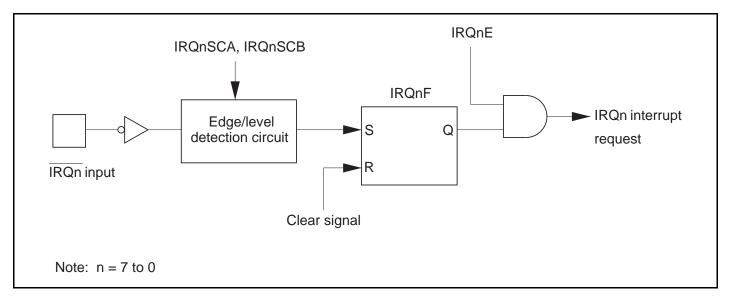


Figure 5.2 Block Diagram of Interrupts IRQ7 to IRQ0

Figure 5.3 shows the timing of setting IRQnF.

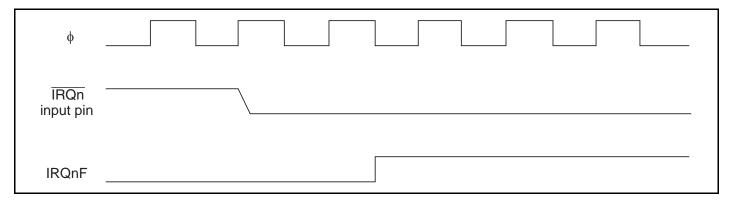


Figure 5.3 Timing of Setting IRQnF

The vector numbers for IRQ7 to IRQ0 interrupt exception handling are 23 to 16.

Detection of IRQ7 to IRQ0 interrupts does not depend on whether the relevant pin has been set for input or output. Therefore, when a pin is used as an external interrupt input pin, do not clear the corresponding DDR bit to 0 and use the pin as an I/O pin for another function. The pins that can be used for IRQ4 to IRQ7 interrupt input can be switched by means of the IRQPAS bit in SYSCR.

5.3.2 Internal Interrupts

There are 52 sources for internal interrupts from on-chip supporting modules.

- For each on-chip supporting module there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If both of these are set to 1 for a particular interrupt source, an interrupt request is issued to the interrupt controller.
- The interrupt priority level can be set by means of IPR.
- The DMAC and DTC can be activated by a TPU, SCI, or other interrupt request. When the DMAC or DTC is activated by an interrupt, the interrupt control mode and interrupt mask bits have no effect.

5.3.3 Interrupt Exception Vector Table

Table 5.4 shows interrupt exception handling sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority. Interrupt sources can also be used to activate the DTC and DMAC.

Priorities among modules can be set by means of IPR. The situation when two or more modules are set to the same priority, and priorities within a module, are fixed as shown in table 5.4.

Table 5.4 Interrupt Sources, Vector Addresses, and Interrupt Priorities

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
Power-on reset		0	H'0000	_	High	_	_
Reserved		1	H'0004		1		
Reserved for system		2	H'0008				
use		3	H'000C	_			
		4	H'0010				
Trace		5	H'0014	_			
Reserved for system use		6	H'0018	_			
NMI	External pin	7	H'001C				
Trap instruction		8	H'0020	_			
(4 sources)		9	H'0024	_			
		10	H'0028	_			
		11	H'002C				
Reserved for system		12	H'0030	_			
use		13	H'0034	_			
		14	H'0038				
		15	H'003C				
IRQ ₀	External pin	16	H'0040	IPRA6 to IPRA4		\bigcirc	_
IRQ ₁		17	H'0044	IPRA2 to IPRA0	_	0	_
IRQ ₂		18	H'0048	IPRB6 to	-	\bigcirc	_
IRQ ₃	_	19	H'004C	IPRB4		\bigcirc	_
IRQ ₄	_	20	H'0050	IPRB2 to	_	\bigcirc	_
IRQ ₅	_	21	H'0054	- IPRB0		\bigcirc	_
IRQ ₆	_	22	H'0058	IPRC6 to	<u> </u>	\circ	_
IRQ ₇		23	H'005C	- IPRC4	Low	0	_

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
SWDTEND (software- activated data transfer end)	DTC	24	H'0060	IPRC2 to IPRC0	High	0	_
WOVI (interval timer)	Watchdog timer	25	H'0064	IPRD6 to IPRD4	_	_	_
CMI (compare match)	Refresh controller	26	H'0068	IPRD2 to IPRD0	_	_	_
Reserved	_	27	H'006C	IPRE6 to IPRE4	_	_	_
ADI (A/D conversion end)	A/D	28	H'0070	IPRE2 to IPRE0	_	0	0
Reserved	_	29	H'0074	_		_	_
		30	H'0078				
		31	H'007C				
TGI0A (TGR0A input capture/compare match)	TPU channel 0	32	H'0080	IPRF6 to IPRF4	_	0	0
TGI0B (TGR0B input capture/compare match)	_	33	H'0084	_		0	_
TGI0C (TGR0C input capture/compare match)	_	34	H'0088	_		0	_
TGI0D (TGR0D input capture/compare match)	_	35	H'008C	_		0	_
TCI0V (overflow 0)	_	36	H'0090	_		_	_
Reserved	_	37	H'0094	_		_	_
		38	H'0098	_			
		39	H'009C		Low		

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
TGI1A (TGR1A input capture/compare match)	TPU channel 1	40	H'00A0	IPRF2 to IPRF0	High	0	0
TGI1B (TGR1B input capture/compare match)	_	41	H'00A4	_		0	_
TCI1V (overflow 1)		42	H'00A8	_		_	_
TCI1U (underflow 1)	-	43	H'00AC	_		_	_
TGI2A (TGR2A input capture/compare match)	TPU channel 2	44	H'00B0	IPRG6 to IPRG4	_	0	0
TGI2B (TGR2B input capture/compare match)		45	H'00B4	_		0	_
TCI2V (overflow 2)	_	46	H'00B8				_
TCI2U (underflow 2)	_	47	H'00BC				_
TGI3A (TGR3A input capture/compare match)	TPU channel 3	48	H'00C0	IPRG2 to IPRG0	_	0	0
TGI3B (TGR3B input capture/compare match)		49	H'00C4	_		0	_
TGI3C (TGR3C input capture/compare match)	_	50	H'00C8	_		0	_
TGI3D (TGR3D input capture/compare match)		51	H'00CC	_		0	_
TCI3V (overflow 3)		52	H'00D0	_		_	
Reserved	_	53	H'00D4			_	_
		54	H'00D8				
		55	H'00DC		Low		

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
TGI4A (TGR4A input capture/compare match)	TPU channel 4	56	H'00E0	IPRH6 to IPRH4	High	0	0
TGI4B (TGR4B input capture/compare match)	_	57	H'00E4			0	_
TCI4V (overflow 4)	_	58	H'00E8	_		_	_
TCI4U (underflow 4)	<u> </u>	59	H'00EC	_			_
TGI5A (TGR5A input capture/compare match)	TPU channel 5	60	H'00F0	IPRH2 to IPRH0	-	0	0
TGI5B (TGR5B input capture/compare match)	_	61	H'00F4	_		0	_
TCI5V (overflow 5)	_	62	H'00F8	_		_	_
TCI5U (underflow 5)	<u> </u>	63	H'00FC	_			_
CMIA0 (compare match A)	8-bit timer channel 0	64	H'0100	IPRI6 to IPRI4		0	_
CMIB0 (compare match B)		65	H'0104	_		0	_
OVI0 (overflow 0)		66	H'0108	_			_
Reserved		67	H'010C	_			_
CMIA1 (compare match A)	8-bit timer channel 1	68	H'0110	IPRI2 to IPRI0		0	_
CMIB1 (compare match B)		69	H'0114	_		0	_
OVI1 (overflow 1)	_	70	H'0118	_			_
Reserved	_	71	H'011C		Low	_	_

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
DEND0A (channel 0/channel 0A transfer end)	DMAC	72	H'0120	IPRJ6 to IPRJ4	High	0	_
DEND0B (channel 0B transfer end)	_	73	H'0124	_		0	_
DEND1A (channel 1/channel 1A transfer end)	_	74	H'0128	_		0	_
DEND1B (channel 1B transfer end)	_	75	H'012C	_		0	_
Reserved	_	76	H'0130	_		_	_
		77	H'0134				
		78	H'0138				
		79	H'013C		_		
ERI0 (receive error 0)	SCI	80	H'0140	IPRJ2 to IPRJ0		_	_
RXI0 (receive-data-full 0)	channel 0	81	H'0144			0	0
TXI0 (transmit-data- empty 0)	_	82	H'0148	_		0	0
TEI0 (transmit end 0)	_	83	H'014C	_		_	_
ERI1 (receive error 1)	SCI	84	H'0150	IPRK6 to	_	_	_
RXI1 (receive-data-full 1)	channel 1	85	H'0154	- IPRK4		0	0
TXI1 (transmit data empty 1)	_	86	H'0158	_		0	0
TEI1 (transmit end 1)	_	87	H'015C	_		_	_
ERI2 (receive error 2)	SCI	88	H'0160	IPRK2 to	-	_	_
RXI2 (receive-data-full 2)	channel 2	89	H'0164	⁻IPRK0		0	_
TXI2 (transmit-data- empty 2)	_	90	H'0168	_		0	_
TEI2 (transmit end 2)		91	H'016C		Low		_

Note: * Lower 16 bits of the start address.

5.4 Interrupt Operation

5.4.1 Interrupt Control Modes and Interrupt Operation

Interrupt operations in the chip differ depending on the interrupt control mode.

NMI interrupts are accepted at all times except in the reset state and the hardware standby state. In the case of IRQ interrupts and on-chip supporting module interrupts, an enable bit is provided for each interrupt. Clearing an enable bit to 0 disables the corresponding interrupt request. Interrupt sources for which the enable bits are set to 1 are controlled by the interrupt controller.

Table 5.5 shows the interrupt control modes.

The interrupt controller performs interrupt control according to the interrupt control mode set by the INTM1 and INTM0 bits in SYSCR, the priorities set in IPR, and the masking state indicated by the I bit in the CPU's CCR, and bits I2 to I0 in EXR.

Table 5.5 Interrupt Control Modes

Interrupt	· ·		_ Priority Setting	Interrupt	
Control Mode				Mask Bits	Description
0	0	0	_	1	Interrupt mask control is performed by the I bit.
_	<u> </u>	1	_	_	Setting prohibited
2	1	0	IPR	I2 to I0	8-level interrupt mask control is performed by bits I2 to I0. 8 priority levels can be set with IPR.
_		1	_	_	Setting prohibited

Figure 5.4 shows a block diagram of the priority decision circuit.

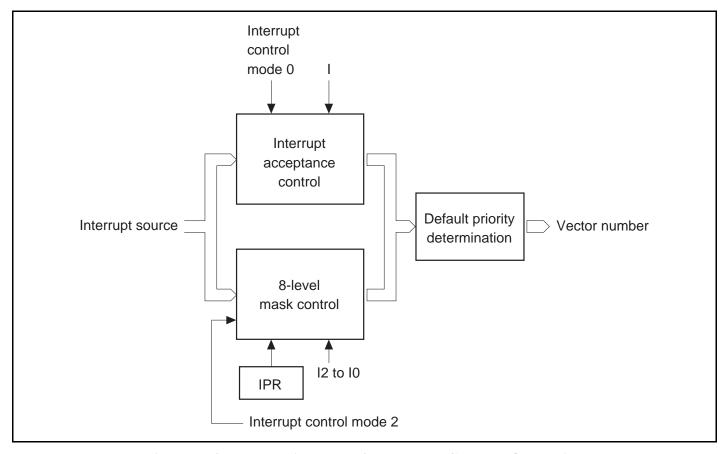


Figure 5.4 Block Diagram of Interrupt Control Operation

Interrupt Acceptance Control: In interrupt control mode 0, interrupt acceptance is controlled by the I bit in CCR.

Table 5.6 shows the interrupts selected in each interrupt control mode.

Table 5.6 Interrupts Selected in Each Interrupt Control Mode (1)

	Interrupt Mask Bits	
Interrupt Control Mode	I	Selected Interrupts
0	0	All interrupts
	1	NMI interrupts
2	*	All interrupts

RENESAS

*: Don't care

8-Level Control: In interrupt control mode 2, 8-level mask level determination is performed for the selected interrupts in interrupt acceptance control according to the interrupt priority level (IPR).

The interrupt source selected is the interrupt with the highest priority level, and whose priority level set in IPR is higher than the mask level.

Table 5.7 Interrupts Selected in Each Interrupt Control Mode (2)

Interrupt Control Mode	Selected Interrupts
0	All interrupts
2	Highest-priority-level (IPR) interrupt whose priority level is greater than the mask level (IPR > I2 to I0)

Default Priority Determination: When an interrupt is selected by 8-level control, its priority is determined and a vector number is generated.

If the same value is set for IPR, acceptance of multiple interrupts is enabled, and so only the interrupt source with the highest priority according to the preset default priorities is selected and has a vector number generated.

Interrupt sources with a lower priority than the accepted interrupt source are held pending.

Table 5.8 shows operations and control signal functions in each interrupt control mode.

Table 5.8 Operations and Control Signal Functions in Each Interrupt Control Mode

Interrupt Control Mode	Set	ting	A	Interrupt Acceptance Control	ptance 8-Level Control Default Priority		Deladit i liolity		T (Trace)
Wiode	INTM1	INTM0		I		12 to 10	IPR		
0	0	0	0	IM	Х	_	*2	0	_
2	1	0	Χ	*1	0	IM	PR	0	Т

Legend:

O: Interrupt operation control performed

X: No operation (All interrupts enabled)

IM: Used as interrupt mask bit

PR: Sets priority

—: Not used

Notes: 1. Set to 1 when interrupt is accepted.

2. Keep the initial setting.

5.4.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip supporting module interrupts can be set by means of the I bit in the CPU's CCR. Interrupts are enabled when the I bit is cleared to 0, and disabled when set to 1.

Figure 5.5 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] The I bit is then referenced. If the I bit is cleared to 0, the interrupt request is accepted. If the I bit is set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pending.
- [3] Interrupt requests are sent to the interrupt controller, the highest-ranked interrupt according to the priority system is accepted, and other interrupt requests are held pending.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.

RENESAS

- [6] Next, the I bit in CCR is set to 1. This masks all interrupts except NMI.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

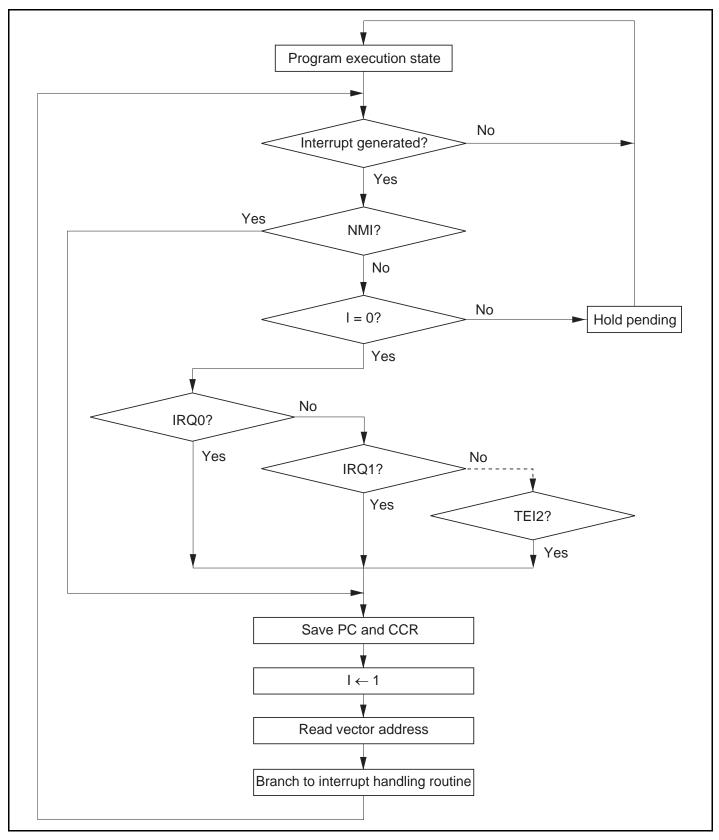


Figure 5.5 Flowchart of Procedure Up to Interrupt Acceptance in **Interrupt Control Mode 0**

5.4.3 Interrupt Control Mode 2

Eight-level masking is implemented for IRQ interrupts and on-chip supporting module interrupts by comparing the interrupt mask level set by bits I2 to I0 of EXR in the CPU with IPR.

Figure 5.6 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] When interrupt requests are sent to the interrupt controller, the interrupt with the highest priority according to the interrupt priority levels set in IPR is selected, and lower-priority interrupt requests are held pending. If a number of interrupt requests with the same priority are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5.4 is selected.
- [3] Next, the priority of the selected interrupt request is compared with the interrupt mask level set in EXR. An interrupt request with a priority no higher than the mask level set at that time is held pending, and only an interrupt request with a priority higher than the interrupt mask level is accepted.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC, CCR, and EXR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- [6] The T bit in EXR is cleared to 0. The interrupt mask level is rewritten with the priority level of the accepted interrupt.
 If the accepted interrupt is NMI, the interrupt mask level is set to H'7.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

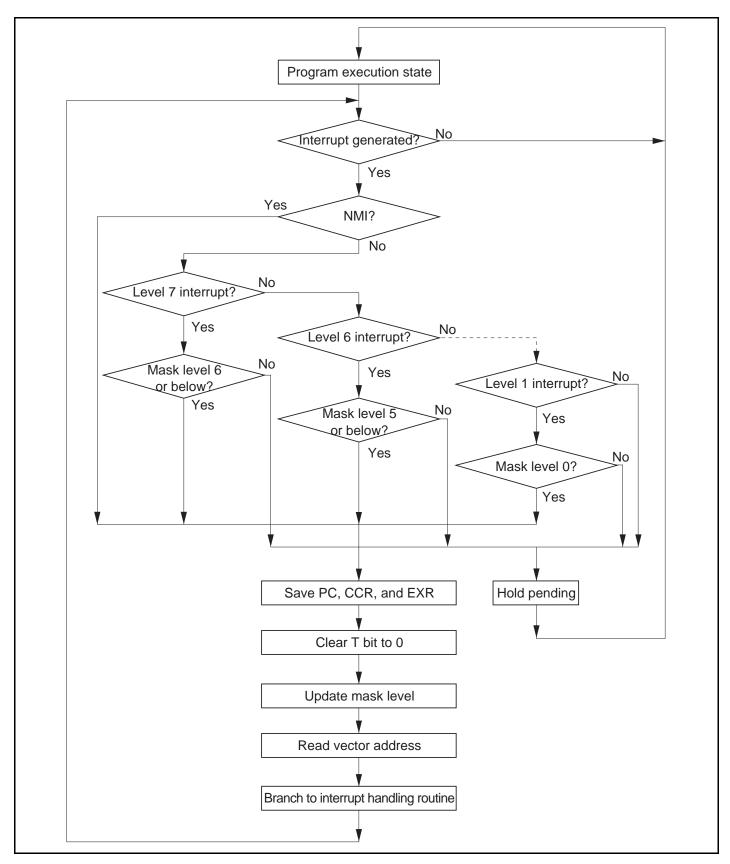


Figure 5.6 Flowchart of Procedure Up to Interrupt Acceptance in **Interrupt Control Mode 2**

5.4.4 Interrupt Exception Handling Sequence

Figure 5.7 shows the interrupt exception handling sequence. The example shown is for the case where interrupt control mode 0 is set in advanced mode, and the program area and stack area are in on-chip memory.

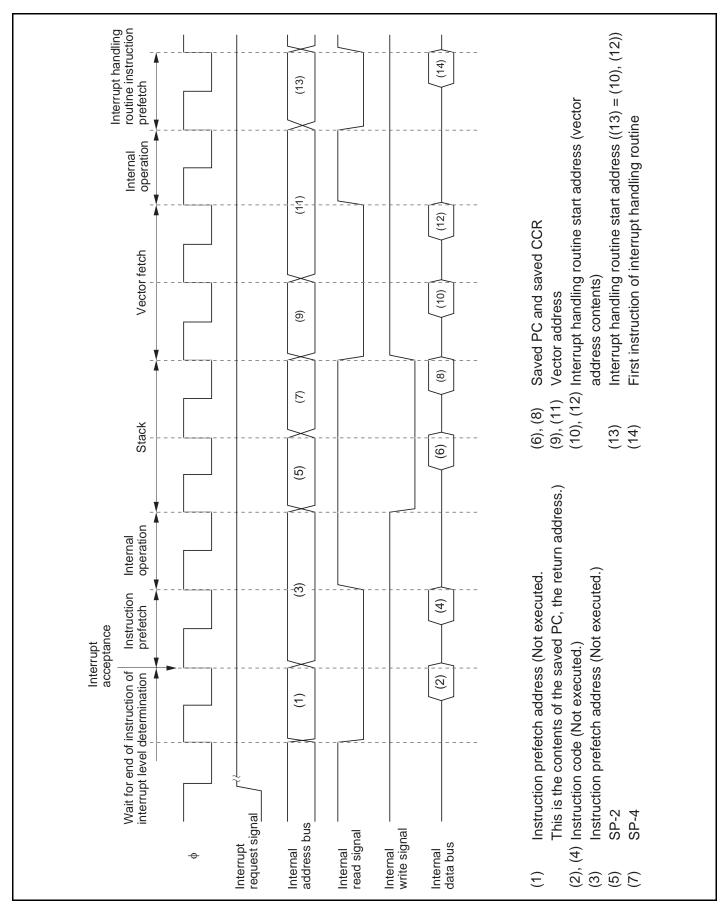


Figure 5.7 Interrupt Exception Handling

5.4.5 Interrupt Response Times

The chip is capable of fast word transfer instruction to on-chip memory, and the program area is provided in on-chip ROM and the stack area in on-chip RAM, enabling high-speed processing.

Table 5.9 shows interrupt response times—the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The execution status symbols used in table 5.9 are explained in table 5.10.

Table 5.9 Interrupt Response Times

	Advanced Mode			
Item	INTM1 = 0	INTM1 = 1		
Interrupt priority determination*1	3	3		
Number of wait states until executing instruction ends*2	1 to (19 + 2·S _I)	1 to (19 + 2·S _I)		
PC, CCR, EXR stack save	2·S _K	3⋅S _K		
Vector fetch	2·S _I	2·S _I		
Instruction fetch*3	2·S _I	2·S _I		
Internal processing*4	2	2		
(using on-chip memory)	12 to 32	13 to 33		
	Interrupt priority determination*1 Number of wait states until executing instruction ends*2 PC, CCR, EXR stack save Vector fetch Instruction fetch*3 Internal processing*4	ItemINTM1 = 0Interrupt priority determination*13Number of wait states until executing instruction ends*21 to $(19 + 2 \cdot S_I)$ PC, CCR, EXR stack save $2 \cdot S_K$ Vector fetch $2 \cdot S_I$ Instruction fetch*3 $2 \cdot S_I$ Internal processing*42		

Notes: 1. Two states in case of internal interrupt.

- 2. Refers to MULXS and DIVXS instructions.
- 3. Prefetch after interrupt acceptance and interrupt handling routine prefetch.
- 4. Internal processing after interrupt acceptance and internal processing after vector fetch.

Table 5.10 Number of States in Interrupt Handling Routine Execution

			Object of Access						
			External Device						
		Internal Memory	8-Bit Bus		16-Bit Bus				
Symbol			2-State Access	3-State Access	2-State Access	3-State Access			
Instruction fetch	Sı	1	4	6 + 2m	2	3 + m			
Branch address read	SJ								
Stack manipulation	S _K								
Logond:									

Legend:

m: Number of wait states in an external device access.

5.5 Usage Notes

5.5.1 Contention between Interrupt Generation and Disabling

When an interrupt enable bit is cleared to 0 to disable interrupts, the disabling becomes effective after execution of the instruction.

In other words, when an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, if an interrupt is generated during execution of the instruction, the interrupt concerned will still be enabled on completion of the instruction, and so interrupt exception handling for that interrupt will be executed on completion of the instruction. However, if there is an interrupt request of higher priority than that interrupt, interrupt exception handling will be executed for the higher-priority interrupt, and the lower-priority interrupt will be ignored.

The same also applies when an interrupt source flag is cleared.

Figure 5.8 shows an example in which the TGIEA bit in the TPU's TIER0 register is cleared to 0.

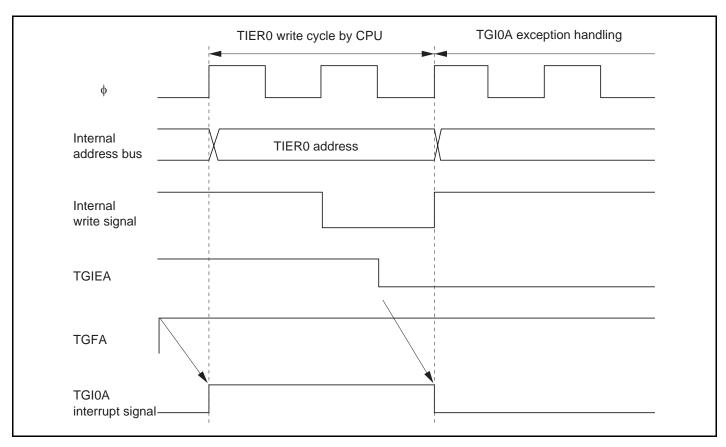


Figure 5.8 Contention between Interrupt Generation and Disabling

The above contention will not occur if an enable bit or interrupt source flag is cleared to 0 while the interrupt is masked.

5.5.2 Instructions That Disable Interrupts

Instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions is executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends.

5.5.3 Times when Interrupts Are Disabled

There are times when interrupt acceptance is disabled by the interrupt controller.

The interrupt controller disables interrupt acceptance for a 3-state period after the CPU has updated the mask level with an LDC, ANDC, ORC, or XORC instruction.

5.5.4 Interrupts during Execution of EEPMOV Instruction

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction.

With the EEPMOV.B instruction, an interrupt request (including NMI) issued during the transfer is not accepted until the move is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during the transfer, interrupt exception handling starts at a break in the transfer cycle. The PC value saved on the stack in this case is the address of the next instruction.

RENESAS

Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, the following coding should be used.

L1: EEPMOV.W

MOV.W R4,R4

BNE L1

5.6 DTC and DMAC Activation by Interrupt

5.6.1 Overview

The DTC and DMAC can be activated by an interrupt. In this case, the following options are available.

- 1. Interrupt request to CPU
- 2. Activation request to DTC
- 3. Activation request to DMAC
- 4. Selection of a number of the above

For details of interrupt requests that can be used with to activate the DTC or DMAC, see section 8, Data Transfer Controller, and section 7, DMA Controller.

5.6.2 Block Diagram

Figure 5.9 shows a block diagram of the DTC, DMAC, and interrupt controller.

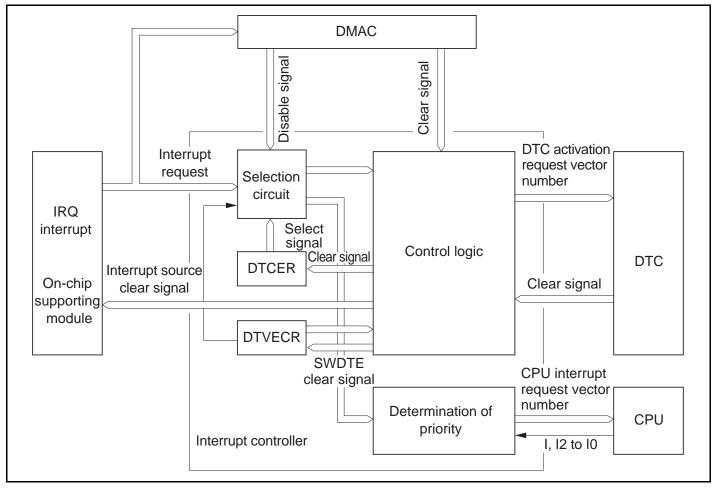


Figure 5.9 Interrupt Control for DTC and DMAC

5.6.3 Operation

The interrupt controller has three main functions in DTC and DMAC control.

Selection of Interrupt Source: With the DMAC, the activation source is input directly to each channel. The activation source for each DMAC channel is selected with bits DTF3 to DTF0 in DMACR. Whether the selected activation source is to be managed by the DMAC can be selected with the DTA bit of DMABCR. When the DTA bit is set to 1, the interrupt source constituting that DMAC activation source is not a DTC activation source or CPU interrupt source.

For interrupt sources other than interrupts managed by the DMAC, it is possible to select DTC activation request or CPU interrupt request with the DTCE bit of DTCERA to DTCERF in the DTC.

After a DTC data transfer, the DTCE bit can be cleared to 0 and an interrupt request sent to the CPU in accordance with the specification of the DISEL bit of MRB in the DTC.

When the DTC has performed the specified number of data transfers and the transfer counter value is zero, the DTCE bit is cleared to 0 and an interrupt request is sent to the CPU after the DTC data transfer.

Determination of Priority: The DTC activation source is selected in accordance with the default priority order, and is not affected by mask or priority levels. See section 7.6, Interrupts, and section 8.3.3, DTC Vector Table, for the respective priorities.

With the DMAC, the activation source is input directly to each channel.

Operation Order: If the same interrupt is selected as a DTC activation source and a CPU interrupt source, the DTC data transfer is performed first, followed by CPU interrupt exception handling.

If the same interrupt is selected as a DMAC activation source and a DTC activation source or CPU interrupt source, operations are performed for them independently according to their respective operating statuses and bus mastership priorities.

Table 5.11 summarizes interrupt source selection and interrupt source clearance control according to the settings of the DTA bit of DMABCR in the DMAC, the DTCE bit of DTCERA to DTCERF in the DTC, and the DISEL bit of MRB in the DTC.

Table 5.11 Interrupt Source Selection and Clearing Control

Settings

DMAC		DTC	Interrupt Source Selection/Clearing Control				
DTA	DTCE	DISEL	DMAC	DTC	CPU		
0	0	*	\circ	Х	0		
	1	0	0	0	Χ		
		1	0	\circ	0		
1	*	*	0	X	Χ		

Legend:

- ©: The relevant interrupt is used. Interrupt source clearing is performed. (The CPU should clear the source flag in the interrupt handling routine.)
- O: The relevant interrupt is used. The interrupt source is not cleared.
- X: The relevant interrupt cannot be used.
- *: Don't care

Usage Note: SCI and A/D converter interrupt sources are cleared when the DMAC or DTC reads or writes to the prescribed register, and are not dependent upon the DTA bit or DISEL bit.

RENESAS

Section 6 Bus Controller

6.1 Overview

The chip has an on-chip bus controller (BSC) that manages the external address space divided into eight areas. The bus specifications, such as bus width and number of access states, can be set independently for each area, enabling multiple memories to be connected easily.

The bus controller also has a bus arbitration function, and controls the operation of the internal bus masters—the CPU, DMA controller (DMAC), and data transfer controller (DTC).

6.1.1 Features

The features of the bus controller are listed below.

- Manages external address space in area units
 - In advanced mode, manages the external space as 8 areas of 2 Mbytes
 - Bus specifications can be set independently for each area
 - DRAM and burst ROM interfaces can be set
- Basic bus interface
 - Chip select signals (\overline{CS}_0 to \overline{CS}_7) can be output for areas 0 to 7
 - 8-bit access or 16-bit access can be selected for each area
 - 2-state access or 3-state access can be selected for each area
 - Program wait states can be inserted for each area
- DRAM interface
 - DRAM interface can be set for areas 2 to 5 (in advanced mode)
 - Row address/column address multiplexed output (8/9/10 bits)
 - 2-CAS access method
 - Burst operation (fast page mode)
 - TP cycle insertion to secure RAS precharging time
 - Selection of CAS-before-RAS refreshing or self-refreshing
- Burst ROM interface
 - Burst ROM interface can be set for area 0
 - Selection of 1- or 2-state burst access

- Idle cycle insertion
 - An idle cycle can be inserted in case of external read cycles in different areas
 - An idle cycle can be inserted in case of an external write cycle immediately after an external read cycle
- Write buffer function
 - External write cycle and internal access can be executed in parallel
 - DMAC single address mode and internal access can be executed in parallel
- Bus arbitration function
 - Includes a bus arbiter that arbitrates bus mastership between the CPU, DMAC, and DTC
- Other features
 - Refresh counter (refresh timer) can be used as an interval timer
 - External bus release function

6.1.2 Block Diagram

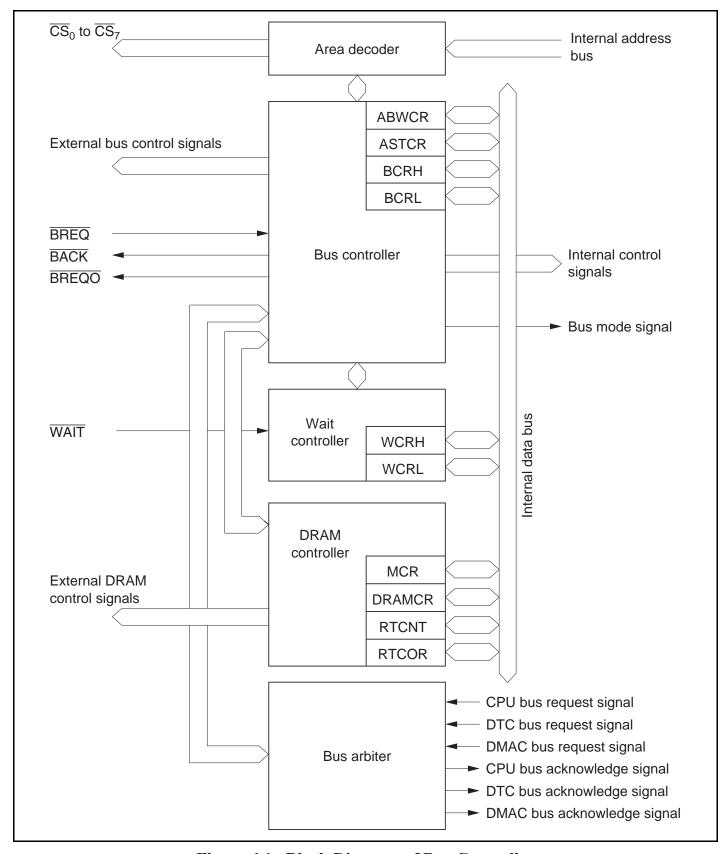


Figure 6.1 Block Diagram of Bus Controller

6.1.3 Pin Configuration

Table 6.1 summarizes the pins of the bus controller.

Table 6.1 Bus Controller Pins

Name	Symbol	I/O	Function
Address strobe	ĀS	Output	Strobe signal indicating that address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that external space is being read.
High write/write enable	HWR	Output	Strobe signal indicating that external space is to be written, and upper half (D_{15} to D_8) of data bus is enabled.
			2-CAS DRAM write enable signal.
Low write	LWR	Output	Strobe signal indicating that external space is to be written, and lower half (D_7 to D_0) of data bus is enabled.
Chip select 0	\overline{CS}_0	Output	Strobe signal indicating that area 0 is selected.
Chip select 1	CS ₁	Output	Strobe signal indicating that area 1 is selected.
Chip select 2/row	\overline{CS}_2	Output	Strobe signal indicating that area 2 is selected.
address strobe 2			DRAM row address strobe signal when area 2 is in DRAM space.
Chip select 3/row	CS ₃	Output	Strobe signal indicating that area 3 is selected.
address strobe 3			DRAM row address strobe signal when area 3 is in DRAM space.
Chip select 4/row	CS ₄	Output	Strobe signal indicating that area 4 is selected.
address strobe 4			DRAM row address strobe signal when area 4 is in DRAM space.
Chip select 5/row	$\overline{\text{CS}}_5$	Output	Strobe signal indicating that area 5 is selected.
address strobe 5			DRAM row address strobe signal when area 5 is in DRAM space.
Chip select 6	$\overline{\text{CS}}_6$	Output	Strobe signal indicating that area 6 is selected.
Chip select 7	CS ₇	Output	Strobe signal indicating that area 7 is selected.
Upper column address strobe	CAS	Output	2-CAS DRAM upper column address strobe signal.
Lower column address strobe	LCAS	Output	DRAM lower column address strobe signal.

Name	Symbol	I/O	Function
Wait	WAIT	Input	Wait request signal when accessing external 3-state access space.
Bus request	BREQ	Input	Request signal for release of bus to external device.
Bus request acknowledge	BACK	Output	Acknowledge signal indicating that bus has been released.
Bus request output	BREQO	Output	External bus request signal used when internal bus master accesses external space when external bus is released.

6.1.4 Register Configuration

Table 6.2 summarizes the registers of the bus controller.

Table 6.2 Bus Controller Registers

			Initial Value	
Name	Abbreviation	R/W	Reset	Address*1
Bus width control register	ABWCR	R/W	H'FF/H'00*2	H'FED0
Access state control register	ASTCR	R/W	H'FF	H'FED1
Wait control register H	WCRH	R/W	H'FF	H'FED2
Wait control register L	WCRL	R/W	H'FF	H'FED3
Bus control register H	BCRH	R/W	H'D0	H'FED4
Bus control register L	BCRL	R/W	H'3C	H'FED5
Memory control register	MCR	R/W	H'00	H'FED6
DRAM control register	DRAMCR	R/W	H'00	H'FED7
Refresh timer counter	RTCNT	R/W	H'00	H'FED8
Refresh time constant register	RTCOR	R/W	H'FF	H'FED9

Notes: 1. Lower 16 bits of the address.

2. Determined by the MCU operating mode.

6.2 Register Descriptions

6.2.1 Bus Width Control Register (ABWCR)

Bit	:	7	6	5	4	3	2	1	0	
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	1
Modes 5 to	7									
Initial val	ue:	1	1	1	1	1	1	1	1	
R/W	:	R/W								
Mode 4										
Initial val	ue:	0	0	0	0	0	0	0	0	
R/W		R/W								

ABWCR is an 8-bit readable/writable register that designates each area as either 8-bit access space or 16-bit access space.

ABWCR sets the data bus width for the external memory space. The bus width for on-chip memory and internal I/O registers is fixed regardless of the settings in ABWCR.

After a reset and in hardware standby mode, ABWCR is initialized to H'FF in modes 5 to 7*, and to H'00 in mode 4. It is not initialized in software standby mode.

Note: * Modes 6 and 7 cannot be used in the ROMless version.

Bits 7 to 0—Area 7 to 0 Bus Width Control (ABW7 to ABW0): These bits select whether the corresponding area is to be designated as 8-bit access space or 16-bit access space.

Bit n ABWn	Description
0	Area n is designated for 16-bit access
1	Area n is designated for 8-bit access
(n = 7 to 0)	

6.2.2 Access State Control Register (ASTCR)

Bit	:	7	6	5	4	3	2	1	0	
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	
Initial va	ılue :	1	1	1	1	1	1	1	1	_
R/W	:	R/W								

ASTCR is an 8-bit readable/writable register that designates each area as either 2-state access space or 3-state access space.

ASTCR sets the number of access states for the external memory space. The number of access states for on-chip memory and internal I/O registers is fixed regardless of the settings in ASTCR.

ASTCR is initialized to H'FF by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 to 0—Area 7 to 0 Access State Control (AST7 to AST0): These bits select whether the corresponding area is to be designated as 2-state access space or 3-state access space.

Wait state insertion is enabled or disabled at the same time.

Bit n ASTn	Description	
0	Area n is designated for 2-state access	
	Wait state insertion in area n external space access is disabled	
1	Area n is designated for 3-state access	(Initial value)
	Wait state insertion in area n external space access is enabled	
(n = 7 to 0)		

6.2.3 Wait Control Registers H and L (WCRH, WCRL)

WCRH and WCRL are 8-bit readable/writable registers that select the number of program wait states for each area.

Program waits are not inserted in on-chip memory or internal I/O register access.

WCRH and WCRL are initialized to H'FF by a reset, and in hardware standby mode. They are not initialized in software standby mode.

WCRH

Bit	:	7	6	5	4	3	2	1	0
		W71	W70	W61	W60	W51	W50	W41	W40
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 7 Wait Control 1 and 0 (W71, W70): These bits select the number of program wait states when area 7 in external space is accessed while the AST7 bit in ASTCR is set to 1.

Bit 7 W71	Bit 6 W70	Description
0	0	Program wait not inserted when external space area 7 is accessed
	1	1 program wait state inserted when external space area 7 is accessed
1	0	2 program wait states inserted when external space area 7 is accessed
	1	3 program wait states inserted when external space area 7 is accessed (Initial value)

Bits 5 and 4—Area 6 Wait Control 1 and 0 (W61, W60): These bits select the number of program wait states when area 6 in external space is accessed while the AST6 bit in ASTCR is set to 1.

Bit 5 W61	Bit 4 W60	Description
0	0	Program wait not inserted when external space area 6 is accessed
	1	1 program wait state inserted when external space area 6 is accessed
1	0	2 program wait states inserted when external space area 6 is accessed
	1	3 program wait states inserted when external space area 6 is accessed (Initial value)

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1.

Bit 3 W51	Bit 2 W50	Description
0	0	Program wait not inserted when external space area 5 is accessed
	1	1 program wait state inserted when external space area 5 is accessed
1	0	2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed (Initial value)

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1.

Bit 1	Bit 0	
W41	W40	Description
0	0	Program wait not inserted when external space area 4 is accessed
	1	1 program wait state inserted when external space area 4 is accessed
1	0	2 program wait states inserted when external space area 4 is accessed
	1	3 program wait states inserted when external space area 4 is accessed (Initial value)

WCRL

Bit	:	7	6	5	4	3	2	1	0
		W31	W30	W21	W20	W11	W10	W01	W00
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 3 Wait Control 1 and 0 (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1.

Bit 7	Bit 6	
W31	W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed
	1	3 program wait states inserted when external space area 3 is accessed (Initial value)

Bits 5 and 4—Area 2 Wait Control 1 and 0 (W21, W20): These bits select the number of program wait states when area 2 in external space is accessed while the AST2 bit in ASTCR is set to 1.

Bit 5 W21	Bit 4 W20	Description
0	0	Program wait not inserted when external space area 2 is accessed
	1	1 program wait state inserted when external space area 2 is accessed
1	0	2 program wait states inserted when external space area 2 is accessed
	1	3 program wait states inserted when external space area 2 is accessed (Initial value)

Bits 3 and 2—Area 1 Wait Control 1 and 0 (W11, W10): These bits select the number of program wait states when area 1 in external space is accessed while the AST1 bit in ASTCR is set to 1.

Bit 3 W11	Bit 2 W10	Description
0	0	Program wait not inserted when external space area 1 is accessed
	1	1 program wait state inserted when external space area 1 is accessed
1	0	2 program wait states inserted when external space area 1 is accessed
	1	3 program wait states inserted when external space area 1 is accessed (Initial value)

Bits 1 and 0—Area 0 Wait Control 1 and 0 (W01, W00): These bits select the number of program wait states when area 0 in external space is accessed while the AST0 bit in ASTCR is set to 1.

Bit 1 W01	Bit 0 W00	Description
0	0	Program wait not inserted when external space area 0 is accessed
	1	1 program wait state inserted when external space area 0 is accessed
1	0	2 program wait states inserted when external space area 0 is accessed
	1	3 program wait states inserted when external space area 0 is accessed (Initial value)

6.2.4 Bus Control Register H (BCRH)

Bit	:	7	6	5	4	3	2	1	0
		ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	RMTS2	RMTS1	RMTS0
Initial valu	e :	1	1	0	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

BCRH is an 8-bit readable/writable register that selects enabling or disabling of idle cycle insertion, and the memory interface for areas 2 to 5 and area 0.

BCRH is initialized to H'D0 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Idle Cycle Insert 1 (ICIS1): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read cycles are performed in different areas.

Bit 7 ICIS1	Description
0	Idle cycle not inserted in case of successive external read cycles in different areas.
1	Idle cycle inserted in case of successive external read cycles in different areas. (Initial value)

Bit 6—Idle Cycle Insert 0 (ICIS0): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read and external write cycles are performed.

Bit 6 ICIS0	Description
0	Idle cycle not inserted in case of successive external read and external write cycles.
1	Idle cycle inserted in case of successive external read and external write cycles. (Initial value)

Bit 5—Burst ROM Enable (BRSTRM): Selects whether area 0 is used as a burst ROM interface area.

Bit 5 BRSTRM	Description	
0	Area 0 is basic bus interface area	(Initial value)
1	Area 0 is burst ROM interface area	

Bit 4—Burst Cycle Select 1 (BRSTS1): Selects the number of burst cycles for the burst ROM interface.

Bit 4 BRSTS1	Description	
0	Burst cycle comprises 1 state	
1	Burst cycle comprises 2 states	(Initial value)

Bit 3—Burst Cycle Select 0 (BRSTS0): Selects the number of words that can be accessed in a burst access on the burst ROM interface.

Bit 3 BRSTS0	Description	
0	Max. 4 words in burst access	(Initial value)
1	Max. 8 words in burst access	

Bits 2 to 0—RAM Type Select (RMTS2 to RMTS0): These bits select the memory interface for areas 2 to 5 in advanced mode.

When DRAM space is selected, the relevant area is designated as a DRAM interface area.

Bit 2 RMTS2	Bit 1	Bit 0	Description			
	RMTS1	RMTS0	Area 5	Area 4	Area 3	Area 2
0	0	0	Normal space	Normal space	Normal space	Normal space
		1	Normal space	Normal space	Normal space	DRAM space
	1	0	Normal space	Normal space	DRAM space	DRAM space
		1	DRAM space	DRAM space	DRAM space	DRAM space
1	_	_	_		_	_

The \overline{LCAS} pin is used for the \overline{LCAS} signal on the 2-CAS DRAM interface. If it is wished to use \overline{BREQO} output when using the \overline{LCAS} signal, it is possible to switch to the P53 pin by means of the BREQOPS bit in PFCR2. For details, see section 9.6, Port 5 and section 9.16, Port F.

6.2.5 Bus Control Register L (BCRL)

Bit	:	7	6	5	4	3	2	1	0	
		BRLE	BREQOE	EAE	_	DDS	_	WDBE	WAITE	ĺ
Initial val	lue :	0	0	1	1	1	1	0	0	•
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

BCRL is an 8-bit readable/writable register that performs selection of the external bus-released state protocol, selection of the area partition unit, enabling or disabling of the write data buffer function, and enabling or disabling of \overline{WAIT} pin input.

BCRL is initialized to H'3C by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Bus Release Enable (BRLE): Enables or disables external bus release.

Bit 7 BRLE	Description
0	External bus release disabled. BREQ, BACK, and BREQO pins can be used as I/O ports (Initial value)
1	External bus release enabled

Bit 6—BREQO Pin Enable (BREQOE): Outputs a signal that requests the external bus master to drop the bus request signal (BREQ) in the external bus-released state, when an internal bus master performs an external space access, or when a refresh request is generated.

Bit 6 BREQOE	Description	
0	BREQO output disabled. BREQO pin can be used as I/O port	(Initial value)
1	BREQO output enabled	

Bit 5—External Address Enable (EAE): Designates addresses H'010000 to H'03FFFF*² as either internal or external addresses.

Bit 5 EAE	Description			
	H8S/2339, H8S/2338	H8S/2337	H8S/2332	
0	On-chip ROM	Addresses H'010000 to on-chip ROM or addres to H'03FFFF are reserv	H'01FFFF are Reserved area ^{*1} ses H'020000 red area ^{*1}	
1	Addresses H'010000 to or reserved area*1 in s		addresses in external expanded mode	
Notes:	Do not access a reserv	/ed area.		

Addresses H'010000 to H'05FFFF in the H8S/2339.

Bit 4—Reserved: Only 1 should be written to this bit.

Bit 3—DACK Timing Select (DDS): Selects the DMAC single address transfer bus timing for the DRAM interface.

Bit 3 DDS	Description	
0	When DMAC single address transfer is performed in DRAM sp always executed. DACK signal goes low from Tr or T1 cycle	ace, full access is
1	Burst access is possible when DMAC single address transfer is space. DACK signal goes low from Tc1 or T2 cycle	s performed in DRAM (Initial value)

Bit 2—Reserved: Only 1 should be written to this bit.

Bit 1—Write Data Buffer Enable (WDBE): Selects whether or not the write buffer function is used for an external write cycle or DMAC single address cycle.

Bit 1 WDBE	Description	
0	Write data buffer function not used	(Initial value)
1	Write data buffer function used	

Bit 0—WAIT Pin Enable (WAITE): Selects enabling or disabling of wait input by the WAIT pin.

Bit 0 WAITE	Description	
0	Wait input by WAIT pin disabled. WAIT pin can be used as I/O port	(Initial value)
1	Wait input by WAIT pin enabled	

6.2.6 Memory Control Register (MCR)

Bit	:	7	6	5	4	3	2	1	0
		TPC	BE	RCDM		MXC1	MXC0	RLW1	RLW0
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MCR is an 8-bit readable/writable register that selects the DRAM strobe control method, number of precharge cycles, access mode, address multiplexing shift size, and the number of wait states inserted during refreshing, when areas 2 to 5 are designated as DRAM interface areas.

MCR is initialized to H'00 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—TP Cycle Control (TPC): Selects whether a 1-state or 2-state precharge cycle (T_P) is to be used when areas 2 to 5 designated as DRAM space are accessed.

Bit 7 TPC	Description	
0	1-state precharge cycle is inserted	(Initial value)
1	2-state precharge cycle is inserted	

Bit 6—Burst Access Enable (BE): Selects enabling or disabling of burst access to areas 2 to 5 designated as DRAM space. DRAM space burst access is performed in fast page mode.

Bit 6 BE	Description	
0	Burst disabled (always full access)	(Initial value)
1	DRAM space access performed in fast page mode	

Bit 5—RAS Down Mode (RCDM): When areas 2 to 5 are designated as DRAM space and access to DRAM is interrupted, RCDM selects whether the \overline{RAS} signal is held low while waiting for the next DRAM access (RAS down mode), or is driven high again (RAS up mode).

Bit 5 RCDM	Description	
0	RAS up mode selected for DRAM interface	(Initial value)
1	RAS down mode selected for DRAM interface	

Bit 4—Reserved: Only 1 should be written to this bit.

Bits 3 and 2—Multiplex Shift Count 1 and 0 (MXC1, MXC0): These bits select the size of the shift toward the lower half of the row address in row address/column address multiplexing for the DRAM interface. In burst operation on the DRAM interface, these bits also select the row address bits to be used for comparison.

Bit 3 MXC1	Bit 2 MXC0	Description				
0	0	8-bit shift (Initial value)				
		 When 8-bit access space is designated: Row address bits A₂₃ to A₈ used for comparison 				
		 When 16-bit access space is designated: Row address bits A₂₃ to A₉ used for comparison 				
	1	9-bit shift				
		 When 8-bit access space is designated: Row address bits A₂₃ to A₉ used for comparison 				
		 When 16-bit access space is designated: Row address bits A₂₃ to A₁₀ used for comparison 				
1	0	10-bit shift				
		 When 8-bit access space is designated: Row address bits A₂₃ to A₁₀ used for comparison 				
		 When 16-bit access space is designated: Row address bits A₂₃ to A₁₁ used for comparison 				
	1	_				

Bits 1 and 0—Refresh Cycle Wait Control 1 and 0 (RLW1, RLW0): These bits select the number of wait states to be inserted in a DRAM interface CAS-before-RAS refresh cycle. This setting is used for all areas designated as DRAM space. Wait input by the WAIT pin is disabled.

Bit 1 RLW1	Bit 0 RLW0	Description	
0	0	No wait state inserted	(Initial value)
	1	1 wait state inserted	
1	0	2 wait states inserted	
	1	3 wait states inserted	

6.2.7 DRAM Control Register (DRAMCR)

Bit	:	7	6	5	4	3	2	1	0
		RFSHE	RCW	RMODE	CMF	CMIE	CKS2	CKS1	CKS0
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DRAMCR is an 8-bit readable/writable register that selects the DRAM refresh mode and refresh counter clock and controls the refresh timer.

DRAMCR is initialized to H'00 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Refresh Control (RFSHE): Selects whether or not refresh control is performed. When refresh control is not performed, the refresh timer can be used as an interval timer.

Bit 7 RFSHE	Description	
0	Refresh control is not performed	(Initial value)
1	Refresh control is performed	

Bit 6—RAS-CAS Wait (RCW): Controls wait state insertion in DRAM interface CAS-before-RAS refreshing.

Bit 6 RCW	Description					
0	Wait state insertion in CAS-before-RAS refreshing disabled					
	RAS falls in Tr cycle	(Initial value)				
1	One wait state inserted in CAS-before-RAS refreshing					
	RAS falls in Tc1 cycle					

Bit 5—Refresh Mode (RMODE): Selects whether self-refreshing is performed in software standby mode.

Bit 5 RMODE	Description	
0	Self-refreshing is not performed in software standby mode	(Initial value)
1	Self-refreshing is performed in software standby mode	

Bit 4—Compare Match Flag (CMF): Status flag that indicates a match between the values of RTCNT and RTCOR.

When refresh control is performed (RFSHE = 1), 1 should be written to the CMF bit when writing to DRAMCR.

Bit 4 CMF	Description	
0	[Clearing condition]	
	When 0 is written to CMF after reading CMF = 1	(Initial value)
1	[Setting condition]	
	When RTCNT = RTCOR	

Bit 3—Compare Match Interrupt Enable (CMIE): Enables or disables interrupt requests (CMI) by the CMF flag when the CMF flag in DRAMCR is set to 1.

When refresh control is performed (RFSHE = 1), the CMIE bit is always cleared to 0.

Bit 3 CMIE	Description	
0	Interrupt request (CMI) by CMF flag disabled	(Initial value)
1	Interrupt request (CMI) by CMF flag enabled	

Bits 2 to 0—Refresh Counter Clock Select (CKS2 to CKS0): These bits select the clock to be input to RTCNT from among seven clocks obtained by dividing the system clock (ϕ). When the input clock is selected with bits CKS2 to CKS0, RTCNT begins counting up.

Bit 1 CKS1	Bit 0 CKS0	Description				
0	0	Count operation disabled	(Initial value)			
	1	Count uses φ/2				
1	0	Count uses φ/8				
	1	Count uses φ/32				
0	0	Count uses φ/128				
	1	Count uses φ/512				
1	0	Count uses φ/2048				
	1	Count uses φ/4096				
	0 1	CKS1 CKS0 0 0 1 0 1 0 1 0	CKS1CKS0Description0Count operation disabled1Count uses $\phi/2$ 10Count uses $\phi/8$ 1Count uses $\phi/32$ 00Count uses $\phi/128$ 1Count uses $\phi/512$ 10Count uses $\phi/2048$			

6.2.8 Refresh Timer Counter (RTCNT)

Bit	:	7	6	5	4	3	2	1	0	
Initial valu	ле :	0	0	0	0	0	0	0	0	
R/W	:	R/W								

RTCNT is an 8-bit readable/writable up-counter.

RTCNT counts up using the internal clock selected by bits CKS2 to CKS0 in DRAMCR.

When RTCNT matches RTCOR (compare match), the CMF flag in DRAMCR is set to 1 and RTCNT is cleared to H'00. If the RFSHE bit in DRAMCR is set to 1 at this time, a refresh cycle is started. Also, if the CMIE bit in DRAMCR is set to 1, a compare match interrupt (CMI) is generated.

RTCNT is initialized to H'00 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

6.2.9 Refresh Time Control Register (RTCOR)

Bit	:	7	6	5	4	3	2	1	0
Initial value :		1	1	1	1	1	1	1	1
R/W	:	R/W							

RTCOR is an 8-bit readable/writable register that sets the period for compare match operations with RTCNT.

The values of RTCOR and RTCNT are constantly compared, and if they match, the CMF flag in DRAMCR is set to 1 and RTCNT is cleared to H'00.

RTCOR is initialized to H'FF by a reset, and in hardware standby mode. It is not initialized in software standby mode.

RENESAS

6.3 Overview of Bus Control

6.3.1 Area Partitioning

In advanced mode, the bus controller partitions the 16-Mbyte address space into eight areas, 0 to 7, in 2-Mbyte units, and performs bus control for external space in area units. Figure 6.2 shows an outline of the memory map.

Chip select signals (\overline{CS}_0 to \overline{CS}_7) can be output for each area.

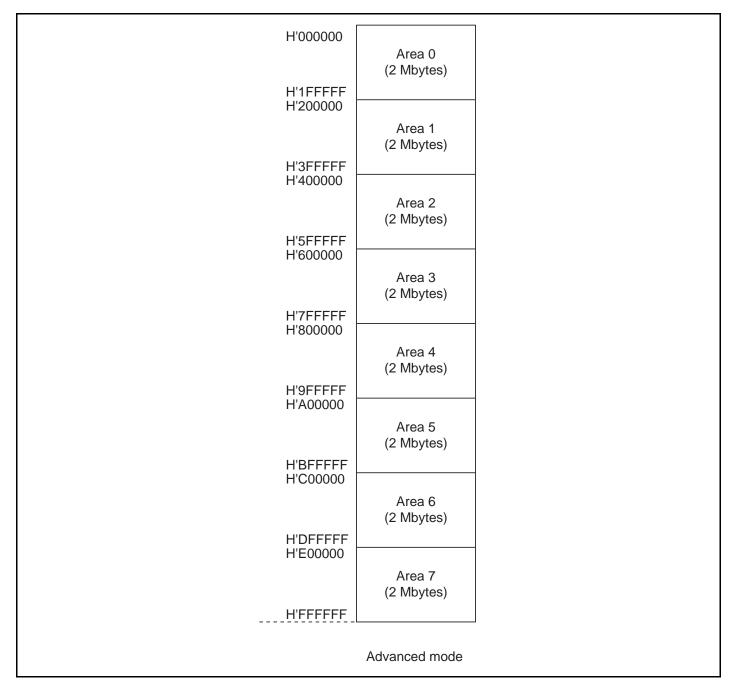


Figure 6.2 Area Partitioning

Rev.4.00 Sep. 07, 2007 Page 149 of 1210

6.3.2 Bus Specifications

The external space bus specifications consist of three elements: (1) bus width, (2) number of access states, and (3) number of program wait states.

The bus width and number of access states for on-chip memory and internal I/O registers are fixed, and are not affected by the bus controller.

Bus Width: A bus width of 8 or 16 bits can be selected with ABWCR. An area for which an 8-bit bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is selected functions as a16-bit access space.

If all areas are designated for 8-bit access, 8-bit bus mode is set; if any area is designated for 16-bit access, 16-bit bus mode is always set. When the burst ROM interface is selected, 16-bit bus mode is always set.

Number of Access States: Two or three access states can be selected with ASTCR. An area for which 2-state access is selected functions as a 2-state access space, and an area for which 3-state access is selected functions as a 3-state access space.

With the DRAM interface and burst ROM interface, the number of access states may be determined without regard to ASTCR.

When 2-state access space is designated, wait insertion is disabled.

Number of Program Wait States: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and WCRL. From 0 to 3 program wait states can be selected.

Table 6.3 shows the bus specifications for each basic bus interface area.

 Table 6.3
 Bus Specifications for Each Area (Basic Bus Interface)

ABWCR	ASTCR	WCF	RH, WCRL	Bus Specifications (Basic Bus Interface)							
ABWn	ASTn	Wn1	Wn0	Bus Width	Access States	Program Wait States					
0	0	_	_	16	2	0					
	1	0	0	-	3	0					
			1	-		1					
		1	0	-		2					
			1	-		3					
1	0	_	_	8	2	0					
	1	0	0	-	3	0					
			1	-		1					
		1	0	-		2					
			1	=		3					

6.3.3 Memory Interfaces

The chip's interfaces comprise a basic bus interface that allows direct connection of ROM, SRAM, and so on; a DRAM interface that allows direct connection of DRAM; and a burst ROM interface that allows direct connection of burst ROM. The interface can be selected independently for each area.

An area for which the basic bus interface is designated functions as normal space, an area for which the DRAM interface is designated functions as DRAM space, and an area for which the burst ROM interface is designated functions as burst ROM space.

6.3.4 Advanced Mode

The initial state of each area is basic bus interface, 3-state access space. The initial bus width is selected according to the operating mode. The bus specifications described here cover basic items only, and the sections on each memory interface (section 6.4, Basic Bus Interface, section 6.5, DRAM Interface, and section 6.7, Burst ROM Interface) should be referred to for further details.

Area 0: Area 0 includes on-chip ROM, and in expanded mode with on-chip ROM disabled, all of area 0 is external space. In expanded mode with on-chip ROM enabled, the space excluding on-chip ROM is external space.

When area 0 external space is accessed, the \overline{CS}_0 signal can be output.

Either basic bus interface or burst ROM interface can be selected for area 0.

Areas 1 and 6: In external expanded mode, all of area 1 and area 6 is external space.

When area 1 and 6 external space is accessed, the \overline{CS}_1 and \overline{CS}_6 pin signals can be output, respectively.

Only the basic bus interface can be used for areas 1 and 6.

Areas 2 to 5: In external expanded mode, areas 2 to 5 are all external space.

When area 2 to 5 external space is accessed, signals \overline{CS}_2 to \overline{CS}_5 can be output.

Basic bus interface or DRAM interface can be selected for areas 2 to 5. With the DRAM interface, signals \overline{CS}_2 to \overline{CS}_5 are used as \overline{RAS} signals.

Area 7: Area 7 includes the on-chip RAM and internal I/O registers. In external expanded mode, the space excluding the on-chip RAM and internal I/O registers is external space. The on-chip RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1; when the RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding space becomes external space.

When area 7 external space is accessed, the \overline{CS}_7 signal can be output.

Only the basic bus interface can be used for the area 7 memory interface.

6.3.5 Chip Select Signals

The chip can output chip select signals (\overline{CS}_0 to \overline{CS}_7) to areas 0 to 7, the signal being driven low when the corresponding external space area is accessed.

Figure 6.3 shows an example of \overline{CS}_n (n = 0 to 7) output timing.

Enabling or disabling of \overline{CS}_n signal output is performed by setting the data direction register (DDR) bit for the port corresponding to the particular \overline{CS}_n pin, the CS/67 enable bit (CS/67E), and the CS25 enable bit (CS25E).

In expanded mode with on-chip ROM disabled, the CS0 pin is placed in the output state after a reset. Pins \overline{CS}_1 to \overline{CS}_7 are placed in the input state after a reset, so the corresponding DDR bits as well as bits CS/67E and CS25E should be set to 1 when outputting signals \overline{CS}_1 to \overline{CS}_7 .

In expanded mode with on-chip ROM enabled, pins \overline{CS}_0 to \overline{CS}_7 are all placed in the input state after a reset, so the corresponding DDR bits as well as bits CS/67E and CS25E should be set to 1 when outputting signals \overline{CS}_1 to \overline{CS}_7 .

For details, see section 9, I/O Ports.

When areas 2 to 5 are designated as DRAM space, outputs \overline{CS}_2 to \overline{CS}_5 are used as \overline{RAS} signals.

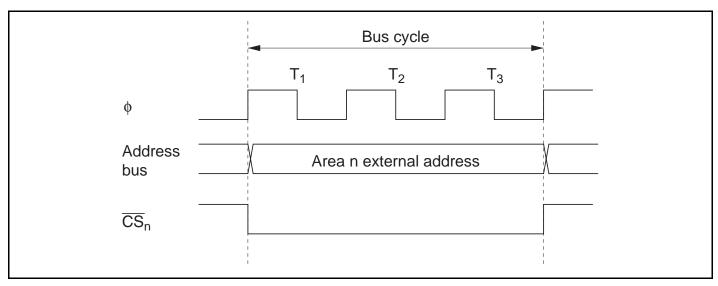


Figure 6.3 \overline{CS}_n Signal Output Timing (n = 0 to 7)

6.4 Basic Bus Interface

6.4.1 Overview

The basic bus interface enables direct connection of ROM, SRAM, and so on.

The bus specifications can be selected with ABWCR, ASTCR, WCRH, and WCRL. (See table 6.3.)

6.4.2 Data Size and Data Alignment

Data sizes for the CPU and other internal bus masters are byte, word, and longword. The bus controller has a data alignment function, and when accessing external space, controls whether the upper data bus (D_{15} to D_8) or lower data bus (D_7 to D_0) is used according to the bus specifications for the area being accessed (8-bit access space or 16-bit access space) and the data size.

8-Bit Access Space: Figure 6.4 illustrates data alignment control for the 8-bit access space. With the 8-bit access space, the upper data bus (D_{15} to D_8) is always used for accesses. The amount of data that can be accessed at one time is one byte: a word transfer instruction is performed as two byte accesses, and a longword transfer instruction, as four byte accesses.

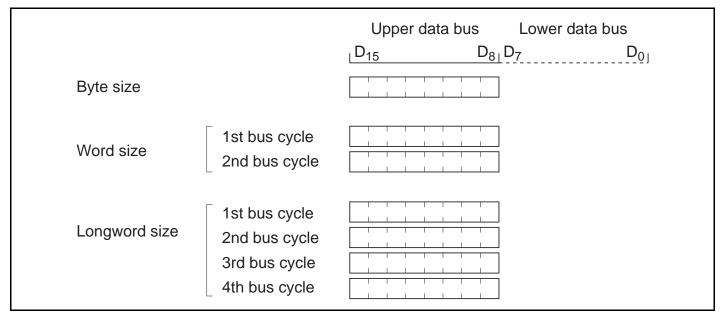


Figure 6.4 Access Sizes and Data Alignment Control (8-Bit Access Space)

RENESAS

16-Bit Access Space: Figure 6.5 illustrates data alignment control for the 16-bit access space. With the 16-bit access space, the upper data bus (D_{15} to D_{8}) and lower data bus (D_{7} to D_{0}) are used for accesses. The amount of data that can be accessed at one time is one byte or one word, and a longword transfer instruction is executed as two word transfer instructions.

In byte access, whether the upper or lower data bus is used is determined by whether the address is even or odd. The upper data bus is used for an even address, and the lower data bus for an odd address.

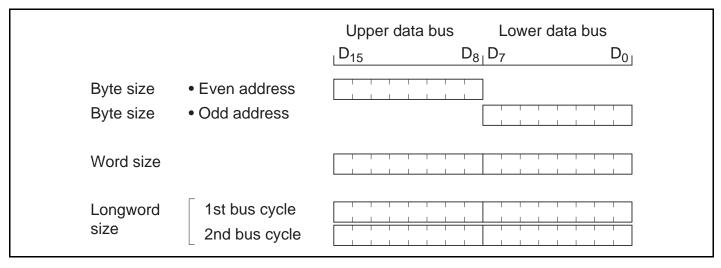


Figure 6.5 Access Sizes and Data Alignment Control (16-Bit Access Space)

6.4.3 Valid Strobes

Table 6.4 shows the data buses used and valid strobes for the access spaces.

In a read, the \overline{RD} signal is valid without discrimination between the upper and lower halves of the data bus.

In a write, the \overline{HWR} signal is valid for the upper half of the data bus, and the \overline{LWR} signal for the lower half.

Table 6.4 Data Buses Used and Valid Strobes

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus (D ₁₅ to D ₈)	Lower Data Bus (D ₇ to D ₀)		
8-bit access	Byte	Read	_	RD	Valid	Invalid		
space		Write	_	HWR		Hi-Z		
16-bit access	Byte	Read	Even	RD	Valid	Invalid		
space			Odd	<u> </u>	Invalid	Valid		
		Write	Even	HWR	Valid	Hi-Z		
			Odd	LWR	Hi-Z	Valid		
	Word	Read	_	RD	Valid	Valid		
		Write	_	HWR, LWR	Valid	Valid		

RENESAS

Note: Hi-Z: High impedance

Invalid: Input state; input value is ignored.

6.4.4 Basic Timing

8-Bit 2-State Access Space: Figure 6.6 shows the bus timing for an 8-bit 2-state access space. When an 8-bit access space is accessed, the upper half (D_{15} to D_8) of the data bus is used.

The LWR pin is fixed high. Wait states cannot be inserted.

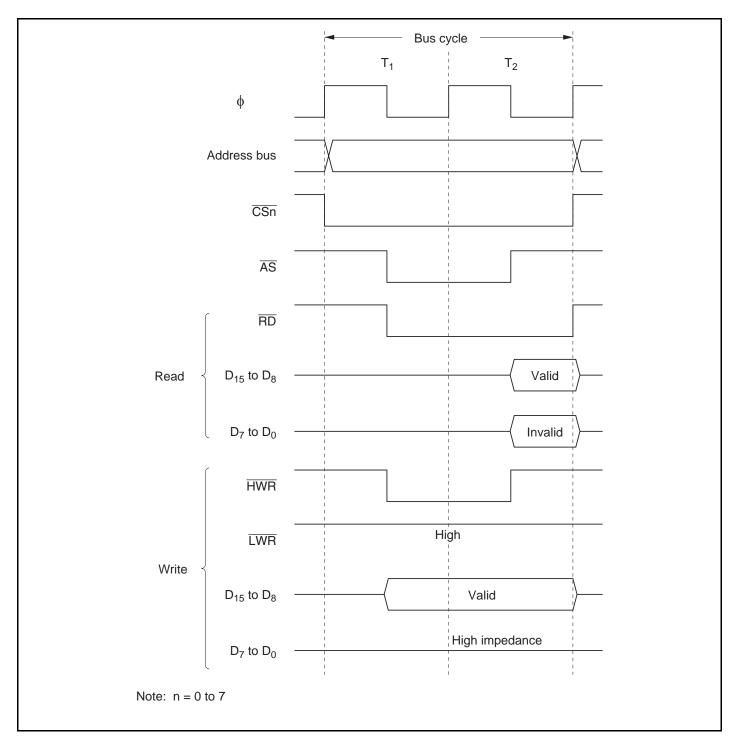


Figure 6.6 Bus Timing for 8-Bit 2-State Access Space

8-Bit 3-State Access Space: Figure 6.7 shows the bus timing for an 8-bit 3-state access space. When an 8-bit access space is accessed, the upper half (D_{15} to D_8) of the data bus is used.

The LWR pin is fixed high. Wait states can be inserted.

Figure 6.7 Bus Timing for 8-Bit 3-State Access Space

16-Bit 2-State Access Space: Figures 6.8 to 6.10 show bus timings for a 16-bit 2-state access space. When a 16-bit access space is accessed, the upper half (D_{15} to D_8) of the data bus is used for the even address, and the lower half (D_7 to D_9) for the odd address.

Wait states cannot be inserted.

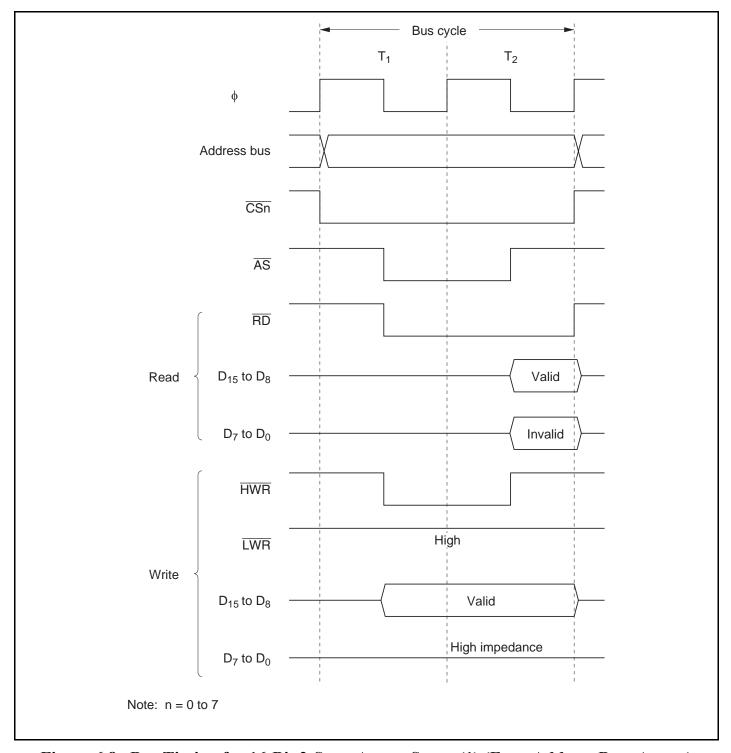


Figure 6.8 Bus Timing for 16-Bit 2-State Access Space (1) (Even Address Byte Access)

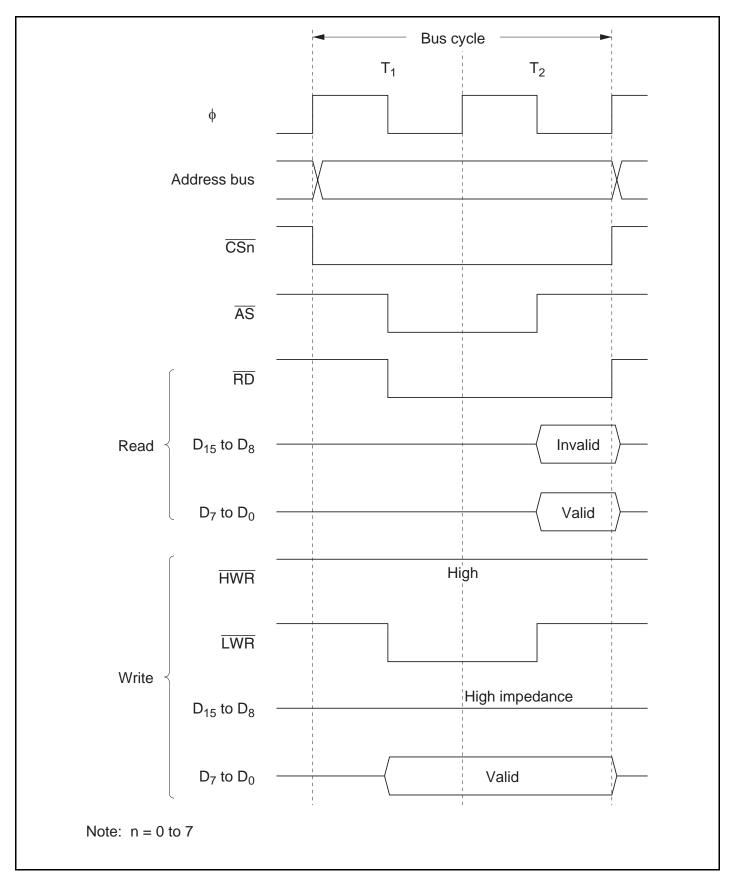


Figure 6.9 Bus Timing for 16-Bit 2-State Access Space (2) (Odd Address Byte Access)

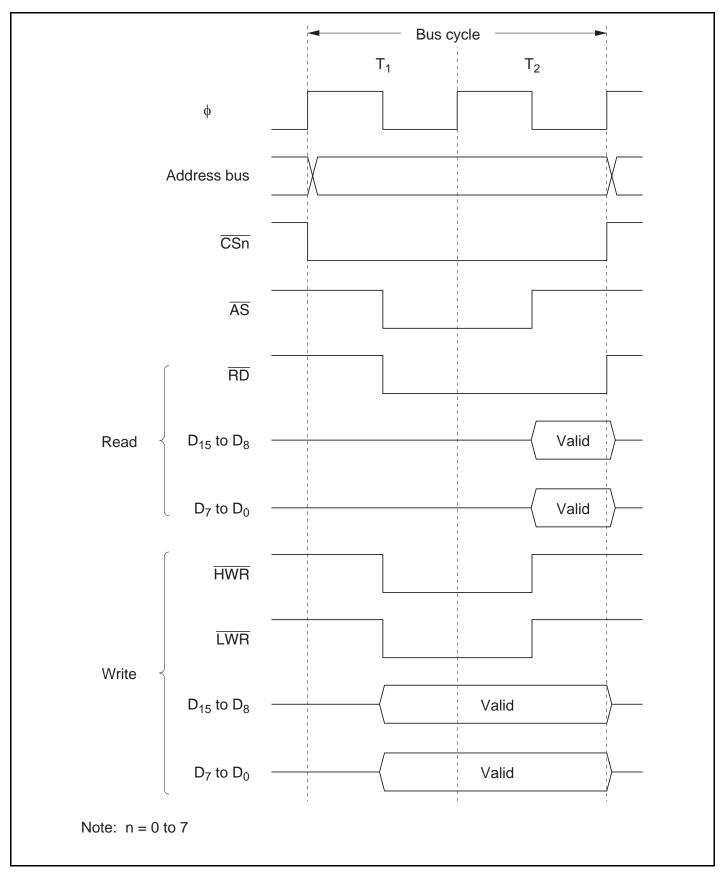


Figure 6.10 Bus Timing for 16-Bit 2-State Access Space (3) (Word Access)

16-Bit 3-State Access Space: Figures 6.11 to 6.13 show bus timings for a 16-bit 3-state access space. When a 16-bit access space is accessed, the upper half (D_{15} to D_8) of the data bus is used for the even address, and the lower half (D_7 to D_0) for the odd address.

Wait states can be inserted.

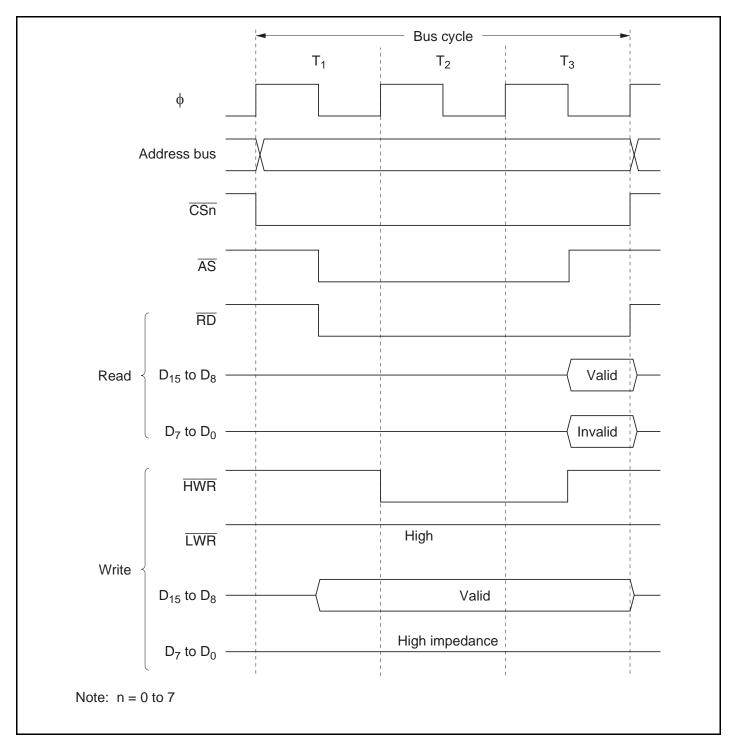


Figure 6.11 Bus Timing for 16-Bit 3-State Access Space (1) (Even Address Byte Access)

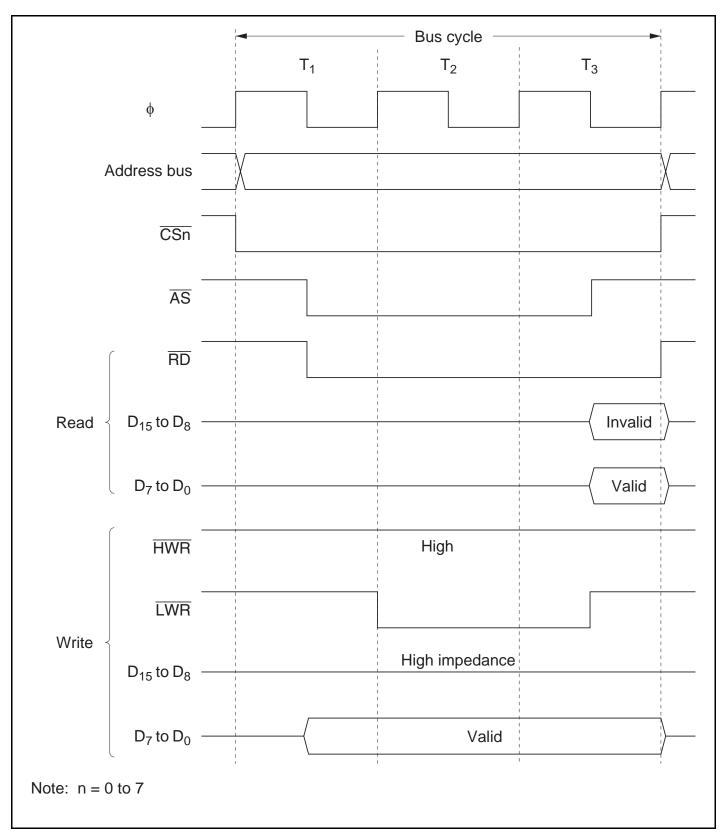


Figure 6.12 Bus Timing for 16-Bit 3-State Access Space (2) (Odd Address Byte Access)

Rev.4.00 Sep. 07, 2007 Page 163 of 1210

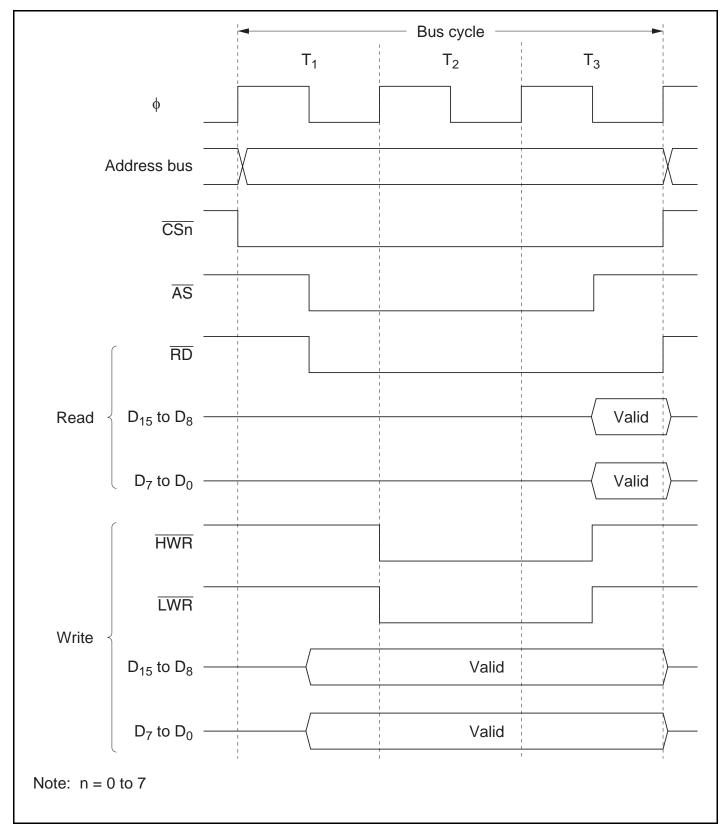


Figure 6.13 Bus Timing for 16-Bit 3-State Access Space (3) (Word Access)

6.4.5 Wait Control

When accessing external space, the chip can extend the bus cycle by inserting one or more wait states (T_w). There are two ways of inserting wait states: program wait insertion and pin wait insertion using the \overline{WAIT} pin.

Program Wait Insertion: From 0 to 3 wait states can be inserted automatically between the T₂ state and T₃ state on an individual area basis in 3-state access space, according to the settings in WCRH and WCRL.

Pin Wait Insertion: Setting the WAITE bit in BCRL to 1 enables wait input by means of the \overline{WAIT} pin. When external space is accessed in this state, a program wait is first inserted in accordance with the settings in WCRH and WCRL. Then, if the \overline{WAIT} pin is low at the falling edge of ϕ in the last T_2 or T_w state, another T_w state is inserted. If the \overline{WAIT} pin is held low, T_w states are inserted it goes high.

This is useful when inserting four or more T_w states, or when changing the number of T_w states for different external devices.

The WAITE bit setting applies to all areas. The WAITPS bit can be used to change the \overline{WAIT} input pin from P8₆ to P5₃. To make this change, select the input pin with the WAITPS bit, then set the WAITE bit.

Figure 6.14 shows an example of wait state insertion timing.

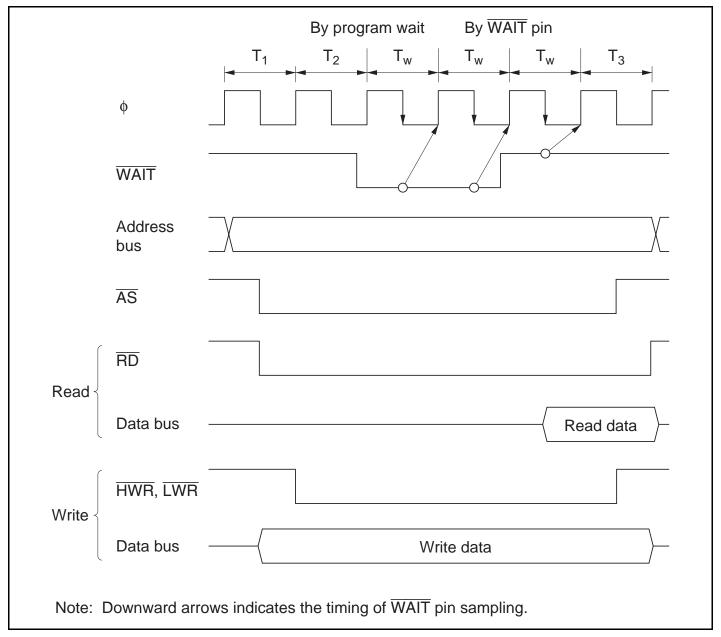


Figure 6.14 Example of Wait State Insertion Timing

The settings after a reset are: 3-state access, 3 program wait state insertion, and WAIT input disabled.

6.5 DRAM Interface

6.5.1 Overview

When the chip is in advanced mode, external space areas 2 to 5 can be designated as DRAM space, and DRAM interfacing performed. With the DRAM interface, DRAM can be directly connected to the chip. A DRAM space of 2, 4, or 8 Mbytes can be set by means of bits RMTS2 to RMTS0 in BCRH. Burst operation is also possible, using fast page mode.

6.5.2 Setting DRAM Space

Areas 2 to 5 are designated as DRAM space by setting bits RMTS2 to RMTS0 in BCRH. The relation between the settings of bits RMTS2 to RMTS0 and DRAM space is shown in table 6.4. Possible DRAM space settings are: one area (area 2), two areas (areas 2 and 3), and four areas (areas 2 to 5).

Table 6.4 DRAM Space Settings by Bits RMTS2 to RMTS0

RMTS2	RMTS1	RMTS0	Area 5	Area 4	Area 3	Area 2
0	0	1	Normal space	Normal space	Normal space	DRAM space
	1	0	Normal space	Normal space	DRAM space	DRAM space
		1	DRAM space	DRAM space	DRAM space	DRAM space

6.5.3 Address Multiplexing

With DRAM space, the row address and column address are multiplexed. In address multiplexing, the size of the shift of the row address is selected with bits MXC1 and MXC0 in MCR. Table 6.5 shows the relation between the settings of MXC1 and MXC0 and the shift size.

Table 6.5 Address Multiplexing Settings by Bits MXC1 and MXC0

	MCR								A	Addre	ss Pi	ins					
	MXC1	MXC0	Shift Size	A ₂₃ to A ₁₃	A ₁₂	A ₁₁	A ₁₀	A_9	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀
Row address	0	0	8 bits	A ₂₃ to A ₁₃	A ₂₀	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈
		1	9 bits	A ₂₃ to A ₁₃	A ₁₂	A ₂₀	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉
	1	0	10 bits	A ₂₃ to A ₁₃	A ₁₂	A ₁₁	A ₂₀	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀
		1	Setting pro- hibited	_													_
Column address	_		_	A ₂₃ to A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀

6.5.4 Data Bus

If the bit in ABWCR corresponding to an area designated as DRAM space is set to 1, that area is designated as 8-bit DRAM space; if the bit is cleared to 0, the area is designated as 16-bit DRAM space. In 16-bit DRAM space, ×16-bit configuration DRAM can be connected directly.

In 8-bit DRAM space the upper half of the data bus, D_{15} to D_8 , is enabled, while in 16-bit DRAM space both the upper and lower halves of the data bus, D_{15} to D_0 , are enabled.

Access sizes and data alignment are the same as for the basic bus interface. For details, see section 6.4.2, Data Size and Data Alignment.

6.5.5 Pins Used for DRAM Interface

Table 6.6 shows the pins used for DRAM interfacing and their functions.

Table 6.6 DRAM Interface Pins

Die	With DRAM	Name	WO.	Cunation
Pin	Setting	Name	I/O	Function
HWR	WE	Write enable	Output	Write enable for DRAM space access when 2-CAS access is set
LCAS	LCAS	Lower column address strobe	Output	Lower column address strobe signal for 16-bit DRAM space access
CS ₂	RAS2	Row address strobe 2	Output	Row address strobe when area 2 is designated as DRAM space
CS₃	RAS3	Row address strobe 3	Output	Row address strobe when area 3 is designated as DRAM space
CS ₄	RAS4	Row address strobe 4	Output	Row address strobe when area 4 is designated as DRAM space
CS ₅	RAS5	Row address strobe 5	Output	Row address strobe when area 5 is designated as DRAM space
CAS	UCAS	Upper column address strobe	Output	Upper column address strobe for DRAM space access
WAIT	WAIT	Wait	Input	Wait request signal
A ₁₂ to A ₀	A_{12} to A_0	Address pins	Output	Row address/column address multiplexed output
D ₁₅ to D ₀	D ₁₅ to D ₀	Data pins	I/O	Data input/output pins

6.5.6 Basic Timing

Figure 6.15 shows the basic access timing for DRAM space. The basic DRAM access timing is four states. Unlike the basic bus interface, the corresponding bits in ASTCR control only enabling or disabling of wait insertion, and do not affect the number of access states. When the corresponding bit in ASTCR is cleared to 0, wait states cannot be inserted in the DRAM access cycle.

The four states of the basic timing consist of one T_p (precharge cycle) state, one T_r (row address output cycle) state, and the T_{c1} and T_{c2} (column address output cycle) states.

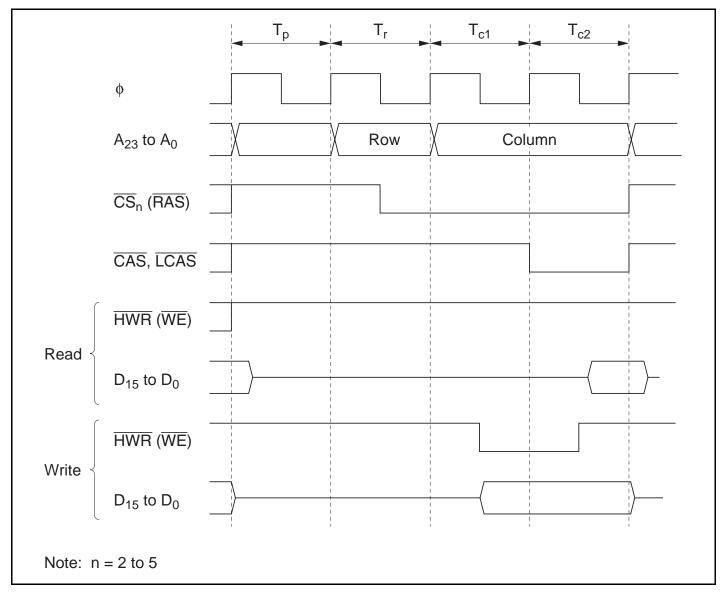


Figure 6.15 Basic Access Timing

6.5.7 Precharge State Control

When DRAM is accessed, RAS precharging time must be secured. With the chip, one T_p state is always inserted when DRAM space is accessed. This can be changed to two T_p states by setting the TPC bit in MCR to 1. Set the appropriate number of T_p cycles according to the DRAM connected and the operating frequency of the chip. Figure 6.16 shows the timing when two T_p states are inserted.

When the TCP bit is set to 1, two T_p states are also used for refresh cycles.

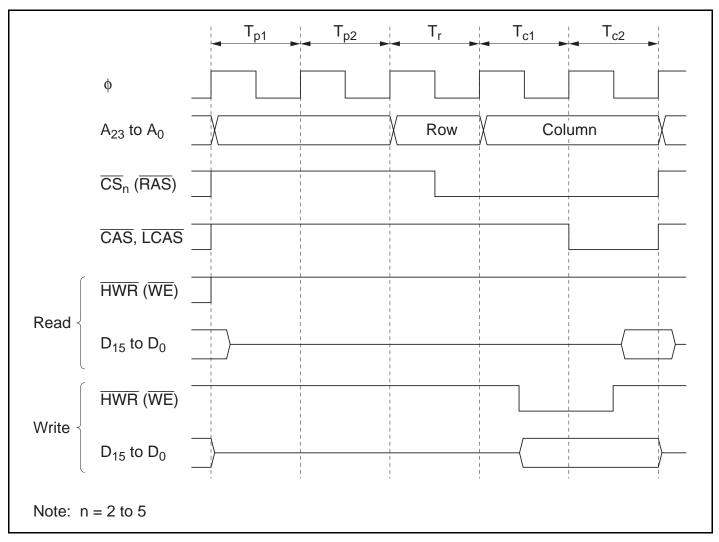


Figure 6.16 Timing with Two-State Precharge Cycle

Rev.4.00 Sep. 07, 2007 Page 171 of 1210

6.5.8 Wait Control

There are two ways of inserting wait states in a DRAM access cycle: program wait insertion and pin wait insertion using the $\overline{\text{WAIT}}$ pin.

Program Wait Insertion: When the bit in ASTCR corresponding to an area designated as DRAM space is set to 1, from 0 to 3 wait states can be inserted automatically between the T_{c1} state and T_{c2} state, according to the settings of WCRH and WCRL.

Pin Wait Insertion: When the WAITE bit in BCRH is set to 1, wait input by means of the \overline{WAIT} pin is enabled. When DRAM space is accessed in this state, a program wait is first inserted. If the \overline{WAIT} pin is low at the falling edge of ϕ in the last T_{c1} or T_w state, another T_w state is inserted. If the \overline{WAIT} pin is held low, T_w states are inserted until it goes high.

Figure 6.17 shows an example of wait state insertion timing.

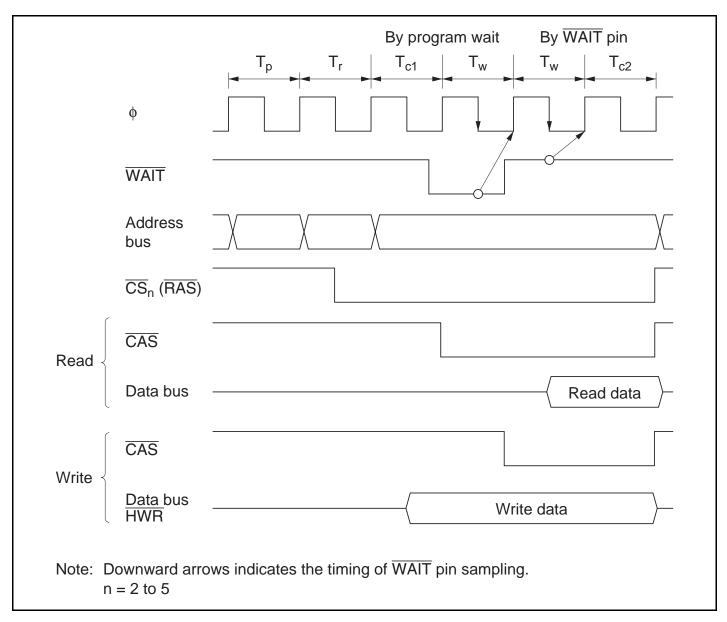


Figure 6.17 Example of Wait State Insertion Timing

6.5.9 Byte Access Control

When DRAM with a $\times 16$ -bit configuration is connected, the 2-CAS access method is used for the control signals needed for byte access.

Figure 6.18 shows the control timing for 2-CAS access, and figure 6.19 shows an example of 2-CAS DRAM connection.

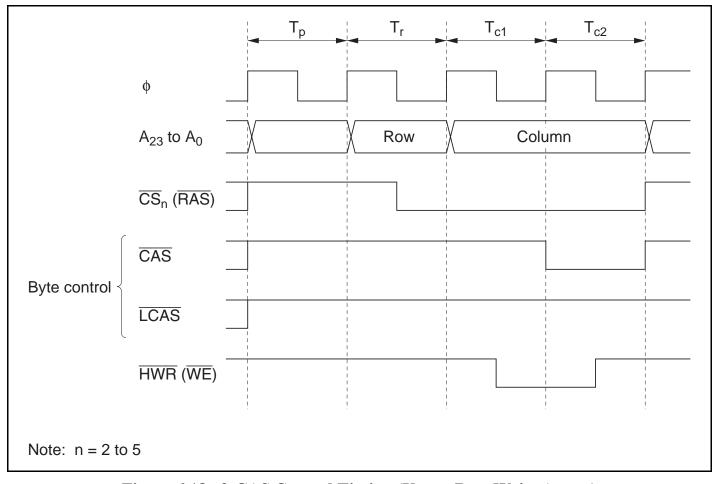


Figure 6.18 2-CAS Control Timing (Upper Byte Write Access)

RENESAS

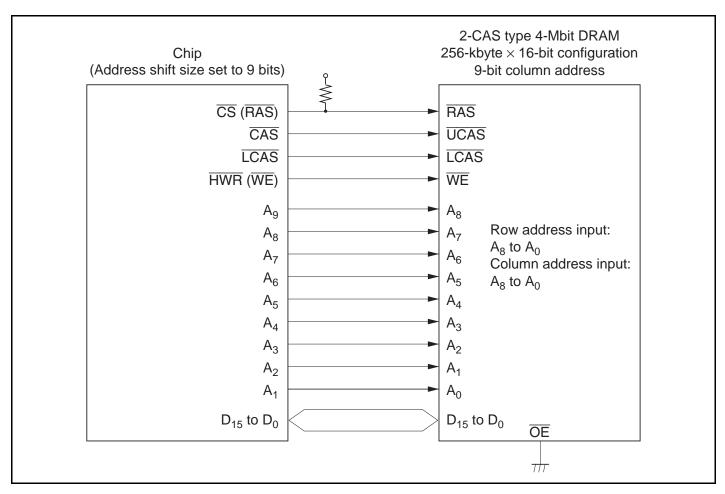


Figure 6.19 Example of 2-CAS DRAM Connection

6.5.10 Burst Operation

With DRAM, in addition to full access (normal access) in which data is accessed by outputting a row address for each access, a fast page mode is also provided which can be used when making a number of consecutive accesses to the same row address. This mode enables fast (burst) access of data by simply changing the column address after the row address has been output. Burst access can be selected by setting the BE bit in MCR to 1.

Burst Access (Fast Page Mode) Operation Timing: Figure 6.20 shows the operation timing for burst access. When there are consecutive access cycles for DRAM space, the \overline{CAS} signal and column address output cycles (two states) continue as long as the row address is the same for consecutive access cycles. The row address used for the comparison is set with bits MXC1 and MXC0 in MCR.

Figure 6.20 Operation Timing in Fast Page Mode

The bus cycle can also be extended in burst access by inserting wait states. The wait state insertion method and timing are the same as for full access. For details, see section 6.4.5, Wait Control.

RAS Down Mode and RAS Up Mode: Even when burst operation is selected, it may happen that access to DRAM space is not continuous, but is interrupted by access to another space. In this case, if the \overline{RAS} signal is held low during the access to the other space, burst operation can be resumed when the same row address in DRAM space is accessed again.

RAS down mode

To select RAS down mode, set the RCDM bit in MCR to 1. If access to DRAM space is interrupted and another space is accessed, the \overline{RAS} signal is held low during the access to the other space, and burst access is performed when the row address of the next DRAM space access is the same as the row address of the previous DRAM space access. Figure 6.21 shows an example of the timing in RAS down mode.

Note, however, that the \overline{RAS} signal will go high if a refresh operation occurs during RAS down mode.

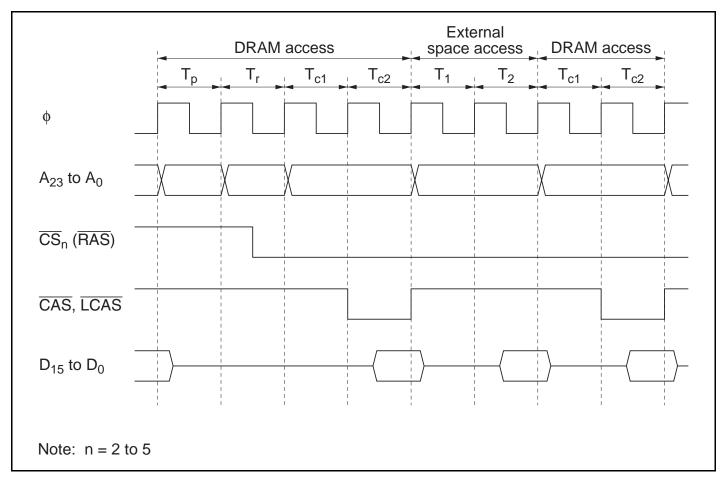


Figure 6.21 Example of Operation Timing in RAS Down Mode

• RAS up mode

To select RAS up mode, clear the RCDM bit in MCR to 0. Each time access to DRAM space is interrupted and another space is accessed, the \overline{RAS} signal goes high again. Burst operation is only performed if DRAM space is continuous. Figure 6.22 shows an example of the timing in RAS up mode. Note that in burst ROM space access, the \overline{RAS} signal does not return to the high level.

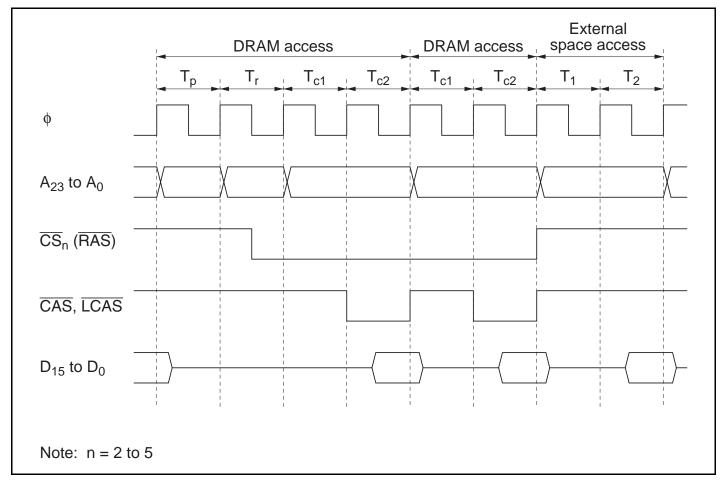


Figure 6.22 Example of Operation Timing in RAS Up Mode

6.5.11 Refresh Control

The chip is provided with a DRAM refresh control function. Either of two refreshing methods can be selected: CAS-before-RAS (CBR) refreshing, or self-refreshing.

CAS-before-RAS (CBR) Refreshing: To select CBR refreshing, set the RFSHE bit in DRAMCR to 1, and clear the RMODE bit to 0.

With CBR refreshing, RTCNT counts up using the input clock selected by bits CKS2 to CKS0 in DRAMCR, and when the count matches the value set in RTCOR (compare match), refresh control is performed. At the same time, RTCNT is reset and starts counting again from H'00. Refreshing is thus repeated at fixed intervals determined by RTCOR and bits CKS2 to CKS0. Set a value in bits CKS2 to CKS0 in RTCOR that will meet the refreshing interval specification for the DRAM used.

When bits CKS2 to CKS0 are set, RTCNT starts counting up. RTCNT and RTCOR settings should therefore be completed before setting bits CKS2 to CKS0.

Do not clear the CMF flag when refresh control is performed (RFSHE = 1).

RTCNT operation is shown in figure 6.23, compare match timing in figure 6.24, and CBR refresh timing in figure 6.25.

Another normal space access can be performed during the CBR refresh interval.

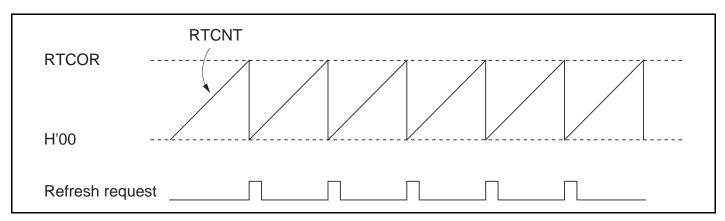


Figure 6.23 RTCNT Operation

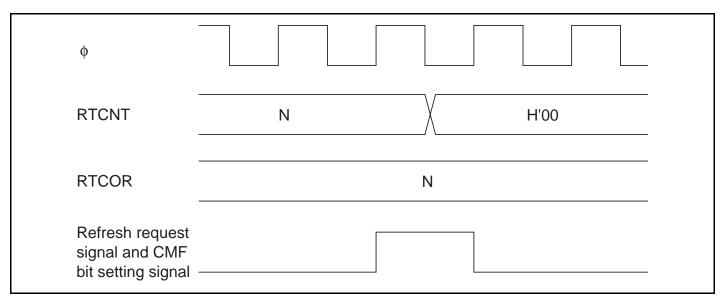


Figure 6.24 Compare Match Timing

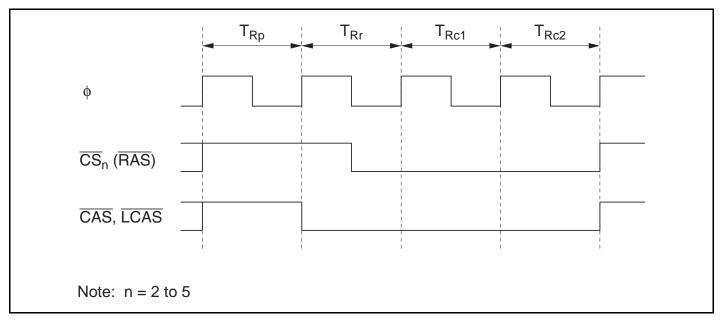


Figure 6.25 CBR Refresh Timing

When the RCW bit is set to 1, \overline{RAS} signal output is delayed by one cycle. Use bits RLW1 and RLW0 to adjust the width of the \overline{RAS} signal. These bits are only enabled in refresh operations.

Figure 6.26 shows the timing when the RCW bit is set to 1.

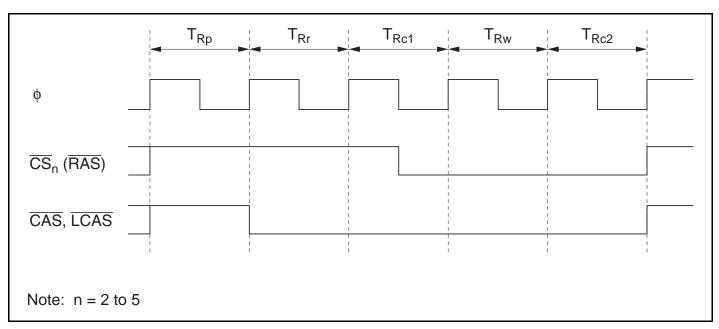


Figure 6.26 CBR Refresh Timing (When RCW = 1, RLW1 = 0, RLW0 = 1)

Self-Refreshing: A self-refresh mode (battery backup mode) is provided for DRAM as a kind of standby mode. In this mode, refresh timing and refresh addresses are generated within the DRAM.

To select self-refreshing, set the RFSHE bit and RMODE bit in DRAMCR to 1. When a SLEEP instruction is executed to enter software standby mode, the \overline{CAS} and \overline{RAS} signals are output and DRAM enters self-refresh mode, as shown in figure 6.27.

When software standby mode is exited, the RMODE bit is cleared to 0 and self-refresh mode is exited.

If a CBR refresh request occurs when making a transition to software standby mode, CBR refreshing is executed, then self-refresh mode is entered.

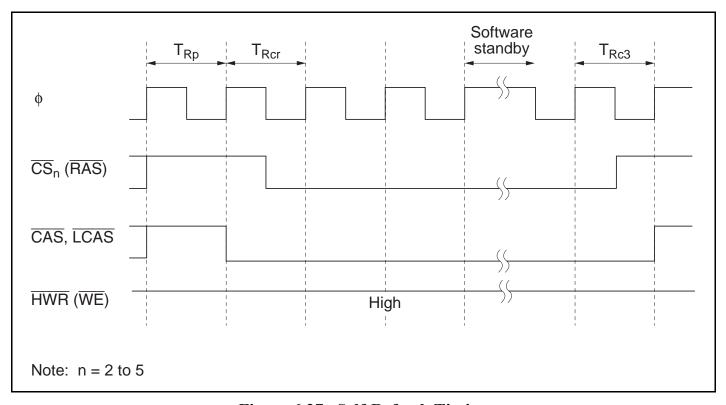


Figure 6.27 Self-Refresh Timing

RENESAS

6.6 DMAC Single Address Mode and DRAM Interface

When burst mode is selected with the DRAM interface, the \overline{DACK} output timing can be selected with the DDS bit. When DRAM space is accessed in DMAC single address mode at the same time, the DDS bit selects whether or not burst access is to be performed.

6.6.1 When DDS = 1

Burst access is performed by determining the address only, irrespective of the bus master. With the DRAM interface, the \overline{DACK} output goes low from the T_{c1} state.

Figure 6.28 shows the \overline{DACK} output timing for the DRAM interface when DDS = 1.

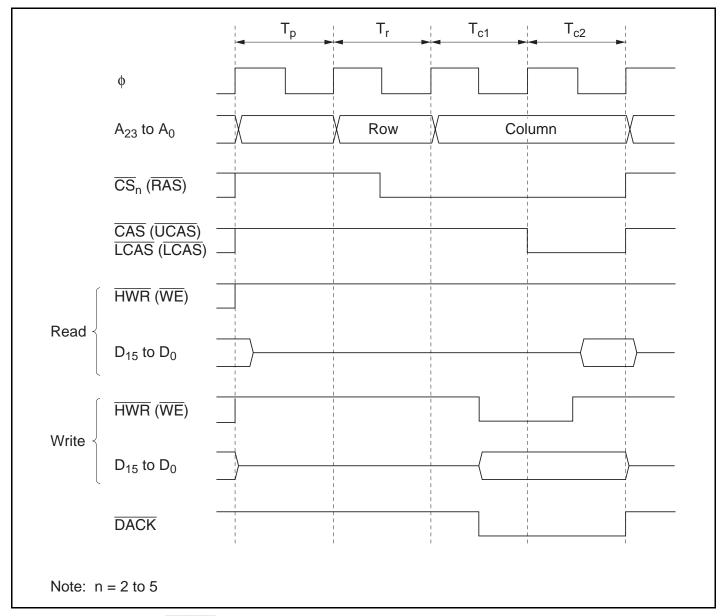


Figure 6.28 DACK Output Timing when DDS = 1 (Example of DRAM Access)

6.6.2 When DDS = 0

When DRAM space is accessed in DMAC single address mode, full access (normal access) is always performed. With the DRAM interface, the \overline{DACK} output goes low from the T_r state.

In modes other than DMAC single address mode, burst access can be used when accessing DRAM space.

Figure 6.29 shows the \overline{DACK} output timing for the DRAM interface when DDS = 0.

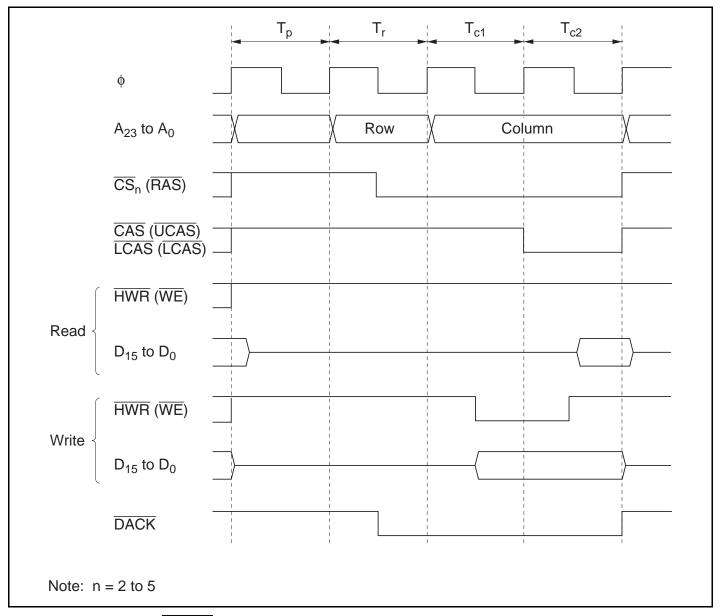


Figure 6.29 \overline{DACK} Output Timing when DDS = 0 (Example of DRAM Access)

6.7 Burst ROM Interface

6.7.1 Overview

With the chip, external space area 0 can be designated as burst ROM space, and burst ROM interfacing performed. The burst ROM space interface enables 16-bit ROM with burst access capability to be accessed at high speed.

Area 0 can be designated as burst ROM space by means of the BRSTRM bit in BCRH. Consecutive burst accesses of a maximum or 4 words or 8 words can be performed for CPU instruction fetches only. One or two states can be selected for burst access.

6.7.2 Basic Timing

The number of states in the initial cycle (full access) of the burst ROM interface is determined by the setting of the AST0 bit in ASTCR. When the AST0 bit is set to 1, wait state insertion is also possible. One or two states can be selected for the burst cycle, according to the setting of the BRSTS1 bit in BCRH. Wait states cannot be inserted. When area 0 is designated as burst ROM space, it functions as 16-bit access space regardless of the setting of the ABW0 bit in ABWCR.

When the BRSTS0 bit in BCRH is cleared to 0, burst access of up to 4 words is performed; when the BRSTS0 bit is set to 1, burst access of up to 8 words is performed.

The basic access timing for burst ROM space is shown in figures 6.30 (a) and (b). The timing shown in figure 6.30 (a) is for the case where the AST0 and BRSTS1 bits are both set to 1, and that in figure 6.30 (b) is for the case where both these bits are cleared to 0.

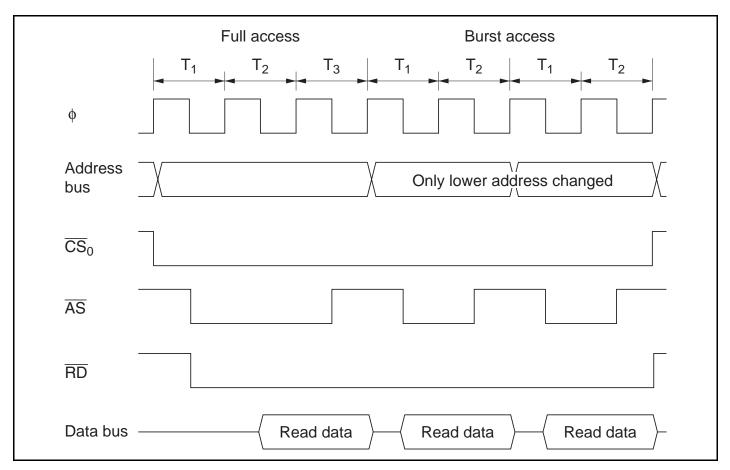


Figure 6.30 (a) Example of Burst ROM Access Timing (When AST0 = BRSTS1=1)

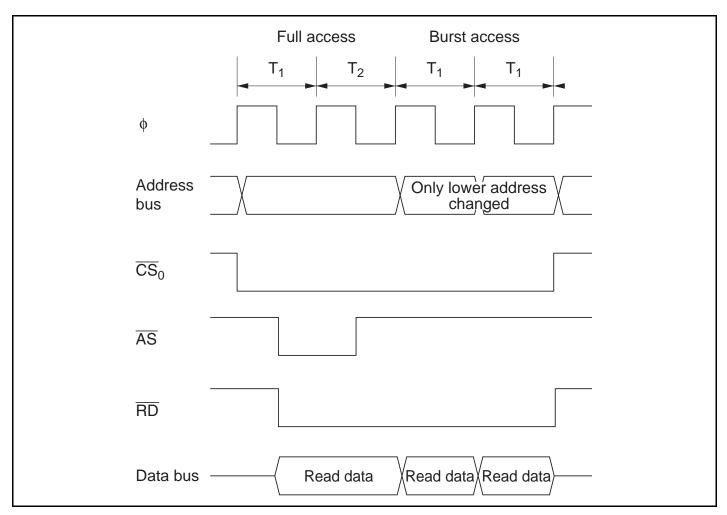


Figure 6.30 (b) Example of Burst ROM Access Timing (When AST0 = BRSTS1 = 0)

6.7.3 Wait Control

As with the basic bus interface, either program wait insertion or pin wait insertion using the \overline{WAIT} pin can be used in the initial cycle (full access) on the burst ROM interface. See section 6.4.5, Wait Control.

Wait states cannot be inserted in a burst cycle.

6.8 Idle Cycle

6.8.1 Operation

When the chip accesses external space, it can insert a 1-state idle cycle (T_I) between bus cycles in the following two cases: (1) when read accesses in different areas occur consecutively, and (2) when a write cycle occurs immediately after a read cycle. By inserting an idle cycle it is possible, for example, to avoid data collisions between ROM, etc., with a long output floating time, and high-speed memory, I/O interfaces, and so on.

Consecutive Reads in Different Areas: If consecutive reads in different areas occur while the ICIS1 bit in BCRH is set to 1, an idle cycle is inserted at the start of the second read cycle. This is enabled in advanced mode.

Figure 6.31 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a read cycle for SRAM, each being located in a different area. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is inserted, and a data collision is prevented.

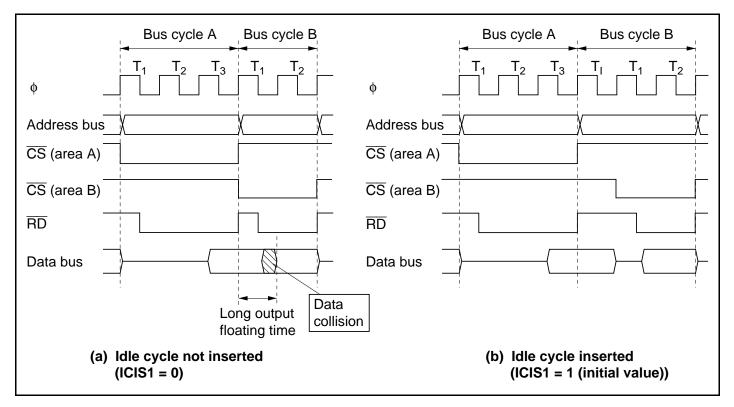


Figure 6.31 Example of Idle Cycle Operation (1)

RENESAS

Write after Read: If an external write occurs after an external read while the ICISO bit in BCRH is set to 1, an idle cycle is inserted at the start of the write cycle.

Figure 6.32 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

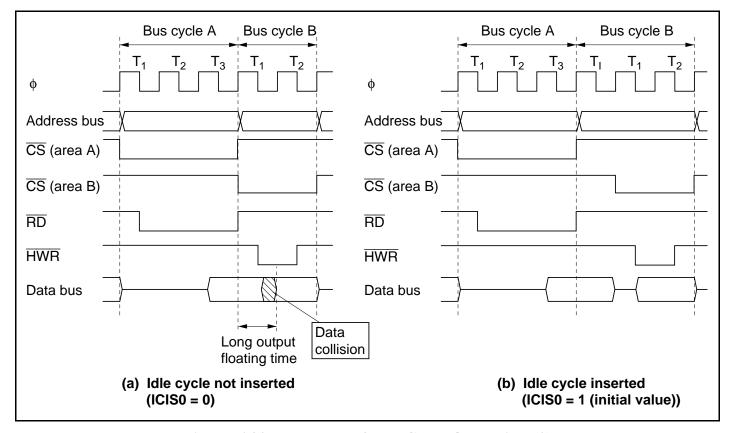


Figure 6.32 Example of Idle Cycle Operation (2)

Relationship between Chip Select (\overline{CS}) Signal and Read (\overline{RD}) Signal: Depending on the system's load conditions, the \overline{RD} signal may lag behind the \overline{CS} signal. An example is shown in figure 6.33.

In this case, with the setting for no idle cycle insertion (a), there may be a period of overlap between the bus cycle A \overline{RD} signal and the bus cycle B \overline{CS} signal.

Setting idle cycle insertion, as in (b), however, will prevent any overlap between the \overline{RD} and \overline{CS} signals.

In the initial state after reset release, idle cycle insertion (b) is set.

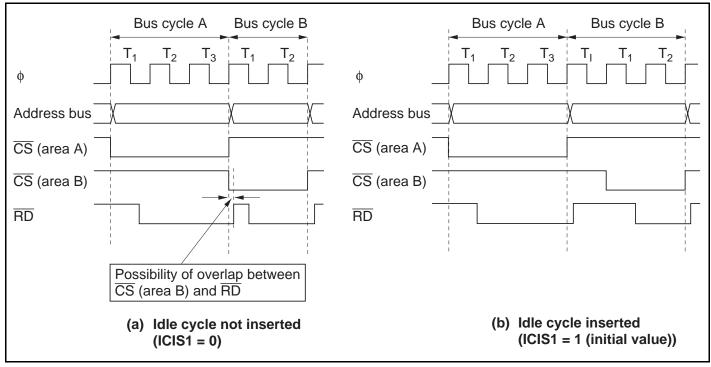


Figure 6.33 Relationship between Chip Select (\overline{CS}) and Read (\overline{RD})

RENESAS

Usage Notes: When DRAM space is accessed, the ICIS0 and ICIS1 bit settings are disabled. In the case of consecutive reads in different areas, for example, if the second access is a DRAM access, only a T_p cycle is inserted, and a T_I cycle is not. The timing in this case is shown in figure 6.34. However, in burst access in RAS down mode, the settings of these bits are enabled and an idle cycle is inserted. The timing in this case is shown in figures 6.35 (a) and (b).

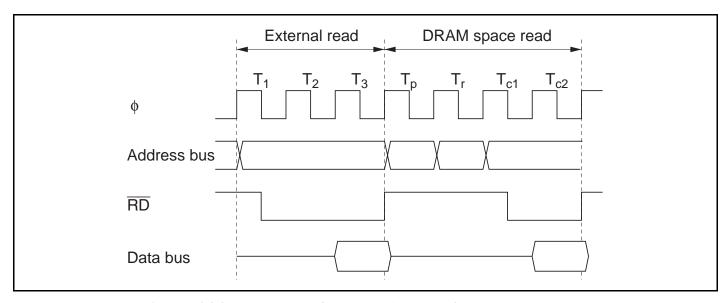


Figure 6.34 Example of DRAM Access after External Read

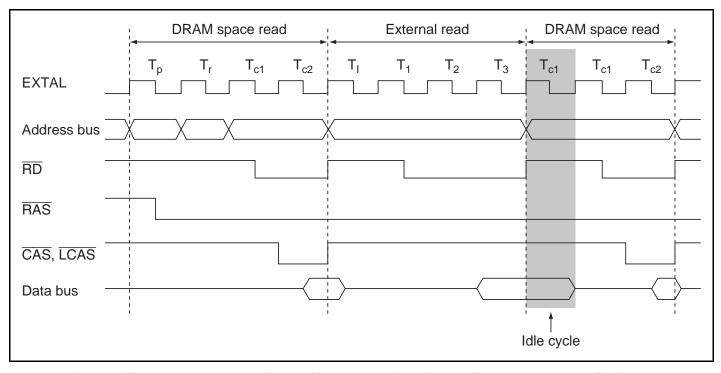


Figure 6.35 (a) Example of Idle Cycle Insertion in RAS Down Mode (ICIS1 = 1)

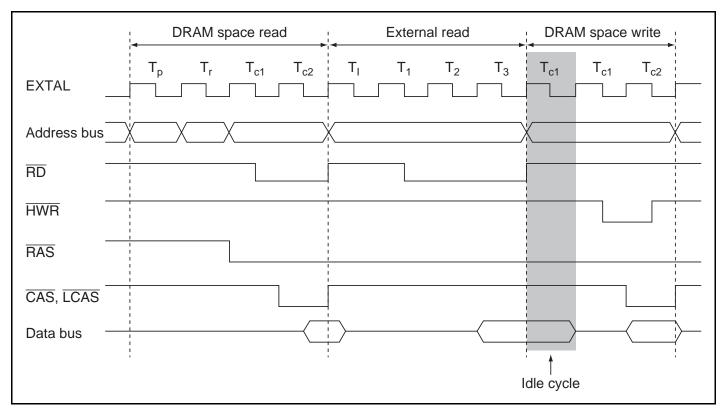


Figure 6.35 (b) Example of Idle Cycle Insertion in RAS Down Mode (ICIS0 = 1)

6.8.2 Pin States in Idle Cycle

Table 6.7 shows the pin states in an idle cycle.

Table 6.7 Pin States in Idle Cycle

Pins	Pin State
A_{23} to A_0	Contents of following bus cycle
D ₁₅ to D ₀	High impedance
CS _n ^{∗2}	High*1
CAS	High
ĀS	High
RD	High
HWR	High
LWR	High
DACK _m *3	High

Notes: 1. Remains low in DRAM space RAS down mode or a refresh cycle.

- 2. n = 0 to 7
- 3. m = 0 or 1

Rev.4.00 Sep. 07, 2007 Page 192 of 1210 REJ09B0245-0400

6.9 Write Data Buffer Function

The chip has a write data buffer function for the external data bus. Using the write data buffer function enables external writes and DMA single address mode transfers to be executed in parallel with internal accesses. The write data buffer function is made available by setting the WDBE bit in BCRL to 1.

Figure 6.36 shows an example of the timing when the write data buffer function is used. When this function is used, if an external write or DMA single address mode transfer continues for two states or longer, and there is an internal access next, an external write only is executed in the first state, but from the next state onward an internal access (on-chip memory or internal I/O register read/write) is executed in parallel with the external write rather than waiting until it ends.

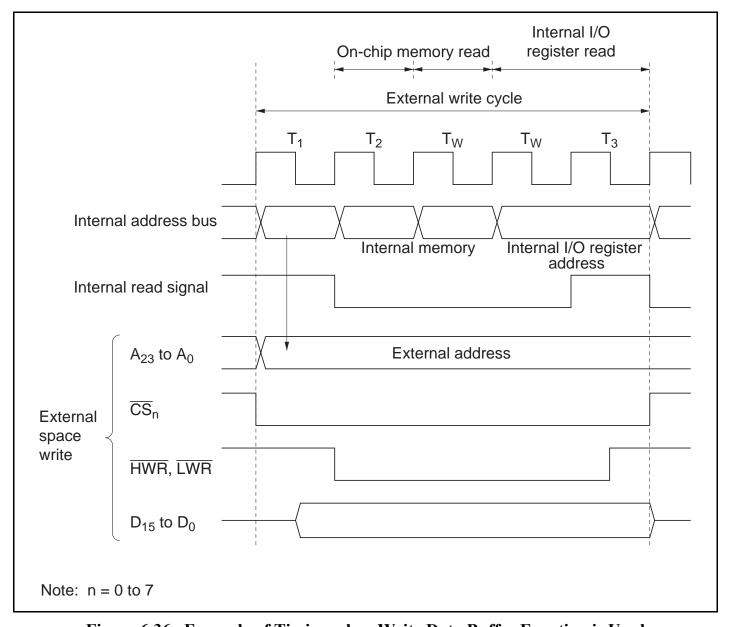


Figure 6.36 Example of Timing when Write Data Buffer Function is Used

6.10 Bus Release

6.10.1 Overview

The chip can release the external bus in response to a bus request from an external device. In the external bus-released state, the internal bus master continues to operate as long as there is no external access.

If an internal bus master wants to make an external access in the external bus-released state, or if a refresh request is generated, it can issue a request off-chip for the bus request to be dropped.

The BREQOPS bit can be used to change the BREQO output pin from PF₂ to P5₃.

6.10.2 Operation

In external expanded mode, the bus can be released to an external device by setting the BRLE bit in BCRL to 1. Driving the \overline{BREQ} pin low issues an external bus request to the chip. When the \overline{BREQ} pin is sampled, at the prescribed timing the \overline{BACK} pin is driven low, and the address bus, data bus, and bus control signals are placed in the high-impedance state, establishing the external bus-released state.

In the external bus-released state, an internal bus master can perform accesses using the internal bus. When an internal bus master wants to make an external access, it temporarily defers activation of the bus cycle, and waits for the bus request from the external bus master to be dropped. If a refresh request is generated in the external bus-released state, refresh control is deferred until the external bus master drops the bus request.

If the BREQOE bit in BCRL is set to 1, when an internal bus master wants to make an external access in the external bus-released state, or when a refresh request is generated, the BREQO pin is driven low and a request can be made off-chip to drop the bus request.

When the \overline{BREQ} pin goes high, the \overline{BACK} pin is driven high at the prescribed timing and the external bus-released state is terminated.

If an external bus release request and external access occur simultaneously, the order of priority is as follows:

(High) External bus release > Internal bus master external access (Low)

If a refresh request and external bus release request occur simultaneously, the order of priority is as follows:

(High) Refresh > External bus release (Low)

Rev.4.00 Sep. 07, 2007 Page 194 of 1210 REJ09B0245-0400

As a refresh and an external access by an internal bus master can be executed simultaneously, there is no relative order of priority for these two operations.

6.10.3 Pin States in External-Bus-Released State

Table 6.8 shows pin states in the external-bus-released state.

Table 6.8 Pin States in Bus-Released State

Pins	Pin State
A_{23} to A_0	High impedance
D ₁₅ to D ₀	High impedance
CS _n *1	High impedance
CAS	High impedance
ĀS	High impedance
RD	High impedance
HWR	High impedance
LWR	High impedance
DACK _m *2	High

Notes: 1. n = 0 to 7

2. m = 0 or 1

6.10.4 Transition Timing

Figure 6.37 shows the timing for transition to the bus-released state.

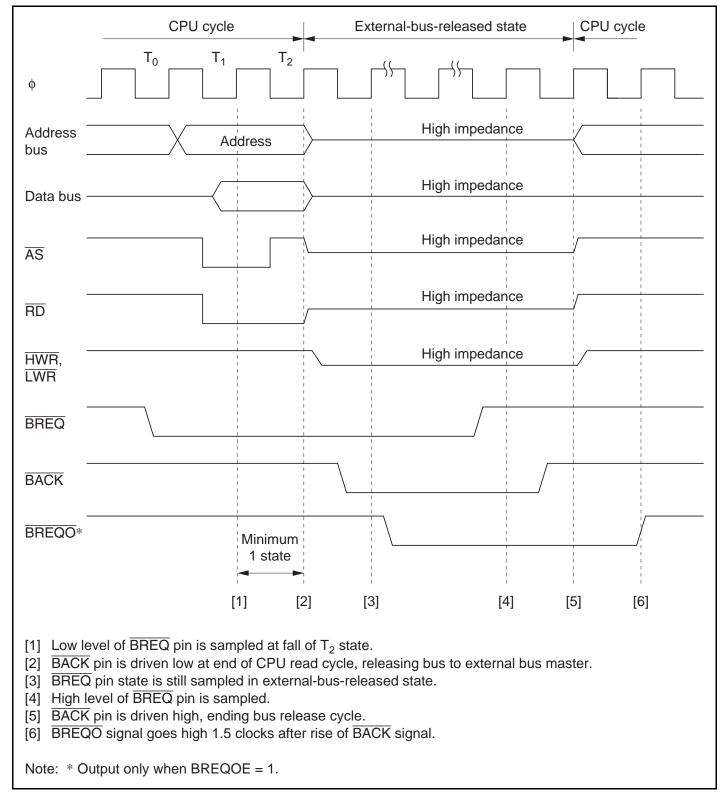


Figure 6.37 Bus-Released State Transition Timing

RENESAS

6.10.5 Usage Note

If MSTPCR is set to H'FFFF or H'EFFF and a transition is made to sleep mode, the external bus release function will halt. Therefore, these settings should not be used.

6.11 Bus Arbitration

6.11.1 Overview

The chip has a bus arbiter that arbitrates bus master operations.

There are three bus masters, the CPU, DTC, and DMAC, which perform read/write operations when they have possession of the bus. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes possession of the bus and begins its operation.

6.11.2 Operation

The bus arbiter monitors the bus masters' bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master making the request. If there are bus requests from more than one bus master, the bus request acknowledge signal is sent to the one with the highest priority. When a bus master receives the bus request acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:

An external access by an internal bus master, external bus release, and a refresh can be executed in parallel.

If an external bus release request, a refresh request, and an external access by an internal bus master occur simultaneously, the order of priority is as follows:

(High) Refresh > External bus release (Low)

(High) External bus release > Internal bus master external access (Low)

As a refresh and an external access by an internal bus master can be executed simultaneously, there is no relative order of priority for these two operations.

6.11.3 Bus Transfer Timing

Even if a bus request is received from a bus master with a higher priority than that of the bus master that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. There are specific times at which each bus master can relinquish the bus.

CPU: The CPU is the lowest-priority bus master, and if a bus request is received from the DTC or DMAC, the bus arbiter transfers the bus to the bus master that issued the request. The timing for transfer of the bus is as follows:

- The bus is transferred at a break between bus cycles. However, if a bus cycle is executed in discrete operations, as in the case of a longword-size access, the bus is not transferred between the component operations. For details of times when the bus is not transferred, see appendix A.5, Bus States during Instruction Execution.
- If the CPU is in sleep mode, it transfers the bus immediately.

DTC: The DTC sends the bus arbiter a request for the bus when an activation request is generated.

The DTC can release the bus after a vector read, a register information read (3 states), a single data transfer, or a register information write (3 states). It does not release the bus during a register information read (3 states), a single data transfer, or a register information write (3 states).

DMAC: The DMAC sends the bus arbiter a request for the bus when an activation request is generated.

In the case of an external request in short address mode or normal mode, and in cycle steal mode, the DMAC releases the bus after a single transfer.

In block transfer mode, it releases the bus after transfer of one block, and in burst mode, after completion of the transfer.

6.11.4 External Bus Release Usage Note

External bus release can be performed on completion of an external bus cycle. The \overline{RD} signal and the DRAM interface \overline{RAS} and \overline{CAS} signals remain low until the end of the external bus cycle. Therefore, when external bus release is performed, the \overline{RD} , \overline{RAS} , and \overline{CAS} signals may change from the low level to the high-impedance state.

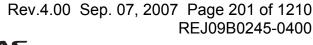
6.12 Resets and Bus Controller

In a reset, the chip, including the bus controller, enters the reset state immediately, and any executing bus cycle is aborted.

Section 7 DMA Controller

7.1 Overview

The chip has a built-in DMA controller (DMAC) which can carry out data transfer on up to 4 channels.


7.1.1 Features

The features of the DMAC are listed below.

- Choice of short address mode or full address mode
 - Short address mode
 - Maximum of 4 channels can be used
 - Choice of dual address mode or single address mode
 - In dual address mode, one of the two addresses, transfer source and transfer destination, is specified as 24 bits and the other as 16 bits
 - In single address mode, transfer source or transfer destination address only is specified as 24 bits
 - In single address mode, transfer can be performed in one bus cycle
 - Choice of sequential mode, idle mode, or repeat mode for dual address mode and single address mode

Full address mode

- Maximum of 2 channels can be used
- Transfer source and transfer destination address specified as 24 bits
- Choice of normal mode or block transfer mode
- 16-Mbyte address space can be specified directly
- Byte or word can be set as the transfer unit
- Activation sources: internal interrupt, external request, auto-request (depending on transfer mode)
 - Six 16-bit timer-pulse unit (TPU) compare match/input capture interrupts
 - Serial communication interface (SCI0, SCI1) transmit-data-empty interrupt, receive-datafull interrupt
 - A/D converter conversion end interrupt
 - External request
 - Auto-request
- Module stop mode can be set

— The initial setting enables DMAC registers to be accessed. DMAC operation is halted by setting module stop mode

7.1.2 Block Diagram

A block diagram of the DMAC is shown in figure 7.1.

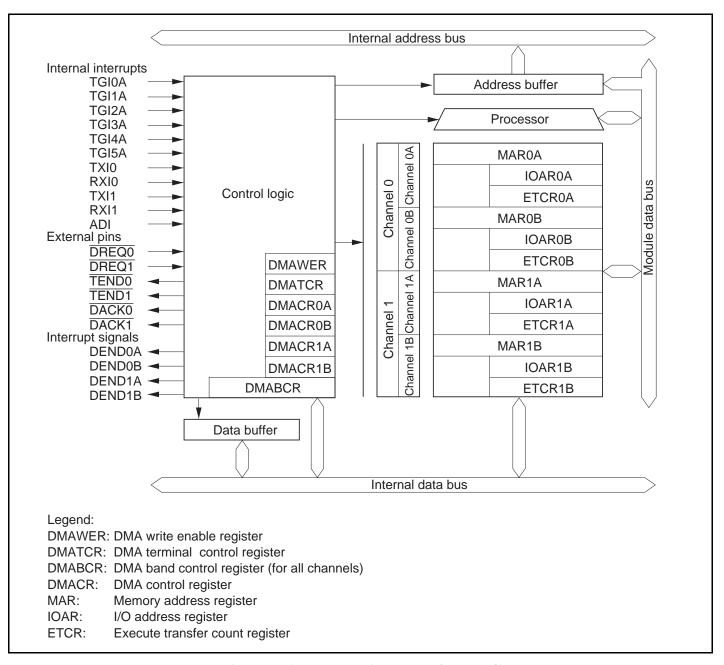


Figure 7.1 Block Diagram of DMAC

7.1.3 Overview of Functions

Tables 7.1 (1) and (2) summarize DMAC functions in short address mode and full address mode, respectively.

Table 7.1 (1) Overview of DMAC Functions (Short Address Mode)

				Address Register Bit Length			
Tr	ansfer Mode	Tr	ansfer Source	Source	Destination		
•	Sequential mode — 1-byte or 1-word transfer executed for one transfer request — Memory address incremented/decremented by 1 or 2 — 1 to 65,536 transfers Idle mode — 1-byte or 1-word transfer executed for one transfer request — Memory address fixed — 1 to 65,536 transfers Repeat mode — 1-byte or 1-word transfer executed for one transfer request — Memory address incremented/ decremented by 1 or 2 — After specified number of transfers (1 to 256), initial state is restored and operation continues	•	TPU channel 0 to 5 compare match/input capture A interrupt SCI transmitdata-empty interrupt SCI receivedata-full interrupt A/D converter conversion end interrupt External request	24/16	16/24		
• •	ngle address mode 1-byte or 1-word transfer executed for one transfer request Transfer in 1 bus cycle using DACK pin in place of address specifying I/O Specifiable for sequential, idle, and repeat modes	•	External request	24/DACK	DACK/24		

Table 7.1 (2) Overview of DMAC Functions (Full Address Mode)

				Address F	Register Bit Length
Tr	ansfer Mode	Tr	ansfer Source	Source	Destination
•	Normal mode Auto-request — Transfer request retained internally — Transfers continue for the specified number of times (1 to 65,536) — Choice of burst or cycle steal transfer	•	Auto-request	24	24
	 External request 1-byte or 1-word transfer executed for one transfer request 1 to 65,536 transfers 	•	External request	_	
•	Block transfer mode Specified block size transfer executed for one transfer request 1 to 65,536 transfers Either source or destination specifiable as block area Block size: 1 to 256 bytes or words	•	TPU channel 0 to 5 compare match/input capture A interrupt SCI transmitdata-empty interrupt SCI receivedata-full interrupt External request A/D converter conversion end interrupt	24	24

RENESAS

7.1.4 Pin Configuration

Table 7.2 summarizes the DMAC pins.

In short address mode, external request transfer, single address transfer, and transfer end output are not performed for channel A.

The DMA transfer acknowledge function is used in channel B single address mode in short address mode.

When the DREQ pin is used, do not designate the corresponding port for output.

With regard to the \overline{DACK} pins, setting single address transfer automatically sets the corresponding port to output, functioning as a \overline{DACK} pin.

With regard to the $\overline{\text{TEND}}$ pins, whether or not the corresponding port is used as a $\overline{\text{TEND}}$ pin can be specified by means of a register setting.

Table 7.2 DMAC Pins

Channel	Pin Name	Symbol	I/O	Function
0	DMA request 0	DREQ0	Input	DMAC channel 0 external request
	DMA transfer acknowledge 0	DACK0	Output	DMAC channel 0 single address transfer acknowledge
	DMA transfer end 0	TEND0	Output	DMAC channel 0 transfer end
1	DMA request 1	DREQ1	Input	DMAC channel 1 external request
	DMA transfer acknowledge 1	DACK1	Output	DMAC channel 1 single address transfer acknowledge
	DMA transfer end 1	TEND1	Output	DMAC channel 1 transfer end

7.1.5 **Register Configuration**

Table 7.3 summarizes the DMAC registers.

Table 7.3 DMAC Registers

				Initial		Bus Width
Channel	Name	Abbreviation	R/W	Value	Address*	
0	Memory address register 0A	MAR0A	R/W	Undefined	H'FEE0	16 bits
	I/O address register 0A	IOAR0A	R/W	Undefined	H'FEE4	16 bits
	Transfer count register 0A	ETCR0A	R/W	Undefined	H'FEE6	16 bits
	Memory address register 0B	MAR0B	R/W	Undefined	H'FEE8	16 bits
	I/O address register 0B	IOAR0B	R/W	Undefined	H'FEEC	16 bits
	Transfer count register 0B	ETCR0B	R/W	Undefined	H'FEEE	16 bits
1	Memory address register 1A	MAR1A	R/W	Undefined	H'FEF0	16 bits
	I/O address register 1A	IOAR1A	R/W	Undefined	H'FEF4	16 bits
	Transfer count register 1A	ETCR1A	R/W	Undefined	H'FEF6	16 bits
	Memory address register 1B	MAR1B	R/W	Undefined	H'FEF8	16 bits
	I/O address register 1B	IOAR1B	R/W	Undefined	H'FEFC	16 bits
	Transfer count register 1B	ETCR1B	R/W	Undefined	H'FEFE	16 bits
0, 1	DMA write enable register	DMAWER	R/W	H'00	H'FF00	8 bits
	DMA terminal control register	DMATCR	R/W	H'00	H'FF01	8 bits
	DMA control register 0A	DMACR0A	R/W	H'00	H'FF02	16 bits
	DMA control register 0B	DMACR0B	R/W	H'00	H'FF03	16 bits
	DMA control register 1A	DMACR1A	R/W	H'00	H'FF04	16 bits
	DMA control register 1B	DMACR1B	R/W	H'00	H'FF05	16 bits
	DMA band control register	DMABCR	R/W	H'0000	H'FF06	16 bits
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C	8 bits

Note: * Lower 16 bits of the address.

7.2 Register Descriptions (1) (Short Address Mode)

Short address mode transfer can be performed for channels A and B independently.

Short address mode transfer is specified for each channel by clearing the FAE bit in DMABCR to 0, as shown in table 7.4. Short address mode or full address mode can be selected for channels 1 and 0 independently by means of bits FAE1 and FAE0.

Table 7.4 Short Address Mode and Full Address Mode (For 1 Channel: Example of Channel 0)

FAE0	Desc	cription	
0	Shor	t address mode specified (cha	annels A and B operate independently)
	Channel 0A	MAR0A IOAR0A ETCR0A DMACR0A	 Specifies transfer source/transfer destination address Specifies transfer destination/transfer source address Specifies number of transfers Specifies transfer size, mode, activation source, etc.
	Channel 0B	MAR0B IOAR0B ETCR0B DMACR0B	Specifies transfer source/transfer destination address Specifies transfer destination/transfer source address Specifies number of transfers Specifies transfer size, mode, activation source, etc.
1	Channel 0	MAROA MAROB IOAROA IOAROB ETCROA ETCROB DMACROA DMACROB	 Specifies transfer source address Specifies transfer destination address Not used Not used Specifies number of transfers Specifies number of transfers (used in block transfer mode only) Specifies transfer size, mode, activation source, etc.

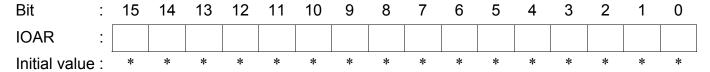
7.2.1 Memory Address Registers (MAR)

Bit	:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MAR	:	_		_		_	_		_								
Initial value	e :	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
R/W	:	_	_		_	_		_	_	R/W							
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAR	:																
Initial value	e :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
R/W	:	R/W															

*: Undefined

MAR is a 32-bit readable/writable register that specifies the transfer source address or destination address.

The upper 8 bits of MAR are reserved: they are always read as 0, and cannot be modified.


Whether MAR functions as the source address register or as the destination address register can be selected by means of the DTDIR bit in DMACR.

RENESAS

MAR is incremented or decremented each time a byte or word transfer is executed, so that the address specified by MAR is constantly updated. For details, see section 7.2.4, DMA Control Register (DMACR).

MAR is not initialized by a reset or in standby mode.

7.2.2 I/O Address Register (IOAR)

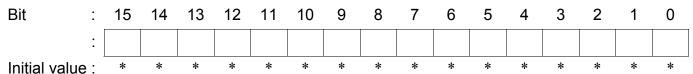
*: Undefined

IOAR is a 16-bit readable/writable register that specifies the lower 16 bits of the transfer source address or destination address. The upper 8 bits of the transfer address are automatically set to H'FF.

Whether IOAR functions as the source address register or as the destination address register can be selected by means of the DTDIR bit in DMACR.

IOAR is invalid in single address mode.

IOAR is not incremented or decremented each time a transfer is executed, so the address specified by IOAR is fixed.


IOAR is not initialized by a reset or in standby mode.

7.2.3 Execute Transfer Count Register (ETCR)

ETCR is a 16-bit readable/writable register that specifies the number of transfers. The setting of this register is different for sequential mode and idle mode on the one hand, and for repeat mode on the other.

Sequential Mode and Idle Mode

Transfer Counter (ETCR)

*: Undefined

In sequential mode and idle mode, ETCR functions as a 16-bit transfer counter (with a count range of 1 to 65,536). ETCR is decremented by 1 each time a transfer is performed, and when the count reaches H'0000, the DTE bit in DMABCR is cleared, and transfer ends.

Repeat Mode

Transfe	r Num	iber Stora	ige (ETCR	(n)					
Bit	:	15	14	13	12	11	10	9	8
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Transfer Counter (ETCRL)									
Transfe	r Cou	nter (ETC	RL)						
Transfe l	r Cou :	nter (ETC 7	RL) 6	5	4	3	2	1	0
		•	-	5	4	3	2	1	0
	:	•	-	5 *	*	*	2	1 *	0 *
Bit	:	7	6						

*: Undefined

In repeat mode, ETCR functions as transfer counter ETCRL (with a count range of 1 to 256) and transfer number storage register ETCRH. ETCRL is decremented by 1 each time a transfer is performed, and when the count reaches H'00, ETCRL is loaded with the value in ETCRH. At this point, MAR is automatically restored to the value it had when the count was started. The DTE bit in DMABCR is not cleared, and so transfers can be performed repeatedly until the DTE bit is cleared by the user.

ETCR is not initialized by a reset or in standby mode.

7.2.4 DMA Control Register (DMACR)

Bit	:	7	6	5	4	3	2	1	0
		DTSZ	DTID5	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0
Initial value) : ·	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMACR is an 8-bit readable/writable register that controls the operation of each DMAC channel.

DMACR is initialized to H'00 by a reset, and in standby mode.

Bit 7—Data Transfer Size (DTSZ): Selects the size of data to be transferred at one time.

Bit 7 DTSZ	Description	
0	Byte-size transfer	(Initial value)
1	Word-size transfer	

Bit 6—Data Transfer Increment/Decrement (DTID): Selects incrementing or decrementing of MAR after every data transfer in sequential mode or repeat mode.

In idle mode, MAR is neither incremented nor decremented.

Bit 6 DTID	Description	
0	MAR is incremented after a data transfer	(Initial value)
	 When DTSZ = 0, MAR is incremented by 1 after a transfer 	
	 When DTSZ = 1, MAR is incremented by 2 after a transfer 	
1	MAR is decremented after a data transfer	
	 When DTSZ = 0, MAR is decremented by 1 after a transfer 	
	 When DTSZ = 1, MAR is decremented by 2 after a transfer 	

Bit 5—Repeat Enable (RPE): Used in combination with the DTIE bit in DMABCR to select the mode (sequential, idle, or repeat) in which transfer is to be performed.

Bit 5	DMABCR					
RPE	DTIE	Description				
0	0	Transfer in sequential mode (no transfer end interrupt)	(Initial value)			
	1	Transfer in sequential mode (with transfer end interrupt)				
1	0	Transfer in repeat mode (no transfer end interrupt)				
	1	Transfer in idle mode (with transfer end interrupt)				

For details of operation in sequential, idle, and repeat mode, see section 7.5.2, Sequential Mode, section 7.5.3, Idle Mode, and section 7.5.4, Repeat Mode.

Bit 4—Data Transfer Direction (DTDIR): Used in combination with the SAE bit in DMABCR to specify the data transfer direction (source or destination). The function of this bit is therefore different in dual address mode and single address mode.

DMABCR SAE	Bit 4 DTDIR	Description
0	0	Transfer with MAR as source address and IOAR as destination address (Initial value)
	1	Transfer with IOAR as source address and MAR as destination address
1	0	Transfer with MAR as source address and DACK pin as write strobe
	1	Transfer with DACK pin as read strobe and MAR as destination address

RENESAS

Bits 3 to 0—Data Transfer Factor (DTF3 to DTF0): These bits select the data transfer factor (activation source). There are some differences in activation sources for channel A and for channel B.

Channel A

Bit 3 DTF3	Bit 2 DTF2	Bit 1 DTF1	Bit 0 DTF0	Description
0	0	0	0	— (Initial value)
			1	Activated by A/D converter conversion end interrupt
		1	0	_
			1	_
	1	0	0	Activated by SCI channel 0 transmit-data-empty interrupt
			1	Activated by SCI channel 0 receive-data-full interrupt
		1	0	Activated by SCI channel 1 transmit-data-empty interrupt
			1	Activated by SCI channel 1 receive-data-full interrupt
1 0	0	0	0	Activated by TPU channel 0 compare match/input capture A interrupt
			1	Activated by TPU channel 1 compare match/input capture A interrupt
		1	0	Activated by TPU channel 2 compare match/input capture A interrupt
			1	Activated by TPU channel 3 compare match/input capture A interrupt
	1	0	0	Activated by TPU channel 4 compare match/input capture A interrupt
			1	Activated by TPU channel 5 compare match/input capture A interrupt
		1	0	-
			1	_

Rev.4.00 Sep. 07, 2007 Page 213 of 1210

Channel B

Bit 3 DTF3	Bit 2 DTF2	Bit 1 DTF1	Bit 0 DTF0	Description
0	0	0	0	— (Initial value)
			1	Activated by A/D converter conversion end interrupt
		1	0	Activated by DREQ pin falling edge input*
			1	Activated by DREQ pin low-level input
	1	0	0	Activated by SCI channel 0 transmit-data-empty interrupt
			1	Activated by SCI channel 0 receive-data-full interrupt
		1	0	Activated by SCI channel 1 transmit-data-empty interrupt
			1	Activated by SCI channel 1 receive-data-full interrupt
1	0	0	0	Activated by TPU channel 0 compare match/input capture A interrupt
			1	Activated by TPU channel 1 compare match/input capture A interrupt
		1	0	Activated by TPU channel 2 compare match/input capture A interrupt
			1	Activated by TPU channel 3 compare match/input capture A interrupt
	1	0	0	Activated by TPU channel 4 compare match/input capture A interrupt
			1	Activated by TPU channel 5 compare match/input capture A interrupt
		1	0	_
			1	

Note: * Detected as a low level in the first transfer after transfer is enabled.

The same factor can be selected for more than one channel. In this case, activation starts with the highest-priority channel according to the relative channel priorities. For relative channel priorities, see section 7.5.13, DMAC Multi-Channel Operation.

7.2.5 DMA Band Control Register (DMABCR)

DMABCRH

Bit	:	15	14	13	12	11	10	9	8
		FAE1	FAE0	SAE1	SAE0	DTA1B	DTA1A	DTA0B	DTA0A
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMABCRL

Bit	:	7	6	5	4	3	2	1	0
		DTE1B	DTE1A	DTE0B	DTE0A	DTIE1B	DTIE1A	DTIE0B	DTIE0A
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMABCR is a 16-bit readable/writable register that controls the operation of each DMAC channel.

DMABCR is initialized to H'0000 by a reset, and in hardware standby mode.

Bit 15—Full Address Enable 1 (FAE1): Specifies whether channel 1 is to be used in short address mode or full address mode.

In short address mode, channels 1A and 1B can be used as independent channels.

Bit 15

FAE1	Description	
0	Short address mode	(Initial value)
1	Full address mode	

Rev.4.00 Sep. 07, 2007 Page 215 of 1210

Bit 14—Full Address Enable 0 (FAE0): Specifies whether channel 0 is to be used in short address mode or full address mode.

In short address mode, channels 0A and 0B can be used as independent channels.

Bit 14 FAE0	Description	
0	Short address mode	(Initial value)
1	Full address mode	

Bit 13—Single Address Enable 1 (SAE1): Specifies whether channel 1B is to be used for transfer in dual address mode or single address mode.

This bit is invalid in full address mode.

Bit 13		
SAE1	Description	
0	Transfer in dual address mode	(Initial value)
1	Transfer in single address mode	

Bit 12—Single Address Enable 0 (SAE0): Specifies whether channel 0B is to be used for transfer in dual address mode or single address mode.

This bit is invalid in full address mode.

Bit 12 SAE0	Description	
0	Transfer in dual address mode	(Initial value)
1	Transfer in single address mode	

Bits 11 to 8—Data Transfer Acknowledge (DTA): These bits enable or disable clearing, when DMA transfer is performed, of the internal interrupt source selected by the data transfer factor setting.

When DTE = 1 and DTA = 1, the internal interrupt source selected by the data transfer factor setting is cleared automatically by DMA transfer. When DTE = 1 and DTA = 1, the internal interrupt source selected by the data transfer factor setting does not issue an interrupt request to the CPU or DTC.

When DTE = 1 and DTA = 0, the internal interrupt source selected by the data transfer factor setting is not cleared when a transfer is performed, and can issue an interrupt request to the CPU or DTC in parallel. In this case, the interrupt source should be cleared by the CPU or DTC transfer.

When DTE = 0, the internal interrupt source selected by the data transfer factor setting issues an interrupt request to the CPU or DTC regardless of the DTA bit setting.

Bit 11—Data Transfer Acknowledge 1B (DTA1B): Enables or disables clearing, when DMA transfer is performed, of the internal interrupt source selected by the channel 1B data transfer factor setting.

Bit 11 DTA1B	Description
0	Clearing of selected internal interrupt source at time of DMA transfer is disabled (Initial value)
1	Clearing of selected internal interrupt source at time of DMA transfer is enabled

Bit 10—Data Transfer Acknowledge 1A (DTA1A): Enables or disables clearing, when DMA transfer is performed, of the internal interrupt source selected by the channel 1A data transfer factor setting.

Bit 10 DTA1A	Description
0	Clearing of selected internal interrupt source at time of DMA transfer is disabled (Initial value)
1	Clearing of selected internal interrupt source at time of DMA transfer is enabled

Bit 9—Data Transfer Acknowledge 0B (DTA0B): Enables or disables clearing, when DMA transfer is performed, of the internal interrupt source selected by the channel 0B data transfer factor setting.

Bit 9 DTA0B	Description
0	Clearing of selected internal interrupt source at time of DMA transfer is disabled (Initial value)
1	Clearing of selected internal interrupt source at time of DMA transfer is enabled

Bit 8—Data Transfer Acknowledge 0A (DTA0A): Enables or disables clearing, when DMA transfer is performed, of the internal interrupt source selected by the channel 0A data transfer factor setting.

Bit 8 DTA0A	Description
0	Clearing of selected internal interrupt source at time of DMA transfer is disabled (Initial value)
1	Clearing of selected internal interrupt source at time of DMA transfer is enabled

Bits 7 to 4—Data Transfer Enable (DTE): When DTE = 0, data transfer is disabled and the activation source selected by the data transfer factor setting is ignored. If the activation source is an internal interrupt, an interrupt request is issued to the CPU or DTC. If the DTIE bit is set to 1 when DTE = 0, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU or DTC.

The conditions for the DTE bit being cleared to 0 are as follows:

- When initialization is performed
- When the specified number of transfers have been completed in a transfer mode other than repeat mode
- When 0 is written to the DTE bit to forcibly abort the transfer, or for a similar reason

When DTE = 1, data transfer is enabled and the DMAC waits for a request by the activation source selected by the data transfer factor setting. When a request is issued by the activation source, DMA transfer is executed.

The condition for the DTE bit being set to 1 is as follows:

• When 1 is written to the DTE bit after the DTE bit is read as 0

Bit 7—Data Transfer Enable 1B (DTE1B): Enables or disables data transfer on channel 1B.

Bit 7		
DTE1B	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 6—Data Transfer Enable 1A (DTE1A): Enables or disables data transfer on channel 1A.

Bit 6 DTE1A	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 5—Data Transfer Enable 0B (DTE0B): Enables or disables data transfer on channel 0B.

Bit 5 DTE0B	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 4—Data Transfer Enable 0A (DTE0A): Enables or disables data transfer on channel 0A.

Bit 4 DTE0A	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bits 3 to 0—Data Transfer End Interrupt Enable (DTIE): These bits enable or disable an interrupt to the CPU or DTC when transfer ends. If the DTIE bit is set to 1 when DTE = 0, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU or DTC.

A transfer end interrupt can be canceled either by clearing the DTIE bit to 0 in the interrupt handling routine, or by performing processing to continue transfer by setting the transfer counter and address register again, and then setting the DTE bit to 1.

Bit 3—Data Transfer Interrupt Enable 1B (DTIE1B): Enables or disables the channel 1B transfer end interrupt.

Bit 3 DTIE1B	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

Bit 2—Data Transfer Interrupt Enable 1A (DTIE1A): Enables or disables the channel 1A transfer end interrupt.

Bit 2 DTIE1A	Description								
0	Transfer end interrupt disabled	(Initial value)							
1	Transfer end interrupt enabled								

Bit 1—Data Transfer Interrupt Enable 0B (DTIE0B): Enables or disables the channel 0B transfer end interrupt.

Bit 1 DTIE0B	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

Bit 0—Data Transfer Interrupt Enable 0A (DTIE0A): Enables or disables the channel 0A transfer end interrupt.

Bit 0 DTIE0A	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

RENESAS

7.3 Register Descriptions (2) (Full Address Mode)

Full address mode transfer is performed with channels A and B together. For details of full address mode setting, see table 7.4.

7.3.1 Memory Address Register (MAR)

Bit	:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			_	_	_		_	_	_								
Initial value	:	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
R/W	:	_	_	_	_	_	_	_	_	R/W							
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
R/W	:	R/W															

*: Undefined

MAR is a 32-bit readable/writable register; MARA functions as the transfer source address register, and MARB as the destination address register.

MAR is composed of two 16-bit registers, MARH and MARL. The upper 8 bits of MARH are reserved: they are always read as 0, and cannot be modified.

MAR is incremented or decremented each time a byte or word transfer is executed, so that the source or destination memory address can be updated automatically. For details, see section 7.3.4, DMA Control Register (DMACR).

MAR is not initialized by a reset or in standby mode.

7.3.2 I/O Address Register (IOAR)

IOAR is not used in full address transfer.

7.3.3 Execute Transfer Count Register (ETCR)

ETCR is a 16-bit readable/writable register that specifies the number of transfers. The function of this register is different in normal mode and in block transfer mode.

ETCR is not initialized by a reset or in standby mode.

Normal Mode

ETCRA

Transfer Counter

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	: -	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	

*: Undefined

In normal mode, ETCRA functions as a 16-bit transfer counter. ETCRA is decremented by 1 each time a transfer is performed, and transfer ends when the count reaches H'0000. ETCRB is not used at this time.

ETCRB

ETCRB is not used in normal mode.

Block Transfer Mode

ETCRA

Block Siz	e Storage	(ETCRAH)
------------------	-----------	----------

		-						
Bit :	15	14	13	12	11	10	9	8
Initial value:	*	*	*	*	*	*	*	*
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Block Size (Counter (E	TCRAL)						
Bit :	7	^	_	4	•	•	4	•
	1	6	5	4	3	2	1	0
	/	0	5	4	3	2	1	0
Initial value :	*	*	*	*	*	*	*	*
	*							

*: Undefined

ETCRB

Block Transfer Counter

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

*: Undefined

In block transfer mode, ETCRAL functions as an 8-bit block size counter and ETCRAH holds the block size. ETCRAL is decremented each time a 1-byte or 1-word transfer is performed, and when the count reaches H'00, ETCRAL is loaded with the value in ETCRAH. So by setting the block size in ETCRAH and ETCRAL, it is possible to repeatedly transfer blocks consisting of any desired number of bytes or words.

ETCRB functions in block transfer mode, as a 16-bit block transfer counter. ETCRB is decremented by 1 each time a block is transferred, and transfer ends when the count reaches H'0000.

7.3.4 DMA Control Register (DMACR)

DMACR is a 16-bit readable/writable register that controls the operation of each DMAC channel. In full address mode, DMACRA and DMACRB have different functions.

DMACR is initialized to H'0000 by a reset, and in hardware standby mode.

DMACRA

Bit :	15	14	13	12	11	10	9	8
	DTS	Z SAID	SAIDE	BLKDIR	BLKE		_	_
Initial value :	0	0	0	0	0	0	0	0
R/W	R/V	V R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMACRB

Bit	:	7	6	5	4	3	2	1	0
			DAID	DAIDE		DTF3	DTF2	DTF1	DTF0
Initial value	e : ¯	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15—Data Transfer Size (DTSZ): Selects the size of data to be transferred at one time.

Bit	1	5

DTSZ	Description	
0	Byte-size transfer	(Initial value)
1	Word-size transfer	

Bit 14—Source Address Increment/Decrement (SAID)

Bit 13—Source Address Increment/Decrement Enable (SAIDE): These bits specify whether source address register MARA is to be incremented, decremented, or left unchanged, when data transfer is performed.

Bit 14 SAID	Bit 13 SAIDE	Description	
0	0	MARA is fixed	(Initial value)
	1	MARA is incremented after a data transfer	
		 When DTSZ = 0, MARA is incremented by 1 after a tran 	sfer
		 When DTSZ = 1, MARA is incremented by 2 after a tran 	sfer
1	0	MARA is fixed	
	1	MARA is decremented after a data transfer	
		 When DTSZ = 0, MARA is decremented by 1 after a train 	nsfer
		• When DTSZ = 1, MARA is decremented by 2 after a train	nsfer

Bit 12—Block Direction (BLKDIR)

Bit 11—Block Enable (BLKE): These bits specify whether normal mode or block transfer mode is to be used. If block transfer mode is specified, the BLKDIR bit specifies whether the source side or the destination side is to be the block area.

Bit 12 BLKDIR	Bit 11 BLKE	Description	
0	0	Transfer in normal mode	(Initial value)
	1	Transfer in block transfer mode, destination side is block are	ea
1	0	Transfer in normal mode	
	1	Transfer in block transfer mode, source side is block area	

For operation in normal mode and block transfer mode, see section 7.5, Operation.

Bits 10 to 7—Reserved: Can be read or written to. Only 0 should be written to these bits.

Bit 6—Destination Address Increment/Decrement (DAID)

Bit 5—Destination Address Increment/Decrement Enable (DAIDE): These bits specify whether destination address register MARB is to be incremented, decremented, or left unchanged, when data transfer is performed.

Bit 6 DAID	Bit 5 DAIDE	Description	
0	0	MARB is fixed	(Initial value)
	1	MARB is incremented after a data transfer	
		 When DTSZ = 0, MARB is incremented by 1 after a tran 	sfer
		 When DTSZ = 1, MARB is incremented by 2 after a tran 	sfer
1	0	MARB is fixed	
	1	MARB is decremented after a data transfer	
		 When DTSZ = 0, MARB is decremented by 1 after a train 	nsfer
		• When DTSZ = 1, MARB is decremented by 2 after a train	nsfer

Bit 4—Reserved: Can be read or written to. Only 0 should be written to this bit.

Bits 3 to 0—Data Transfer Factor (DTF3 to DTF0): These bits select the data transfer factor (activation source). The factors that can be specified differ between normal mode and block transfer mode.

Normal Mode

Bit 3 DTF3	Bit 2 DTF2	Bit 1 DTF1	Bit 0 DTF0	Description	
0	0	0	0	_	(Initial value)
			1	_	
		1	0	Activated by DREQ pin falling edge input	
			1	Activated by DREQ pin low-level input	
	1	0	*	_	
		1	0	Auto-request (cycle steal)	
			1	Auto-request (burst)	
1	*	*	*	_	

*: Don't care

• Block Transfer Mode

Bit 3 DTF3	Bit 2 DTF2	Bit 1 DTF1	Bit 0 DTF0	Description	
0	0	0	0	— (Initial value)	
			1	Activated by A/D converter conversion end interrupt	
		1	0	Activated by DREQ pin falling edge input*	
			1	Activated by DREQ pin low-level input	
	1	0	0	Activated by SCI channel 0 transmit-data-empty interrupt	
			1	Activated by SCI channel 0 receive-data-full interrupt	
		1	0	Activated by SCI channel 1 transmit-data-empty interrupt	
4 0			1	Activated by SCI channel 1 receive-data-full interrupt	
1 0	0	0	Activated by TPU channel 0 compare match/input capture A interrupt		
				1	Activated by TPU channel 1 compare match/input capture A interrupt
		1	0	Activated by TPU channel 2 compare match/input capture A interrupt	
			1	Activated by TPU channel 3 compare match/input capture A interrupt	
	1	0	0	Activated by TPU channel 4 compare match/input capture A interrupt	
			1	Activated by TPU channel 5 compare match/input capture A interrupt	
		1	0	_	
			1	_	

Note: * Detected as a low level in the first transfer after transfer is enabled.

The same factor can be selected for more than one channel. In this case, activation starts with the highest-priority channel according to the relative channel priorities. For relative channel priorities, see section 7.5.13, DMAC Multi-Channel Operation.

7.3.5 DMA Band Control Register (DMABCR)

DMABCRH:

Bit	:	15	14	13	12	11	10	9	8
		FAE1	FAE0			DTA1	_	DTA0	
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMABCRL:

Bit	:	7	6	5	4	3	2	1	0
	•	DTME1	DTE1	DTME0	DTE0	DTIE1B	DTIE1A	DTIE0B	DTIE0A
Initial val	ue:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMABCR is a 16-bit readable/writable register that controls the operation of each DMAC channel.

DMABCR is initialized to H'0000 by a reset, and in hardware standby mode.

Bit 15—Full Address Enable 1 (FAE1): Specifies whether channel 1 is to be used in short address mode or full address mode.

In full address mode, channels 1A and 1B are used together as a single channel.

Bit 15

FAE1	Description	
0	Short address mode	(Initial value)
1	Full address mode	

Bit 14—Full Address Enable 0 (FAE0): Specifies whether channel 0 is to be used in short address mode or full address mode.

In full address mode, channels 0A and 0B are used together as a single channel.

FAE0	Description	
0	Short address mode	(Initial value)
1	Full address mode	

Bits 13 and 12—Reserved: Can be read or written to. Only 0 should be written to these bits.

Bits 11 and 9—Data Transfer Acknowledge (DTA): These bits enable or disable clearing, when DMA transfer is performed, of the internal interrupt source selected by the data transfer factor setting.

When DTE = 1 and DTA = 1, the internal interrupt source selected by the data transfer factor setting is cleared automatically by DMA transfer. When DTE = 1 and DTA = 1, the internal interrupt source selected by the data transfer factor setting does not issue an interrupt request to the CPU or DTC.

When DTE = 1 and DTA = 0, the internal interrupt source selected by the data transfer factor setting is not cleared when a transfer is performed, and can issue an interrupt request to the CPU or DTC in parallel. In this case, the interrupt source should be cleared by the CPU or DTC transfer.

When DTE = 0, the internal interrupt source selected by the data transfer factor setting issues an interrupt request to the CPU or DTC regardless of the DTA bit setting.

The state of the DTME bit does not affect the above operations.

Bit 11—Data Transfer Acknowledge 1 (DTA1): Enables or disables clearing, when DMA transfer is performed, of the internal interrupt source selected by the channel 1 data transfer factor setting.

Bit 11 DTA1	Description	
0	Clearing of selected internal interrupt source at time of DMA transfer is disabled (Initial value)	
1	Clearing of selected internal interrupt source at time of DMA transfer is enabled	

Bit 9—Data Transfer Acknowledge 0 (DTA0): Enables or disables clearing, when DMA transfer is performed, of the internal interrupt source selected by the channel 0 data transfer factor setting.

Bit 9 DTA0	Description
0	Clearing of selected internal interrupt source at time of DMA transfer is disabled (Initial value)
1	Clearing of selected internal interrupt source at time of DMA transfer is enabled

Bits 10 and 8—Reserved: Can be read or written to. Only 0 should be written to these bits.

Bits 7 and 5—Data Transfer Master Enable (DTME): Together with the DTE bit, these bits control enabling or disabling of data transfer on the relevant channel. When both the DTME bit and the DTE bit are set to 1, transfer is enabled for the channel.

If the relevant channel is in the middle of a burst mode transfer when an NMI interrupt is generated, the DTME bit is cleared, the transfer is interrupted, and bus mastership passes to the CPU. When the DTME bit is subsequently set to 1 again, the interrupted transfer is resumed. In block transfer mode, however, the DTME bit is not cleared by an NMI interrupt, and transfer is not interrupted.

The conditions for the DTME bit being cleared to 0 are as follows:

- When initialization is performed
- When NMI is input in burst mode
- When 0 is written to the DTME bit

The condition for DTME being set to 1 is as follows:

• When 1 is written to DTME after DTME is read as 0

Bit 7—Data Transfer Master Enable 1 (DTME1): Enables or disables data transfer on channel 1.

Bit 7		
DTME1	Description	
0	Data transfer disabled. In burst mode, cleared to 0 by an NMI interrupt	(Initial value)
1	Data transfer enabled	

RENESAS

Bit 5—Data Transfer Master Enable 0 (DTME0): Enables or disables data transfer on channel 0.

Bit 5 DTME0	Description	
0	Data transfer disabled. In normal mode, cleared to 0 by an NMI interrupt	(Initial value)
1	Data transfer enabled	

Bits 6 and 4—Data Transfer Enable (DTE): When DTE = 0, data transfer is disabled and the activation source selected by the data transfer factor setting is ignored. If the activation source is an internal interrupt, an interrupt request is issued to the CPU or DTC. If the DTIE bit is set to 1 when DTE = 0, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU.

The conditions for the DTE bit being cleared to 0 are as follows:

- When initialization is performed
- When the specified number of transfers have been completed
- When 0 is written to the DTE bit to forcibly abort the transfer, or for a similar reason

When DTE = 1 and DTME = 1, data transfer is enabled and the DMAC waits for a request by the activation source selected by the data transfer factor setting. When a request is issued by the activation source, DMA transfer is executed.

The condition for the DTE bit being set to 1 is as follows:

• When 1 is written to the DTE bit after the DTE bit is read as 0

Bit 6—Data Transfer Enable 1 (DTE1): Enables or disables data transfer on channel 1.

Bit 6		
DTE1	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 4—Data Transfer Enable 0 (DTE0): Enables or disables data transfer on channel 0.

Bit 4 DTE0	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bits 3 and 1—Data Transfer Interrupt Enable B (DTIEB): These bits enable or disable an interrupt to the CPU or DTC when transfer is interrupted. If the DTIEB bit is set to 1 when DTME = 0, the DMAC regards this as indicating a break in the transfer, and issues a transfer break interrupt request to the CPU or DTC.

A transfer break interrupt can be canceled either by clearing the DTIEB bit to 0 in the interrupt handling routine, or by performing processing to continue transfer by setting the DTME bit to 1.

Bit 3—Data Transfer Interrupt Enable 1B (DTIE1B): Enables or disables the channel 1 transfer break interrupt.

Bit 3 DTIE1B	Description	
0	Transfer break interrupt disabled	(Initial value)
1	Transfer break interrupt enabled	

Bit 1—Data Transfer Interrupt Enable 0B (DTIE0B): Enables or disables the channel 0 transfer break interrupt.

Bit 1 DTIE0B	Description	
0	Transfer break interrupt disabled	(Initial value)
1	Transfer break interrupt enabled	

Bits 2 and 0—Data Transfer End Interrupt Enable A (DTIEA): These bits enable or disable an interrupt to the CPU or DTC when transfer ends. If the DTIEA bit is set to 1 when DTE = 0, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU or DTC.

A transfer end interrupt can be canceled either by clearing the DTIEA bit to 0 in the interrupt handling routine, or by performing processing to continue transfer by setting the transfer counter and address register again, and then setting the DTE bit to 1.

Bit 2—Data Transfer Interrupt Enable 1A (DTIE1A): Enables or disables the channel 1 transfer end interrupt.

Bit 2 DTIE1A	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

Bit 0—Data Transfer Interrupt Enable 0A (DTIE0A): Enables or disables the channel 0 transfer end interrupt.

Bit 0		
DTIE0A	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

7.4 Register Descriptions (3)

7.4.1 DMA Write Enable Register (DMAWER)

The DMAC can activate the DTC with a transfer end interrupt, rewrite the channel on which the transfer ended using a DTC chain transfer, and reactivate the DTC. DMAWER applies restrictions so that specific bits of DMACR for the specific channel, and also DMATCR and DMABCR, can be changed to prevent inadvertent rewriting of registers other than those for the channel concerned. The restrictions applied by DMAWER are valid for the DTC.

Figure 7.2 shows the transfer areas for activating the DTC with a channel 0A transfer end interrupt, and reactivating channel 0A. The address register and count register area is re-set by the first DTC transfer, then the control register area is re-set by the second DTC chain transfer.

When re-setting the control register area, perform masking by setting bits in DMAWER to prevent modification of the contents of the other channels.

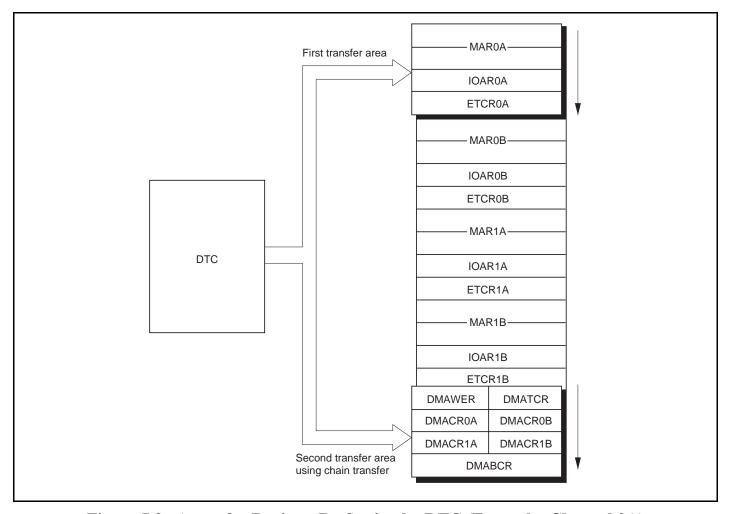


Figure 7.2 Areas for Register Re-Setting by DTC (Example: Channel 0A)

Bit	:	7	6	5	4	3	2	1	0
				_		WE1B	WE1A	WE0B	WE0A
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

DMAWER is an 8-bit readable/writable register that controls enabling or disabling of writes to DMACR, DMABCR, and DMATCR by the DTC.

DMAWER is initialized to H'00 by a reset, and in hardware standby mode.

Bits 7 to 4—Reserved: Read-only bits, always read as 0.

Bit 3—Write Enable 1B (WE1B): Enables or disables writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR, by the DTC.

Bit 3 WE1B	Description
0	Writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR are disabled (Initial value)
1	Writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR are enabled

Bit 2—Write Enable 1A (WE1A): Enables or disables writes to all bits in DMACR1A, and bits 10, 6, and 2 in DMABCR, by the DTC.

Bit 2 WE1A	Description
0	Writes to all bits in DMACR1A, and bits 10, 6, and 2 in DMABCR are disabled (Initial value)
1	Writes to all bits in DMACR1A, and bits 10, 6, and 2 in DMABCR are enabled

Bit 1—Write Enable 0B (WE0B): Enables or disables writes to all bits in DMACR0B, bits 9, 5, and 1 in DMABCR, and bit 4 in DMATCR, by the DTC.

Bit 1 WE0B	Description
0	Writes to all bits in DMACR0B, bits 9, 5, and 1 in DMABCR, and bit 4 in DMATCR are disabled (Initial value)
1	Writes to all bits in DMACR0B, bits 9, 5, and 1 in DMABCR, and bit 4 in DMATCR are enabled

Bit 0—Write Enable 0A (WE0A): Enables or disables writes to all bits in DMACR0A, and bits 8, 4, and 0 in DMABCR, by the DTC.

Bit 0 WE0A	Description
0	Writes to all bits in DMACR0A, and bits 8, 4, and 0 in DMABCR are disabled (Initial value)
1	Writes to all bits in DMACR0A, and bits 8, 4, and 0 in DMABCR are enabled

Writes by the DTC to bits 15 to 12 (FAE and SAE) in DMABCR are invalid regardless of the DMAWER settings. These bits should be changed, if necessary, by CPU processing.

In writes by the DTC to bits 7 to 4 (DTE) in DMABCR, 1 can be written without first reading 0. To reactivate a channel set to full address mode, write 1 to both Write Enable A and Write Enable B for the channel to be reactivated.

MAR, IOAR, and ETCR are always write-enabled regardless of the DMAWER settings. When modifying these registers, the channel for which the modification is to be made should be halted.

RENESAS

7.4.2 DMA Terminal Control Register (DMATCR)

Bit	:	7	6	5	4	3	2	1	0
			_	TEE1	TEE0	_			
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_		R/W	R/W	_	_	_	

DMATCR is an 8-bit readable/writable register that controls enabling or disabling of DMAC transfer end pin output. A port can be set for output automatically, and a transfer end signal output, by setting the appropriate bit.

DMATCR is initialized to H'00 by a reset, and in hardware standby mode.

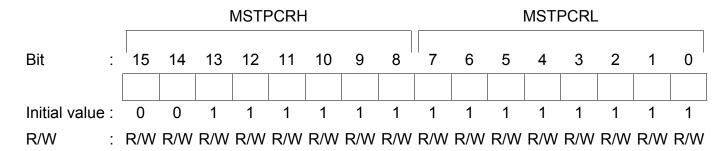
Bits 7 and 6—Reserved: Read-only bits, always read as 0.

Bit 5—Transfer End Enable 1 (TEE1): Enables or disables transfer end pin 1 (TEND1) output.

Bit 5 TEE1	Description				
0	TEND1 pin output disabled	(Initial value)			
1	TEND1 pin output enabled				

Bit 4—Transfer End Enable 0 (TEE0): Enables or disables transfer end pin 0 (TEND0) output.

Bit 4		
TEE0	Description	
0	TEND0 pin output disabled	(Initial value)
1	TEND0 pin output enabled	


The TEND pins are assigned only to channel B in short address mode.

The transfer end signal indicates the transfer cycle in which the transfer counter reached 0, regardless of the transfer source. An exception is block transfer mode, in which the transfer end signal indicates the transfer cycle in which the block counter reached 0.

Bits 3 to 0—Reserved: Read-only bits, always read as 0.

7.4.3 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP15 bit in MSTPCR is set to 1, the DMAC operation stops at the end of the bus cycle and a transition is made to module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 15—Module Stop (MSTP15): Specifies the DMAC module stop mode.

Bit 15	
MSTP15	Description

0	DMAC module stop mode cleared	(Initial value)
1	DMAC module stop mode set	

RENESAS

7.5 Operation

7.5.1 Transfer Modes

Table 7.5 lists the DMAC modes.

Table 7.5 DMAC Transfer Modes

Transfer Mode		Transfer Source	Remarks		
Short address mode	Dual (1) Sequential address mode (2) Idle mode (3) Repeat mode (4) Single address mode	 TPU channel 0 to 5 compare match/input capture A interrupt SCI transmit-data-empty interrupt SCI receive-data-full interrupt A/D converter conversion end interrupt External request 	 Up to 4 channels can operate independently External request applies to channel B only Single address mode applies to channel B only Modes (1), (2), and (3) can also be specified for single address mode 		
Full address mode	(5) Normal mode	External requestAuto-request	Max. 2-channel operation, combining channels A and B		
	(6) Block transfer mode	 TPU channel 0 to 5 compare match/input capture A interrupt SCI transmit-data-empty interrupt SCI receive-data-full interrupt A/D converter conversion end interrupt External request 	With auto-request, burst mode transfer or cycle steal transfer can be selected		

Operation in each mode is summarized below.

Sequential Mode: In response to a single transfer request, the specified number of transfers are carried out, one byte or one word at a time. An interrupt request can be sent to the CPU or DTC when the specified number of transfers have been completed. One address is specified as 24 bits, and the other as 16 bits. The transfer direction is programmable.

Idle Mode: In response to a single transfer request, the specified number of transfers are carried out, one byte or one word at a time. An interrupt request can be sent to the CPU or DTC when the specified number of transfers have been completed. One address is specified as 24 bits, and the other as 16 bits. The transfer source address and transfer destination address are fixed. The transfer direction is programmable.

Repeat Mode: In response to a single transfer request, the specified number of transfers are carried out, one byte or one word at a time. When the specified number of transfers have been completed, the addresses and transfer counter are restored to their original settings, and operation is continued. No interrupt request is sent to the CPU or DTC. One address is specified as 24 bits, and the other as 16 bits. The transfer direction is programmable.

Single Address Mode: In response to a single transfer request, the specified number of transfers are carried out between external memory and an external device, one byte or one word at a time. Unlike dual address mode, source and destination accesses are performed in parallel. Therefore, either the source or the destination is an external device which can be accessed with a strobe alone, using the \overline{DACK} pin. One address is specified as 24 bits, and for the other, the pin is set automatically. The transfer direction is programmable.

Sequential mode, idle mode, and repeat mode can also be specified for single address mode.

Normal Mode

- Auto-request
 - By means of register settings only, the DMAC is activated, and transfer continues until the specified number of transfers have been completed. An interrupt request can be sent to the CPU or DTC when transfer is completed. Both addresses are specified as 24 bits.
 - Cycle steal mode
 The bus is released to another bus master after each byte or word transfer.
 - Burst mode
 - The bus is held and transfer continued until the specified number of transfers have been completed.

• External request

In response to a single transfer request, the specified number of transfers are carried out, one byte or one word at a time. An interrupt request can be sent to the CPU or DTC when the specified number of transfers have been completed. Both addresses are specified as 24 bits.

Block Transfer Mode: In response to a single transfer request, a block transfer of the specified block size is carried out. This is repeated the specified number of times, once each time there is a transfer request. At the end of each single block transfer, one address is restored to its original setting. An interrupt request can be sent to the CPU or DTC when the specified number of block transfers have been completed. Both addresses are specified as 24 bits.

7.5.2 Sequential Mode

Sequential mode can be specified by clearing the RPE bit in DMACR to 0. In sequential mode, MAR is updated after each byte or word transfer in response to a single transfer request, and this is executed the number of times specified in ETCR.

One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7.6 summarizes register functions in sequential mode.

Table 7.6 Register Functions in Sequential Mode

Function					
Register		DTDIR = 0	DTDIR = 1	Initial Setting	Operation
23 MAR	0	Source address register	Destination address register	Start address of transfer destination or transfer source	Incremented/ decremented every transfer
23 15 H'FF IOAR	0	Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed
15 ETCR	0	Transfer co	unter	Number of transfers	Decremented every transfer; transfer ends when count reaches H'0000

Legend:

MAR: Memory address register

IOAR: I/O address register

ETCR: Execute transfer count register

DTDIR: Data transfer direction bit

MAR specifies the start address of the transfer source or transfer destination as 24 bits. MAR is incremented or decremented by 1 or 2 each time a byte or word is transferred.

IOAR specifies the lower 16 bits of the other address. The 8 bits above IOAR have a value of H'FF.

Figure 7.3 illustrates operation in sequential mode.

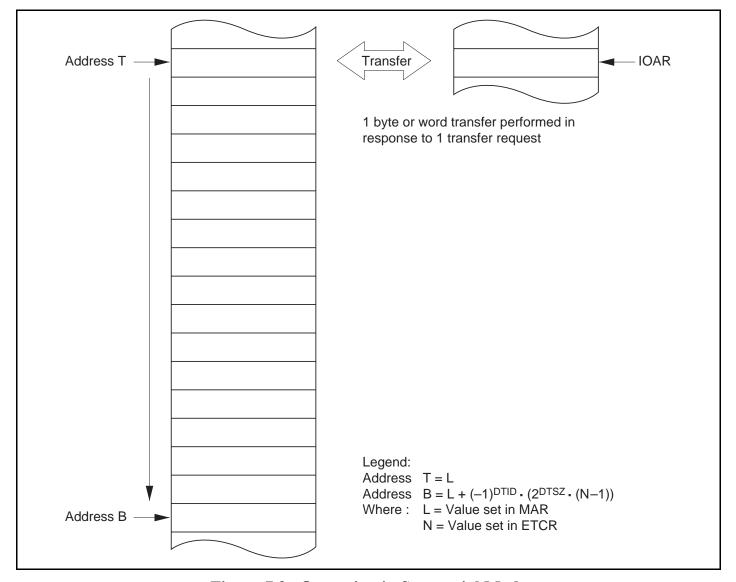


Figure 7.3 Operation in Sequential Mode

The number of transfers is specified as 16 bits in ETCR. ETCR is decremented by 1 each time a transfer is executed, and when its value reaches H'0000, the DTE bit is cleared and transfer ends. If the DTIE bit is set to 1 at this time, an interrupt request is sent to the CPU or DTC.

The maximum number of transfers, when H'0000 is set in ETCR, is 65,536.

Transfer requests (activation sources) consist of A/D converter conversion end interrupts, external requests, SCI transmit-data-empty/receive-data-full interrupts, and TPU channel 0 to 5 compare match/input capture A interrupts. External requests can be set for channel B only.

Figure 7.4 shows an example of the setting procedure for sequential mode.

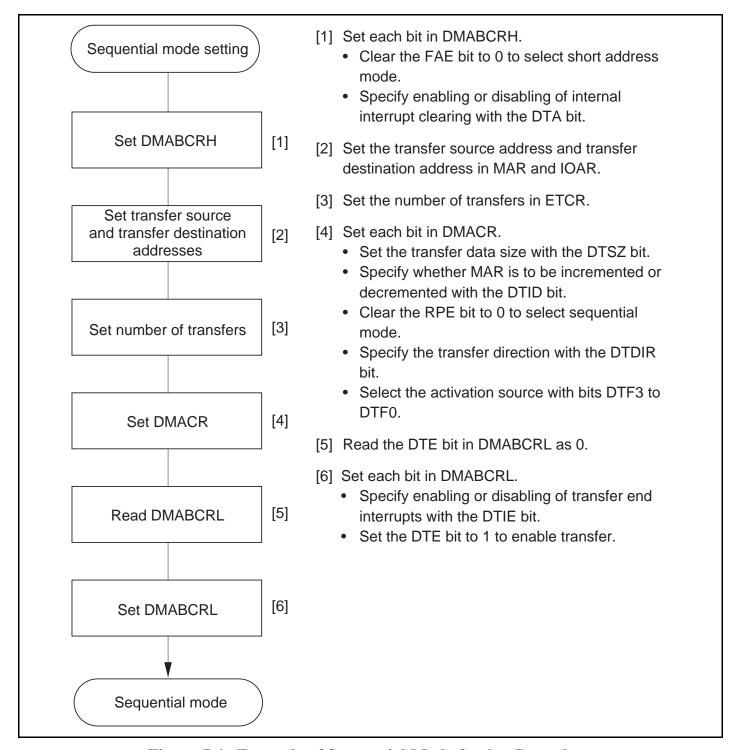


Figure 7.4 Example of Sequential Mode Setting Procedure

7.5.3 Idle Mode

Idle mode can be specified by setting the RPE bit and DTIE bit in DMACR to 1. In idle mode, one byte or word is transferred in response to a single transfer request, and this is executed the number of times specified in ETCR.

One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7.7 summarizes register functions in idle mode.

Table 7.7 Register Functions in Idle Mode

Function					
Register		DTDIR = 0	DTDIR = 1	Initial Setting	Operation
23 MAR	0	Source address register	Destination address register	Start address of transfer destination or transfer source	Fixed
23 15 H'FF IOAR	0	Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed
15 ETCR	0	Transfer co	unter	Number of transfers	Decremented every transfer; transfer ends when count reaches H'0000

Legend:

MAR: Memory address register

IOAR: I/O address register

ETCR: Execute transfer count register

DTDIR: Data transfer direction bit

MAR specifies the start address of the transfer source or transfer destination as 24 bits. MAR is neither incremented nor decremented each time a byte or word is transferred.

IOAR specifies the lower 16 bits of the other address. The 8 bits above IOAR have a value of H'FF.

Figure 7.5 illustrates operation in idle mode.

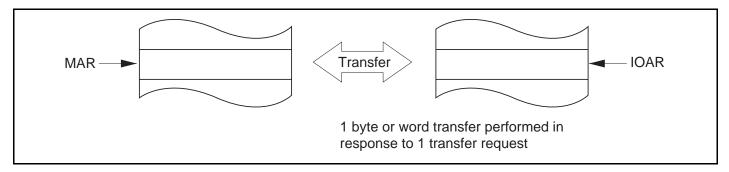


Figure 7.5 Operation in Idle Mode

The number of transfers is specified as 16 bits in ETCR. ETCR is decremented by 1 each time a transfer is executed, and when its value reaches H'0000, the DTE bit is cleared and transfer ends. If the DTIE bit is set to 1 at this time, an interrupt request is sent to the CPU or DTC.

The maximum number of transfers, when H'0000 is set in ETCR, is 65,536.

Transfer requests (activation sources) consist of A/D converter conversion end interrupts, external requests, SCI transmit-data-empty and receive-data-full interrupts, and TPU channel 0 to 5 compare match/input capture A interrupts. External requests can be set for channel B only.

When the DMAC is used in single address mode, only channel B can be set.

Figure 7.6 shows an example of the setting procedure for idle mode.

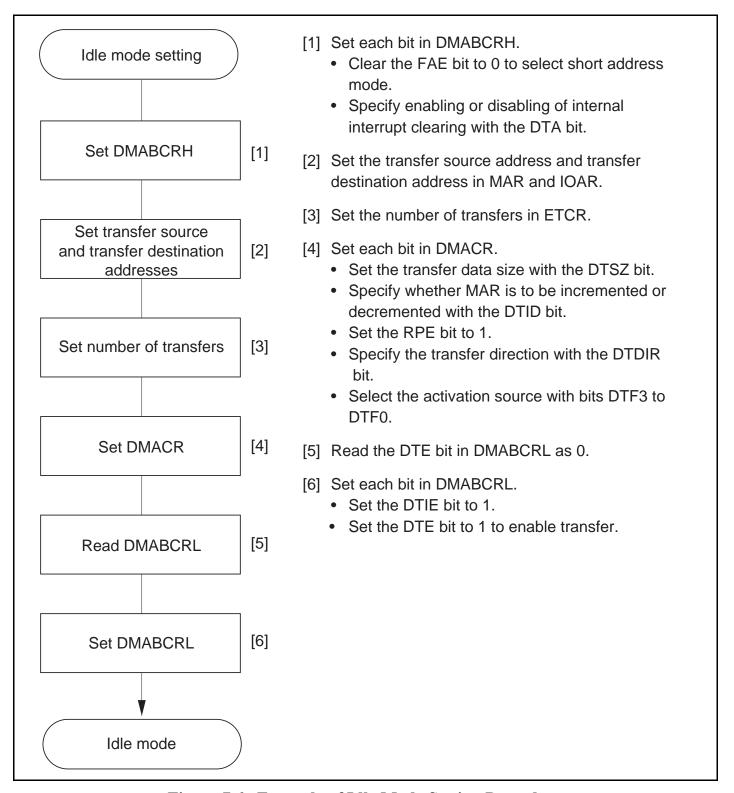


Figure 7.6 Example of Idle Mode Setting Procedure

7.5.4 Repeat Mode

Repeat mode can be specified by setting the RPE bit in DMACR to 1, and clearing the DTIE bit to 0. In repeat mode, MAR is updated after each byte or word transfer in response to a single transfer request, and this is executed the number of times specified in ETCRL. On completion of the specified number of transfers, MAR and ETCRL are automatically restored to their original settings and operation continues.

One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7.8 summarizes register functions in repeat mode.

Table 7.8 Register Functions in Repeat Mode

Function				
Register	DTDIR = 0	DTDIR = 1	Initial Setting	Operation
23 0 MAR	Source address register	Destination address register	Start address of transfer destination or transfer source	Incremented/ decremented every transfer. Initial setting is restored when value reaches H'0000
23 15 0 H'FF IOAR	Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed
7 0 ETCRH	Holds numb transfers	er of	Number of transfers	Fixed
7 ▼ 0 ETCRL	Transfer co	unter	Number of transfers	Decremented every transfer. Loaded with ETCRH value when count reaches H'00

Legend:

MAR: Memory address register

IOAR: I/O address register

ETCR: Execute transfer count register

DTDIR: Data transfer direction bit

MAR specifies the start address of the transfer source or transfer destination as 24 bits. MAR is incremented or decremented by 1 or 2 each time a byte or word is transferred.

IOAR specifies the lower 16 bits of the other address. The 8 bits above IOAR have a value of H'FF.

The number of transfers is specified as 8 bits by ETCRH and ETCRL. The maximum number of transfers, when H'00 is set in both ETCRH and ETCRL, is 256.

In repeat mode, ETCRL functions as the transfer counter, and ETCRH is used to hold the number of transfers. ETCRL is decremented by 1 each time a transfer is executed, and when its value reaches H'00, it is loaded with the value in ETCRH. At the same time, the value set in MAR is restored in accordance with the values of the DTSZ and DTID bits in DMACR. The MAR restoration operation is as shown below.

$$MAR = MAR - (-1)^{DTID} \cdot 2^{DTSZ} \cdot ETCRH$$

The same value should be set in ETCRH and ETCRL.

In repeat mode, operation continues until the DTE bit is cleared. To end the transfer operation, therefore, the DTE bit should be cleared to 0. A transfer end interrupt request is not sent to the CPU or DTC.

By setting the DTE bit to 1 again after it has been cleared, the operation can be restarted from the transfer after that terminated when the DTE bit was cleared.

RENESAS

Figure 7.7 illustrates operation in repeat mode.

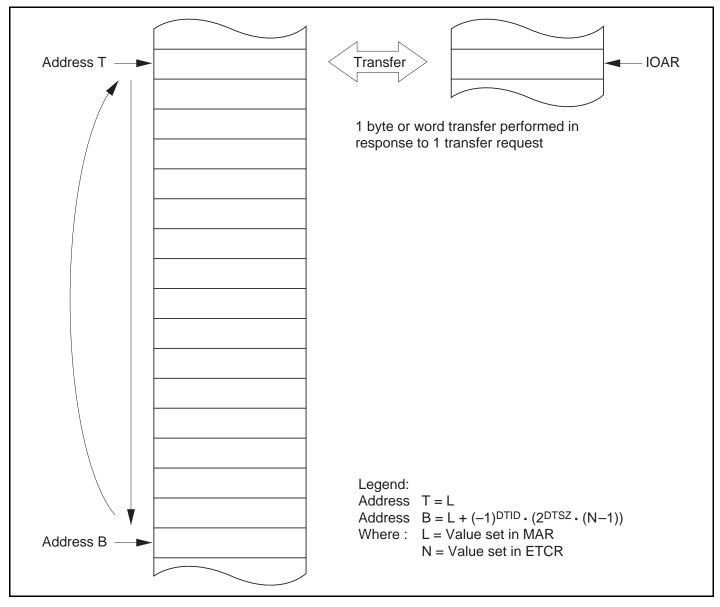


Figure 7.7 Operation in Repeat mode

Transfer requests (activation sources) consist of A/D converter conversion end interrupts, external requests, SCI transmit-data-empty and receive-data-full interrupts, and TPU channel 0 to 5 compare match/input capture A interrupts. External requests can be set for channel B only.

Figure 7.8 shows an example of the setting procedure for repeat mode.

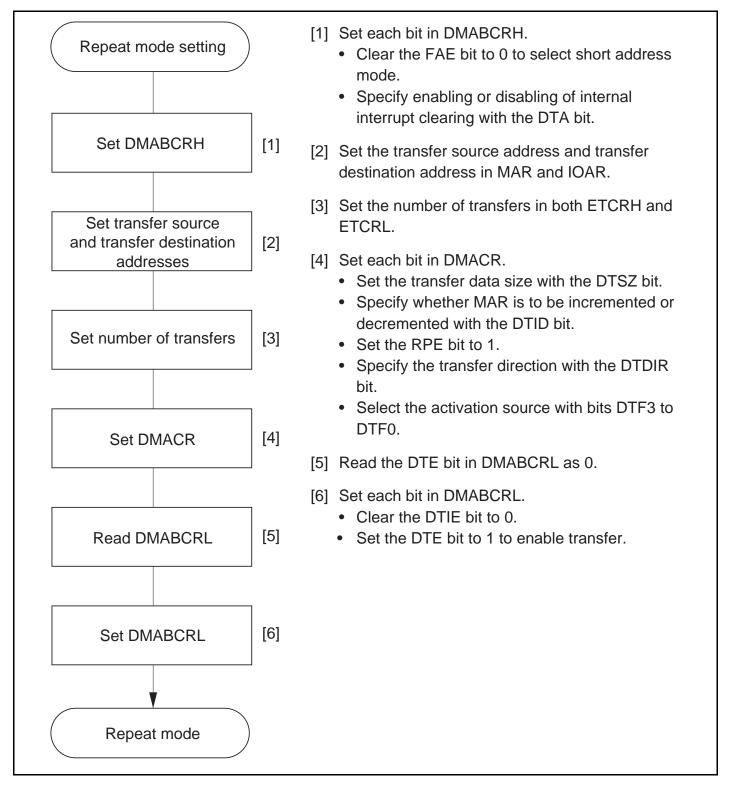


Figure 7.8 Example of Repeat Mode Setting Procedure

7.5.5 Single Address Mode

Single address mode can only be specified for channel B. This mode can be specified by setting the SAE bit in DMABCR to 1 in short address mode.

One address is specified by MAR, and the other is set automatically to the data transfer acknowledge pin (\overline{DACK}) . The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7.9 summarizes register functions in single address mode.

Table 7.9 Register Functions in Single Address Mode

	Function				
Register	DTDIR = 0	DTDIR = 1	Initial Setting	Operation	
23 MAR	O Source address register	Destination address register	Start address of transfer destination or transfer source	*	
DACK pin	Write strobe	Read strobe	(Set automatically by SAE bit; IOAR is invalid)	Strobe for external device	
15 ETCR	0 Transfer co	unter	Number of transfers	*	

Legend:

MAR: Memory address register

IOAR: I/O address register

ETCR: Execute transfer register DTDIR: Data transfer direction bit DACK: Data transfer acknowledge

Note: * See the operation descriptions in sections 7.5.2, Sequential Mode, 7.5.3, Idle Mode, and 7.5.4, Repeat Mode.

MAR specifies the start address of the transfer source or transfer destination as 24 bits.

IOAR is invalid; in its place the strobe for external devices (DACK) is output.

Figure 7.9 illustrates operation in single address mode (when sequential mode is specified).

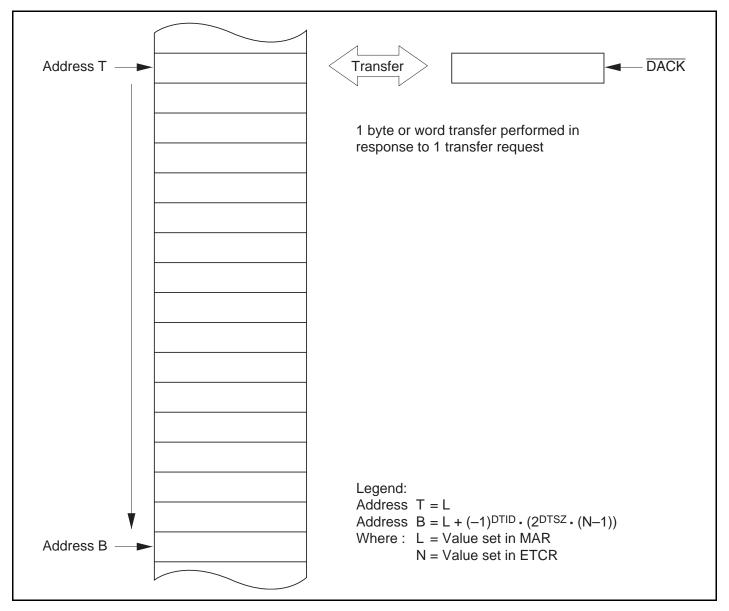


Figure 7.9 Operation in Single Address Mode (When Sequential Mode is Specified)

Figure 7.10 shows an example of the setting procedure for single address mode (when sequential mode is specified).

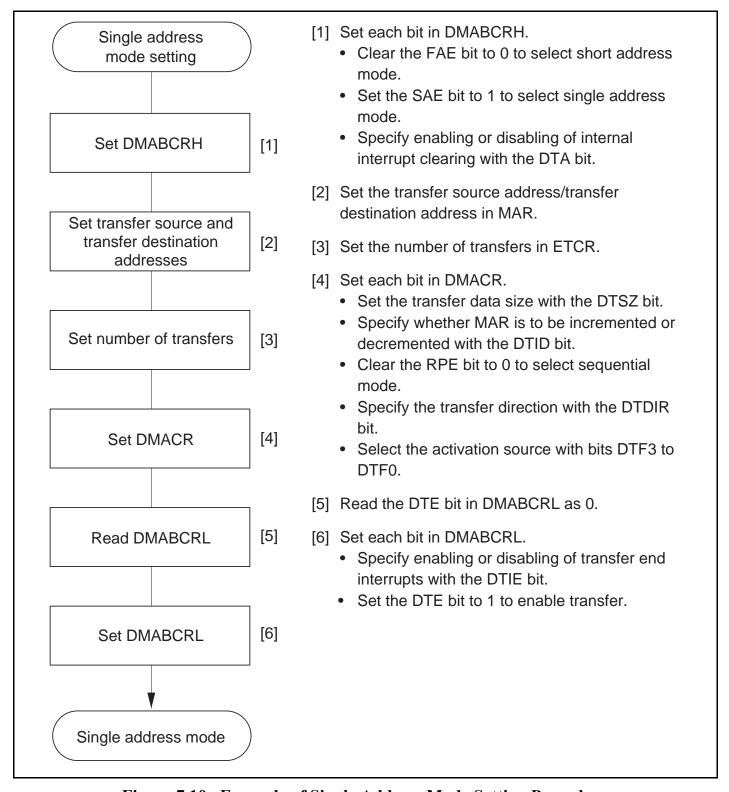


Figure 7.10 Example of Single Address Mode Setting Procedure (When Sequential Mode is Specified)

7.5.6 Normal Mode

In normal mode, transfer is performed with channels A and B used in combination. Normal mode can be specified by setting the FAE bit in DMABCR to 1 and clearing the BLKE bit in DMACRA to 0.

In normal mode, MAR is updated after each byte or word transfer in response to a single transfer request, and this is executed the number of times specified in ETCRA. The transfer source is specified by MARA, and the transfer destination by MARB.

Table 7.10 summarizes register functions in normal mode.

Table 7.10 Register Functions in Normal Mode

Register	Function	Initial Setting	Operation
23 MARA	Source address register	Start address of transfer source	Incremented/decremented every transfer, or fixed
23 MARB	Destination address register	Start address of transfer destination	Incremented/decremented every transfer, or fixed
15 ETÇRA	0 Transfer counter	Number of transfers	Decremented every transfer; transfer ends when count reaches H'0000

Legend:

MARA: Memory address register A MARB: Memory address register B

ETCRA: Execute transfer count register A

MARA and MARB specify the start addresses of the transfer source and transfer destination, respectively, as 24 bits. MAR can be incremented or decremented by 1 or 2 each time a byte or word is transferred, or can be fixed.

Incrementing, decrementing, or holding a fixed value can be set separately for MARA and MARB.

The number of transfers is specified by ETCRA as 16 bits. ETCRA is decremented each time a transfer is performed, and when its value reaches H'0000 the DTE bit is cleared and transfer ends. If the DTIE bit is set to 1 at this time, an interrupt request is sent to the CPU or DTC.

The maximum number of transfers, when H'0000 is set in ETCRA, is 65,536.

Figure 7.11 illustrates operation in normal mode.

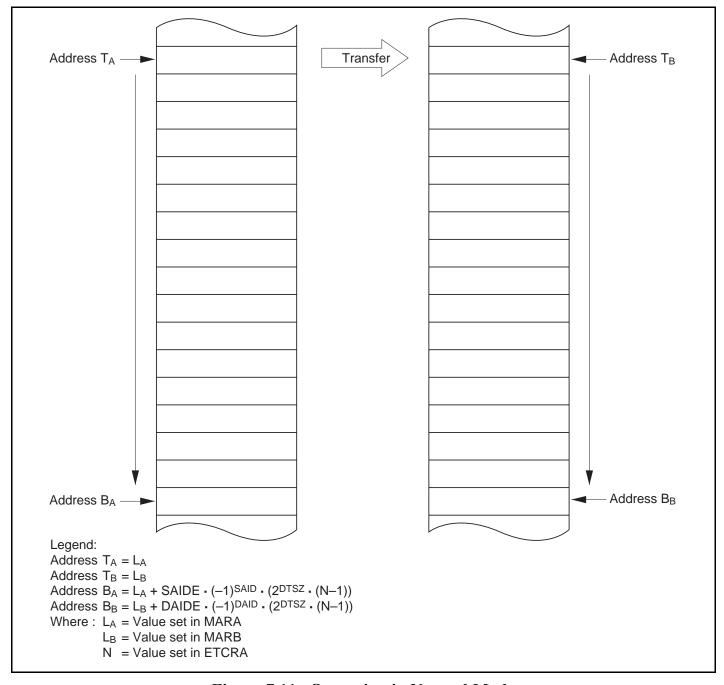


Figure 7.11 Operation in Normal Mode

Transfer requests (activation sources) are external requests and auto-requests.

With auto-request, the DMAC is only activated by register setting, and the specified number of transfers are performed automatically. With auto-request, cycle steal mode or burst mode can be selected. In cycle steal mode, the bus is released to another bus master each time a transfer is performed. In burst mode, the bus is held continuously until transfer ends.

For setting details, see section 7.3.4, DMA Control Register (DMACR).

Figure 7.12 shows an example of the setting procedure for normal mode.

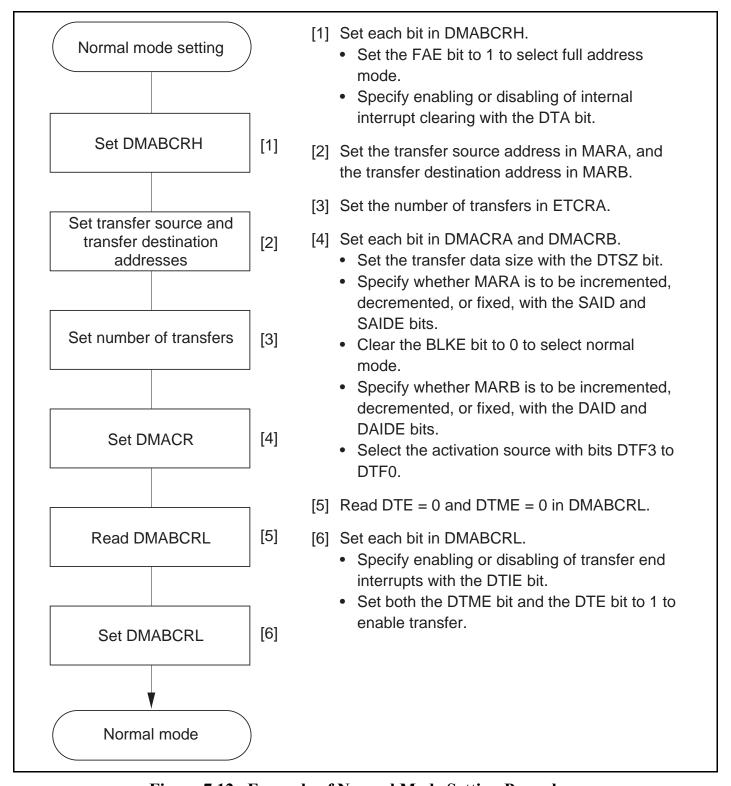


Figure 7.12 Example of Normal Mode Setting Procedure

RENESAS

7.5.7 Block Transfer Mode

In block transfer mode, transfer is performed with channels A and B used in combination. Block transfer mode can be specified by setting the FAE bit in DMABCR and the BLKE bit in DMACRA to 1.

In block transfer mode, a transfer of the specified block size is carried out in response to a single transfer request, and this is executed the specified number of times. The transfer source is specified by MARA, and the transfer destination by MARB. Either the transfer source or the transfer destination can be selected as a block area (an area composed of a number of bytes or words).


Table 7.11 summarizes register functions in block transfer mode.

Table 7.11 Register Functions in Block Transfer Mode

Register	Function	Initial Setting	Operation
23 0 MARA	Source address register	Start address of transfer source	Incremented/decremented every transfer, or fixed
23 0 MARB	Destination address register	Start address of transfer destination	Incremented/decremented every transfer, or fixed
7 0 ETCRAH	Holds block size	Block size	Fixed
7 ▼ 0 ETCRAL	Block size counter	Block size	Decremented every transfer; ETCRH value copied when count reaches H'00
15 0 ETCRB	Block transfer counter	Number of block transfers	Decremented every block transfer; transfer ends when count reaches H'0000

Legend:

MARA: Memory address register A
MARB: Memory address register B
ETCRA: Execute transfer count register A
ETCRB: Execute transfer count register B

Rev.4.00 Sep. 07, 2007 Page 257 of 1210

MARA and MARB specify the start addresses of the transfer source and transfer destination, respectively, as 24 bits. MAR can be incremented or decremented by 1 or 2 each time a byte or word is transferred, or can be fixed.

Incrementing, decrementing, or holding a fixed value can be set separately for MARA and MARB.

Whether a block is to be designated for MARA or for MARB is specified by the BLKDIR bit in DMACRA.

To specify the number of transfers, if M is the size of one block (where M = 1 to 256) and N transfers are to be performed (where N = 1 to 65,536), M is set in both ETCRAH and ETCRAL, and N in ETCRB.

Figure 7.13 illustrates operation in block transfer mode when MARB is designated as a block area.

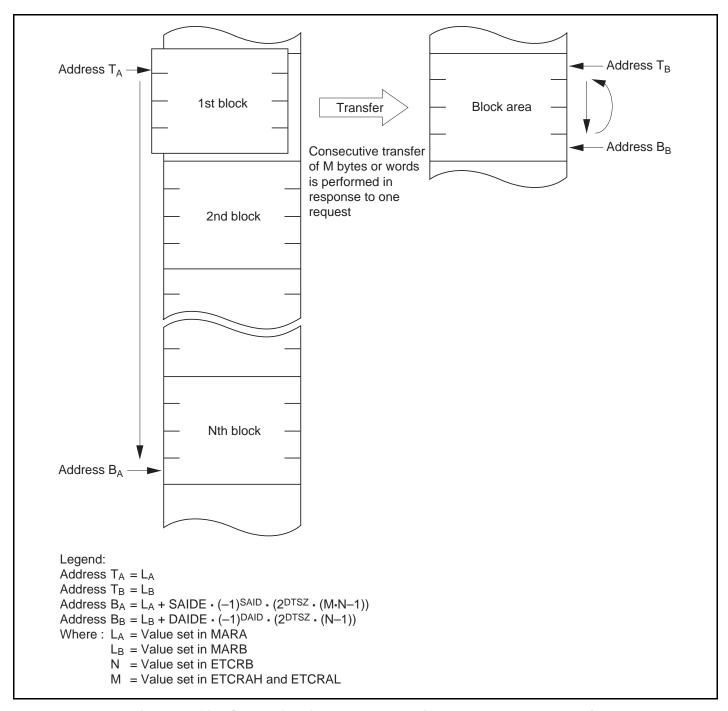


Figure 7.13 Operation in Block Transfer Mode (BLKDIR = 0)

Figure 7.14 illustrates operation in block transfer mode when MARA is designated as a block area.

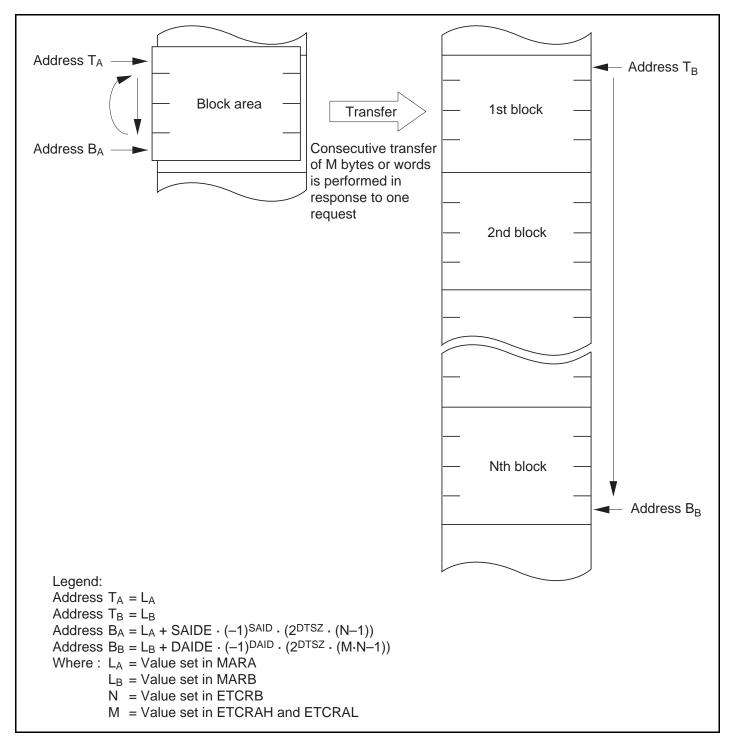


Figure 7.14 Operation in Block Transfer Mode (BLKDIR = 1)

ETCRAL is decremented by 1 each time a byte or word transfer is performed. In response to a single transfer request, burst transfer is performed until the value in ETCRAL reaches H'00. ETCRAL is then loaded with the value in ETCRAH. At this time, the value in the MAR register for which a block designation has been given by the BLKDIR bit in DMACRA is restored in accordance with the DTSZ, SAID/DAID, and SAIDE/DAIDE bits in DMACR.

ETCRB is decremented by 1 after every block transfer, and when the count reaches H'0000 the DTE bit is cleared and transfer ends. If the DTIE bit is set to 1 at this point, an interrupt request is sent to the CPU or DTC.

Figure 7.15 shows the operation flow in block transfer mode.

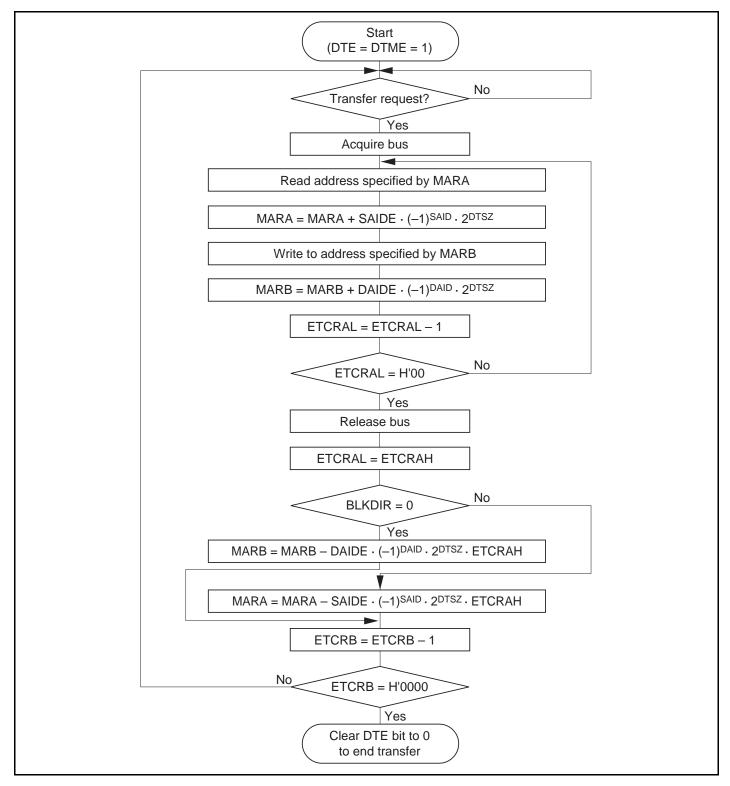


Figure 7.15 Operation Flow in Block Transfer Mode

Transfer requests (activation sources) consist of A/D converter conversion end interrupts, external requests, SCI transmit-data-empty and receive-data-full interrupts, and TPU channel 0 to 5 compare match/input capture A interrupts.

For details, see section 7.3.4, DMA Control Register (DMACR).

Figure 7.16 shows an example of the setting procedure for block transfer mode.

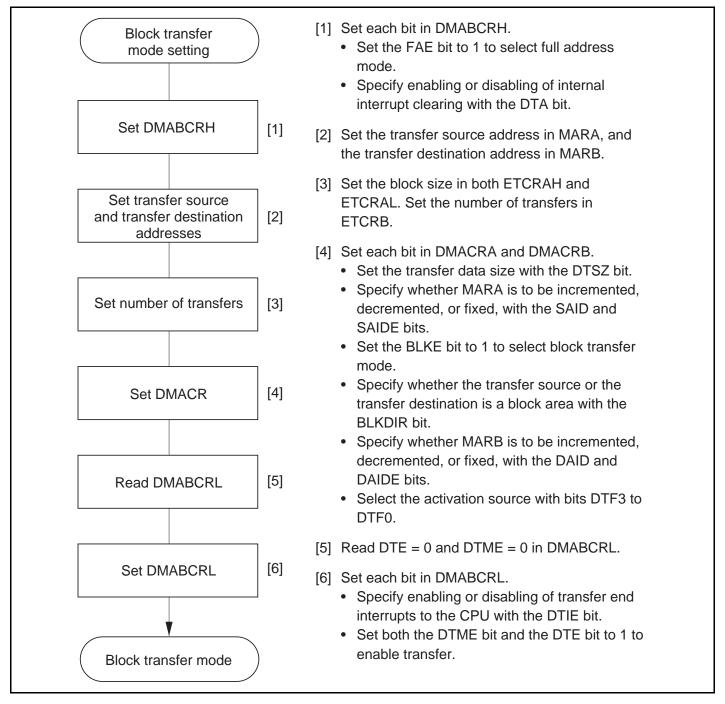


Figure 7.16 Example of Block Transfer Mode Setting Procedure

7.5.8 DMAC Activation Sources

DMAC activation sources consist of internal interrupts, external requests, and auto-requests. The activation sources that can be specified depend on the transfer mode and the channel, as shown in table 7.12.

Table 7.12 DMAC Activation Sources

		Short Address Mode		Full Address Mode	
Activation Source		Channels 0A and 1A	Channels 0B and 1B	Normal Mode	Block Transfer Mode
Internal Interrupts	ADI	0	0	Х	0
	TXI0	0	0	Χ	0
	RXI0	0	0	Χ	0
	TXI1	0	0	Χ	0
	RXI1	0	0	Χ	0
	TGI0A	0	0	Χ	0
	TGI1A	0	0	X	0
	TGI2A	0	0	Χ	0
	TGI3A	0	0	Х	0
	TGI4A	0	0	Χ	0
	TGI5A	0	0	X	0
External Requests	DREQ pin falling edge input	Χ	0	0	0
	DREQ pin low-level input	Χ	0	0	0
Auto-request		X	Χ	0	Χ
l a se a se al .					

Legend:

Can be specifiedX : Cannot be specified

Activation by Internal Interrupt: An interrupt request selected as a DMAC activation source can be sent simultaneously to the CPU and DTC. For details, see section 5, Interrupt Controller.

With activation by an internal interrupt, the DMAC accepts the request independently of the interrupt controller. Consequently, interrupt controller priority settings are irrelevant.

If the DMAC is activated by a CPU interrupt source or an interrupt source that is not used as a DTC activation source (DTA = 1), the interrupt source flag is cleared automatically by the DMA transfer. With ADI, TXI, and RXI interrupts, however, the interrupt source flag is not cleared

unless the prescribed register is accessed in a DMA transfer. If the same interrupt is used as an activation source for more than one channel, the interrupt request flag is cleared when the highest-priority channel is activated first. Transfer requests for other channels are held pending in the DMAC, and activation is carried out in order of priority.

When DTE = 0, such as after completion of a transfer, a request from the selected activation source is not sent to the DMAC, regardless of the DTA bit. In this case, the relevant interrupt request is sent to the CPU or DTC.

In case of overlap with a CPU interrupt source or DTC activation source (DTA = 0), the interrupt request flag is not cleared by the DMAC.

Activation by External Request: If an external request (\overline{DREQ} pin) is specified as an activation source, the relevant port should be set to input mode in advance.

Level sensing or edge sensing can be used for external requests.

External request operation in normal mode (short address mode or full address mode) is described below.

When edge sensing is selected, a 1-byte or 1-word transfer is executed each time a high-to-low transition is detected on the \overline{DREQ} pin. The next transfer may not be performed if the next edge is input before transfer is completed.

When level sensing is selected, the DMAC stands by for a transfer request while the \overline{DREQ} pin is held high. While the \overline{DREQ} pin is held low, transfers continue in succession, with the bus being released each time a byte or word is transferred. If the \overline{DREQ} pin goes high in the middle of a transfer, the transfer is interrupted and the DMAC stands by for a transfer request.

Activation by Auto-Request: Auto-request activation is performed by register setting only, and transfer continues to the end.

With auto-request activation, cycle steal mode or burst mode can be selected.

In cycle steal mode, the DMAC releases the bus to another bus master each time a byte or word is transferred. DMA and CPU cycles usually alternate.

In burst mode, the DMAC keeps possession of the bus until the end of the transfer, and transfer is performed continuously.

Single Address Mode: The DMAC can operate in dual address mode in which read cycles and write cycles are separate cycles, or single address mode in which read and write cycles are executed in parallel.

In dual address mode, transfer is performed with the source address and destination address specified separately.

In single address mode, on the other hand, transfer is performed between external space in which either the transfer source or the transfer destination is specified by an address, and an external device for which selection is performed by means of the \overline{DACK} strobe, without regard to the address. Figure 7.16 shows the data bus in single address mode.

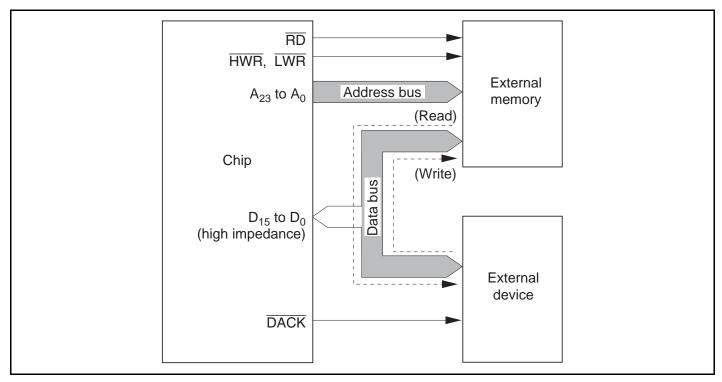


Figure 7.17 Data Bus in Single Address Mode

When using the DMAC for single address mode reading, transfer is performed from external memory to the external device, and the \overline{DACK} pin functions as a write strobe for the external device. When using the DMAC for single address mode writing, transfer is performed from the external device to external memory, and the \overline{DACK} pin functions as a read strobe for the external device. Since there is no directional control for the external device, one or other of the above single directions should be used.

Bus cycles in single address mode are in accordance with the settings of the bus controller for the external memory area. On the external device side, \overline{DACK} is output in synchronization with the address strobe. For details of bus cycles, see section 7.5.11, DMAC Bus Cycles (Single Address Mode).

Do not specify internal space for transfer addresses in single address mode.

7.5.9 Basic DMAC Bus Cycles

An example of the basic DMAC bus cycle timing is shown in figure 7.18. In this example, word-size transfer is performed from 16-bit, 2-state access space to 8-bit, 3-state access space. When the bus is transferred from the CPU to the DMAC, a source address read and destination address write are performed. The bus is not released in response to another bus request, etc., between these read and write operations. As with CPU cycles, DMA cycles conform to the bus controller settings.

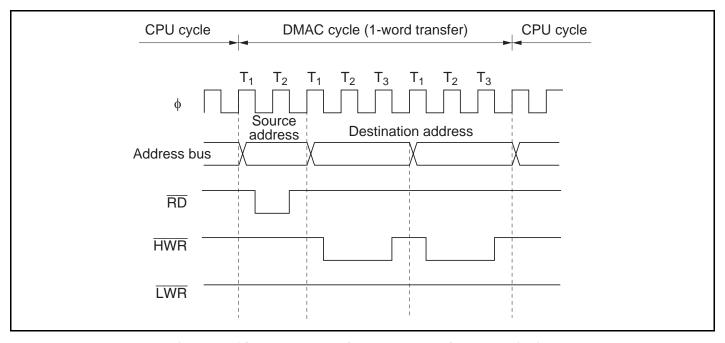


Figure 7.18 Example of DMA Transfer Bus Timing

The address is not output to the external address bus in an access to on-chip memory or an internal I/O register.

7.5.10 DMAC Bus Cycles (Dual Address Mode)

Short Address Mode: Figure 7.19 shows a transfer example in which TEND output is enabled and byte-size short address mode transfer (sequential/idle/repeat mode) is performed from external 8-bit, 2-state access space to internal I/O space.

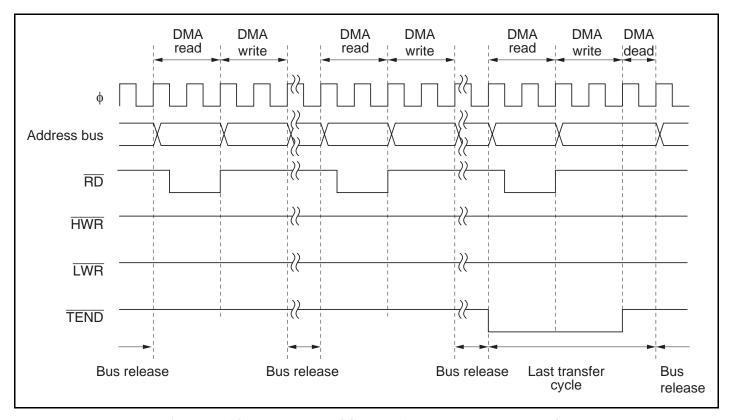


Figure 7.19 Example of Short Address Mode Transfer

A one-byte or one-word transfer is performed for one transfer request, and after the transfer the bus is released. While the bus is released one or more bus cycles are executed by the CPU or DTC.

In the transfer end cycle (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

In repeat mode, when TEND output is enabled, TEND output goes low in the transfer cycle in which the transfer counter reaches 0.

Full Address Mode (Cycle Steal Mode): Figure 7.20 shows a transfer example in which TEND output is enabled and word-size full address mode transfer (cycle steal mode) is performed from external 16-bit, 2-state access space to external 16-bit, 2-state access space.

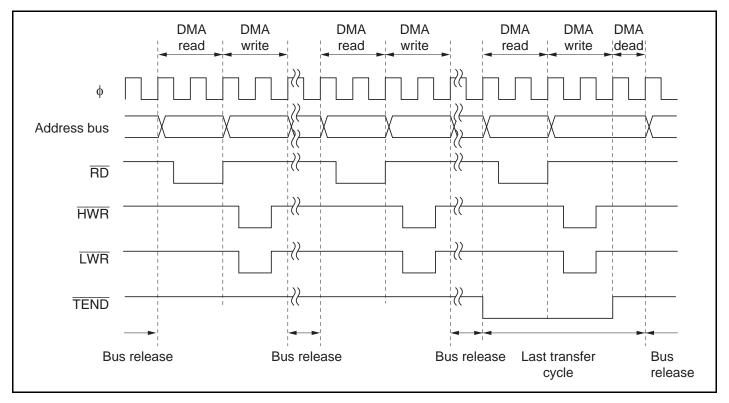


Figure 7.20 Example of Full Address Mode (Cycle Steal) Transfer

A one-byte or one-word transfer is performed, and after the transfer the bus is released. While the bus is released one bus cycle is executed by the CPU or DTC.

In the transfer end cycle (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

Full Address Mode (Burst Mode): Figure 7.21 shows a transfer example in which TEND output is enabled and word-size full address mode transfer (burst mode) is performed from external 16-bit, 2-state access space to external 16-bit, 2-state access space.

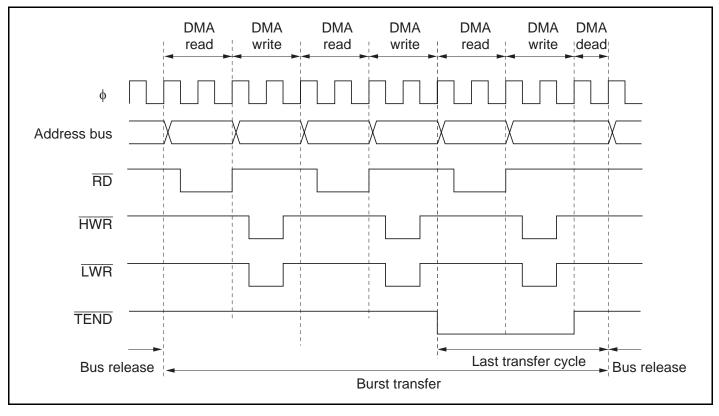


Figure 7.21 Example of Full Address Mode (Burst Mode) Transfer

In burst mode, one-byte or one-word transfers are executed consecutively until transfer ends.

In the transfer end cycle (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

If a request from another higher-priority channel is generated after burst transfer starts, that channel has to wait until the burst transfer ends.

If an NMI is generated while a channel designated for burst transfer is in the transfer enabled state, the DTME bit is cleared and the channel is placed in the transfer disabled state. If burst transfer has already been activated inside the DMAC, the bus is released on completion of a one-byte or one-word transfer within the burst transfer, and burst transfer is suspended. If the last transfer cycle of the burst transfer has already been activated inside the DMAC, execution continues to the end of the transfer even if the DTME bit is cleared.

Full Address Mode (Block Transfer Mode): Figure 7.22 shows a transfer example in which TEND output is enabled and word-size full address mode transfer (block transfer mode) is performed from internal 16-bit, 1-state access space to external 16-bit, 2-state access space.

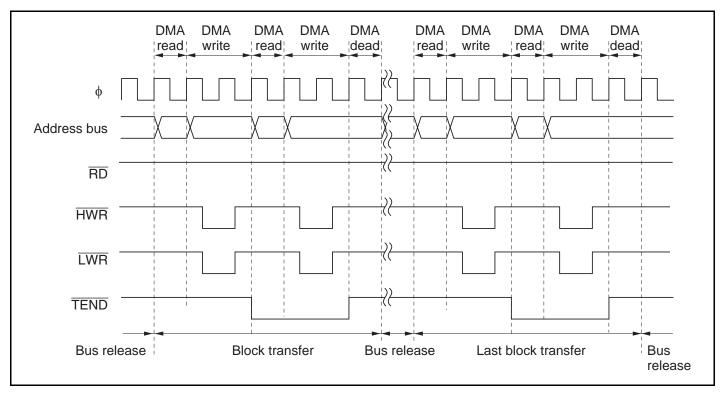


Figure 7.22 Example of Full Address Mode (Block Transfer Mode) Transfer

A one-block transfer is performed for one transfer request, and after the transfer the bus is released. While the bus is released, one or more bus cycles are executed by the CPU or DTC.

In the transfer end cycle of each block (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

RENESAS

One block is transmitted without interruption. NMI generation does not affect block transfer operation.

DREQ Pin Falling Edge Activation Timing: Set the DTA bit for the channel for which the DREQ pin is selected to 1.

Figure 7.23 shows an example of DREQ pin falling edge activated normal mode transfer.

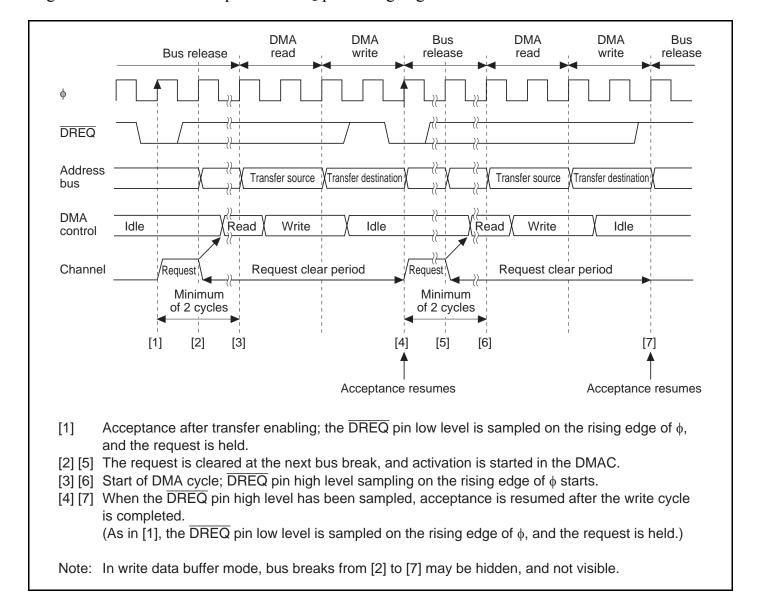


Figure 7.23 Example of DREQ Pin Falling Edge Activated Normal Mode Transfer

 \overline{DREQ} pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the DREQ pin low level is sampled while acceptance by means of the DREQ pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared, and \overline{DREQ} pin high level sampling for edge detection is started. If \overline{DREQ} pin high level sampling has been completed by the time the DMA write cycle ends, acceptance resumes after the end of the write cycle, \overline{DREQ} pin low level sampling is performed again, and this operation is repeated until the transfer ends.

Figure 7.24 shows an example of DREQ pin falling edge activated block transfer mode transfer.

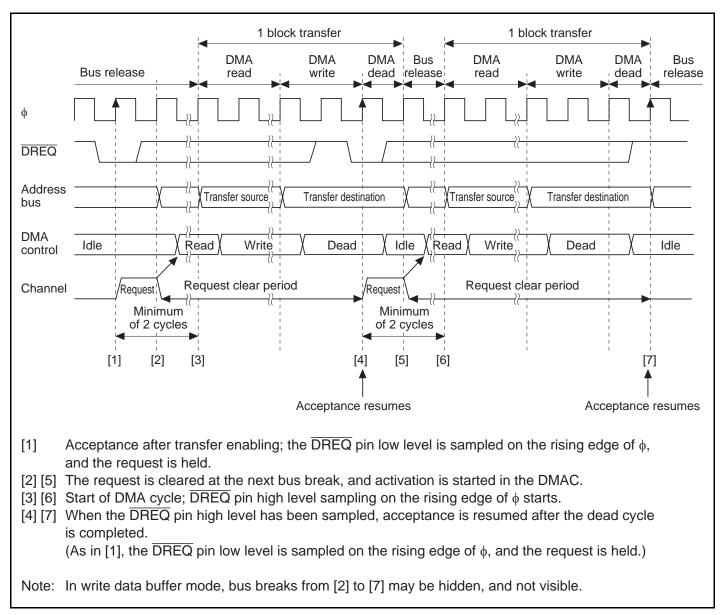


Figure 7.24 Example of DREQ Pin Falling Edge Activated Block Transfer Mode Transfer

 \overline{DREQ} pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the \overline{DREQ} pin low level is sampled while acceptance by means of the \overline{DREQ} pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared, and \overline{DREQ} pin high level sampling for edge detection is started. If \overline{DREQ} pin high level sampling has been completed by the time the DMA dead cycle ends, acceptance resumes after the end of the dead cycle, \overline{DREQ} pin low level sampling is performed again, and this operation is repeated until the transfer ends.

DREQ Level Activation Timing (Normal Mode): Set the DTA bit for the channel for which the DREQ pin is selected to 1.

Figure 7.25 shows an example of DREQ level activated normal mode transfer.

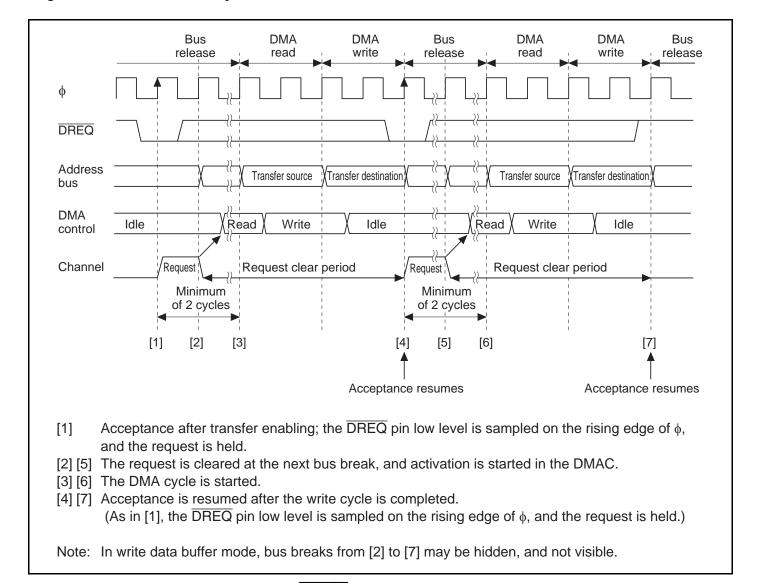


Figure 7.25 Example of \overline{DREQ} Level Activated Normal Mode Transfer

DREQ pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the \overline{DREQ} pin low level is sampled while acceptance by means of the \overline{DREQ} pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared. After the end of the write cycle, acceptance resumes, \overline{DREQ} pin low level sampling is performed again, and this operation is repeated until the transfer ends.

Figure 7.26 shows an example of DREQ level activated block transfer mode transfer.

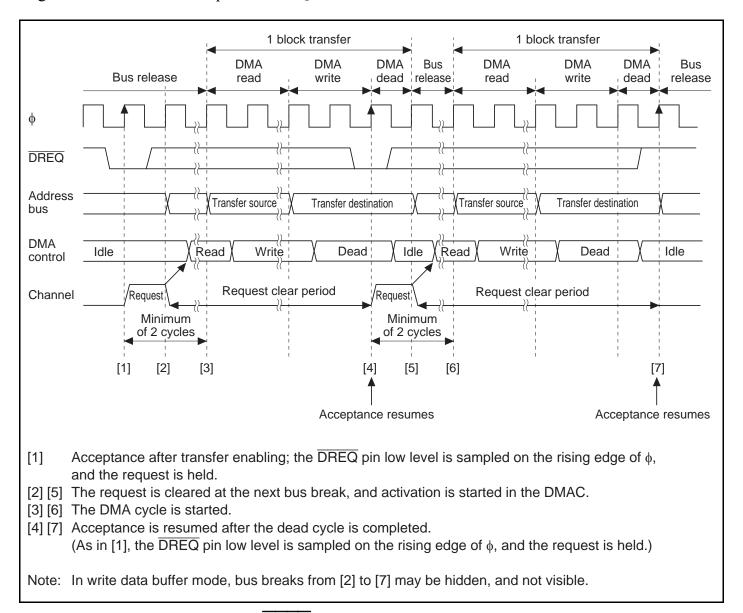


Figure 7.26 Example of DREQ Level Activated Block Transfer Mode Transfer

 \overline{DREQ} pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the \overline{DREQ} pin low level is sampled while acceptance by means of the \overline{DREQ} pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared. After the end of the dead cycle, acceptance resumes, \overline{DREQ} pin low level sampling is performed again, and this operation is repeated until the transfer ends.

7.5.11 DMAC Bus Cycles (Single Address Mode)

Single Address Mode (Read): Figure 7.27 shows a transfer example in which TEND output is enabled and byte-size single address mode transfer (read) is performed from external 8-bit, 2-state access space to an external device.

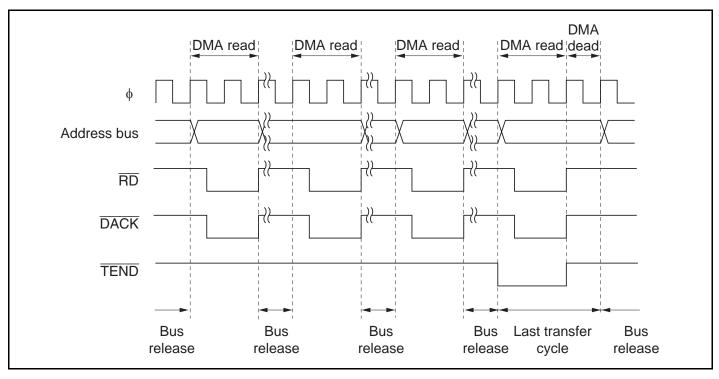


Figure 7.27 Example of Single Address Mode (Byte Read) Transfer

Figure 7.28 shows a transfer example in which TEND output is enabled and word-size single address mode transfer (read) is performed from external 8-bit, 2-state access space to an external device.

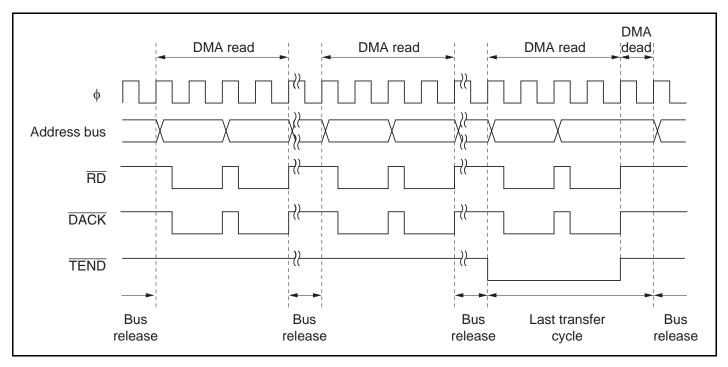


Figure 7.28 Example of Single Address Mode (Word Read) Transfer

A one-byte or one-word transfer is performed for one transfer request, and after the transfer the bus is released. While the bus is released, one or more bus cycles are executed by the CPU or DTC.

In the transfer end cycle (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

Single Address Mode (Write): Figure 7.29 shows a transfer example in which TEND output is enabled and byte-size single address mode transfer (write) is performed from an external device to external 8-bit, 2-state access space.

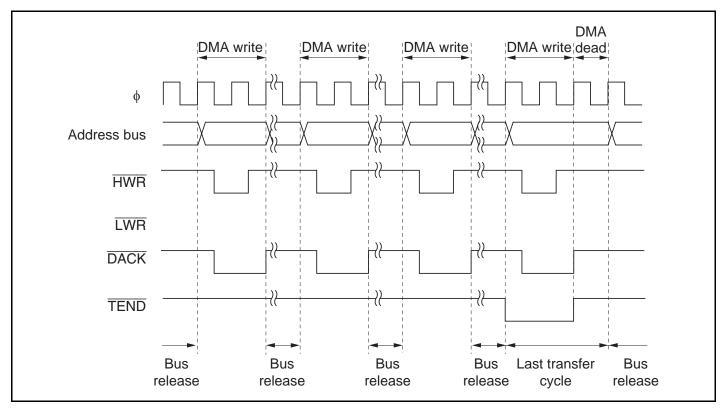


Figure 7.29 Example of Single Address Mode (Byte Write) Transfer

Figure 7.30 shows a transfer example in which TEND output is enabled and word-size single address mode transfer (write) is performed from an external device to external 8-bit, 2-state access space.

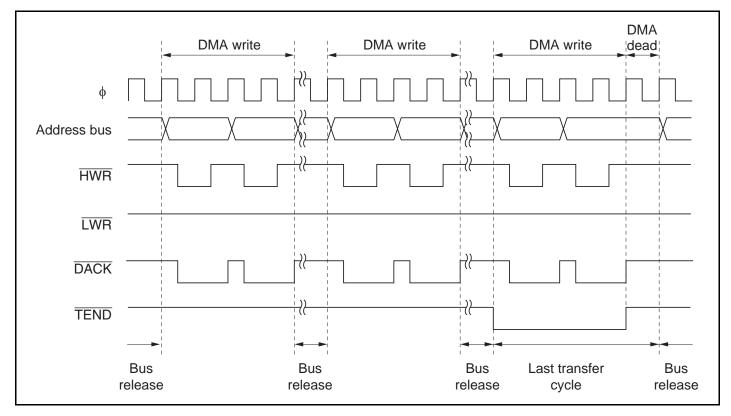


Figure 7.30 Example of Single Address Mode (Word Write) Transfer

A one-byte or one-word transfer is performed for one transfer request, and after the transfer the bus is released. While the bus is released one or more bus cycles are executed by the CPU or DTC.

In the transfer end cycle (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

DREQ Pin Falling Edge Activation Timing: Set the DTA bit for the channel for which the DREQ pin is selected to 1.

Figure 7.31 shows an example of DREQ pin falling edge activated single address mode transfer.

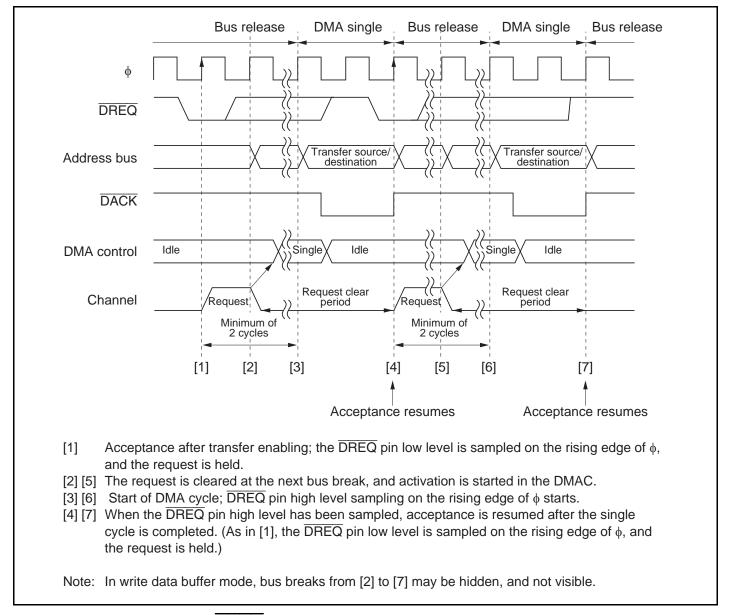


Figure 7.31 Example of DREQ Pin Falling Edge Activated Single Address Mode Transfer

 \overline{DREQ} pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the DREQ pin low level is sampled while acceptance by means of the DREQ pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared, and \overline{DREQ} pin high level sampling for edge detection is started. If \overline{DREQ} pin high level sampling has been completed by the time the DMA single cycle ends, acceptance

resumes after the end of the single cycle, \overline{DREQ} pin low level sampling is performed again, and this operation is repeated until the transfer ends.

DREQ Pin Low Level Activation Timing: Set the DTA bit for the channel for which the DREQ pin is selected to 1.

Figure 7.32 shows an example of DREQ pin low level activated single address mode transfer.

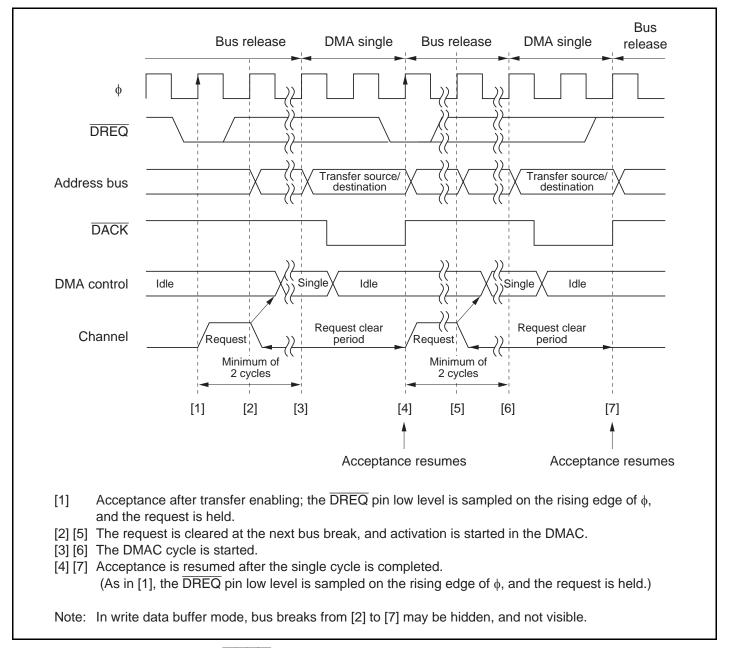


Figure 7.32 Example of DREQ Pin Low Level Activated Single Address Mode Transfer

RENESAS

 \overline{DREQ} pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the \overline{DREQ} pin low level is sampled while acceptance by means of the \overline{DREQ} pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared. After the end of the single cycle, acceptance resumes, \overline{DREQ} pin low level sampling is performed again, and this operation is repeated until the transfer ends.

7.5.12 Write Data Buffer Function

DMAC internal-to-external dual address transfers and single address transfers can be executed at high speed using the write data buffer function, enabling system throughput to be improved.

When the WDBE bit of BCRL in the bus controller is set to 1, enabling the write data buffer function, dual address transfer external write cycles or single address transfers and internal accesses (on-chip memory or internal I/O registers) are executed in parallel. Internal accesses are independent of the bus master, and DMAC dead cycles are regarded as internal accesses.

A low level can always be output from the TEND pin if the bus cycle in which a low level is to be output is an external bus cycle. However, a low level is not output from the TEND pin if the bus cycle in which a low level is to be output from the TEND pin is an internal bus cycle, and an external write cycle is executed in parallel with this cycle.

Figure 7.33 shows an example of burst mode transfer from on-chip RAM to external memory using the write data buffer function.

Figure 7.33 Example of Dual Address Transfer Using Write Data Buffer Function

Figure 7.34 shows an example of single address transfer using the write data buffer function. In this example, the CPU program area is in on-chip memory.

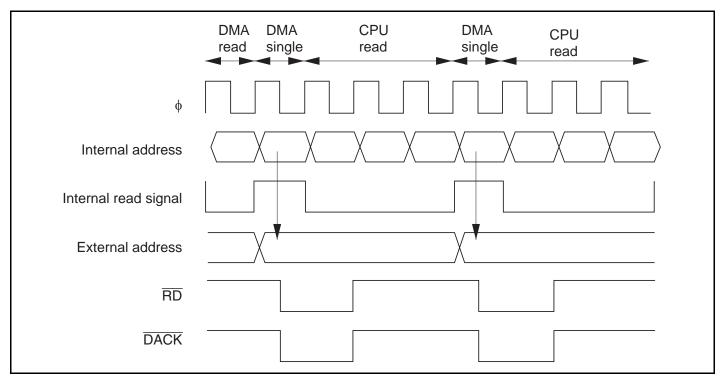


Figure 7.34 Example of Single Address Transfer Using Write Data Buffer Function

When the write data buffer function is activated, the DMAC recognizes that the bus cycle concerned has ended, and starts the next operation. Therefore, \overline{DREQ} pin sampling is started one state after the start of the DMA write cycle or single address transfer.

7.5.13 DMAC Multi-Channel Operation

The DMAC channel priority order is: channel 0 > channel 1, and channel A > channel B. Table 7.13 summarizes the priority order for DMAC channels.

Table 7.13 DMAC Channel Priority Order

Short Address Mode	Full Address Mode	Priority	
Channel 0A	Channel 0	High	,
Channel 0B		†	
Channel 1A	Channel 1		
Channel 1B		Low	

If transfer requests are issued simultaneously for more than one channel, or if a transfer request for another channel is issued during a transfer, when the bus is released the DMAC selects the highest-priority channel from among those issuing a request according to the priority order shown in table 7.13.

During burst transfer, or when one block is being transferred in block transfer, the channel will not be changed until the end of the transfer.

Figure 7.35 shows a transfer example in which transfer requests are issued simultaneously for channels 0A, 0B, and 1.

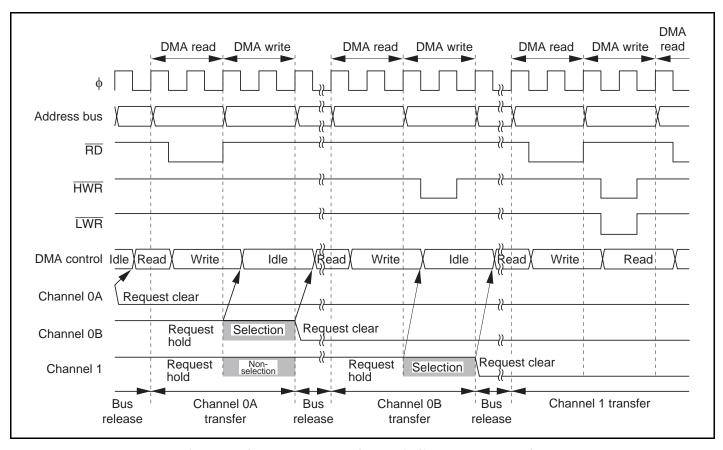


Figure 7.35 Example of Multi-Channel Transfer

7.5.14 Relation Between the DMAC and External Bus Requests, Refresh Cycles, and the DTC

There can be no break between a DMA cycle read and a DMA cycle write. This means that a refresh cycle, external bus release cycle, or DTC cycle is not generated between the external read and external write in a DMA cycle.

In the case of successive read and write cycles, such as in burst transfer or block transfer, a refresh or external bus released state may be inserted after a write cycle. Since the DTC has a lower priority than the DMAC, the DTC does not operate until the DMAC releases the bus.

When DMA cycle reads or writes are accesses to on-chip memory or internal I/O registers, these DMA cycles can be executed at the same time as refresh cycles or external bus release. However, simultaneous operation may not be possible when a write buffer is used.

7.5.15 NMI Interrupts and DMAC

When an NMI interrupt is requested, burst mode transfer in full address mode is interrupted. An NMI interrupt does not affect the operation of the DMAC in other modes.

In full address mode, transfer is enabled for a channel when both the DTE bit and the DTME bit are set to 1. With burst mode setting, the DTME bit is cleared when an NMI interrupt is requested.

If the DTME bit is cleared during burst mode transfer, the DMAC discontinues transfer on completion of the 1-byte or 1-word transfer in progress, then releases the bus, which passes to the CPU.

The channel on which transfer was interrupted can be restarted by setting the DTME bit to 1 again. Figure 7.36 shows the procedure for continuing transfer when it has been interrupted by an NMI interrupt on a channel designated for burst mode transfer.

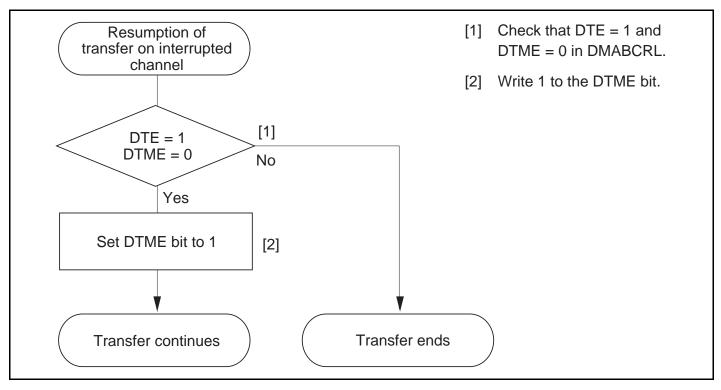


Figure 7.36 Example of Procedure for Continuing Transfer on Channel Interrupted by NMI Interrupt

7.5.16 Forced Termination of DMAC Operation

If the DTE bit for the channel currently operating is cleared to 0, the DMAC stops on completion of the 1-byte or 1-word transfer in progress. DMAC operation resumes when the DTE bit is set to 1 again.

In full address mode, the same applies to the DTME bit.

Figure 7.37 shows the procedure for forcibly terminating DMAC operation by software.

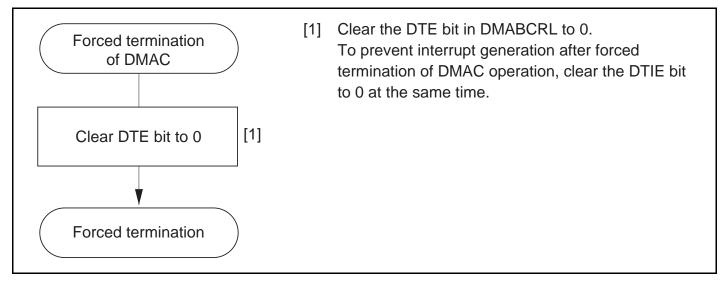


Figure 7.37 Example of Procedure for Forcibly Terminating DMAC Operation

7.5.17 Clearing Full Address Mode

Figure 7.38 shows the procedure for releasing and initializing a channel designated for full address mode. After full address mode has been cleared, the channel can be set to another transfer mode using the appropriate setting procedure.

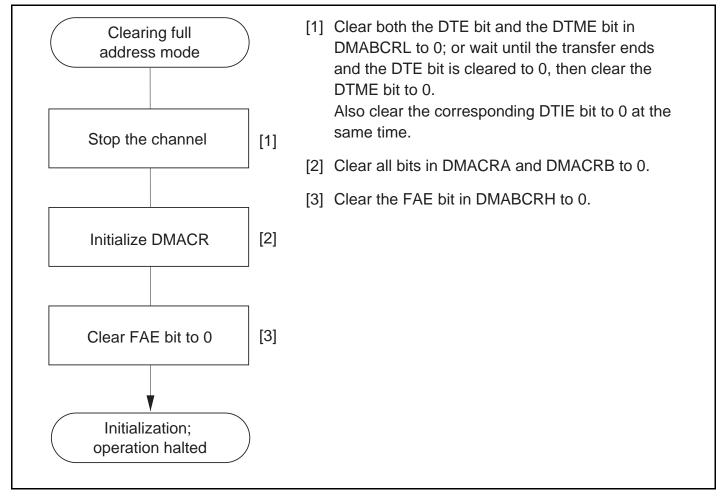


Figure 7.38 Example of Procedure for Clearing Full Address Mode

7.6 Interrupts

The sources of interrupts generated by the DMAC are transfer end and transfer break. Table 7.14 shows the interrupt sources and their priority order.

Table 7.14 Interrupt Source Priority Order

Interrupt	Inte	Interrupt Priority Order	
Name .	Short Address Mode Full Address Mode		
DEND0A	Interrupt due to end of transfer on channel 0A	·	
DEND0B	Interrupt due to end of transfer on channel 0B	Interrupt due to break in transfer on channel 0	
DEND1A	Interrupt due to end of transfer on channel 1A	Interrupt due to end of transfer on channel 1	
DEND1B	Interrupt due to end of transfer on channel 1B	Interrupt due to break in transfer on channel 1	Low

Enabling or disabling of each interrupt source is set by means of the DTIE bit for the corresponding channel in DMABCR, and interrupts from each source are sent to the interrupt controller independently.

The relative priority of transfer end interrupts on each channel is decided by the interrupt controller, as shown in table 7.14.

Figure 7.39 shows a block diagram of a transfer end/transfer break interrupt. An interrupt is always generated when the DTIE bit is set to 1 while the DTE bit is cleared to 0.

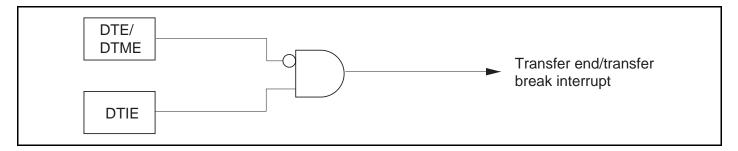
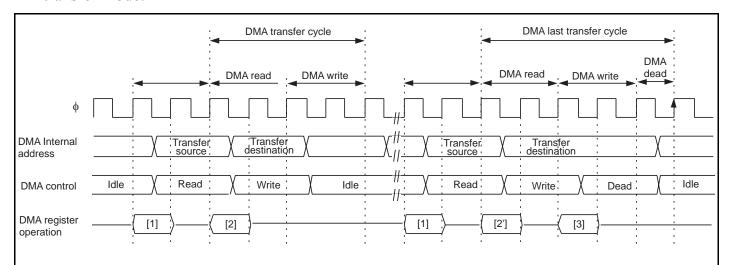


Figure 7.39 Block Diagram of Transfer End/Transfer Break Interrupt

In full address mode, a transfer break interrupt is generated when the DTME bit is cleared to 0 while the DTIEB bit is set to 1.

In both short address mode and full address mode, DMABCR should be set so as to prevent the occurrence of a combination that constitutes a condition for interrupt generation during setting.


7.7 Usage Notes

DMAC Register Access during Operation: Except for forced termination, the operating (including transfer waiting state) channel setting should not be changed. The operating channel setting should only be changed when transfer is disabled.

Also, MAC registers should not be written to in a DMA transfer.

DMAC register reads during operation (including the transfer waiting state) are described below.

(a) DMAC control starts one cycle before the bus cycle, with output of the internal address. Consequently, MAR is updated in the bus cycle before DMAC transfer. Figure 7.40 shows an example of the update timing for DMAC registers in dual address transfer mode.

- [1] Transfer source address register MAR operation (incremented/decremented/fixed) Transfer counter ETCR operation (decremented) Block size counter ETCR operation (decremented in block transfer mode)
- [2] Transfer destination address register MAR operation (incremented/decremented/fixed)
- [2'] Transfer destination address register MAR operation (incremented/decremented/fixed) Block transfer counter ETCR operation (decremented, in last transfer cycle of a block in block transfer mode)
- [3] Transfer address register MAR restore operation (in block or repeat transfer mode) Transfer counter ETCR restore (in repeat transfer mode) Block size counter ETCR restore (in block transfer mode)

Notes: 1. In single address transfer mode, the update timing is the same as [1].

2. The MAR operation is post-incrementing/decrementing of the DMA internal address value.

Figure 7.40 DMAC Register Update Timing

(b) If a DMAC transfer cycle occurs immediately after a DMAC register read cycle, the DMAC register is read as shown in figure 7.41.

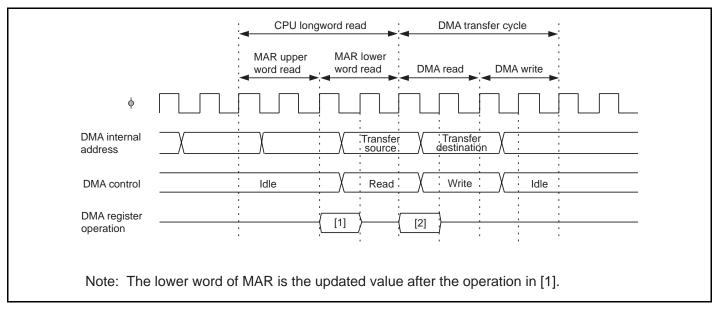


Figure 7.41 Contention between DMAC Register Update and CPU Read

Module Stop: When the MSTP15 bit in MSTPCR is set to 1, the DMAC clock stops, and the module stop state is entered. However, 1 cannot be written to the MSTP15 bit if any of the DMAC channels is enabled. This setting should therefore be made when DMAC operation is stopped.

When the DMAC clock stops, DMAC register accesses can no longer be made. Since the following DMAC register settings are valid even in the module stop state, they should be invalidated, if necessary, before a module stop.

- Transfer end/break interrupt (DTE = 0 and DTIE = 1)
- $\overline{\text{TEND}}$ pin enable (TEE = 1)
- \overline{DACK} pin enable (FAE = 0 and SAE = 1)

Medium-Speed Mode: When the DTA bit is 0, internal interrupt signals specified as DMAC transfer sources are edge-detected.

In medium-speed mode, the DMAC operates on a medium-speed clock, while on-chip supporting modules operate on a high-speed clock. Consequently, if the period in which the relevant interrupt source is cleared by the CPU, DTC, or another DMAC channel, and the next interrupt is generated, is less than one state with respect to the DMAC clock (bus master clock), edge detection may not be possible and the interrupt may be ignored.


Also, in medium-speed mode, \overline{DREQ} pin sampling is performed on the rising edge of the medium-speed clock.

Write Data Buffer Function: When the WDBE bit of BCRL in the bus controller is set to 1. enabling the write data buffer function, dual address transfer external write cycles or single address transfers and internal accesses (on-chip memory or internal I/O registers) are executed in parallel.

- Write Data Buffer Function and DMAC Register Setting If the setting of a register that controls external accesses is changed during execution of an external access by means of the write data buffer function, the external access may not be performed normally. Registers that control external accesses should only be manipulated when external reads, etc., are used with DMAC operation disabled, and the operation is not performed in parallel with external access.
- Write Data Buffer Function and DMAC Operation Timing The DMAC can start its next operation during external access using the write data buffer function. Consequently, the DREQ pin sampling timing, TEND output timing, etc., are different from the case in which the write data buffer function is disabled. Also, internal bus cycles maybe hidden, and not visible.
- Write Data Buffer Function and TEND Output A low level is not output at the TEND pin if the bus cycle in which a low level is to be output at the TEND pin is an internal bus cycle, and an external write cycle is executed in parallel with this cycle. Note, for example, that a low level may not be output at the TEND pin if the write data buffer function is used when data transfer is performed between an internal I/O register and on-chip memory.

If at least one of the DMAC transfer addresses is an external address, a low level is output at the TEND pin.

Figure 7.42 shows an example in which a low level is not output at the TEND pin.

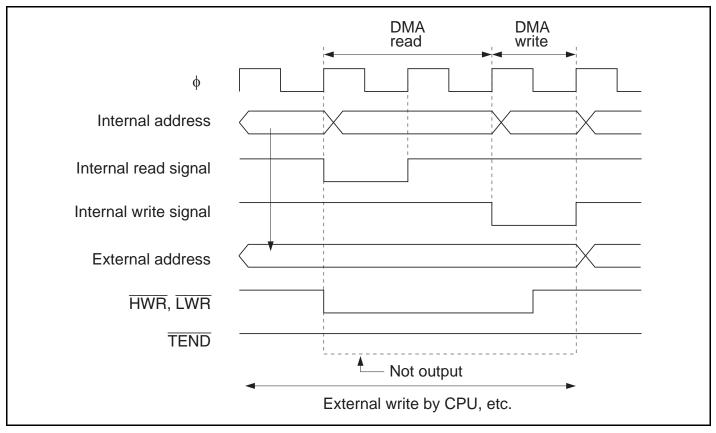


Figure 7.42 Example in Which Low Level is Not Output at TEND Pin

Activation by Falling Edge on \overline{DREQ} \overline{Pin: }\overline{DREQ} \overline{pin falling edge detection is performed in synchronization with DMAC internal operations. The operation is as follows:

- [1] Activation request wait state: Waits for detection of a low level on the \overline{DREQ} pin, and switches to [2].
- [2] Transfer wait state: Waits for DMAC data transfer to become possible, and switches to [3].
- [3] Activation request disabled state: Waits for detection of a high level on the \overline{DREQ} pin, and switches to [1].

After DMAC transfer is enabled, a transition is made to [1]. Thus, initial activation after transfer is enabled is performed on detection of a low level.

Activation Source Acceptance: At the start of activation source acceptance, a low level is detected in both \overline{DREQ} pin falling edge sensing and low level sensing. Similarly, in the case of an internal interrupt, the interrupt request is detected. Therefore, a request is accepted from an internal interrupt or \overline{DREQ} pin low level that occurs before execution of the DMABCRL write to enable transfer.

When the DMAC is activated, take any necessary steps to prevent an internal interrupt or \overline{DREQ} pin low level remaining from the end of the previous transfer, etc.

Internal Interrupt after End of Transfer: When the DTE bit is cleared to 0 at the end of a transfer or by a forcible termination, the selected internal interrupt request will be sent to the CPU or DTC even if DTA is set to 1.

Also, if internal DMAC activation has already been initiated when operation is forcibly terminated, the transfer is executed but flag clearing is not performed for the selected internal interrupt even if DTA is set to 1.

An internal interrupt request following the end of transfer or a forcible termination should be handled by the CPU as necessary.

Channel Re-Setting: To reactivate a number of channels when multiple channels are enabled, use exclusive handling of transfer end interrupts, and perform DMABCR control bit operations exclusively.

Note, in particular, that in cases where multiple interrupts are generated between reading and writing of DMABCR, and a DMABCR operation is performed during new interrupt handling, the DMABCR write data in the original interrupt handling routine will be incorrect, and the write may invalidate the results of the operations by the multiple interrupts. Ensure that overlapping DMABCR operations are not performed by multiple interrupts, and that there is no separation between read and write operations by the use of a bit-manipulation instruction.

Also, when the DTE and DTME bits are cleared by the DMAC or are written with 0, they must first be read while cleared to 0 before the CPU can write a 1 to them.

Section 8 Data Transfer Controller

8.1 Overview

The chip includes a data transfer controller (DTC). The DTC can be activated for data transfer by an interrupt or software.

8.1.1 Features

The features of the DTC are:

- Transfer possible over any number of channels
 - Transfer information is stored in memory
 - One activation source can trigger a number of data transfers (chain transfer)
 - Chain transfer execution can be set after data transfer (when counter = 0)
- Selection of transfer modes
 - Normal, repeat, and block transfer modes available
 - Incrementing, decrementing, and fixing of source and destination addresses can be selected
- Direct specification of 16-Mbyte address space possible
 - 24-bit transfer source and destination addresses can be specified
- Transfer can be set in byte or word units
- A CPU interrupt can be requested for the interrupt that activated the DTC
 - An interrupt request can be issued to the CPU after one data transfer ends
 - An interrupt request can be issued to the CPU after all the specified data transfers have ended
- Activation by software is possible
- Module stop mode can be set
 - The initial setting enables DTC registers to be accessed. DTC operation is halted by setting module stop mode

8.1.2 Block Diagram

Figure 8.1 shows a block diagram of the DTC.

The DTC's register information is stored in the on-chip RAM*. A 32-bit bus connects the DTC to the on-chip RAM (1 kbyte), enabling 32-bit, 1-state reading and writing of DTC register information.

Note: * When the DTC is used, the RAME bit in SYSCR must be set to 1.

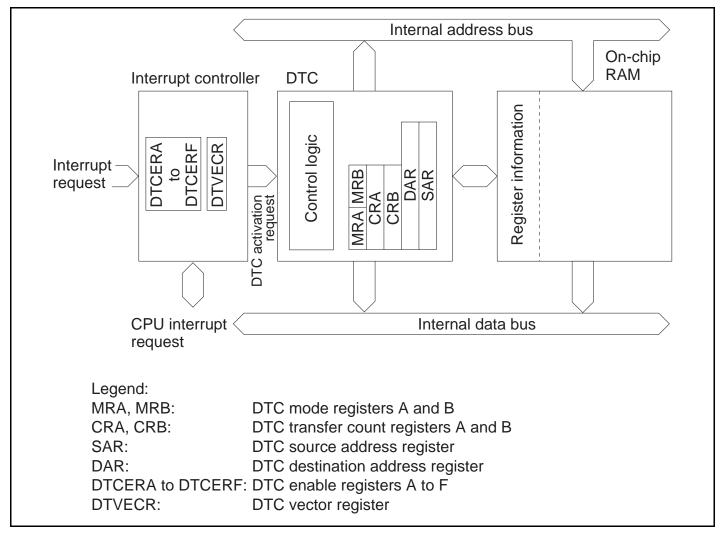


Figure 8.1 Block Diagram of DTC

RENESAS

8.1.3 Register Configuration

Table 8.1 summarizes the DTC registers.

Table 8.1 DTC Registers

Name	Abbreviation	R/W	Initial Value	Address*1
DTC mode register A	MRA	*2	Undefined	*3
DTC mode register B	MRB	*2	Undefined	*3
DTC source address register	SAR	*2	Undefined	*3
DTC destination address register	DAR	*2	Undefined	*3
DTC transfer count register A	CRA	*2	Undefined	*3
DTC transfer count register B	CRB	*2	Undefined	*3
DTC enable registers	DTCER	R/W	H'00	H'FF30 to H'FF35
DTC vector register	DTVECR	R/W	H'00	H'FF37
Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.

- 2. Registers within the DTC cannot be read or written to directly.
- 3. Register information is located in on-chip RAM addresses H'F800 to H'FBFF. It cannot be located in external space. When the DTC is used, do not clear the RAME bit in SYSCR to 0.

8.2 Register Descriptions

8.2.1 DTC Mode Register A (MRA)

Bit	:	7	6	5	4	3	2	1	0
		SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz
Initial val	ue :	Unde- fined							
R/W	:	_	_	_	_	_	_	_	_

MRA is an 8-bit register that controls the DTC operating mode.

Bits 7 and 6—Source Address Mode 1 and 0 (SM1, SM0): These bits specify whether SAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 7 SM1	Bit 6 SM0	Description
0	_	SAR is fixed
1	0	SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	SAR is decremented after a transfer (by –1 when Sz = 0; by –2 when Sz = 1)

Bits 5 and 4—Destination Address Mode 1 and 0 (DM1, DM0): These bits specify whether DAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 5 DM1	Bit 4 DM0	Description
0	_	DAR is fixed
1	0	DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	DAR is decremented after a transfer (by –1 when Sz = 0; by –2 when Sz = 1)

Bits 3 and 2—DTC Mode (MD1, MD0): These bits specify the DTC transfer mode.

Bit 3 MD1	Bit 2 MD0	Description
0	0	Normal mode
	1	Repeat mode
1	0	Block transfer mode
	1	-

Bit 1—DTC Transfer Mode Select (DTS): Specifies whether the source side or the destination side is set to be a repeat area or block area, in repeat mode or block transfer mode.

Bit 1 DTS	Description
0	Destination side is repeat area or block area
1	Source side is repeat area or block area

Bit 0—DTC Data Transfer Size (Sz): Specifies the size of data to be transferred.

Bit 0 Sz	Description
0	Byte-size transfer
1	Word-size transfer

8.2.2 DTC Mode Register B (MRB)

Bit	:	7	6	5	4	3	2	1	0
		CHNE	DISEL	CHNS		_		_	
Initial value :		Unde- fined							
R/W	:	_	_	_	_	_	_	_	_

MRB is an 8-bit register that controls the DTC operating mode.

Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. With chain transfer, a number of data transfers can be performed consecutively in response to a single transfer request.

In data transfer with CHNE set to 1, determination of the end of the specified number of transfers, clearing of the interrupt source flag, and clearing of DTCER are not performed.

When CHNE is set to 1, the chain transfer condition can be selected with the CHNS bit.

Bit 7 CHNE	Description
0	End of DTC data transfer (activation waiting state)
1	DTC chain transfer (new register information is read, then data is transferred)

Bit 6—DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

Bit 6 DISEL	Description
0	After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1	After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bit 5—DTC Chain Transfer Select (CHNS): Specifies the chain transfer condition when CHNE is 1.

Bit 7 CHNE	Bit 5 CHNS	Description
0	_	No chain transfer (DTC data transfer end, activation waiting state entered)
1	0	DTC chain transfer
1	1	Chain transfer only when transfer counter = 0

Bits 4 to 0—Reserved: These bits have no effect on DTC operation in the chip and should always be written with 0.

8.2.3 DTC Source Address Register (SAR)

Bit 23 22 21 20 19 4 3 2 1 0 Initial value: Unde- Unde- Unde- Unde-Unde- Unde- Unde- Undefined fined fined fined fined fined fined fined R/W

SAR is a 24-bit register that designates the source address of data to be transferred by the DTC. For word-size transfer, specify an even source address.

8.2.4 DTC Destination Address Register (DAR)

Bit	:	23	22	21	20	19	 4	3	2	1	0
Initial value: Unde- Unde- Unde- Unde- fined fined fined fined fined					 		Unde- fined		Unde-		
R/W	:	—	—	—	—	—	 —	—	—	—	—

DAR is a 24-bit register that designates the destination address of data to be transferred by the DTC. For word-size transfer, specify an even destination address.

8.2.5 DTC Transfer Count Register A (CRA)

Bit 15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 Initial value: Unde- Und fined R/W — CRAH — — CRAL –

CRA is a 16-bit register that designates the number of times data is to be transferred by the DTC.

In normal mode, the entire CRA register functions as a 16-bit transfer counter (1 to 65,536). It is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

In repeat mode or block transfer mode, the CRA register is divided into two parts: the upper 8 bits (CRAH) and the lower 8 bits (CRAL). CRAH holds the number of transfers while CRAL functions as an 8-bit transfer counter (1 to 256). CRAL is decremented by 1 every time data is transferred, and the contents of CRAH are sent when the count reaches H'00. This operation is repeated.

8.2.6 DTC Transfer Count Register B (CRB)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	e :													Unde- fined			
R/W	:	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_

CRB is a 16-bit register that designates the number of times data is to be transferred by the DTC in block transfer mode. It functions as a 16-bit transfer counter (1 to 65,536) that is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

RENESAS

8.2.7 DTC Enable Registers (DTCER)

Bit	:	7	6	5	4	3	2	1	0
		DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

The DTC enable registers comprise six 8-bit readable/writable registers, DTCERA to DTCERF, with bits corresponding to the interrupt sources that can activate the DTC. These bits enable or disable DTC service for the corresponding interrupt sources.

The DTC enable registers are initialized to H'00 by a reset and in hardware standby mode.

Bit n—DTC Activation Enable (DTCEn)

Bit n DTCEn	Description
0	DTC activation by this interrupt is disabled (Initial value
	[Clearing conditions]
	 When the DISEL bit is 1 and the data transfer has ended
	When the specified number of transfers have ended
1	DTC activation by this interrupt is enabled
	[Holding condition]
	When the DISEL bit is 0 and the specified number of transfers have not ended
	(n = 7 to 0)

A DTCE bit can be set for each interrupt source that can activate the DTC. The correspondence between interrupt sources and DTCE bits is shown in table 8.5, together with the vector numbers generated by the interrupt controller.

For DTCE bit setting, read/write operations must be performed using bit-manipulation instructions such as BSET and BCLR. For the initial setting only, however, when multiple activation sources are set at one time, it is possible to disable interrupts and write after executing a dummy read on the relevant register.

8.2.8 DTC Vector Register (DTVECR)

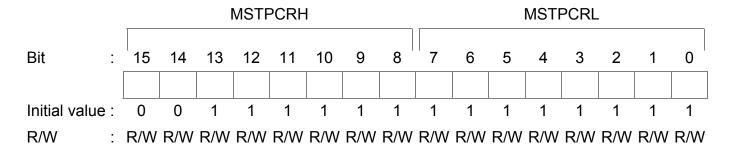
Bit	:	7	6	5	4	3	2	1	0
		SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	R/(W)	R/(W)*						

Note: * Bits DTVEC6 to DTVEC0 can be written to when SWDTE = 0.

DTVECR is an 8-bit readable/writable register that enables or disables DTC activation by software, and sets a vector number for the software activation interrupt.

DTVECR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—DTC Software Activation Enable (SWDTE): Enables or disables DTC activation by software.


Bit 7 SWDTE	Description	
0	DTC software activation is disabled	(Initial value)
	[Clearing conditions]	
	 When the DISEL bit is 0 and the specified number of transfers to 	have not ended
	 When 0 is written after a software activation data-transfer-comp issued to the CPU 	plete interrupt is
1	DTC software activation is enabled	
	[Holding conditions]	
	 When the DISEL bit is 1 and data transfer has ended 	
	 When the specified number of transfers have ended 	
	During data transfer due to software activation	

Bits 6 to 0—DTC Software Activation Vectors 6 to 0 (DTVEC6 to DTVEC0): These bits specify a vector number for DTC software activation.

The vector address is expressed as H'0400 + ((vector number) << 1). <<1 indicates a one-bit left-shift. For example, when DTVEC6 to DTVEC0 = H'10, the vector address is H'0420.

RENESAS

8.2.9 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP14 bit in MSTPCR is set to 1, DTC operation stops at the end of the bus cycle and a transition is made to module stop mode. However, 1 cannot be written in the MSTP14 bit while the DTC is operating. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 14—Module Stop (MSTP14): Specifies the DTC module stop mode.

Bit 14 MSTP14 Description

0	DTC module stop mode cleared	(Initial value)
1	DTC module stop mode set	

8.3 Operation

8.3.1 Overview

When activated, the DTC reads register information that is already stored in memory and transfers data on the basis of that register information. After the data transfer, it writes updated register information back to memory. Pre-storage of register information in memory makes it possible to transfer data over any required number of channels. Setting the CHNE bit to 1 makes it possible to perform a number of transfers with a single activation. A setting can also be made to have chain transfer performed only when the transfer counter value is 0. This enables DTC re-setting to be performed by the DTC itself.

Figure 8.2 shows a flowchart of DTC operation, and table 8.2 summarizes the chain transfer conditions. (Combinations for performing the second and third transfers are omitted.)

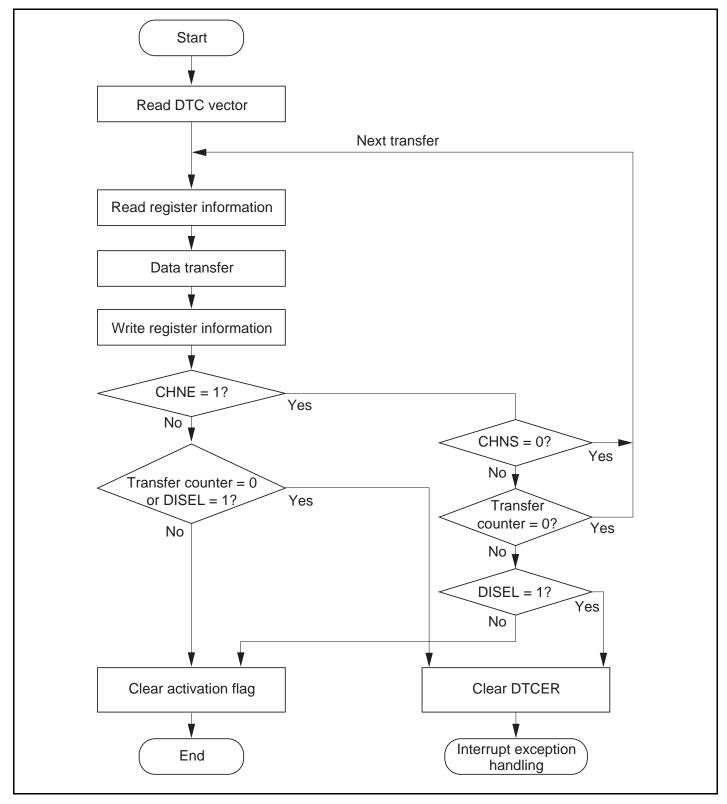


Figure 8.2 Flowchart of DTC Operation

Chain Transfer Conditions Table 8.2

	1st T	ransfer		2nd Transfer				
CHNE	CHNS	DISEL	CR	CHNE	CHNS	DISEL	CR	DTC Transfer
0	_	0	Not 0	_	_	_	_	Ends at 1st transfer
0	_	0	0		_	_	_	Ends at 1st transfer
0	_	1	_	_	_	_	_	Interrupt request to CPU
1	0	_	_	0	_	0	Not 0	Ends at 2nd transfer
				0	_	0	0	Ends at 2nd transfer
				0	_	1	_	Interrupt request to CPU
1	1	0	Not 0					Ends at 1st transfer
1	1		0	0		0	Not 0	Ends at 2nd transfer
				0	_	0	0	Ends at 2nd transfer
				0	_	1	_	Interrupt request to CPU
1	1	1	Not 0	_	_	_	_	Ends at 1st transfer
								Interrupt request to CPU

The DTC transfer mode can be normal mode, repeat mode, or block transfer mode.

The 24-bit SAR designates the DTC transfer source address and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed.

Table 8.3 outlines the functions of the DTC.

Table 8.3 DTC Functions

			Addres	s Registers
Tr	ransfer Mode	Activation Source	Transfer Source	Transfer Destination
•	Normal mode	• IRQ	24 bits	24 bits
	 One transfer request transfers one byte or one word 	TPU TGI8-bit timer CMI		
	 Memory addresses are incremented or decremented by 1 or 2 	SCI TXI or RXIA/D converter		
	 Up to 65,536 transfers possible 	ADI		
•	Repeat mode	DMAC DEND		
	 One transfer request transfers one byte or one word 	Software		
	 Memory addresses are incremented or decremented by 1 or 2 			
	 After the specified number of transfers (1 to 256), the initial state resumes and operation continues 			
•	Block transfer mode			
	 One transfer request transfers a block of the specified size 			
	 Block size is from 1 to 256 bytes or words 			
	 Up to 65,536 transfers possible 			
	 A block area can be designated at either the source or destination 			

8.3.2 Activation Sources

The DTC operates when activated by an interrupt or by a write to DTVECR by software. An interrupt request can be directed to the CPU or DTC, as designated by the corresponding DTCER bit. An interrupt becomes a DTC activation source when the corresponding bit is set to 1, and a CPU interrupt source when the bit is cleared to 0.

At the end of a data transfer (or the last consecutive transfer in the case of chain transfer), the activation source or corresponding DTCER bit is cleared. Table 8.4 shows activation source and DTCER clearance. The activation source flag, in the case of RXIO, for example, is the RDRF flag of SCIO.

Table 8.4 Activation Source and DTCER Clearance

Activation Source	When the DISEL Bit Is 0 and the Specified Number of Transfers Have Not Ended	When the DISEL Bit Is 1, or when the Specified Number of Transfers Have Ended
Software activation	The SWDTE bit is cleared to 0	 The SWDTE bit remains set to 1
		 An interrupt is issued to the CPU
Interrupt activation	 The corresponding DTCER bit remains set to 1 	 The corresponding DTCER bit is cleared to 0
	 The activation source flag is cleared to 0 	 The activation source flag remains set to 1
		 A request is issued to the CPU for the activation source interrupt

Figure 8.3 shows a block diagram of activation source control. For details see section 5, Interrupt Controller.

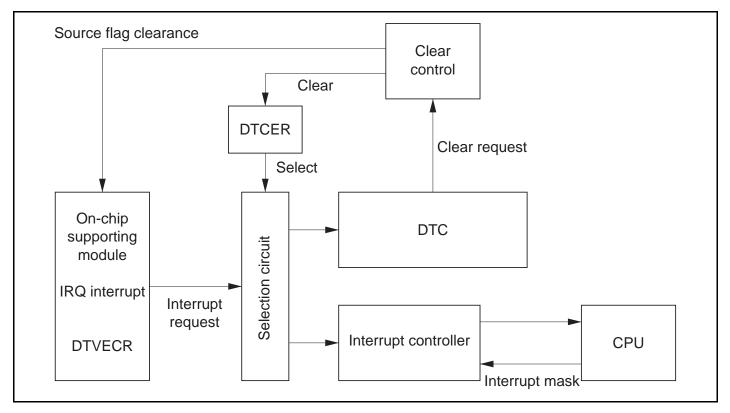


Figure 8.3 Block Diagram of DTC Activation Source Control

When an interrupt has been designated a DTC activation source, existing CPU mask level and interrupt controller priorities have no effect. If there is more than one activation source at the same time, the DTC operates in accordance with the default priorities.

8.3.3 DTC Vector Table

Figure 8.4 shows the correspondence between DTC vector addresses and register information.

Table 8.5 shows the correspondence between activation, vector addresses, and DTCER bits. When the DTC is activated by software, the vector address is obtained from: H'0400 + (DTVECR[6:0] << 1) (where << 1 indicates a 1-bit left shift). For example, if DTVECR is H'10, the vector address is H'0420.

The DTC reads the start address of the register information from the vector address set for each activation source, and then reads the register information from that start address. The register information can be placed at predetermined addresses in the on-chip RAM. The start address of the register information should be an integral multiple of four.

The configuration of the vector address is a 2-byte unit. These two bytes specify the lower bits of the address in the on-chip RAM.

RENESAS

Table 8.5 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
Write to DTVECR	Software	DTVECR	H'0400+ (DTVECR [6:0]<<1)	_	High
IRQ0	External pin	16	H'0420	DTCEA7	_
IRQ1	<u> </u>	17	H'0422	DTCEA6	
IRQ2		18	H'0424	DTCEA5	
IRQ3		19	H'0426	DTCEA4	_
IRQ4	<u> </u>	20	H'0428	DTCEA3	
IRQ5	<u> </u>	21	H'042A	DTCEA2	
IRQ6		22	H'042C	DTCEA1	
IRQ7	<u> </u>	23	H'042E	DTCEA0	
ADI (A/D conversion end)	A/D	28	H'0438	DTCEB6	
TGI0A (GR0A compare match/input capture)	TPU channel 0	32	H'0440	DTCEB5	
TGI0B (GR0B compare match/ input capture)		33	H'0442	DTCEB4	
TGI0C (GR0C compare match/ input capture)		34	H'0444	DTCEB3	_
TGI0D (GR0D compare match/ input capture)		35	H'0446	DTCEB2	
TGI1A (GR1A compare match/ input capture)	TPU channel 1	40	H'0450	DTCEB1	
TGI1B (GR1B compare match/ input capture)		41	H'0452	DTCEB0	
TGI2A (GR2A compare match/ input capture)	TPU channel 2	44	H'0458	DTCEC7	
TGI2B (GR2B compare match/input capture)		45	H'045A	DTCEC6	Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
TGI3A (GR3A compare match/ input capture)	TPU channel 3	48	H'0460	DTCEC5	High
TGI3B (GR3B compare match/ input capture)		49	H'0462	DTCEC4	
TGI3C (GR3C compare match/input capture)		50	H'0464	DTCEC3	
TGI3D (GR3D compare match/ input capture)		51	H'0466	DTCEC2	
TGI4A (GR4A compare match/ input capture)	TPU channel 4	56	H'0470	DTCEC1	
TGI4B (GR4B compare match/ input capture)		57	H'0472	DTCEC0	
TGI5A (GR5A compare match/ input capture)	TPU channel 5	60	H'0478	DTCED5	
TGI5B (GR5B compare match/ input capture)	<u> </u>	61	H'047A	DTCED4	_
CMIA0	8-bit timer	64	H'0480	DTCED3	
CMIB0	channel 0	65	H'0482	DTCED2	
CMIA1	8-bit timer	68	H'0488	DTCED1	
CMIB1	channel 1	69	H'048A	DTCED0	
DMTEND0A (DMAC transfer complete 0)	DMAC	72	H'0490	DTCEE7	
DMTEND0B (DMAC transfer complete 1)		73	H'0492	DTCEE6	
DMTEND1A (DMAC transfer complete 2)		74	H'0494	DTCEE5	
DMTEND1B (DMAC transfer complete 3)		75	H'0496	DTCEE4	
RXI0 (receive-data-full 0)	SCI	81	H'04A2	DTCEE3	_
TXI0 (transmit-data-empty 0)	channel 0	82	H'04A4	DTCEE2	_
RXI1 (receive-data-full 1)	SCI	85	H'04AA	DTCEE1	
TXI1 (transmit-data-empty 1)	channel 1	86	H'04AC	DTCEE0	
RXI2 (receive-data-full 2)	SCI	89	H'04B2	DTCEF7	
TXI2 (transmit-data-empty 2)	channel 2	90	H'04B4	DTCEF6	Low

Note: * DTCE bits with no corresponding interrupt are reserved, and should be written with 0.

Rev.4.00 Sep. 07, 2007 Page 312 of 1210 REJ09B0245-0400

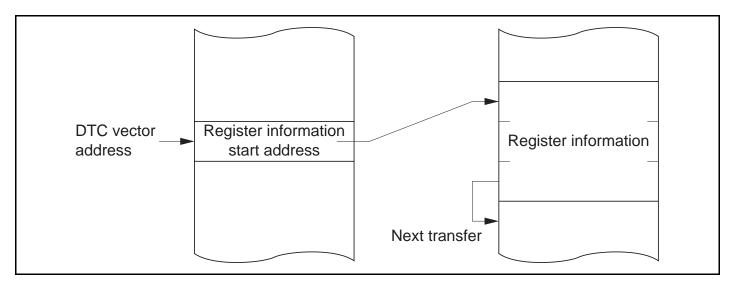


Figure 8.4 Correspondence between DTC Vector Address and Register Information

8.3.4 Location of Register Information in Address Space

Figure 8.5 shows how the register information should be located in the address space.

Locate the MRA, SAR, MRB, DAR, CRA, and CRB registers, in that order, from the start address of the register information (contents of the vector address). In the case of chain transfer, register information should be located in consecutive areas.

Locate the register information in the on-chip RAM (addresses: H'FFF800 to H'FFFBFF).

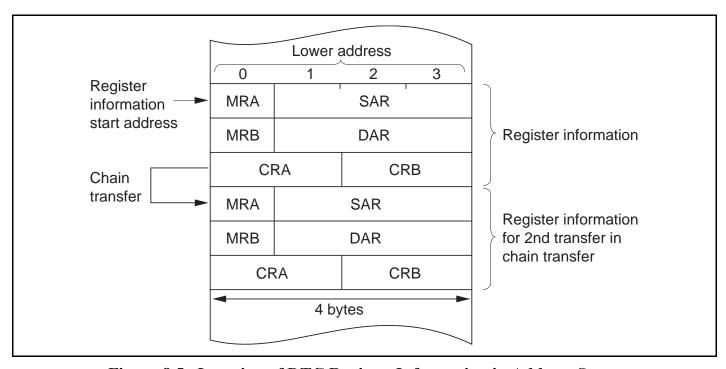


Figure 8.5 Location of DTC Register Information in Address Space

8.3.5 Normal Mode

In normal mode, one operation transfers one byte or one word of data.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt can be requested.

Table 8.6 lists the register information in normal mode and figure 8.6 shows the memory map in normal mode.

Table 8.6 Register Information in Normal Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register A	CRA	Designates transfer count
DTC transfer count register B	CRB	Not used

Figure 8.6 Memory Map in Normal Mode

Rev.4.00 Sep. 07, 2007 Page 314 of 1210

8.3.6 Repeat Mode

In repeat mode, one operation transfers one byte or one word of data.

From 1 to 256 transfers can be specified. Once the specified number of transfers have ended, the initial state of the transfer counter and the address register specified as the repeat area is restored, and transfer is repeated. In repeat mode the transfer counter value does not reach H'00, and therefore CPU interrupts cannot be requested when DISEL = 0.

Table 8.7 lists the register information in repeat mode and figure 8.7 shows the memory map in repeat mode.

Table 8.7 Register Information in Repeat Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds number of transfers
DTC transfer count register AL	CRAL	Transfer counter
DTC transfer count register B	CRB	Not used

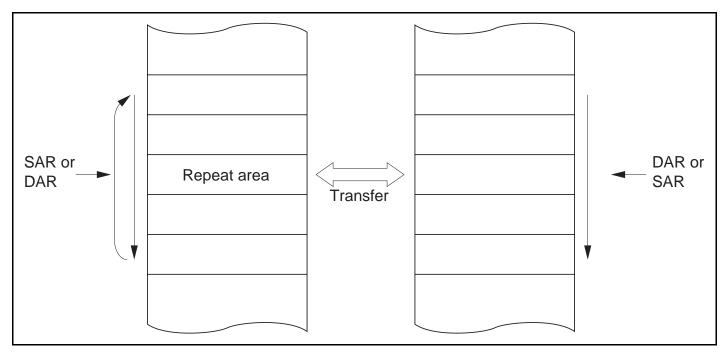


Figure 8.7 Memory Map in Repeat Mode

8.3.7 Block Transfer Mode

In block transfer mode, one operation transfers one block of data. Either the transfer source or the transfer destination is designated as a block area.

The block size is 1 to 256. When the transfer of one block ends, the initial state of the block size counter and the address register specified as the block area is restored. The other address register is then incremented, decremented, or left fixed.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt is requested.

Table 8.8 lists the register information in block transfer mode and figure 8.8 shows the memory map in block transfer mode.

Table 8.8 Register Information in Block Transfer Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates transfer source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds block size
DTC transfer count register AL	CRAL	Block size counter
DTC transfer count register B	CRB	Transfer counter

Figure 8.8 Memory Map in Block Transfer Mode

8.3.8 Chain Transfer

Setting the CHNE bit to 1 enables a number of data transfers to be performed consecutively in response to a single transfer request. It is also possible, by setting both the CHNE bit and CHNS bit to 1, to specify execution of chain transfer only when the transfer counter value is 0. SAR, DAR, CRA, CRB, MRA, and MRB, which define data transfers, can be set independently.

Figure 8.9 shows the memory map for chain transfer.

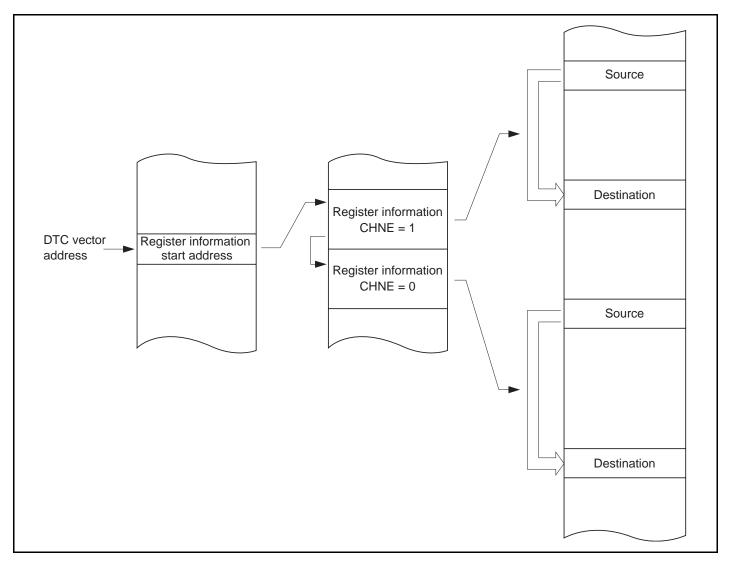


Figure 8.9 Chain Transfer Memory Map

In the case of transfer with CHNE set to 1, an interrupt request to the CPU is not generated at the end of the specified number of transfers or by setting of the DISEL bit to 1, and the interrupt source flag for the activation source is not affected.

8.3.9 Operation Timing

Figures 8.10 to 8.12 show examples of DTC operation timing.

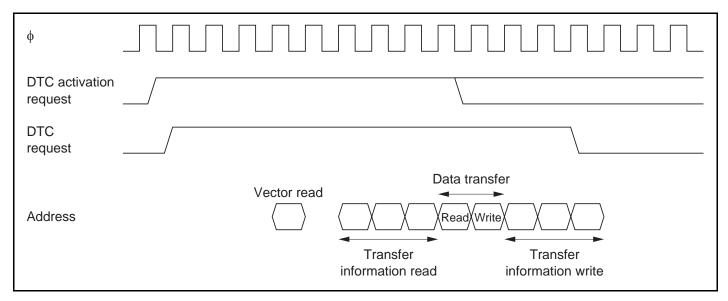


Figure 8.10 DTC Operation Timing (Example in Normal Mode or Repeat Mode)

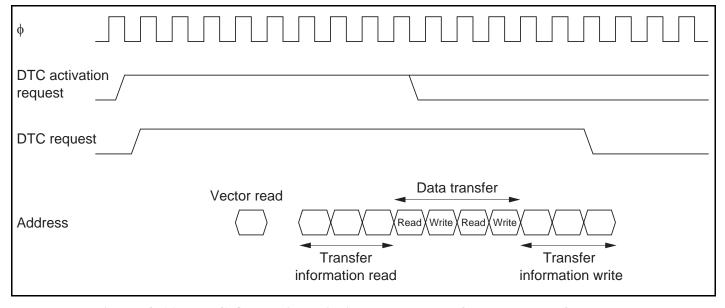


Figure 8.11 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2)

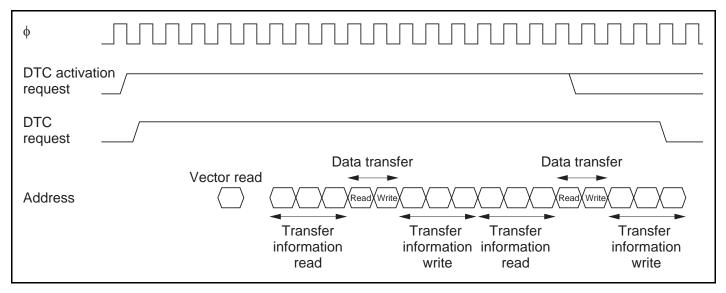


Figure 8.12 DTC Operation Timing (Example of Chain Transfer)

8.3.10 Number of DTC Execution States

Table 8.9 lists execution phases for a single DTC data transfer, and table 8.10 shows the number of states required for each execution phase.

Table 8.9 DTC Execution Phases

Mode	Vector Read I	Register Information Read/Write J	Data Read K	Data Write L	Internal Operations M
Normal	1	6	1	1	3
Repeat	1	6	1	1	3
Block transfer	1	6	N	N	3

RENESAS

N: Block size (initial setting of CRAH and CRAL)

Table 8.10 Number of States Required for Each Execution Phase

Access To: Bus width Access states			On- Chip RAM	On- Chip ROM	Internal I/O Registers		External Devices			
			32	16	8	16	8	8	16	16
			1	1	2	2	2	3	2	3
Execution	Vector read	Sı	_	1	_	_	4	6+2m	2	3+m
phase	Register information read/write	SJ	1	_	_	_	_	_	_	_
	Byte data read	S_{K}	1	1	2	2	2	3+m	2	3+m
	Word data read	Sĸ	1	1	4	2	4	6+2m	2	3+m
	Byte data write	S_L	1	1	2	2	2	3+m	2	3+m
	Word data write	S _L	1	1	4	2	4	6+2m	2	3+m
	Internal operation	S _M	1	1	1	1	1	1	1	1

The number of execution states is calculated from the formula below. Note that Σ means the sum of all transfers activated by one activation event (the number in which the CHNE bit is set to 1, plus 1).

Number of execution states =
$$I \cdot S_I + \Sigma (J \cdot S_J + K \cdot S_K + L \cdot S_L) + M \cdot S_M$$

For example, when the DTC vector address table is located in on-chip ROM, normal mode is set, and data is transferred from the on-chip ROM to an internal I/O register, the time required for the DTC operation is 13 states. The time from activation to the end of the data write is 10 states.

8.3.11 Procedures for Using DTC

Activation by Interrupt: The procedure for using the DTC with interrupt activation is as follows:

- [1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
- [2] Set the start address of the register information in the DTC vector address.
- [3] Set the corresponding bit in DTCER to 1.
- [4] Set the enable bits for the interrupt sources to be used as the activation sources to 1. The DTC is activated when an interrupt used as an activation source is generated.
- [5] After the end of one data transfer, or after the specified number of data transfers have ended, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If the DTC is to continue transferring data, set the DTCE bit to 1.

Activation by Software: The procedure for using the DTC with software activation is as follows:

- [1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
- [2] Set the start address of the register information in the DTC vector address.
- [3] Check that the SWDTE bit is 0.
- [4] Write 1 to the SWDTE bit and the vector number to DTVECR.
- [5] Check the vector number written to DTVECR.
- [6] After the end of one data transfer, if the DISEL bit is 0 and a CPU interrupt is not requested, the SWDTE bit is cleared to 0. If the DTC is to continue transferring data, set the SWDTE bit to 1. When the DISEL bit is 1, or after the specified number of data transfers have ended, the SWDTE bit is held at 1 and a CPU interrupt is requested.

8.3.12 Examples of Use of the DTC

Normal Mode: An example is shown in which the DTC is used to receive 128 bytes of data via the SCI.

- [1] Set MRA to fixed source address (SM1 = SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), normal mode (MD1 = MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one data transfer by one interrupt (CHNE = 0, DISEL = 0). Set the SCI RDR address in SAR, the start address of the RAM area where the data will be received in DAR, and 128 (H'0080) in CRA. CRB can be set to any value.
- [2] Set the start address of the register information at the DTC vector address.
- [3] Set the corresponding bit in DTCER to 1.
- [4] Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the receive-data-full (RXI) interrupt. Since the generation of a receive error during the SCI receive operation will disable subsequent reception, the CPU should be enabled to accept receive error interrupts.
- [5] Each time reception of one byte of data ends on the SCI, the RDRF flag in SSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The receive data is transferred from RDR to RAM by the DTC. DAR is incremented and CRA is decremented. The RDRF flag is automatically cleared to 0.
- [6] When CRA becomes 0 after the 128 data transfers have ended, the RDRF flag is held at 1, the DTCE bit is cleared to 0, and an RXI interrupt request is sent to the CPU. The interrupt handling routine should perform wrap-up processing.

Chain Transfer: An example of DTC chain transfer is shown in which pulse output is performed using the PPG. Chain transfer can be used to perform pulse output data transfer and PPG output trigger cycle updating. Repeat mode transfer to the PPG's NDR is performed in the first half of the chain transfer, and normal mode transfer to the TPU's TGR in the second half. This is because clearing of the activation source and interrupt generation at the end of the specified number of transfers are restricted to the second half of the chain transfer (transfer when CHNE = 0).

- [1] Perform settings for transfer to the PPG's NDR. Set MRA to source address incrementing (SM1 = 1, SM0 = 0), fixed destination address (DM1 = DM0 = 0), repeat mode (MD1 = 0, MD0 = 1), and word size (Sz = 1). Set the source side as a repeat area (DTS = 1). Set MRB to chain mode (CHNE = 1, DISEL = 0). Set the data table start address in SAR, the NDRH address in DAR, and the data table size in CRAH and CRAL. CRB can be set to any value.
- [2] Perform settings for transfer to the TPU's TGR. Set MRA to source address incrementing (SM1 = 1, SM0 = 0), fixed destination address (DM1 = DM0 = 0), normal mode (MD1 = MD0 = 0), and word size (Sz = 1). Set the data table start address in SAR, the TGRA address in DAR, and the data table size in CRA. CRB can be set to any value.
- [3] Locate the TPU transfer register information consecutively after the NDR transfer register information.
- [4] Set the start address of the NDR transfer register information to the DTC vector address.
- [5] Set the bit corresponding to TGIA in DTCER to 1.
- [6] Set TGRA as an output compare register (output disabled) with TIOR, and enable the TGIA interrupt with TIER.
- [7] Set the initial output value in PODR, and the next output value in NDR. Set bits in DDR and NDER for which output is to be performed to 1. Using PCR, select the TPU compare match to be used as the output trigger.
- [8] Set the CST bit in TSTR to 1, and start the TCNT count operation.
- [9] Each time a TGRA compare match occurs, the next output value is transferred to NDR and the set value of the next output trigger period is transferred to TGRA. The activation source TGFA flag is cleared.
- [10] When the specified number of transfers are completed (the TPU transfer CRA value is 0), the TGFA flag is held at 1, the DTCE bit is cleared to 0, and a TGIA interrupt request is sent to the CPU. Wrap-up processing should be performed in the interrupt handling routine.

RENESAS

Chain Transfer when Counter = 0: By executing a second data transfer, and performing resetting of the first data transfer, only when the counter value is 0, it is possible to perform 256 or more repeat transfers.

An example is shown in which a 128-kbyte input buffer is configured. The input buffer is assumed to have been set to start at lower address H'0000. Figure 8.13 shows the memory map.

- [1] For the first transfer, set the normal mode for input data. Set fixed transfer source address (G/A, etc.), CRA = H'0000 (64k times), and CHNE = 1, CHNS = 1, and DISEL = 0.
- [2] Prepare the upper 8-bit addresses of the start addresses for each of the 64k transfer start addresses for the first data transfer in a separate area (in ROM, etc.). For example, if the input buffer comprises H'200000 to H'21FFFF, prepare H'21 and H'20.
- [3] For the second transfer, set repeat mode (with the source side as the repeat area) for re-setting the transfer destination address for the first data transfer. Use the upper 8 bits of DAR in the first register information area as the transfer destination. Set CHNE = DISEL = 0. If the above input buffer is specified as H'200000 to H'21FFFF, set the transfer counter to 2.
- [4] Execute the first data transfer 64k times by means of interrupts. When the transfer counter for the first data transfer reaches 0, the second data transfer is started. Set the upper 8 bits of the transfer source address for the first data transfer to H'21. The lower 16 bits of the transfer destination address of the first data transfer and the transfer counter are H'0000.
- [5] Next, execute the first data transfer the 64k times specified for the first data transfer by means of interrupts. When the transfer counter for the first data transfer reaches 0, the second data transfer is started. Set the upper 8 bits of the transfer source address for the first data transfer to H'20. The lower 16 bits of the transfer destination address of the first data transfer and the transfer counter are H'0000.
- [6] Steps [4] and [5] are repeated endlessly. As repeat mode is specified for the second data transfer, an interrupt request is not sent to the CPU.

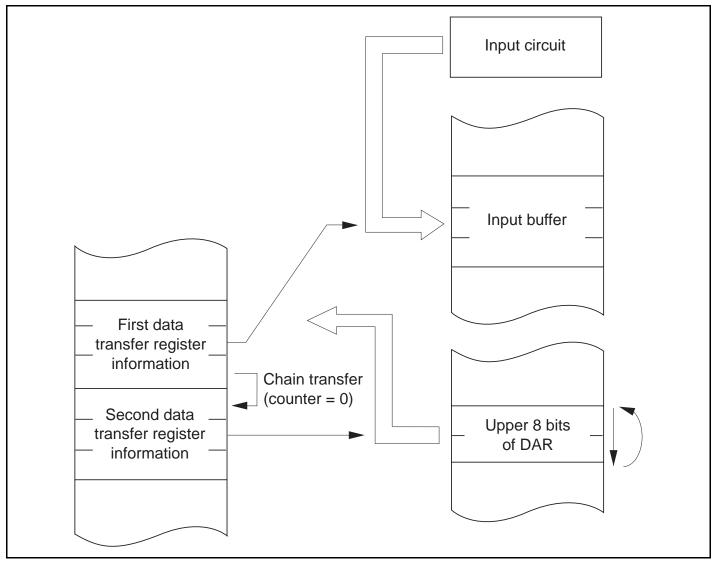


Figure 8.13 Chain Transfer when Counter = 0

Software Activation: An example is shown in which the DTC is used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is H'1000 and the destination address is H'2000. The vector number is H'60, so the vector address is H'04C0.

- [1] Set MRA to incrementing source address (SM1 = 1, SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt (CHNE = 0). Set the transfer source address (H'1000) in SAR, the destination address (H'2000) in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB.
- [2] Set the start address of the register information at the DTC vector address (H'04C0).
- [3] Check that the SWDTE bit in DTVECR is 0. Check that there is currently no transfer activated by software.

RENESAS

- [4] Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0.
- [5] Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps [3] and [4] and led to a different software activation. To activate this transfer, go back to step [3].
- [6] If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred.
- [7] After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform other wrap-up processing.

8.4 Interrupts

An interrupt request is issued to the CPU when the DTC finishes the specified number of data transfers, or a data transfer for which the DISEL bit was set to 1. In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control.

In the case of activation by software, a software activated data transfer end interrupt (SWDTEND) is generated.

When the DISEL bit is 1 and one data transfer has ended, or the specified number of transfers have ended, after data transfer ends, the SWDTE bit is held at 1 and an SWDTEND interrupt is generated. The interrupt handling routine should clear the SWDTE bit to 0.

When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1.

8.5 Usage Notes

Module Stop: When the MSTP14 bit in MSTPCR is set to 1, the DTC clock stops, and the DTC enters the module stop state. However, 1 cannot be written to the MSTP14 bit while the DTC is operating.

On-Chip RAM: The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. When the DTC is used, the RAME bit in SYSCR must not be cleared to 0.

DMAC Transfer End Interrupt: When DTC transfer is activated by a DMAC transfer end interrupt, regardless of the transfer counter and DISEL bit, the DMAC's DTE bit is not subject to DTC control, and the write data has priority. Consequently, an interrupt request may not be sent to the CPU when the DTC transfer counter reaches 0.

DTCE Bit Setting: For DTCE bit setting, read/write operations must be performed using bit-manipulation instructions such as BSET and BCLR. For the initial setting only, however, when multiple activation sources are set at one time, it is possible to disable interrupts and write after executing a dummy read on the relevant register.

Chain Transfer: When chain transfer is used, clearing of the activation source or DTCER is performed when the last of the chain of data transfers is executed. SCI and A/D converter interrupt/activation sources, on the other hand, are cleared when the DTC reads or writes to the prescribed register.

Therefore, when the DTC is activated by an interrupt or activation source, if a read/write of the relevant register is not included in the last chained data transfer, the interrupt or activation source will be retained.

Section 9 I/O Ports

9.1 Overview

The chip has 15 I/O ports (ports 1 to 3, P5₀ to P5₃, 6 to 9, and A to G), and two input-only ports (port 4 and P5₄ to P5₇).

Table 9.1 summarizes the port functions. The pins of each port also have other functions.

Each port includes a data direction register (DDR) that controls input/output (not provided for the input-only ports), a data register (DR) that stores output data, and a port register (PORT) used to read the pin states.

Ports A to E have a built-in MOS pull-up function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off state of MOS input pull-up.

Port 3 and port A include an open drain control register (ODR) that controls the on/off state of the output buffer PMOS.

Ports 1 and A to F can drive a single TTL load and 50-pF capacitive load, and ports 2, 3, 5 to 9, and G can drive a single TTL load and 30-pF capacitive load.

Ports 1, 2, 7, and 9, and pins 5_0 to 5_3 (only when used as IRQ inputs), 6_4 to 6_7 , and A_4 to A_7 , are Schmitt-triggered inputs.

Table 9.1 Port Functions

Port	Description	Pins	Mode 4*1	Mode 5*1	Mode 6	Mode 7		
Port 1	8-bit I/O port Schmitt-triggered input	P1 ₇ /PO ₁₅ /TIOCB ₂ /TCLKD P1 ₆ /PO ₁₄ /TIOCA ₂ P1 ₅ /PO ₁₃ /TIOCB ₁ /TCLKC P14/PO12/TIOCA ₁ P1 ₃ /PO ₁₁ /TIOCD ₀ /TCLKB P1 ₂ /PO ₁₀ /TIOCC ₀ /TCLKA P1 ₁ /PO ₉ /TIOCB ₀ P1 ₀ /PO ₈ /TIOCA ₀						
Port 2	8-bit I/O port Schmitt-triggered input	P2 ₇ /PO ₇ /TIOCB ₅ P2 ₆ /PO ₆ /TIOCA ₅ P2 ₅ /PO ₅ /TIOCB ₄ P2 ₄ /PO ₄ /TIOCA ₄ P2 ₃ /PO ₃ /TIOCD ₃ P2 ₂ /PO ₂ /TIOCC ₃ P2 ₁ /PO ₁ /TIOCB ₃ P2 ₀ /PO ₀ /TIOCA ₃	8-bit I/O port also functioning as TPU I/O pins (TIOCA ₃ , TIOCB ₃ , TIOCC ₃ , TIOCD ₃ , TIOCA ₄ , TIOCB ₄ , TIOCA ₅ , TIOCB ₅) and PPG output pins (PO ₇ to PO ₀)					
Port 3	6-bit I/O port Open-drain output capability	P3 ₅ /SCK ₁ P3 ₄ /SCK ₀ P3 ₃ /RxD ₁ P3 ₂ /RxD ₀ P3 ₁ /TxD ₁ P3 ₀ /TxD ₀	6-bit I/O port also functioning as SCI (channel 0 and 1) I/O pins (TxD ₀ , RxD ₀ , SCK ₀ , TxD ₁ , RxD ₁ , SCK ₁)					
Port 4	8-bit input port	P4 ₇ /AN ₇ /DA ₁ P4 ₆ /AN ₆ /DA ₀ P4 ₅ /AN ₅ P4 ₄ /AN ₄ P4 ₃ /AN ₃ P4 ₂ /AN ₂ P4 ₁ /AN ₁ P4 ₀ /AN ₀	8-bit input port also functioning as A/D converter analog inputs (AN_7 to AN_0) and D/A converter analog outputs (D and DA_0)					


Port	Description	Pins	Mode 4*1	Mode 5*1	Mode 6	Mode 7	
Port 5	4-bit I/O port4-bit input portSchmitt-	P5 ₇ /AN ₁₅ /DA ₃ P5 ₆ /AN ₁₄ /DA ₂ P5 ₅ /AN ₁₃ P5 ₄ /AN ₁₂	4-bit input port converter analo	g inputs (AN ₁₅ t	to AN ₁₂) and		
	triggered input (IRQ input only)	P5 ₃ /ADTRG/IRQ ₇ /WAIT/ BREQO	I/O port also functioning as A/D converter input pin (\overline{ADTRG}) , and as interrupt input pin $(\overline{IRQ_7})$ when IRQPAS = 1, \overline{WAIT} input pin when WAITE =1, BREQOE =0, WAITPS = 1, \overline{DDR} =0, and \overline{BREQO} output pin when WAITE =0, BREQOE = 1, BREQOPS = 1 as interrupt input pin $(\overline{IRQ_7})$ where \overline{IRQPAS} = 1				
		P5 ₂ /SCK ₂ /IRQ ₆ P5 ₁ /RxD ₂ /IRQ ₅ P5 ₀ /TxD ₂ /IRQ ₄	RxD_2/\overline{IRQ}_5 RxD_2 , SCK_2), and as interrupt input pins (\overline{IRQ}_4)				
Port 6	 8-bit I/O port Schmitt-triggered input (P6₄ to P6₇) 	$\begin{array}{c} P6_{7}/\overline{CS}_{7} \\ P6_{6}/\overline{CS}_{6} \\ P6_{5}/\overline{IRQ}_{1} \\ P6_{4}/\overline{IRQ}_{0} \\ P6_{3} \\ P6_{2} \\ P6_{1}/\overline{CS}_{5} \\ P6_{0}/\overline{CS}_{4} \end{array}$	8-bit I/O port alsoutput pins (CS pins (IRQ and	\overline{G}_4 to \overline{CS}_7), and i		8-bit I/O port also functioning as interrupt input pins (IRQ ₀ and IRQ ₁)	
Port 7	6-bit I/O portSchmitt-triggered input	P7 ₅ /TMO ₁ P7 ₄ /TMO ₀ P7 ₃ /TMCI ₁ P7 ₂ /TMCI ₀ P7 ₁ /TMRI ₁ P7 ₀ /TMRI ₀	6-bit I/O port al: 1) I/O pins (TM	so functioning a RI ₀ , TMCI ₀ , TM	•		
Port 8	• 7-bit I/O port	P8 ₆ /WAIT P8 ₅ /DACK ₁ P8 ₄ /DACK ₀ P8 ₃ /TEND ₁ P8 ₂ /TEND ₀ P8 ₁ /DREQ ₁ P8 ₀ /DREQ ₀	·	so functioning a l _o , DACK _o , DRE en WAITPS = 0	\overline{Q}_1 , \overline{TEND}_1 , \overline{DA}	•	

Port	Description	Pins	Mode 4*1	Mode 5*1	Mode 6	Mode 7
Port 9	6-bit I/O portSchmitt-triggered input	$\begin{array}{c} P9_{7}/\overline{IRQ}_{7} \\ P9_{6}/\overline{IRQ}_{6} \\ P9_{5}/\overline{IRQ}_{5} \\ P9_{4}/\overline{IRQ}_{4} \\ P9_{3}/\overline{IRQ}_{3} \\ P9_{2}/\overline{IRQ}_{2} \end{array}$	6-bit I/O port al IRQ ₂) when IR0	_	as interrupt inpu	it pins (IRQ ₇ to
Port A	 8-bit I/O port Built-in MOS input pull-up Open-drain output capability Schmitt-triggered input (PA₄ to PA₇) 	PA ₇ /A ₂₃ PA ₆ /A ₂₂ PA ₅ /A ₂₁ PA ₄ /A ₂₀	When DDR = 0 input port When DDR = 1 A21E = 1: addr When DDR = 1 A21E = 0: DR v Address output functioning as o	and A23E to ress output and A23E to value output also output port	When DDR = 0 (after reset): input port When DDR = 1 and A23E to A20E = 1: address output When DDR = 1 and A23E to A20E = 0: DR value output When DDR =	I/O port
					0 (after reset): input ports When DDR = 1: address output	
Port B	8-bit I/O portBuilt-in MOS input pull-up	PB ₇ /A ₁₅ to PB ₀ /A ₈	Address output	i	When DDR = 0 (after reset): input port When DDR = 1: address output	I/O port
Port C	8-bit I/O portBuilt-in MOS input pull-up	PC ₇ /A ₇ to PC ₀ /A ₀	Address output		When DDR = 0 (after reset): input port When DDR = 1: address output	I/O port
Port D	8-bit I/O portBuilt-in MOS input pull-up	PD ₇ /D ₁₅ to PD ₀ /D ₈	Data bus input/	output (I/O port

Port	Description	Pins	Mode 4*1	Mode 5*1	Mode 6	Mode 7			
Port E	8-bit I/O port Built-in MOS input pull-up	PE ₇ /D ₇ to PE ₀ /D ₀	In 8-bit bus mo In 16-bit bus m	nput/output	I/O port				
Port F	8-bit I/O port	PF ₇ /φ		When DDR = 0: input port When DDR = 1 (after reset): φ output					
		PF ₆ /AS		When ASOD = 1: I/O port When ASOD = 0: AS output					
		PF₅/RD PF₄/HWR	RD, HWR outp	RD, HWR output					
		PF ₃ /LWR	When LWROD = 1: I/O port When LWROD = 0: LWR output						
		PF ₂ /LCAS/BREQO	When BREQO When BREQO BREQO output When RMTS2 and 16-bit acce						
		PF₁/BACK PF₀/BREQ	When BRLE =	and 16-bit access space is set: LCAS output When BRLE = 0 (after reset): I/O port When BRLE = 1: BREQ input, BACK output					
Port G	• 5-bit I/O port	PG ₄ /CS ₀	When DDR = 0 When DDR = 1	0^{*2} : input port 1^{*3} : \overline{CS}_0 output		I/O port			
		PG ₃ /CS ₁	When CS167E) (after reset): ir : = 0 and DDR = : = 1 and DDR =	1: output port				
		PG ₂ /CS ₂	When DDR = (When CS25E : When CS25E :						
		PG₁/CS₃	When DDR = (When CS25E : When CS25E :						
		PG ₀ /CAS	DRAM space s Otherwise (after						

Notes: 1. Only modes 4 and 5 are provided in the ROMless version.

- 2. After a reset in mode 6
- 3. After a reset in mode 4 or 5

9.2 Port 1

9.2.1 Overview

Port 1 is an 8-bit I/O port. Port 1 pins also function as PPG output pins (PO₁₅ to PO₈) and TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA₀, TIOCB₀, TIOCC₀, TIOCD₀, TIOCA₁, TIOCB₁, TIOCA₂, and TIOCB₂). Port 1 pin functions are the same in all operating modes. Port 1 uses Schmitt-triggered input.

Figure 9.1 shows the port 1 pin configuration.

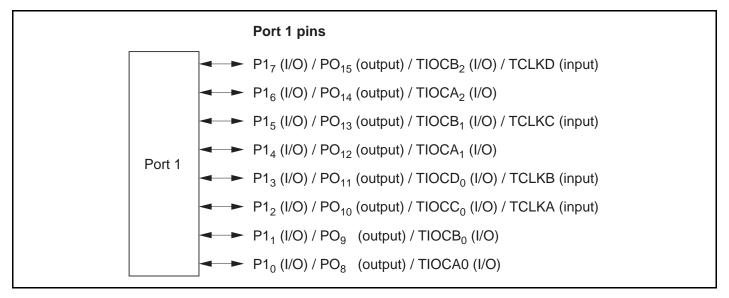


Figure 9.1 Port 1 Pin Functions

RENESAS

9.2.2 Register Configuration

Table 9.2 shows the port 1 register configuration.

Table 9.2 Port 1 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 1 data direction register	P1DDR	W	H'00	H'FEB0
Port 1 data register	P1DR	R/W	H'00	H'FF60
Port 1 register	PORT1	R	Undefined	H'FF50

Note: * Lower 16 bits of the address.

Port 1 Data Direction Register (P1DDR)

Bit	:	7	6	5	4	3	2	1	0
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1. P1DDR cannot be read; if it is, an undefined value will be read.

Setting a P1DDR bit to 1 makes the corresponding port 1 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P1DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 1 Data Register (P1DR)

Bit	:	7	6	5	4	3	2	1	0
		P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P1DR is an 8-bit readable/writable register that stores output data for the port 1 pins (P17 to P10).

P1DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 1 Register (PORT1)

Bit	:	7	6	5	4	3	2	1	0
		P17	P16	P15	P14	P13	P12	P11	P10
Initial valu	ue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P1₇ to P1₀.

PORT1 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 1 pins (P1₇ to P1₀) must always be performed on P1DR.

If a port 1 read is performed while P1DDR bits are set to 1, the P1DR values are read. If a port 1 read is performed while P1DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT1 contents are determined by the pin states, as P1DDR and P1DR are initialized. PORT1 retains its prior state in software standby mode.

9.2.3 Pin Functions

Port 1 pins also function as PPG output pins (PO₁₅ to PO₈) and TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA₀, TIOCB₀, TIOCC₀, TIOCD₀, TIOCA₁, TIOCB₁, TIOCA₂, and TIOCB₂) Port 1 pin functions are shown in table 9.3.

Table 9.3 Port 1 Pin Functions

Pin Selection Method and Pin Functions

P1₇/PO₁₅/ TIOCB₂/TCLKD The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOB3 to IOB0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bits TPSC2 to TPSC0 in TCR0 and TCR5, bit NDER15 in NDERH, and bit P17DDR.

TPU Channel 2 Setting	Table Below (1)	Та	ible Below	(2)	
P17DDR	_	0	1	1	
NDER15	_	_	0	1	
Pin function	TIOCB ₂ output	P1 ₇	P1 ₇	PO ₁₅	
		input	output	output	
		TIOCB ₂ input *1			
	TCLKD input *2				

Notes: 1. $TIOCB_2$ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 = 1.

2. TCLKD input when the setting for either TCR0 or TCR5 is: TPSC2 to TPSC0 = B'111.

TCLKD input when channels 2 and 4 are set to phase counting mode.

TPU Channel	(0)	(4)	(2)	(0)	(4)	(0)
2 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000,	B'01xx	B'0010		B'0011	
IOB3 to IOB0	B'0000	B'0001 to	_	B'xx00	Other tha	n B'xx00
	B'0100	B'0011				
	B'1xxx	B'0101 to				
		B'0111				
CCLR1,			_		Other	B'10
CCLR0					than B'10	
Output		Output	_		PWM	_
function		compare			mode 2	
		output			output	

Selection Method and Pin Functions

P1₆/PO₁₄/ TIOCA₂

The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOA3 to IOA0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bit NDER14 in NDERH, and bit P16DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)			
P16DDR	_	0	1	1	
NDER14	_	_	0	1	
Pin function	TIOCA ₂ output	P1 ₆ input	P1 ₆ output	PO ₁₄ output	
		TIOCA ₂ input *1			

TPU Channel 2 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0000	B'01xx	B'001x	B'0010	B'0	011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Oth	Other than B'xx00		
CCLR1, CCLR0	_	_		_	Other than B'01	B'01	
Output function	_	Output compare output	_	PWM mode 1 output *2	PWM mode 2 output	_	

x: Don't care

Notes: 1. TIOCA₂ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1.

2. TIOCB₂ output is disabled.

Selection Method and Pin Functions

P1₅/PO₁₃/ TIOCB₁/TCLKC

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOB3 to IOB0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bits TPSC2 to TPSC0 in TCR0, TCR2, TCR4, and TCR5, bit NDER13 in NDERH, and bit P15DDR.

TPU Channel 1 Setting	Table Below (1)	Та	ıble Below	(2)	
P15DDR	_	0	1	1	
NDER13	_	_	0	1	
Pin function	TIOCB ₁ output	P1 ₅ input	P1 ₅ output	PO ₁₃ output	
		TIOCB ₁ input *1			
	TCLKC	input *2			

Notes: 1. TIOCB₁ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 to IOB0 = B'10xx.

2. TCLKC input when the setting for either TCR0 or TCR2 is: TPSC2 to TPSC0 = B'110; or when the setting for either TCR4 or TCR5 is TPSC2 to TPSC0 = B'101.

TCLKC input when channels 2 and 4 are set to phase counting mode.

TPU Channel 1 Setting	(2)	(1)	(2)	(2)	(1)	(2)
		` '		(2)	` '	(2)
MD3 to MD0	B'0000,	, B'01xx	B'0010		B'0011	
IOB3 to IOB0	B'0000	B'0001 to	_	B'xx00	Other tha	an B'xx00
	B'0100	B'0011				
	B'1xxx	B'0101 to				
		B'0111				
CCLR1,					Other	B'10
CCLR0					than	
					B'10	
Output	_	Output	_	_	PWM	_
function		compare			mode 2	
		output			output	

Selection Method and Pin Functions

P1₄/PO₁₂/ TIOCA₁

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOA3 to IOA0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bit NDER12 in NDERH, and bit P14DDR.

TPU Channel 1 Setting	Table Below (1)	Та	ble Below	(2)
P14DDR	_	0	1	1
NDER12	_	_	0	1
Pin function	TIOCA ₁ output	P1 ₄ input	P1 ₄ output	PO ₁₂ output
		TIOCA ₁ input *1		

TPU Channel						
1 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000,	, B'01xx	B'001x	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Other than B'xx00		
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	

x: Don't care

Notes: 1. TIOCA₁ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 to IOA0 = B'10xx.

2. TIOCB₁ output is disabled.

Selection Method and Pin Functions

P1₃/PO₁₁/ TIOCD₀/TCLKB

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOD3 to IOD0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR2, bit NDER11 in NDERH, and bit P13DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)			
P13DDR	_	0	1	1	
NDER11	_	_	0	1	
Pin function	TIOCD ₀ output	P1 ₃ input	P1 ₃ output	PO ₁₁ output	
		TIOCD ₀ input *1			
	TCLKB input *2				

Notes: 1. TIOCD₀ input when MD3 to MD0 = B'0000, and IOD3 to IOD0 = B'10xx.

2. TCLKB input when the setting for TCR0 to TCR2 is: TPSC2 to TPSC0 = B'101.

TCLKB input when channels 1 and 5 are set to phase counting mode.

TPU Channel	(0)	(4)	(0)	(0)	(4)	(0)
0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0	000	B'0010		B'0011	
IOD3 to IOD0	B'0000	B'0001 to	_	B'xx00	x00 Other than B'xx00	
	B'0100	B'0011				
	B'1xxx	B'0101 to				
		B'0111				
CCLR2 to		_	_		Other	B'110
CCLR0					than	
					B'110	
Output	_	Output	_		PWM	_
function		compare			mode 2	
		output			output	

Selection Method and Pin Functions

P1₂/PO₁₀/ TIOCC₀/TCLKA

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOC3 to IOC0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR5, bit NDER10 in NDERH, and bit P12DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)			
P12DDR	_	0	1	1	
NDER10	_	_	0	1	
Pin function	TIOCC ₀ output	P1 ₂ input	P1 ₂ output	PO ₁₀ output	
		TIOCC ₀ input *1			
	TCLKA input *2				

TPU Channel						
0 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0	000	B'001x	B'0010	B'0	011
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Oth	er than B'x	xx00
CCLR2 to CCLR0	_	_	_	_	Other than B'101	B'101
Output function	_	Output compare output	_	PWM mode 1 output*3	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCC₀ input when MD3 to MD0 = B'0000, and IOC3 to IOC0 = B'10xx.

- 2. TCLKA input when the setting for TCR0 to TCR5 is: TPSC2 to TPSC0 = B'100.
 - TCLKA input when channels 1 and 5 are set to phase counting mode.
- 3. TIOCD₀ output is disabled. When BFA = 1 or BFB = 1 in TMDR0, output is disabled and setting (2) applies.

P1₁/PO₉/TIOCB₀

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOB3 to IOB0 in TIOR0H, and bits CCLR2 to CCLR0 in TCR0), bit NDER9 in NDERH, and bit P11DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)				
P11DDR	_	0	1	1		
NDER9	_	_	0	1		
Pin function	TIOCB ₀ output	P1 ₁ input	P1 ₁ output	PO ₉ output		
		TIOCB ₀ input *				

Note: $*TIOCB_0$ input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx.

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	, ,	000	B'0010	, ,	B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other tha	an B'xx00
CCLR2 to CCLR0	_	_	_	_	Other than B'010	B'010
Output function		Output compare output			PWM mode 2 output	_

Selection Method and Pin Functions

P1₀/PO₈/TIOCA₀

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOA3 to IOA0 in TIOR0H, and bits CCLR2 to CCLR0 in TCR0), bit NDER8 in NDERH, and bit P10DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)				
P10DDR	_	0	1	1		
NDER8	_	_	0	1		
Pin function	TIOCA ₀ output	P1 ₀ input	P1 ₀ output	PO ₈ output		
		TIOCA ₀ input *1				

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0	000	B'001x	B'0010	B'0	011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Oth	Other than B'xx00		
CCLR2 to CCLR0	_	_		_	Other than B'001	B'001	
Output function	_	Output compare output		PWM mode 1 output*2	PWM mode 2 output		

x: Don't care

Notes: 1. TIOCA₀ input when MD3 to MD0 = B'0000, and IOA3 to IOA0 = B'10xx.

2. TIOCB₀ output is disabled.

9.3 Port 2

9.3.1 **Overview**

Port 2 is an 8-bit I/O port. Port 2 pins also function as PPG output pins (PO₇ to PO₀) and TPU I/O pins (TIOCA₃, TIOCB₃, TIOCC₃, TIOCD₃, TIOCA₄, TIOCB₄, TIOCA₅, and TIOCB₅). Port 2 pin functions are the same in all operating modes. Port 2 uses Schmitt-triggered input.

Figure 9.2 shows the port 2 pin configuration.

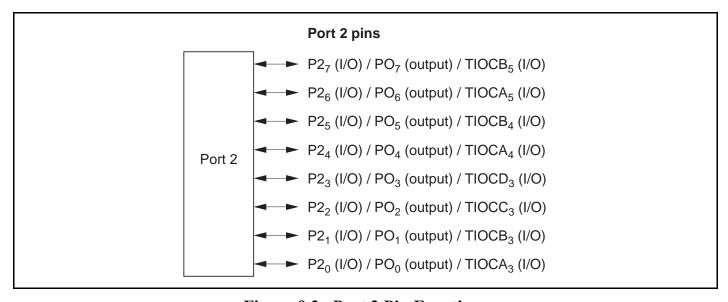


Figure 9.2 Port 2 Pin Functions

9.3.2 Register Configuration

Table 9.4 shows the port 2 register configuration.

Table 9.4 Port 2 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 2 data direction register	P2DDR	W	H'00	H'FEB1
Port 2 data register	P2DR	R/W	H'00	H'FF61
Port 2 register	PORT2	R	Undefined	H'FF51

Note: * Lower 16 bits of the address.

Port 2 Data Direction Register (P2DDR)

Bit	:	7	6	5	4	3	2	1	0
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P2DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 2. P2DDR cannot be read; if it is, an undefined value will be read.

Setting a P2DDR bit to 1 makes the corresponding port 2 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P2DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 2 Data Register (P2DR)

Bit	:	7	6	5	4	3	2	1	0
		P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P2DR is an 8-bit readable/writable register that stores output data for the port 2 pins (P27 to P20).

P2DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 2 Register (PORT2)

Bit	:	7	6	5	4	3	2	1	0
		P27	P26	P25	P24	P23	P22	P21	P20
Initial valu	ue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P2₇ to P2₀.

PORT2 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 2 pins (P2₇ to P2₀) must always be performed on P2DR.

If a port 2 read is performed while P2DDR bits are set to 1, the P2DR values are read. If a port 2 read is performed while P2DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT2 contents are determined by the pin states, as P2DDR and P2DR are initialized. PORT2 retains its prior state in software standby mode.

9.3.3 Pin Functions

Port 2 pins also function as PPG output pins (PO₇ to PO₀) and TPU I/O pins (TIOCA₃, TIOCB₃, TIOCC₃, TIOCD₃, TIOCD₄, TIOCB₄, TIOCA₅, and TIOCB₅). Port 2 pin functions are shown in table 9.5.

Table 9.5 Port 2 Pin Functions

Pin Selection Method and Pin Functions

P27/PO7/TIOCB5

The pin function is switched as shown below according to the combination of the TPU channel 5 setting (by bits MD3 to MD0 in TMDR5, bits IOB3 to IOB0 in TIOR5, and bits CCLR1 and CCLR0 in TCR5), bit NDER7 in NDERL, and bit P27DDR.

TPU Channel 5 Setting	Table Below (1)	Table Below (2)				
P27DDR	_	0	1	1		
NDER7	_	_	0	1		
Pin function	TIOCB₅ output	P2 ₇ input	P2 ₇ output	PO ₇ output		
		TIOCB₅ input *				

Note: * TIOCB₅ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 = 1.

TPU Channel 5 Setting	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0	, ,	B'01xx	B'0010	(-)	B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other tha	ın B'xx00	
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10	
Output function	_	Output compare output			PWM mode 2 output	_	

P2₆/PO₆/TIOCA₅

The pin function is switched as shown below according to the combination of the TPU channel 5 setting (by bits MD3 to MD0 in TMDR5, bits IOA3 to IOA0 in TIOR5, and bits CCLR1 and CCLR0 in TCR5), bit NDER6 in NDERL, and bit P26DDR.

TPU Channel 5 Setting	Table Below (1)	Table Below (2)				
P26DDR	_	0	1	1		
NDER6	_	_	0	1		
Pin function	TIOCA ₅ output	P2 ₆ input	P2 ₆ output	PO ₆ output		
		TIOCA₅ input *1				

TPU Channel 5 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
	` ,	` '	, ,	` ,	` ,	` ,	
MD3 to MD0	B'0000,	B'01xx	B'001x	B'0010	B'00	011	
IOA3 to IOA0	B'0000 B'0100	B'0001 to B'0011	B'xx00	Oth	Other than B'xx00		
	B'1xxx	B'0101 to					
		B'0111					
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01	
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_	

x: Don't care

Notes: 1. TIOCA₅ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1.

2. TIOCB₅ output is disabled.

P2₅/PO₅/TIOCB₄

The pin function is switched as shown below according to the combination of the TPU channel 4 setting (by bits MD3 to MD0 in TMDR4, bits IOB3 to IOB0 in TIOR4, and bits CCLR1 and CCLR0 in TCR4), bit NDER5 in NDERL, and bit P25DDR.

TPU Channel 4 Setting	Table Below (1)	Та	ble Below	(2)
P25DDR	_	0	1	1
NDER5	_	_	0	1
Pin function	TIOCB₄ output	P2₅ input	P2₅ output	PO₅ output
		TIOCB ₄ input *		

Note: *TIOCB₄ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 to IOB0 = B'10xx.

TPU Channel						
4 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	ın B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10
Output function	_	Output compare output			PWM mode 2 output	_

P2₄/PO₄/TIOCA₄

The pin function is switched as shown below according to the combination of the TPU channel 4 setting (by bits MD3 to MD0 in TMDR4, bits IOA3 to IOA0 in TIOR4, and bits CCLR1 and CCLR0 in TCR4), bit NDER4 in NDERL, and bit P24DDR.

TPU Channel 4 Setting	Table Below (1)	Та	ble Below	(2)
P24DDR	_	0	1	1
NDER4	_	_	0	1
Pin function	TIOCA₄ output	P2 ₄ input	P2 ₄ output	PO₄ output
		TIOCA ₄ input *1		

TPU Channel							
4 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0	011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Oth	Other than B'xx00		
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01	
Output function		Output compare output		PWM mode 1 output*2	PWM mode 2 output		

x: Don't care

Notes: 1. TIOCA₄ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 to IOA0 = B'10xx.

2. TIOCB₄ output is disabled.

P2₃/PO₃/TIOCD₃

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOD3 to IOD0 in TIOR3L, and bits CCLR2 to CCLR0 in TCR3), bit NDER3 in NDERL, and bit P23DDR.

TPU Channel 3 Setting	Table Below (1)	Та	ble Below	(2)
P23DDR	_	0	1	1
NDER3	_	_	0	1
Pin function	TIOCD ₃ output	P2 ₃ input	P2 ₃ output	PO₃ output
		TIOCD ₃ input *		

Note: *TIOCD₃ input when MD3 to MD0 = B'0000, and IOD3 to IOD0 = B'10xx.

TPU Channel						
3 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0	000	B'0010	B'0011		
IOD3 to IOD0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00 Other than B'xx00		
CCLR2 to CCLR0	_	_		_	Other than B'110	B'110
Output function	_	Output compare output	_		PWM mode 2 output	

P2₂/PO₂/TIOCC₃

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOC3 to IOC0 in TIOR3L, and bits CCLR2 to CCLR0 in TCR3), bit NDER2 in NDERL, and bit P22DDR.

TPU Channel 3 Setting	Table Below (1)	Table Below (2)			
P22DDR	_	0	1	1	
NDER2	_	_	0	1	
Pin function	TIOCC₃ output	P2 ₂ input	P2 ₂ output	PO ₂ output	
		TIOCC ₃ input *1			

TPU Channel 3 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0	000	B'001x	B'0010			
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00			
CCLR2 to CCLR0	_	_		_	Other than B'101	B'101	
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_	

x: Don't care

Notes: 1. TIOCC₃ input when MD3 to MD0 = B'0000, and IOC3 to IOC0 = B'10xx.

2. TIOCD₃ output is disabled. When BFA = 1 or BFB = 1 in TMDR3, output is disabled and setting (2) applies.

P2₁/PO₁/TIOCB₃

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOB3 to IOB0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3), bit NDER1 in NDERL, and bit P21DDR.

TPU Channel 3 Setting	Table Below (1)	Table Below (2)			
P21DDR	_	0	1	1	
NDER1		_	0	1	
Pin function	TIOCB ₃ output	P2 ₁ input	P2 ₁ output	PO₁ output	
		TIOCB ₃ input *			

Note: *TIOCB₃ input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx.

TPU Channel								
3 Setting	(2)	(1)	(2)	(2)	(1)	(2)		
MD3 to MD0	B'0	000	B'0010	B'0011				
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	B'xx00 Other than B'xx00			
CCLR2 to CCLR0	_	_		_	Other than B'010	B'010		
Output function	_	Output compare output	_		PWM mode 2 output	_		

P2₀/PO₀/TIOCA₃

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOA3 to IOA0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3), bit NDER0 in NDERL, and bit P20DDR.

TPU Channel 3 Setting	Table Below (1)	Table Below (2)			
P20DDR	_	0	1	1	
NDER0	_	_	0	1	
Pin function	TIOCA ₃ output	P2 ₀ input	P2 ₀ output	PO ₀ output	
		TIOCA ₃ input *1			

TPU Channel 3 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0	000	B'001x	B'0010	, ,		
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00			
CCLR2 to CCLR0	_	_		_	Other than B'001	B'001	
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output		

x: Don't care

Notes: 1. TIOCA₃ input when MD3 to MD0 = B'0000, and IOA3 to IOA0 = B'10xx.

2. TIOCB₃ output is disabled.

9.4 Port 3

9.4.1 Overview

Port 3 is a 6-bit I/O port. Port 3 pins also function as SCI I/O pins $(TxD_0, RxD_0, SCK_0, TxD_1, RxD_1, and SCK_1)$. Port 3 pin functions are the same in all operating modes.

Figure 9.3 shows the port 3 pin configuration.

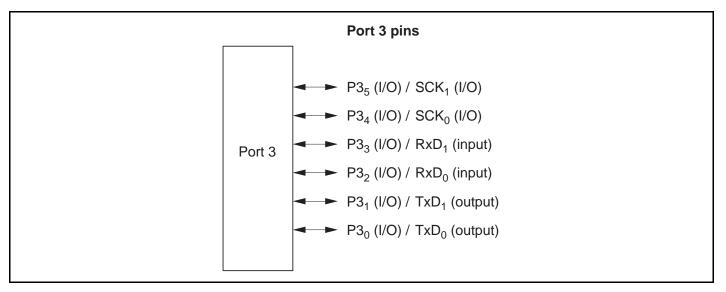


Figure 9.3 Port 3 Pin Functions

9.4.2 Register Configuration

Table 9.6 shows the port 3 register configuration.

Table 9.6 Port 3 Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port 3 data direction register	P3DDR	W	H'00	H'FEB2
Port 3 data register	P3DR	R/W	H'00	H'FF62
Port 3 register	PORT3	R	Undefined	H'FF52
Port 3 open drain control register	P3ODR	R/W	H'00	H'FF76

Notes: 1. Lower 16 bits of the address.

2. Value of bits 5 to 0.

Port 3 Data Direction Register (P3DDR)

Bit	:	7	6	5	4	3	2	1	0
		_		P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initia	I value :	Undefined	Undefined	0	0	0	0	0	0
R/W	:	_	_	W	W	W	W	W	W

P3DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 3. Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

Setting a P3DDR bit to 1 makes the corresponding port 3 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P3DDR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode. As the SCI is initialized, the pin states are determined by the P3DDR and P3DR specifications.

Port 3 Data Register (P3DR)

Bit	:	7	6	5	4	3	2	1	0
		_		P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
Initial value	e :	Undefined	Undefined	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

P3DR is an 8-bit readable/writable register that stores output data for the port 3 pins (P35 to P30).

Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

P3DR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 3 Register (PORT3)

Bit :	7	6	5	4	3	2	1	0
	_	_	P35	P34	P33	P32	P31	P30
Initial value :	Undefined	Undefined	*	*	*	*	*	*
R/W			R	R	R	R	R	R

Note: * Determined by state of pins P3₅ to P3₀.

PORT3 is an 8-bit read-only register that shows the pin states. Writing of output data for the port 3 pins (P3₅ to P3₀) must always be performed on P3DR.

Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

If a port 3 read is performed while P3DDR bits are set to 1, the P3DR values are read. If a port 3 read is performed while P3DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT3 contents are determined by the pin states, as P3DDR and P3DR are initialized. PORT3 retains its prior state in software standby mode.

Port 3 Open Drain Control Register (P3ODR)

Bit	7	6	5	4	3	2	1	0
		_	P35ODR	P34ODR	P33ODR	P32ODR	P310DR	P30ODR
Initial value	Undefined	Undefined	0	0	0	0	0	0
R/W	: <u> </u>	_	R/W	R/W	R/W	R/W	R/W	R/W

P3ODR is an 8-bit readable/writable register that controls the PMOS on/off status for each port 3 pin (P3₅ to P3₀).

Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

Setting a P3ODR bit to 1 makes the corresponding port 3 pin an NMOS open-drain output pin, while clearing the bit to 0 makes the pin a CMOS output pin.

P3ODR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.4.3 Pin Functions

Port 3 pins also function as SCI I/O pins (TxD₀, RxD₀, SCK₀, TxD₁, RxD₁, and SCK₁). Port 3 pin functions are shown in table 9.7.

Table 9.7 Port 3 Pin Functions

Pin Selection Method and Pin Functions

P3₅/SCK₁

The pin function is switched as shown below according to the combination of bit C/\overline{A} in the SCI1 SMR, bits CKE0 and CKE1 in SCR, and bit P35DDR.

CKE1		1			
C/A		0	1	_	
CKE0	()	1	_	_
P35DDR	0	1	_	_	_
Pin function	P3 ₅ input pin	P3 ₅ output pin*	SCK ₁ output pin*	SCK ₁ output pin*	SCK₁ input pin

Note: * When P35ODR = 1, the pin becomes an NMOS open-drain output.

P3₄/SCK₀

The pin function is switched as shown below according to the combination of bit C/\overline{A} in the SCI0 SMR, bits CKE0 and CKE1 in SCR, and bit P34DDR.

CKE1		1			
C/A		0	1		
CKE0	()	1	_	_
P34DDR	0	1	_	_	_
Pin function	P3 ₄ input pin	P3 ₄ output pin*	SCK ₀ output pin*	SCK ₀ output pin*	SCK ₀ input pin

Note: * When P34ODR = 1, the pin becomes an NMOS open-drain output.

Pin	Selection Method and Pin Functions
-----	------------------------------------

P3₃/RxD₁

The pin function is switched as shown below according to the combination of bit RE in the SCI1 SCR, and bit P33DDR.

RE	(1	
P33DDR	0	1	_
Pin function	P3 ₃ input pin	P3 ₃ output pin*	RxD ₁ input pin

Note: * When P33ODR = 1, the pin becomes an NMOS open-drain output.

P3₂/RxD₀

The pin function is switched as shown below according to the combination of bit RE in the SCI0 SCR, and bit P32DDR.

RE	(1	
P32DDR	0	1	
Pin function	P3 ₂ input pin	P3 ₂ output pin*	RxD ₀ input pin

Note: * When P32ODR = 1, the pin becomes an NMOS open-drain output.

P3₁/TxD₁

The pin function is switched as shown below according to the combination of bit TE in the SCI1 SCR, and bit P31DDR.

TE	(1	
P31DDR	0	1	_
Pin function	P3 ₁ input pin	P3₁ output pin*	TxD₁ output pin

Note: * When P310DR = 1, the pin becomes an NMOS open-drain output.

P3₀/TxD₀

The pin function is switched as shown below according to the combination of bit TE in the SCI0 SCR, and bit P30DDR.

TE	(1	
P30DDR	0	1	
Pin function	P3 ₀ input pin	P3 ₀ output pin*	TxD ₀ output pin

Note: * When P30ODR = 1, the pin becomes an NMOS open-drain output.

9.5 Port 4

9.5.1 Overview

Port 4 is an 8-bit input-only port. Port 4 pins also function as A/D converter analog input pins $(AN_0 \text{ to } AN_7)$ and D/A converter analog output pins $(DA_0 \text{ and } DA_1)$. Port 4 pin functions are the same in all operating modes. Figure 9.4 shows the port 4 pin configuration.

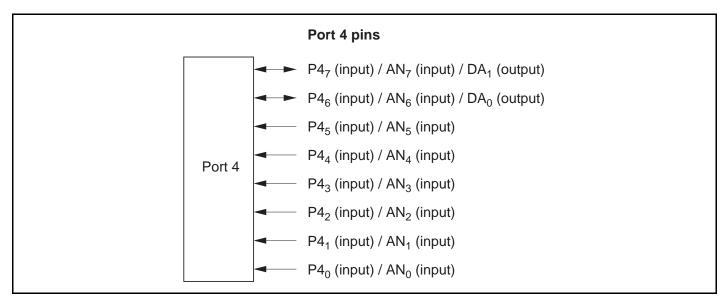


Figure 9.4 Port 4 Pin Functions

9.5.2 Register Configuration

Table 9.8 shows the port 4 register configuration. Port 4 is an input-only port, and does not have a data direction register or data register.

Table 9.8 Port 4 Register

Name	Abbreviation	R/W	Initial Value	Address*
Port 4 register	PORT4	R	Undefined	H'FF53

Note: * Lower 16 bits of the address.

Port 4 Register (PORT4): The pin states are always read when a port 4 read is performed.

Bit	:	7	6	5	4	3	2	1	0
		P47	P46	P45	P44	P43	P42	P41	P40
Initial value): ⁻	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P47 to P40.

9.5.3 Pin Functions

Port 4 pins also function as A/D converter analog input pins (AN₀ to AN₇) and D/A converter analog output pins (DA₀ and DA₁).

9.6 Port 5

9.6.1 Overview

Port 5 comprises a 4-bit I/O port and a 4-bit input port. Port 5 pins also function as SCI I/O pins $(TxD_2, RxD_2, and SCK_2)$, the A/D converter input pin (\overline{ADTRG}) , A/D converter analog input pins $(AN_{12} \text{ to } AN_{15})$, D/A converter analog output pins $(DA_2 \text{ and } DA_3)$, interrupt input pins $(\overline{IRQ_4} \text{ to } \overline{IRQ_7})$, and bus control signal I/O pins $(\overline{WAIT} \text{ and } \overline{BREQO})$. The pin functions can be switched by means of settings in PFCR2 and SYSCR. $\overline{IRQ_4}$ to $\overline{IRQ_7}$ are Schmitt-triggered inputs. Figure 9.5 shows the port 5 pin configuration.

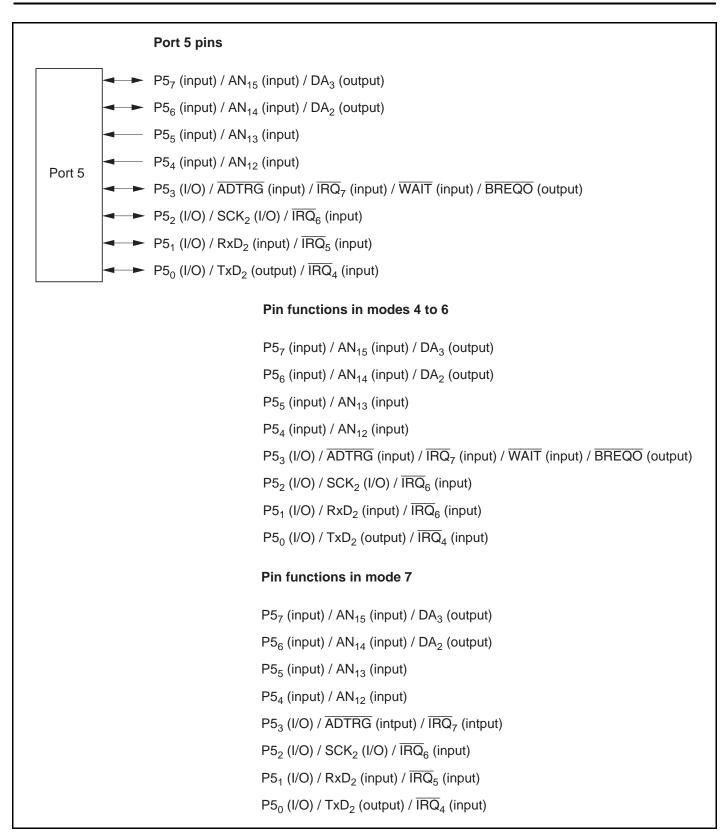


Figure 9.5 Port 5 Pin Functions

9.6.2 Register Configuration

Table 9.9 shows the port 5 register configuration.

Bits 7 to 4 of port 5 are input ports, and have no data direction register or data register.

Table 9.9 Port 5 Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port 5 data direction register	P5DDR	W	H'0*2	H'FEB4
Port 5 data register	P5DR	R/W	H'0*2	H'FF64
Port 5 register	PORT5	R	Undefined	H'FF54
Port function control register 2	PFCR2	R/W	H'30	H'FFAC
System control register	SYSCR	R/W	H'01	H'FF39

Notes: 1. Lower 16 bits of the address.

2. Value of bits 3 to 0.

Port 5 Data Direction Register (P5DDR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	P53DDR	P52DDR	P51DDR	P50DDR
Initial valu	e :	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:	_	_	_	_	W	W	W	W

P5DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 5. Bits 7 to 4 are reserved. P5DDR cannot be read; if it is, an undefined value will be read.

Setting a P5DDR bit to 1 makes the corresponding port 5 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P5DDR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode. As the SCI is initialized, the pin states are determined by the P5DDR and P5DR specifications.

RENESAS

Port 5 Data Register (P5DR)

Bit	: 7	6	5	4	3	2	1	0
		_	_	_	P53DR	P52DR	P51DR	P50DR
Initial value	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	<u> </u>				R/W	R/W	R/W	R/W

P5DR is an 8-bit readable/writable register that stores output data for the port 5 pins (P5₃ to P5₀).

Bits 7 to 4 are reserved; they return an undefined value if read, and cannot be modified.

P5DR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 5 Register (PORT5)

Bit	:	7	6	5	4	3	2	1	0
		P57	P56	P55	P54	P53	P52	P51	P50
Initial value	: :	Undefined	Undefined	Undefined	Undefined	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P5₇ to P5₀.

PORT5 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 5 pins (P5₃ to P5₀) must always be performed on P5DR.

Bits 7 to 4 always return the pin states when a port 5 read is performed, without regard to P5DDR.

If a port 5 read is performed while P5DDR bits are set to 1, the P5DR values are read. If a port 5 read is performed while P5DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT5 contents are determined by the pin states, as P5DDR and P5DR are initialized. PORT5 retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0	
		WAITPS	BREQOPS	CS167E	CS25E	ASOD	_	_		
Initial valu	ue :	0	0	1	1	0	0	0	0	_
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R	

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the $\overline{\text{WAIT}}$ input pin. Set the WAITPS bit before setting the DDR bit clear to 0 and the WAITE bit in BCRL to 1.

Bit 7 WAITPS	Description				
0	WAIT input is P8 ₆ pin	(Initial value)			
1	WAIT input is P5₃ pin				

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. Set the BREQOPS bit before setting the BREQOE bit in BCRL to 1.

Bit 6 BREQOPS	Description	
0	BREQO output is PF ₂ pin	(Initial value)
1	BREQO output is P5 ₃ pin	

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. For details, see section 9.7, Port 6, and section 9.17, Port G.

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. For details, see section 9.7, Port 6, and section 9.17, Port G.

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 9.16, Port F.

RENESAS

System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
			_	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial valu	ue:	0	0	0	0	0	0	0	1
R/W	:	R/W		R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 5, Interrupt Controller.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 5, Interrupt Controller.

Bit 2—LWR Output Disable (LWROD): Enables or disables \overline{LWR} output. For details, see section 9.16, Port F.

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for $\overline{IRQ_4}$ to $\overline{IRQ_7}$. $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	P9 ₄ to P9 ₇ used for \overline{RQ}_4 to \overline{IRQ}_7 input	(Initial value)
1	P5 ₃ to P5 ₀ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 18, RAM.

9.6.3 Pin Functions

Port 5 pins also function as SCI I/O pins $(TxD_2, RxD_2, and SCK_2)$, the A/D converter input pin (\overline{ADTRG}) , interrupt input pins $(\overline{IRQ_4}$ to $\overline{IRQ_7})$, and bus control signal I/O pins (\overline{WAIT}) and \overline{BREQO} . Port 5 pins P5₇ to P5₄ also function as A/D converter analog input pins (AN_{12}) to AN_{15} and D/A converter analog output pins (DA_2) and DA_3 . Port 5 pin functions are shown in table 9.10.

Table 9.10 Port 5 Pin Functions

Pin	Selection Method and Pin Functions									
P5 ₇ /AN ₁₅ /DA ₃ P5 ₆ /AN ₁₄ /DA ₂ P5 ₅ /AN ₁₃ P5 ₄ /AN ₁₂	These pins also function as A/D converter analog input pins (AN $_{12}$ to AN $_{15}$) and D/A converter analog output pins (DA $_2$ and DA $_3$). P5 $_7$ to P5 $_4$ have no data direction register.									
P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	The pin function the operating mo (ADCR), and bits P53DDR.	ode, bits	TRGS1	and TF	RGS0 in	the A/D	control	register		
	Operating mode	Modes 4 to 6 Mode 7								
	[BREQOE · BREQOPS]		()		,	1 —		_	
	[WAITE · WAITPS]	()	1		0	1	_	_	
	P53DDR	0	1	0	1	0	1	0	1	
	Pin function	P5 ₃ input pin	P5 ₃ output pin	WAIT input pin	pro- hibited	BREQ ₀ output pin	pro- hibited	P5 ₃ input pin	P5 ₃ output pin	
		ADTRG input pin*1								
	Notes: 1 ADT		IRQ ₇ interrupt input pin ^{*2}							

^{2.} \overline{IRQ}_7 input when IRQPAS = 1.

Pin Selection Method and Pin Functions

P5₂/SCK₂/IRQ₆

The pin function is switched as shown below according to the combination of bit C/\overline{A} in the SCI2 SMR, bits CKE0 and CKE1 in SCR, and bits IRQPAS and P52DDR.

CKE1		1						
C/A		0	1					
CKE0	()	1	_	_			
P52DDR	0	1	_	_	_			
Pin function	P5 ₂ P5 ₂ input pin output pin		SCK ₂ output pin	SCK ₂ output pin	SCK ₂ input pin			
	ĪRQ₀ interrupt input pin*							

Note: $*\overline{IRQ}_6$ input when IRQPAS = 1.

P5₁/RxD₂/IRQ₅

The pin function is switched as shown below according to the combination of bit RE in the SCI2 SCR, and bits IRQPAS and P51DDR.

RE	()	1					
P51DDR	0	1	_					
Pin function	P5₁ input pin	P5₁ output pin	RxD ₂ input pin					
	ĪRQ₅ interrupt input pin*							

Note: $*\overline{IRQ}_5$ input when IRQPAS = 1.

P5₀/TxD₂/IRQ₄

The pin function is switched as shown below according to the combination of bit TE in the SCI2 SCR, and bits IRQPAS and P50DDR.

TE	()	1				
P50DDR	0	1	_				
Pin function	P5 ₀ input pin	P5 ₀ output pin	TxD ₂ output pin				
	ĪRQ₄ interrupt input pin*						

Note: $*\overline{IRQ}_4$ input when IRQPAS = 1.

9.7 Port 6

9.7.1 Overview

Port 6 is an 8-bit I/O port. Port 6 pins also function as interrupt input pins ($\overline{IRQ_0}$ and $\overline{IRQ_1}$) and bus control output pins ($\overline{CS_4}$ to $\overline{CS_7}$). The functions of pins P6₅ to P6₂ are the same in all operating modes, while the functions of pins P6₇, P6₆, P6₁, and P6₀ change according to the operating mode. Switching of $\overline{CS_4}$ to $\overline{CS_7}$ output can be performed by setting PFCR2. Pins P6₇ to P6₄ are Schmitt-triggered inputs. Figure 9.6 shows the port 6 pin configuration.

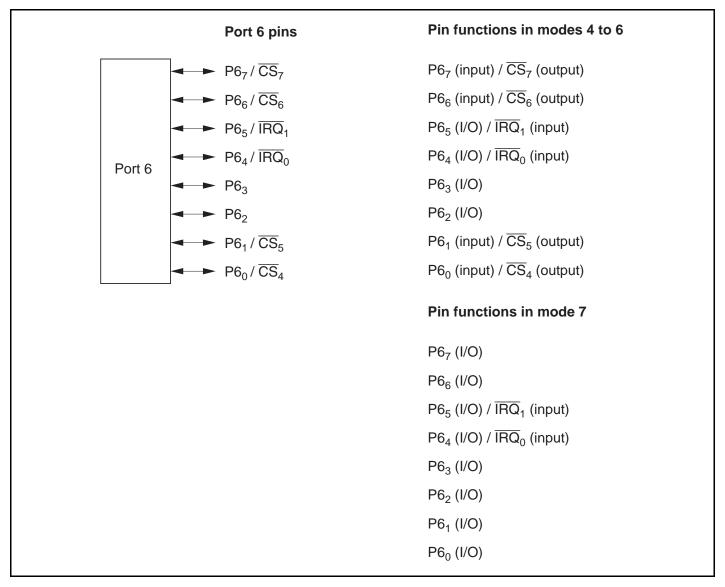


Figure 9.6 Port 6 Pin Functions

RENESAS

9.7.2 Register Configuration

Table 9.11 shows the port 6 register configuration.

Table 9.11 Port 6 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 6 data direction register	P6DDR	W	H'00	H'FEB5
Port 6 data register	P6DR	R/W	H'00	H'FF65
Port 6 register	PORT6	R	Undefined	H'FF55
Port function control register 2	PFCR2	R/W	H'30	H'FFAC

Note: * Lower 16 bits of the address.

Port 6 Data Direction Register (P6DDR)

Bit	:	7	6	5	4	3	2	1	0
		P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P6DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 6. P6DDR cannot be read; if it is, an undefined value will be read.

Setting a P6DDR bit to 1 makes the corresponding port 6 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P6DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 6 Data Register (P6DR)

Bit	:	7	6	5	4	3	2	1	0
		P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P6DR is an 8-bit readable/writable register that stores output data for the port 6 pins (P67 to P60).

P6DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 6 Register (PORT6)

Bit	:	7	6	5	4	3	2	1	0
		P67	P66	P65	P64	P63	P62	P61	P60
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P67 to P60.

PORT6 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 6 pins (P6₇ to P6₀) must always be performed on P6DR.

If a port 6 read is performed while P6DDR bits are set to 1, the P6DR values are read. If a port 6 read is performed while P6DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT6 contents are determined by the pin states, as P6DDR and P6DR are initialized. PORT6 retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0	
		WAITPS	BREQOPS	CS167E	CS25E	ASOD	_	_		
Initial val	ue:	0	0	1	1	0	0	0	0	
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R	

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the WAIT input pin. For details, see section 9.6, Port 5.

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. For details, see section 9.6, Port 5.

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. Only change the CS167E bit setting when the DDR bits are cleared to 0.

Bit 5 CS167E	Description	
0	$\overline{\text{CS}}_1$, $\overline{\text{CS}}_6$, and $\overline{\text{CS}}_7$ output disabled (can be used as I/O ports)	_
1	$\overline{\text{CS}}_1$, $\overline{\text{CS}}_6$, and $\overline{\text{CS}}_7$ output enabled	(Initial value)

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. Only change the CS25E bit setting when the DDR bits are cleared to 0.

Bit 4 CS25E	Description	
0	\overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output disabled (can be used as I/O ports)	_
1	$\overline{\text{CS}}_2$, $\overline{\text{CS}}_3$, $\overline{\text{CS}}_4$, and $\overline{\text{CS}}_5$ output enabled	(Initial value)

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 9.16, Port F.

Bits 2 to 0—Reserved: These bits are always read as 0.

9.7.3 Pin Functions

Port 6 pins also function as interrupt input pins (\overline{IRQ}_0 and \overline{IRQ}_1) and bus control output pins (\overline{CS}_4 to \overline{CS}_7). Port 6 pin functions are shown in table 9.12.

Table 9.12 Port 6 Pin Functions

Pin Selection Method and Pin Functions

 $P6_7/\overline{CS}_7$

The pin function is switched as shown below according to the combination of bits P67DDR and CS167E.

Mode		Modes	Mode 7			
CS167E		0		1	0	1
P67DDR	0	1	0	1	_	_
Pin function	P6 ₇ input pin	P6 ₇ output P6 ₇ inpu		CS ₇ output pin		P6 ₇ output pin

 $P6_6/\overline{CS}_6$

The pin function is switched as shown below according to the combination of bits P66DDR and CS167E.

Mode		Mode	Mode 7			
CS167E		0		1	0	1
P66DDR	0	1	0	1	_	_
Pin function	P6 ₆ input	P6 ₆ output	P6 ₆ input	CS ₆ output		P6 ₆
	pin	pin	pin	pin	pin	output pin

P6₅/IRQ₁

The pin function is switched as shown below according to bit P65DDR.

P65DDR	0	1				
Pin function	P6₅ input pin	P6₅ output pin				
	ĪRQ₁ interrupt input pin					

P6₄/IRQ₀

The pin function is switched as shown below according to bit P64DDR.

RENESAS

P64DDR	0	1				
Pin function	P6 ₄ input pin	P6₄ output pin				
	IRQ₀ interrupt input pin					

Pin Selection Method and Pin Functions

P6₃ The pin function is switched as shown below according to bit P63DDR.

P63DDR	0	1
Pin function	P6 ₃ input pin	P6 ₃ output pin

P6₂ The pin function is switched as shown below according to bit P62DDR.

P62DDR	0	1
Pin function	P6 ₂ input pin	P6 ₂ output pin

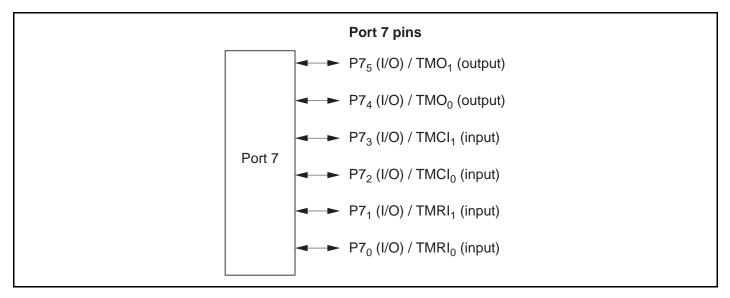
 $P6_1/\overline{CS}_5$

The pin function is switched as shown below according to the combination of bits P61DDR and CS25E.

Mode	Modes 4 to 6				Mode 7		
CS25E		0	•	1	0	1	
P61DDR	0	1	0	1	_		
Pin function	P6₁ input	P6 ₁ output	P6 ₁ input	CS₅ output	P6 ₁ input	P6₁ output	
	pin	pin	pin	pin	pin	pin	

P6₀/CS₄

The pin function is switched as shown below according to the combination of bits P60DDR and CS25E.


Mode	Modes 4 to 6				Mode 7		
CS25E		0	•	1	0	1	
P60DDR	0	1	0	1	_	_	
Pin function	P6 ₀ input	P6 ₀ output	P6 ₀ input	CS₄ output pin	P6 ₀ input	P6 ₀ output	

9.8 Port 7

9.8.1 Overview

Port 7 is a 6-bit I/O port. Port 7 pins also function as 8-bit timer I/O pins (TMRI₀, TMCI₀, TMO₀, TMRI₁, TMCI₁, TMO₁). Port 7 pin functions are the same in all operating modes. Port 7 uses Schmitt-triggered input.

Figure 9.7 shows the port 7 pin configuration.

Figure 9.7 Port 7 Pin Functions

RENESAS

9.8.2 Register Configuration

Table 9.13 shows the port 7 register configuration.

Table 9.13 Port 7 Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port 7 data direction register	P7DDR	W	H'00	H'FEB6
Port 7 data register	P7DR	R/W	H'00	H'FF66
Port 7 register	PORT7	R	Undefined	H'FF56

Notes: 1. Lower 16 bits of the address.

2. Value of bits 5 to 0.


Port 7 Data Direction Register (P7DDR)

Bit	: 7	6	5	4	3	2	1	0
		_	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR
Initial value	Undefined	Undefined	0	0	0	0	0	0
R/W	: <u> </u>	_	W	W	W	W	W	W

P7DDR is a 6-bit write-only register, the individual bits of which specify input or output for the pins of port 7. P2DDR cannot be read; if it is, an undefined value will be read. Bits 7 and 6 are reserved.

Setting a P7DDR bit to 1 makes the corresponding port 7 pin an output pin, while clearing the bit to 0 makes the pin an input port.

P7DDR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 7 Data Register (P7DR)

Bit	:	7	6	5	4	3	2	1	0	
		_	_	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR	
Initial val	ue:	Undefined	Undefined	0	0	0	0	0	0	
R/W	:		_	R/W	R/W	R/W	R/W	R/W	R/W	

P7DR is a 6-bit readable/writable register that stores output data for the port 7 pins (P7₅ to P7₀). Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

P7DR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 7 Register (PORT7)

Bit	:	7	6	5	4	3	2	1	0
			_	P75	P74	P73	P72	P71	P70
Initial value	:	Undefined	Undefined	*	*	*	*	*	*
R/W	:	_	_	R	R	R	R	R	R

Note: * Determined by state of pins P7₅ to P7₀.

PORT7 is a 6-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 7 pins (P7₅ to P7₀) must always be performed on P7DR.

Bits 7 and 6 are reserved, they return an undefined value if read, and cannot be modified.

If a port 7 read is performed while P7DDR bits are set to 1, the P7DR values are read. If a port 7 read is performed while P7DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT7 contents are determined by the pin states, as P7DDR and P7DR are initialized. PORT7 retains its prior state in software standby mode.

9.8.3 Pin Functions

Port 7 pins also function as 8-bit timer I/O pins (TMRI₀, TMCI₀, TMO₀, TMRI₁, TMCI₁, and TMO₁). Port 7 pin functions are shown in table 9.14.

Table 9.14 Port 7 Pin Functions

Pin Selection Method and Pin Functions

P7₅/TMO₁

The pin function is switched as shown below according to the combination of bits OS3 to OS0 in 8-bit timer TCSR1 and bit P75DDR.

OS3 to OS0	All	10	Not all 0
P75DDR	0	1	_
Pin function	P7 ₅ input pin	P7 ₅ output pin	TMO₁ output pin

P7₄/TMO₀

The pin function is switched as shown below according to the combination of bits OS3 to OS0 in 8-bit timer TCSR0 and bit P74DDR.

OS3 to OS0	All	0	Not all 0
P74DDR	0	1	_
Pin function	P7 ₄ input pin	P7₄ output pin	TMO ₀ output pin

P7₃/TMCI₁

The pin function is switched as shown below according to bit P73DDR. When this pin is used as an 8-bit timer external clock input pin, the external clock is selected with bits CKS2 to CKS0 in TCR1.

P73DDR	0	1				
Pin function	P7 ₃ input pin	P7 ₃ output pin				
	TMCI ₁ input pin					

Pin Selection Method and Pin Functions P72/TMCI0 The pin function is switched as shown below according to bit P72DDR. When this pin is used as an 8-bit timer external clock input pin, the external clock is selected with bits CKS2 to CKS0 in TCR0.

P72DDR	0	1				
Pin function	P7 ₂ input pin	P7 ₂ output pin				
	TMCI ₀ input pin					

P7₁/TMRI₁

The pin function is switched as shown below according to bit P71DDR. When this pin is used as an 8-bit timer counter reset pin, bits CCLR1 and CCLR0 in TCR1 are both set to 1.

	TMRI₁ input pin					
Pin function	P7₁ input pin	P7 ₁ output pin				
P71DDR	0	1				

P7₀/TMRI₀

The pin function is switched as shown below according to bit P70DDR. When this pin is used as an 8-bit timer counter reset pin, bits CCLR1 and CCLR0 in TCR0 are both set to 1.

P70DDR	0	1					
Pin function	P7 ₀ input pin P7 ₀ output pin						
	TMRI ₀ input pin						

RENESAS

9.9 Port 8

9.9.1 **Overview**

Port 8 is a 7-bit I/O port. Port 8 pins also function as DMAC I/O pins (\overline{DREQ}_0, \overline{TEND}_0, \overline{DACK}_0, \overline{DREQ}_1 , \overline{TEND}_1 , and \overline{DACK}_1) and a bus control signal input pin (\overline{WAIT}). Figure 9.8 shows the port 8 pin configuration.

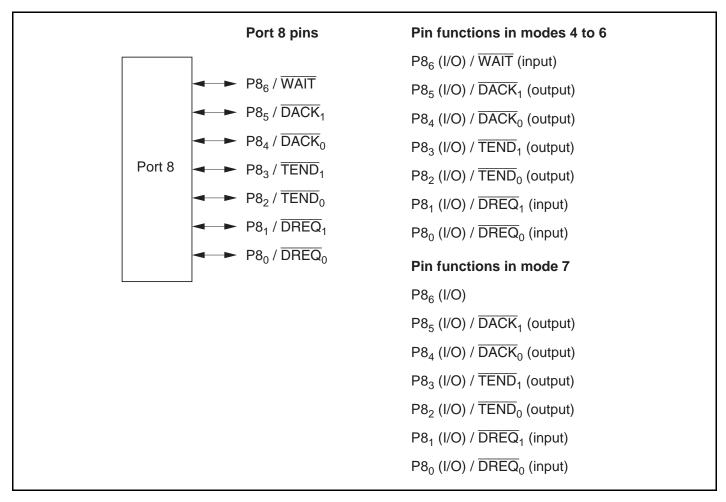


Figure 9.8 Port 8 Pin Functions

9.9.2 Register Configuration

Table 9.15 shows the port 8 register configuration.

Table 9.15 Port 8 Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port 8 data direction register	P8DDR	W	H'00	H'FEB7
Port 8 data register	P8DR	R/W	H'00	H'FF67
Port 8 register	PORT8	R	Undefined	H'FF57
Port function control register2	PFCR2	R/W	H'30	H'FFAC

Notes: 1. Lower 16 bits of the address.

2. Value of bits 6 to 0.

Port 8 Data Direction Register (P8DDR)

Bit	:	7	6	5	4	3	2	1	0
			P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR
Initial	value :	Undefined	0	0	0	0	0	0	0
R/W	:	_	W	W	W	W	W	W	W

P8DDR is a 7-bit write-only register, the individual bits of which specify input or output for the pins of port 8. P2DDR cannot be read; if it is, an undefined value will be read. Bit 7 is reserved.

Setting a P8DDR bit to 1 makes the corresponding port 8 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P8DDR is initialized to H'00 (bits 6 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

RENESAS

Port 8 Data Register (P8DR)

Bit	:	7	6	5	4	3	2	1	0
			P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR
Initial va	lue :	Undefined	0	0	0	0	0	0	0
R/W	:		R/W						

P8DR is a 7-bit readable/writable register that stores output data for the port 8 pins (P86 to P80).

Bit 7 is reserved; it returns an undefined value if read, and cannot be modified.

P8DR is initialized to H'00 (bits 6 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 8 Register (PORT8)

Bit	:	7	6	5	4	3	2	1	0
		_	P86	P85	P84	P83	P82	P81	P80
Initial value : Undefined		*	*	*	*	*	*	*	
R/W	:	_	R	R	R	R	R	R	R

Note: * Determined by state of pins P8₆ to P8₀.

PORT8 is a 7-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 8 pins (P8₆ to P8₀) must always be performed on P8DR.

Bit 7 is reserved; it returns an undefined value if read, and cannot be modified.

If a port 8 read is performed while P8DDR bits are set to 1, the P8DR values are read. If a port 8 read is performed while P8DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT8 contents are determined by the pin states, as P8DDR and P8DR are initialized. PORT8 retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0	
		WAITPS	BREQOPS	CS167E	CS25E	ASOD	_	_		
Initial valu	ue :	0	0	1	1	0	0	0	0	_
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R	

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the $\overline{\text{WAIT}}$ output pin. Set the WAITPS bit before setting the DDR bit clear to 0 and the WAITE bit in BCRL to 1.

Bit 7 WAITPS	Description	
0	WAIT output is pin P8 ₆	(Initial value)
1	WAIT output is pin P5 ₃	

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. For details, see section 9.6, Port 5, and section 9.16, Port F.

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. For details, see section 9.7, Port 6, and section 9.17, Port G.

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. For details, see section 9.7, Port 6, and section 9.17, Port G.

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 9.16, Port F.

RENESAS

Bits 2 to 0—Reserved: These bits are always read as 0.

9.9.3 Pin Functions

Port 8 pins also function as DMAC I/O pins $(\overline{DREQ_0}, \overline{TEND_0}, \overline{DACK_0}, \overline{DREQ_1}, \overline{TEND_1},$ and $\overline{DACK_1})$ and a bus control signal input pin (\overline{WAIT}) . Port 8 pin functions are shown in table 9.16.

Table 9.16 Port 8 Pin Functions

Pin Selection Method and Pin Functions

P8₆/WAIT

The pin function is switched as shown below according to the combination of the operating mode and bits WAITE, WAITPS, and P86DDR.

Operating mode		Modes	Mod	de 7		
[WAITE · WAITPS]	()	1		_	
P86DDR	0	0 1 0		0 1		1
Pin function	P8 ₆ input pin	P8 ₆ output pin	WAIT input pin	Setting pro- hibited	P8 ₆ input pin	P8 ₆ output pin

 $P8_5/\overline{DACK}_1$

The pin function is switched as shown below according to the combination of bit SAE1 in DMABCRH and bit P85DDR.

SAE1	C)	1
P85DDR	0	1	_
Pin function	P8 ₅ input pin	P8₅ output pin	DACK₁ output pin

 $P8_4/\overline{DACK}_0$

The pin function is switched as shown below according to the combination of bit SAE0 in DMABCRH and bit P84DDR.

SAE0	()	1
P84DDR	0 1		_
Pin function	P8₄ input pin	P8 ₄ output pin	DACK ₀ output pin

Rev.4.00 Sep. 07, 2007 Page 385 of 1210

Pin	Selection Method and Pin Functions							
P8 ₃ /TEND ₁	The pin function is switched as shown below according to the combination of bit TEE1 in the DMAC's DMATCR and bit P83DDR.							
	TEE1	C)	1				
	P83DDR	0	1	_				
	Pin function	P8 ₃ input pin	P8 ₃ output pin	TEND₁ output pin				
P8 ₂ /TEND ₀	The pin function is sy bit TEE0 in the DMA			ding to the combination of				
	TEE0	0		1				
	P82DDR	0	1	_				
	Pin function	P8 ₂ input pin	P8 ₂ output pin	TEND ₀ output pin				
P8 ₁ /DREQ ₁	The pin function is switched as shown below according to bit P81DDR.							
	P81DDR	C)	1				
	Pin function	P8₁ inp	out pin	P8₁ output pin				
		DREQ₁ input pin						
P8 ₀ /DREQ ₀	The pin function is sy							
	P80DDR	C)	1				
	Pin function	P8 ₀ inp	out pin	P8 ₀ output pin				
		DREQ ₀ input pin						

9.10 Port 9

9.10.1 **Overview**

Port 9 is a 6-bit I/O port. Port 9 pins also function as interrupt input pins (\overline{IRQ}_2 , \overline{IRQ}_3 , \overline{IRQ}_4 , \overline{IRQ}_5 , \overline{IRQ}_6 , and \overline{IRQ}_7). When the IRQPAS bit is set to 1, inputs \overline{IRQ}_4 to \overline{IRQ}_7 are switched to P5₀ to P5₃. Port 9 pin functions are the same in all operating modes. Port 9 uses Schmitt-triggered input. Figure 9.9 shows the port 9 pin configuration.

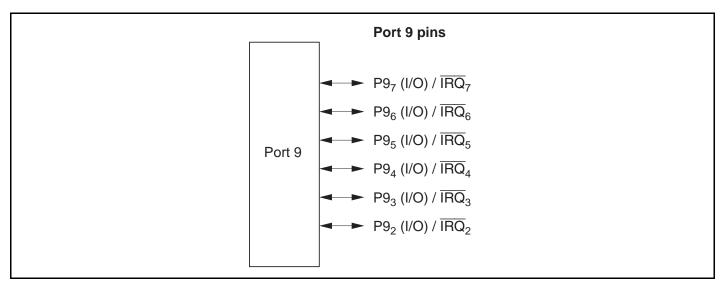


Figure 9.9 Port 9 Pin Functions

9.10.2 Register Configuration

Table 9.17 shows the port 9 register configuration.

Table 9.17 Port 9 Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port 9 data direction register	P9DDR	W	H'00 ^{*2}	H'FEB8
Port 9 data register	P9DR	R/W	H'00 ^{*2}	H'FF68
Port 9 register	PORT9	R	Undefined	H'FF58
System control register	SYSCR	R/W	H'01	H'FF39

Notes: 1. Lower 16 bits of the address.

2. Value of bits 7 to 2.

Port 9 Data Direction Register (P9DDR)

Bit	:	7	6	5	4	3	2	1	0
		P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	_	_
Initial valu	e :	0	0	0	0	0	0	Undefined	Undefined
R/W	:	W	W	W	W	W	W		

P9DDR is a 6-bit write-only register, the individual bits of which specify input or output for the pins of port 9. P2DDR cannot be read; if it is, an undefined value will be read. Bits 1 and 0 are reserved.

Setting a P9DDR bit to 1 makes the corresponding port 9 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P9DDR is initialized to H'00 (bits 7 to 2) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 9 Data Register (P9DR)

Bit	:	7	6	5	4	3	2	1	0
		P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	_	
Initial va	lue :	0	0	0	0	0	0	Undefined	Undefined
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W		

P9DR is a 6-bit readable/writable register that stores output data for the port 9 pins (P9₇ to P9₂). Bits 1 and 0 are reserved; they return an undefined value if read, and cannot be modified. P9DR is initialized to H'00 (bits 7 to 2) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 9 Register (PORT9)

Bit	:	7	6	5	4	3	2	1	0
		P97	P96	P95	P94	P93	P92	_	_
Initial val	ue :	*	*	*	*	*	*	Undefined	Undefined
R/W	:	R	R	R	R	R	R	_	_


Note: * Determined by state of pins P9₇ to P9₂.

PORT9 is a 6-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 9 pins (P9₇ to P9₂) must always be performed on P9DR.

Bits 1 and 0 are reserved; they return an undefined value if read, and cannot be modified.

If a port 9 read is performed while P9DDR bits are set to 1, the P9DR values are read. If a port 9 read is performed while P9DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT9 contents are determined by the pin states, as P9DDR and P9DR are initialized. PORT9 retains its prior state in software standby mode.

System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		_		INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W		R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 5, Interrupt Controller.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 5, Interrupt Controller.

Bit 2—LWR Output Disable (LWROD): Enables or disables LWR output. For details, see section 9.16, Port F.

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins $\overline{IRQ_4}$ to $\overline{IRQ_7}$. $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	P9 ₄ to P9 ₇ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	(Initial value)
1	P5 ₀ to P5 ₃ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 18, RAM.

RENESAS

9.10.3 Pin Functions

Port 9 pins also function as interrupt input pins (\overline{IRQ}_2 , \overline{IRQ}_3 , \overline{IRQ}_4 , \overline{IRQ}_5 , \overline{IRQ}_6 , and \overline{IRQ}_7). Port 9 pin functions are shown in table 9.18.

Table 9.18 Port 9 Pin Functions

Pin	Selection Method an	Selection Method and Pin Functions						
P9 ₇ /IRQ ₇	The pin function is sw bits P97DDR and IRC	ritched as shown below accor QPAS.	rding to the combination of					
	P97DDR	0	1					
	Pin function	P9 ₇ input pin	P9 ₇ output pin					
		ĪRQ ₇ interru	pt input pin*					
	Note: * IRQ ₇ input who	en IRQPAS = 0.						
P9 ₆ /IRQ ₆	The pin function is sw bits P96DDR and IRC	ritched as shown below accor QPAS.	rding to the combination of					
	P96DDR	0	1					
	Pin function	P9 ₆ input pin	P9 ₆ output pin					
	ĪRQ ₆ interrupt input pin*							
	Note: * IRQ ₆ input when IRQPAS = 0.							
P9 ₅ /IRQ ₅	The pin function is sw bits P95DDR and IRC		as shown below according to the combination of					
	P95DDR	0	1					
	Pin function	P9₅ input pin	P9₅ output pin					
		IRQ₅ interrupt input pin*						
	Note: $*\overline{IRQ}_5$ input when IRQPAS = 0.							
P9 ₄ /IRQ ₄	The pin function is sw bits P94DDR and IRC	ritched as shown below accor QPAS.	rding to the combination of					
	P94DDR	0	1					
	Pin function	P9 ₄ input pin	P9₄ output pin					
		IRQ₄ interrupt input pin*						
	Note: * IRQ₄ input wh	en IRQPAS = 0.						

Pin	Selection Method ar	Selection Method and Pin Functions						
P9 ₃ /IRQ ₃	The pin function is sw bits P93DDR and IR0	vitched as shown below acco QPAS.	rding to the combination of					
	P93DDR 0		1					
	Pin function	P9 ₃ input pin	P9 ₃ output pin					
	ĪRQ₃ interrupt input pin*							
	Note: * IRQ ₃ input when IRQPAS = 0.							
P9 ₂ /IRQ ₂	The pin function is sw bits P92DDR and IR0	vitched as shown below acco QPAS.	rding to the combination of					
	P92DDR	0	1					
	Pin function	P9 ₂ input pin	P9 ₂ output pin					
		ĪRQ ₂ interru	interrupt input pin*					
	Note: * IRQ ₂ input wh	Note: $*\overline{IRQ}_2$ input when IRQPAS = 0.						

9.11 Port A

9.11.1 Overview

Port A is an 8-bit I/O port. Port A pins also function as address bus outputs. The pin functions change according to the operating mode. The address output or port output function can be selected by means of bits A23E to A20E in PFCR1.

Port A has a built-in MOS input pull-up function that can be controlled by software. Pins PA_7 to PA_4 are Schmitt-triggered inputs.

Figure 9.10 shows the port A pin configuration.

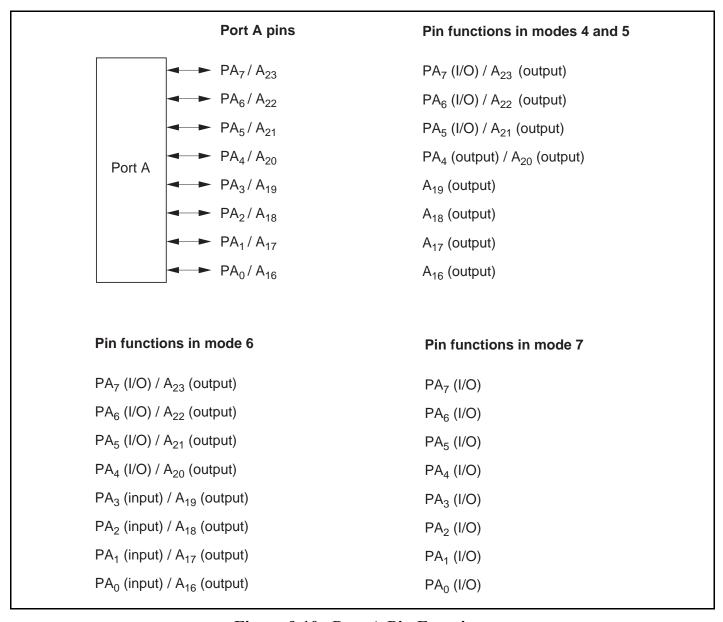


Figure 9.10 Port A Pin Functions

9.11.2 Register Configuration

Table 9.19 shows the port A register configuration.

Table 9.19 Port A Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port A data direction register	PADDR	W	H'00	H'FEB9
Port A data register	PADR	R/W	H'00	H'FF69
Port A register	PORTA	R	Undefined	H'FF59
Port A MOS pull-up control register	PAPCR	R/W	H'00	H'FF70
Port A open drain control register	PAODR	R/W	H'00	H'FF77
Port function control register 1	PFCR1	R/W	H'0F	H'FF45

Note: * Lower 16 bits of the address.

Port A Data Direction Register (PADDR)

Bit	:	7	6	5	4	3	2	1	0
		PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PADDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port A. PADDR cannot be read; if it is, an undefined value will be read.

PADDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Port A Data Register (PADR)

Bit :	7	6	5	4	3	2	1	0
	PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR
Initial value :	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA_7 to PA_0).

Rev.4.00 Sep. 07, 2007 Page 394 of 1210 REJ09B0245-0400

PADR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Register (PORTA)

Bit	:	7	6	5	4	3	2	1	0
		PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PA₇ to PA₀.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins $(PA_7 \text{ to } PA_0)$ must always be performed on PADR.

If a port A read is performed while PADDR bits are set to 1, the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state in software standby mode.

Port A MOS Pull-Up Control Register (PAPCR)

Bit	:	7	6	5	4	3	2	1	0
		PA7PCR	PA6PCR	PA5PCR	PA4PCR	PA3PCR	PA2PCR	PA1PCR	PA0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PAPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port A on an individual bit basis.

All the bits are valid in modes 6 and 7, and bits 7 to 5 are valid in modes 4 and 5. When a PADDR bit is cleared to 0 (input port setting), setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PAPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Open Drain Control Register (PAODR)

Bit	:	7	6	5	4	3	2	1	0
		PA70DR	PA6ODR	PA5ODR	PA40DR	PA3ODR	PA2ODR	PA10DR	PA00DR
Initial valu	ie:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PAODR is an 8-bit readable/writable register that controls whether PMOS is on or off for each port A pin (PA_7 to PA_0).

PAODR is valid only in mode 7. Do not PAODR bits to 1 in modes 4 to 6.

Setting a PAODR bit to 1 makes the corresponding port A pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output.

PAODR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port Function Control Register 1 (PFCR1)

Bit	:	7	6	5	4	3	2	1	0
			_	_		A23E	A22E	A21E	A20E
Initial value	:	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PFCR1 is an 8-bit readable/writable register that performs I/O port control. PFCR1 is initialized to H'0F by a reset, and in hardware standby mode.

Bits 7 to 4—Reserved: Only 0 should be written to these bits.

Bit 3—Address 23 Enable (A23E): Enables or disables address output 23 (A_{23}). This bit is valid in modes 4 to 6.

Bit 3

A23E	Description	
0	DR is output when PA7DDR = 1	
1	A ₂₃ is output when PA7DDR = 1	(Initial value)

Bit 2—Address 22 Enable (A22E): Enables or disables address output 22 (A_{22}) . This bit is valid in modes 4 to 6.

Bit 2 A22E	Description	
0	DR is output when PA6DDR = 1	
1	A ₂₂ is output when PA6DDR = 1	(Initial value)

Bit 1—Address 21 Enable (A21E): Enables or disables address output 21 (A_{21}). This bit is valid in modes 4 to 6.

Bit 1 A21E	Description	
0	DR is output when PA5DDR = 1	
1	A ₂₁ is output when PA5DDR = 1	(Initial value)

Bit 0—Address 20 Enable (A20E): Enables or disables address output 20 (A_{20}). This bit is valid in modes 4 to 6.

Bit 0 A20E	Description	
0	DR is output when PA4DDR = 1	
1	A ₂₀ is output when PA4DDR = 1	(Initial value)

9.11.3 Pin Functions

Port A pins function as address outputs and I/O ports. Port A pin functions are shown in table 9.20.

Table 9.20 Port A Pin Functions

Pin Selection Method and Pin Functions

 PA_7/A_{23} The pin function is switched as shown below according to the combination of the operating mode and bits A23E and PA7DDR.

Operating mode		Mode	Mode 7				
A23E		0		1	<u> </u>		
PA7DDR	0	1	0	1	0	1	
Pin function	PA ₇ PA ₇ input pin output pin		PA ₇ A ₂₃ input pin output pin		PA ₇ input pin	PA ₇ output pin*	

Note: * NMOS open-drain output when PA7ODR = 1.

PA₆/A₂₂

The pin function is switched as shown below according to the combination of the operating mode and bits A22E and PA6DDR.

Operating mode		Mode	Mode 7				
A22E		0		1	_		
PA6DDR	0	1	0	1	0	1	
Pin function	PA ₆ PA ₆ input pin output pin		PA ₆ A ₂₂ input pin output pin		PA ₆ input pin	PA ₆ output pin*	

Note: * NMOS open-drain output when PA6ODR = 1.

PA₅/A₂₁

The pin function is switched as shown below according to the combination of the operating mode and bits A21E and PA5DDR.

Operating mode		Mode	Mode 7				
A21E		0		1	_		
PA5DDR	0 1		0	1	0	1	
Pin function	PA ₅ PA ₅ input pin output pin		PA ₅ A ₂₁ input pin output pin		PA ₅ input pin	PA ₅ output pin*	

Note: * NMOS open-drain output when PA5ODR = 1.

Pin Selection Method and Pin Functions

PA₄/A₂₀

The pin function is switched as shown below according to the combination of the operating mode and bits A20E and PA4DDR.

Operating mode	Modes 4 and 5			Mode 6				Mode 7	
A20E	0		1	0		1			
PA4DDR	0	1	_	0	1	0	1	0	1
Pin function	Setting pro- hibited	output	A ₂₀ output pin	PA ₄ input pin	PA ₄ output pin	PA ₄ input pin	A ₂₀ output pin	PA ₄ input pin	PA ₄ output pin*

Note: * NMOS open-drain output when PA4ODR = 1.

PA₃/A₁₉

PA₂/A₁₈

PA₁/A₁₇

PA₀/A₁₆

The pin function is switched as shown below according to the combination of the operating mode and bit PAnDDR.

Operating mode	Modes 4 and 5	Mod	de 6	Mode 7		
PAnDDR		0	1	0	1	
Pin function	Address output pin	PA _n input pin*1	A _m output pin*1	PA _n input pin*1	PA _n output pin*1*2	

Notes: 1. n = 0 to 3, m = 16 to 19

2. PAn output is NMOS open-drain output when PAnODR = 1.

9.11.4 MOS Input Pull-Up Function

Port A has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used by pins PA_7 to PA_5 in modes 4 and 5, and by all pins in modes 6 and 7. MOS input pull-up can be specified as on or off on an individual bit basis.

When a PADDR bit is cleared to 0, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9.21 summarizes the MOS input pull-up states.

Table 9.21 MOS Input Pull-Up States (Port A)

Modes		Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
6, 7	PA ₇ to PA ₀	Off	Off	On/off	On/off
4, 5	PA ₇ to PA ₅			On/off	On/off
	PA ₄ to PA ₀			Off	Off

RENESAS

Legend

Off: MOS input pull-up is always off.

On/off: On when PADDR = 0 and PAPCR = 1; otherwise off.

9.12 **Port B**

9.12.1 Overview

Port B is an 8-bit I/O port. Port B has an address bus output function, and the pin functions change according to the operating mode.

Port B has a built-in MOS input pull-up function that can be controlled by software.

Figure 9.11 shows the port B pin configuration.

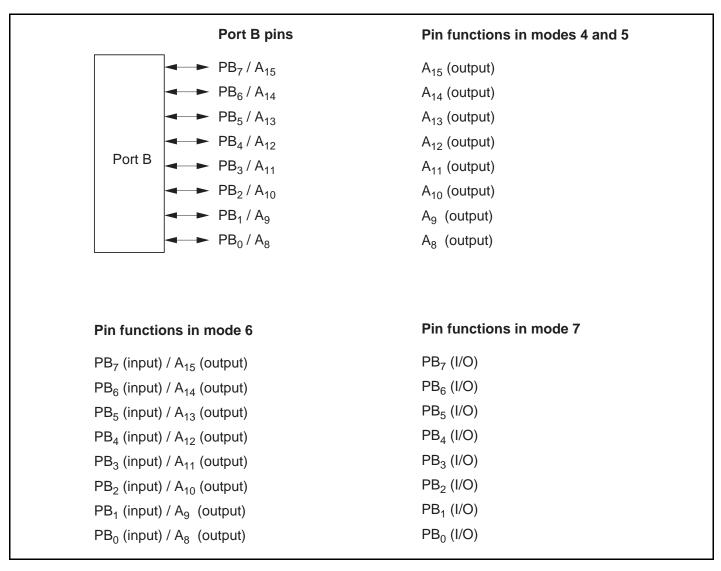


Figure 9.11 Port B Pin Functions

9.12.2 Register Configuration

Table 9.22 shows the port B register configuration.

Table 9.22 Port B Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port B data direction register	PBDDR	W	H'00	H'FEBA
Port B data register	PBDR	R/W	H'00	H'FF6A
Port B register	PORTB	R	Undefined	H'FF5A
Port B MOS pull-up control register	PBPCR	R/W	H'00	H'FF71

Note: * Lower 16 bits of the address.

Port B Data Direction Register (PBDDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PBDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port B. PBDDR cannot be read; if it is, an undefined value will be read.

PBDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Modes 4 and 5 The corresponding port B pins are address outputs irrespective of the value of the PBDDR bits.

Mode 6 Setting a PBDDR bit to 1 makes the corresponding port B pin an address output, while clearing the bit to 0 makes the pin an input port.

Mode 7 Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Port B Data Register (PBDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBDR is an 8-bit readable/writable register that stores output data for the port B pins (PB₇ to PB₀). PBDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port B Register (PORTB)

Bit	:	7	6	5	4	3	2	1	0
		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Initial val	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PB₇ to PB₀.

PORTB is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port B pins (PB₇ to PB₀) must always be performed on PBDR.

If a port B read is performed while PBDDR bits are set to 1, the PBDR values are read. If a port B read is performed while PBDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTB contents are determined by the pin states, as PBDDR and PBDR are initialized. PORTB retains its prior state in software standby mode.

Port B MOS Pull-Up Control Register (PBPCR)

Bit	:	7	6	5	4	3	2	1	0
		PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port B on an individual bit basis.

When a PBDDR bit is cleared to 0 (input port setting) in mode 6 or 7, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PBPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.12.3 Pin Functions

Modes 4 and 5: In modes 4 and 5, port B pins are automatically designated as address outputs.

Port B pin functions in modes 4 and 5 are shown in figure 9.12.

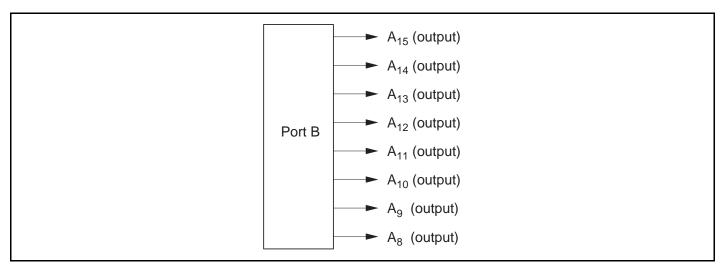


Figure 9.12 Port B Pin Functions (Modes 4 and 5)

RENESAS

Mode 6: In mode 6, port B pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an address output, while clearing the bit to 0 makes the pin an input port.

Port B pin functions in mode 6 are shown in figure 9.13

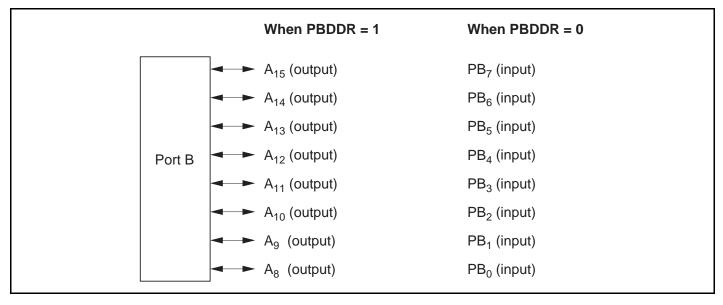


Figure 9.13 Port B Pin Functions (Mode 6)

Mode 7: In mode 7, port B pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Port B pin functions in mode 7 are shown in figure 9.14.

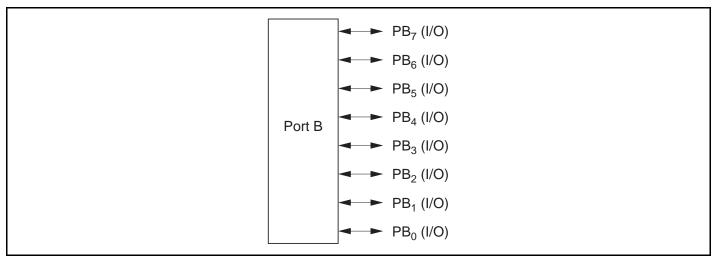


Figure 9.14 Port B Pin Functions (Mode 7)

9.12.4 MOS Input Pull-Up Function

Port B has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 6 and 7, and can be specified as on or off on an individual bit basis.

When a PBDDR bit is cleared to 0 in mode 6 or 7, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9.23 summarizes the MOS input pull-up states.

Table 9.23 MOS Input Pull-Up States (Port B)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4, 5	Off	Off	Off	Off
6, 7			On/off	On/off

RENESAS

Legend

Off: MOS input pull-up is always off.

On/off: On when PBDDR = 0 and PBPCR = 1; otherwise off.

9.13 **Port C**

9.13.1 Overview

Port C is an 8-bit I/O port. Port C has an address bus output function, and the pin functions change according to the operating mode.

Port C has a built-in MOS input pull-up function that can be controlled by software.

Figure 9.15 shows the port C pin configuration.

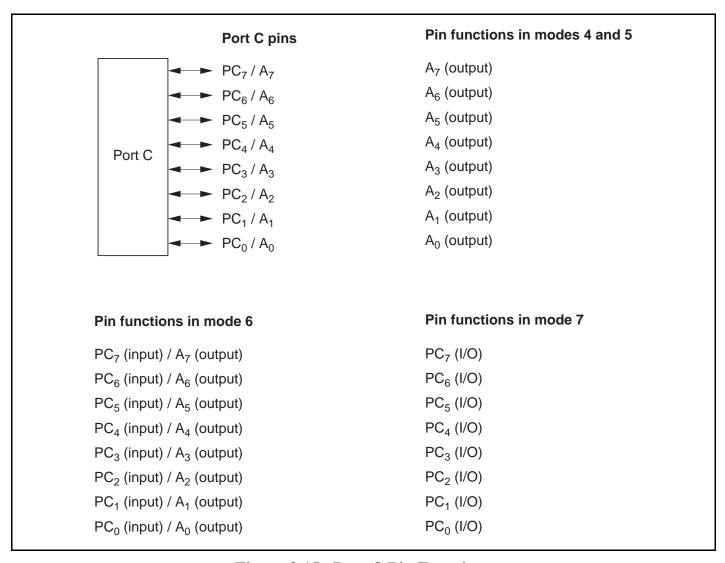


Figure 9.15 Port C Pin Functions

9.13.2 Register Configuration

Table 9.24 shows the port C register configuration.

Table 9.24 Port C Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port C data direction register	PCDDR	W	H'00	H'FEBB
Port C data register	PCDR	R/W	H'00	H'FF6B
Port C register	PORTC	R	Undefined	H'FF5B
Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF72

Note: * Lower 16 bits of the address.

Port C Data Direction Register (PCDDR)

Bit		7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PCDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read.

PCDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Modes 4 and 5 The corresponding port C pins are address outputs irrespective of the value of the PCDDR bits.

Mode 6 Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Mode 7 Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Port C Data Register (PCDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCDR is an 8-bit readable/writable register that stores output data for the port C pins (PC₇ to PC₀).

PCDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port C Register (PORTC)

Bit	:	7	6	5	4	3	2	1	0
		PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PC₇ to PC₀.

PORTC is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port C pins (PC_7 to PC_0) must always be performed on PCDR.

If a port C read is performed while PCDDR bits are set to 1, the PCDR values are read. If a port C read is performed while PCDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTC contents are determined by the pin states, as PCDDR and PCDR are initialized. PORTC retains its prior state in software standby mode.

Port C MOS Pull-Up Control Register (PCPCR)

Bit	:	7	6	5	4	3	2	1	0
		PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port C on an individual bit basis.

When a PCDDR bit is cleared to 0 (input port setting) in mode 6 or 7, setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PCPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.13.3 Pin Functions

Modes 4 and 5: In modes 4 and 5, port C pins are automatically designated as address outputs.

Port C pin functions in modes 4 and 5 are shown in figure 9.16.

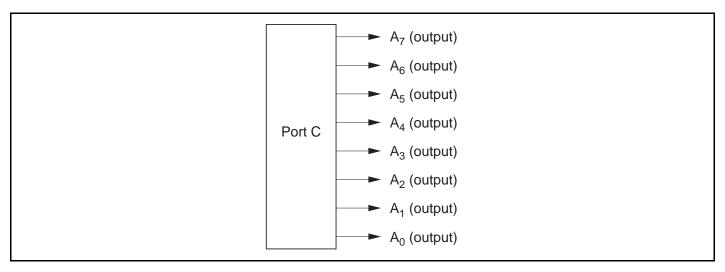


Figure 9.16 Port C Pin Functions (Modes 4 and 5)

RENESAS

Mode 6: In mode 6, port C pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Port C pin functions in mode 6 are shown in figure 9.17.

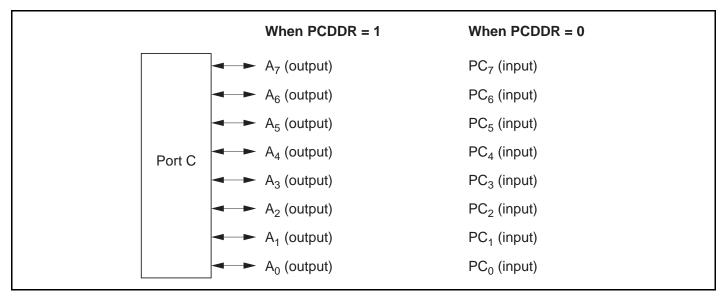


Figure 9.17 Port C Pin Functions (Mode 6)

Mode 7: In mode 7, port C pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Port C pin functions in mode 7 are shown in figure 9.18.

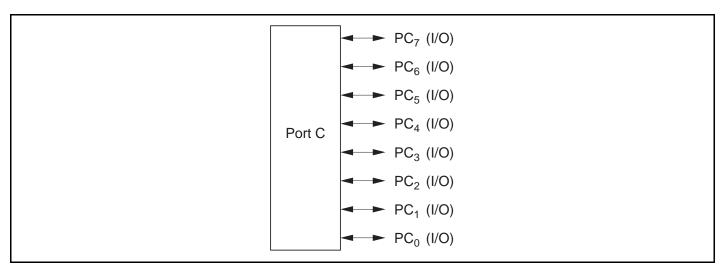


Figure 9.18 Port C Pin Functions (Mode 7)

9.13.4 MOS Input Pull-Up Function

Port C has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 6 and 7, and can be specified as on or off on an individual bit basis.

When a PCDDR bit is cleared to 0 in mode 6 or 7, setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9.25 summarizes the MOS input pull-up states.

Table 9.25 MOS Input Pull-Up States (Port C)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4, 5	Off	Off	Off	Off
6, 7			On/off	On/off

Legend

Off: MOS input pull-up is always off.

On/off: On when PCDDR = 0 and PCPCR = 1; otherwise off.

9.14 Port D

9.14.1 Overview

Port D is an 8-bit I/O port. Port D has a data bus I/O function, and the pin functions change according to the operating mode.

Port D has a built-in MOS input pull-up function that can be controlled by software.

Figure 9.19 shows the port D pin configuration.

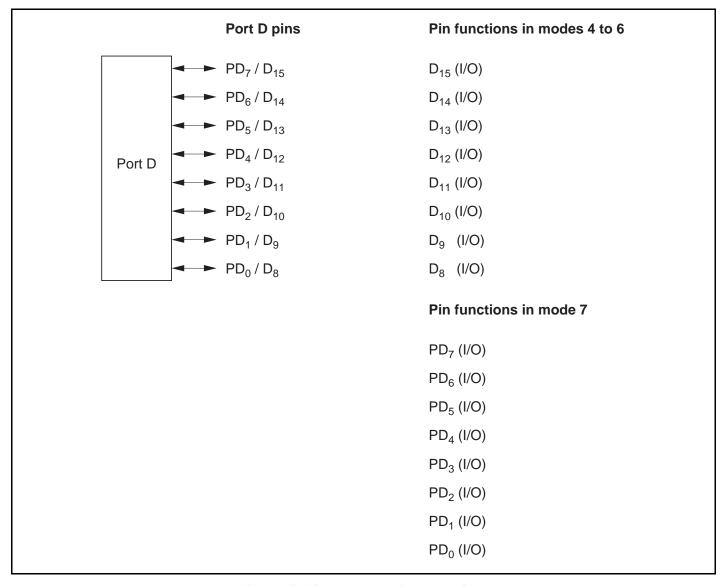


Figure 9.19 Port D Pin Functions

9.14.2 Register Configuration

Table 9.26 shows the port D register configuration.

Table 9.26 Port D Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port D data direction register	PDDDR	W	H'00	H'FEBC
Port D data register	PDDR	R/W	H'00	H'FF6C
Port D register	PORTD	R	Undefined	H'FF5C
Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FF73

Note: * Lower 16 bits of the address.

Port D Data Direction Register (PDDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PDDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read.

PDDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Modes 4 to 6

The input/output direction specification by PDDDR is ignored, and port D is automatically designated for data I/O.

• Mode 7

Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D Data Register (PDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDDR is an 8-bit readable/writable register that stores output data for the port D pins (PD $_7$ to PD $_0$).

PDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port D Register (PORTD)

Bit	:	7	6	5	4	3	2	1	0
		PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Initial value	e:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PD₇ to PD₀.

PORTD is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port D pins (PD_7 to PD_0) must always be performed on PDDR.

If a port D read is performed while PDDDR bits are set to 1, the PDDR values are read. If a port D read is performed while PDDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTD contents are determined by the pin states, as PDDDR and PDDR are initialized. PORTD retains its prior state in software standby mode.

Port D MOS Pull-Up Control Register (PDPCR)

Bit	:	7	6	5	4	3	2	1	0
		PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
Initial valu	ie:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port D on an individual bit basis.

When a PDDDR bit is cleared to 0 (input port setting) in mode 7, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PDPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.14.3 Pin Functions

Modes 4 to 6: In modes 4 to 6, port D pins are automatically designated as data I/O pins.

Port D pin functions in modes 4 to 6 are shown in figure 9.20.

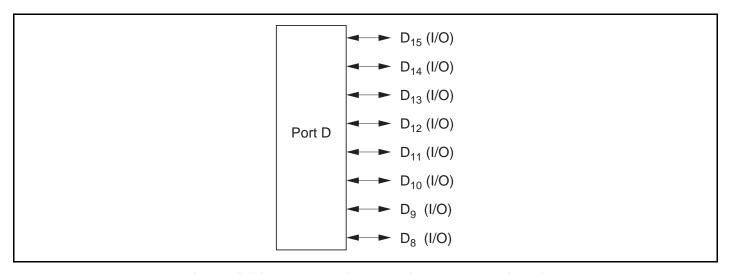


Figure 9.20 Port D Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port D pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D pin functions in mode 7 are shown in figure 9.21.

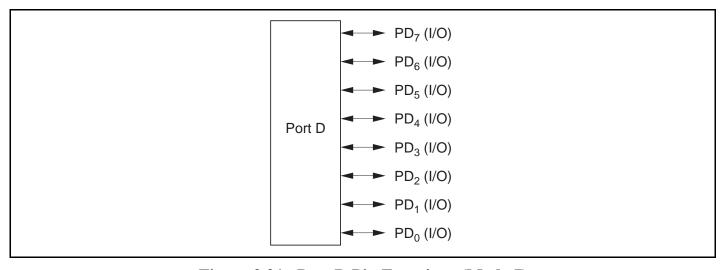


Figure 9.21 Port D Pin Functions (Mode 7)

9.14.4 MOS Input Pull-Up Function

Port D has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in mode 7, and can be specified as on or off on an individual bit basis.

When a PDDDR bit is cleared to 0 in mode 7, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9.27 summarizes the MOS input pull-up states.

Table 9.27 MOS Input Pull-Up States (Port D)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4 to 6	Off	Off	Off	Off
7	_		On/off	On/off

Legend

Off: MOS input pull-up is always off.

On/off: On when PDDDR = 0 and PDPCR = 1; otherwise off.

9.15 **Port E**

9.15.1 Overview

Port E is an 8-bit I/O port. Port E has a data bus I/O function, and the pin functions change according to the operating mode and whether 8-bit or 16-bit bus mode is selected.

Port E has a built-in MOS input pull-up function that can be controlled by software.

Figure 9.22 shows the port E pin configuration.

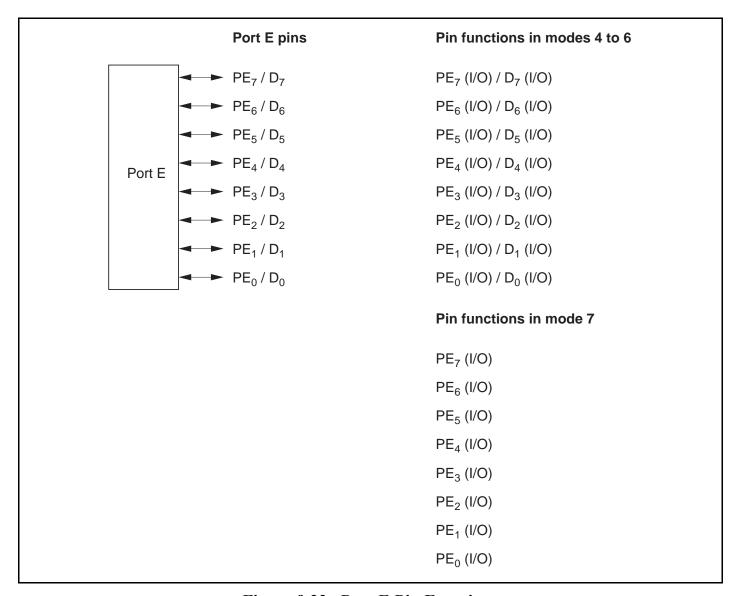


Figure 9.22 Port E Pin Functions

9.15.2 Register Configuration

Table 9.28 shows the port E register configuration.

Table 9.28 Port E Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port E data direction register	PEDDR	W	H'00	H'FEBD
Port E data register	PEDR	R/W	H'00	H'FF6D
Port E register	PORTE	R	Undefined	H'FF5D
Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FF74

Note: * Lower 16 bits of the address.

Port E Data Direction Register (PEDDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PEDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read.

PEDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Modes 4 to 6

When 8-bit bus mode has been selected, port E pins function as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode has been selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

For details of 8-bit and 16-bit bus modes, see section 6, Bus Controller.

• Mode 7

Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E Data Register (PEDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEDR is an 8-bit readable/writable register that stores output data for the port E pins (PE₇ to PE₀).

PEDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port E Register (PORTE)

Bit	:	7	6	5	4	3	2	1	0
		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	•	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PE₇ to PE₀.

PORTE is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port E pins (PE₇ to PE₀) must always be performed on PEDR.

If a port E read is performed while PEDDR bits are set to 1, the PEDR values are read. If a port E read is performed while PEDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTE contents are determined by the pin states, as PEDDR and PEDR are initialized. PORTE retains its prior state in software standby mode.

Rev.4.00 Sep. 07, 2007 Page 421 of 1210

Port E MOS Pull-Up Control Register (PEPCR)

Bit	:	7	6	5	4	3	2	1	0
		PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port E on an individual bit basis.

When a PEDDR bit is cleared to 0 (input port setting) in mode 4, 5, or 6 with 8-bit bus mode selected, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PEPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.15.3 Pin Functions

Modes 4 to 6: In modes 4 to 6, when 8-bit access is designated and 8-bit bus mode is selected, port E pins are automatically designated as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode is selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

Port E pin functions in modes 4 to 6 are shown in figure 9.23.

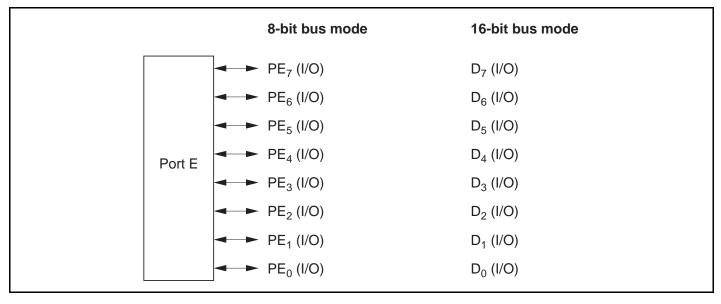


Figure 9.23 Port E Pin Functions (Modes 4 to 6)

Rev.4.00 Sep. 07, 2007 Page 423 of 1210

Mode 7: In mode 7, port E pins function as I/O ports. Input or output can be specified for each pin on a bit-by-bit basis. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E pin functions in mode 7 are shown in figure 9.24.

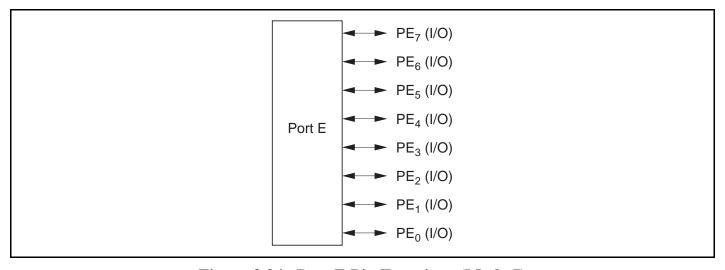


Figure 9.24 Port E Pin Functions (Mode 7)

RENESAS

9.15.4 MOS Input Pull-Up Function

Port E has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 4, 5, and 6 when 8-bit bus mode is selected, or in mode 7, and can be specified as on or off on an individual bit basis.

When a PEDDR bit is cleared to 0 in mode 4, 5, or 6 when 8-bit bus mode is selected, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9.29 summarizes the MOS input pull-up states.

Table 9.29 MOS Input Pull-Up States (Port E)

Modes		Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
7		Off	Off	On/off	On/off
4 to 6	8-bit bus				
	16-bit bus			Off	Off

Legend

Off: MOS input pull-up is always off.

On/off: On when PEDDR = 0 and PEPCR = 1; otherwise off.

9.16 Port F

9.16.1 Overview

Port F is an 8-bit I/O port. Port F pins also function as bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{LCAS} , \overline{BREQO} , \overline{BREQO} , and \overline{BACK}) and the system clock (ϕ) output pin. The \overline{AS} , \overline{LWR} , and \overline{BREQO} output pins can be switched by means of settings in PFCR2 and SYSCR.

Figure 9.25 shows the port F pin configuration.

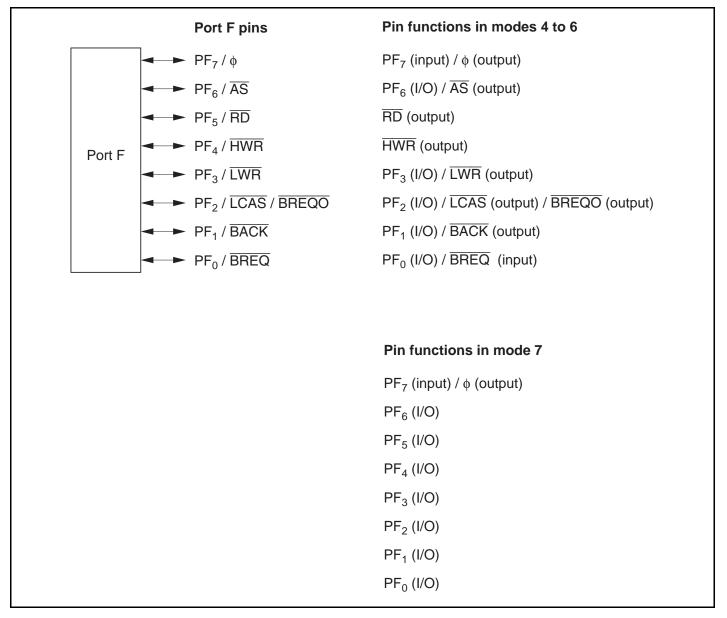


Figure 9.25 Port F Pin Functions

RENESAS

9.16.2 Register Configuration

Table 9.30 shows the port F register configuration.

Table 9.30 Port F Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port F data direction register	PFDDR	W	H'80/H'00*2	H'FEBE
Port F data register	PFDR	R/W	H'00	H'FF6E
Port F register	PORTF	R	Undefined	H'FF5E
Port function control register 2	PFCR2	R/W	H'30	H'FFAC
System control register	SYSCR	R/W	H'01	H'FF39

Notes: 1. Lower 16 bits of the address.

2. Initial value depends on the mode.

Port F Data Direction Register (PFDDR)

Bit :	7	6	5	4	3	2	1	0
	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to 6								
Initial value:	1	0	0	0	0	0	0	0
R/W :	W	W	W	W	W	W	W	W
Mode 7								
Initial value:	0	0	0	0	0	0	0	0
R/W :	W	W	W	W	W	W	W	W

PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read.

PFDDR is initialized by a reset, and in hardware standby mode, to H'80 in modes 4 to 6, and to H'00 in mode 7. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Port F Data Register (PFDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PFDR is an 8-bit readable/writable register that stores output data for the port F pins (PF₇ to PF₀).

PFDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port F Register (PORTF)

Bit	:	7	6	5	4	3	2	1	0
		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
Initial val	ue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PF₇ to PF₀.

PORTF is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port F pins (PF_7 to PF_0) must always be performed on PFDR.

If a port F read is performed while PFDDR bits are set to 1, the PFDR values are read. If a port F read is performed while PFDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTF contents are determined by the pin states, as PFDDR and PFDR are initialized. PORTF retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0
		WAITPS	BREQOPS	CS167E	CS25E	ASOD		_	
Initial va	alue :	0	0	1	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R

Bit 7—WAIT Pin Select (WAITPS): Selects the $\overline{\text{WAIT}}$ input pin. For details, see section 9.6, Port 5.

Bit 6—BREQO Pin Select (BREQOPS): Seelects the BREQO output pin. Set the BREQOPS bit before setting the BREQOE bit in BCRL to 1.

Bit 6 BREQOPS	Description	
0	BREQO output pin PF ₂	(Initial value)
1	BREQO output pin P5 ₃	

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. For details, see section 9.7, Port 6, and section 9.17, Port G.

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. For details, see section 9.7, Port 6, and section 9.17, Port G.

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. This bit is valid in modes 4 to 6.

Bit 3 ASOD	Description	
0	PF ₆ is used as AS output pin	(Initial value)
1	PF ₆ is designated as I/O port, and does not fund	ction as AS output pin

Bits 2 to 0—Reserved: These bits are always read as 0.

System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0	
				INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME	
Initial valu	e :	0	0	0	0	0	0	0	1	•
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 5, Interrupt Controller.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 5, Interrupt Controller.

Bit 2—LWR Output Disable (LWROD): Enables or disables \overline{LWR} output. This bit is valid in modes 4 to 6.

Bit 2 LWROD	Description	
0	PF ₃ is designated as LWR output pin	(Initial value)
1	PF_3 is designated as I/O port, and does not function as $\overline{L^{V}}$	WR output pin

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for $\overline{IRQ_4}$ to $\overline{IRQ_7}$. For details, see section 9.6, Port 5.

RENESAS

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 18, RAM.

9.16.3 Pin Functions

Port F pins also function as bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{LCAS} , \overline{BREQO} , \overline{BREQ} , and \overline{BACK}) and the system clock (ϕ) output pin. The pin functions differ between modes 4 to 6, and mode 7. Port F pin functions are shown in table 9.31.

Table 9.31 Port F Pin Functions

Pin	Selection Meth	Selection Method and Pin Functions						
PF ₇ /φ	The pin function is switched as shown below according to bit PF7DDR.							
	PF7DDR	0			1			
	Pin function	PF	input pin		φ output	pin		
PF ₆ /AS	The pin function bit PF6DDR, ar			low according	g to the oper	rating mode,		
	Operating Mode		Modes 4 to 6			de 7		
	ASOD	0	1		-	_		
	PF6DDR	_	0	1	0	1		
	Pin function	AS output pin	PF ₆ input pin	PF ₆ output pin	PF ₆ input pin	PF ₆ output pin		
PF₅/RD	The pin function and bit PF5DDI Operating Mode		I	below according to the operating mode Mode 7				
	PF5DDR			0	1			
	Pin function	RD outpu	ıt pin	PF ₅ input pin	PF ₅	output pin		
PF ₄ /HWR	The pin function		as shown be	low accordin	g to the oper	rating mode		
	Operating Mode	Modes 4	to 6		Mode 7			
	PF4DDR	_		0		1		
	Pin function	HWR outp	out pin	PF₄ input pin	PF ₄	output pin		

Rev.4.00 Sep. 07, 2007 Page 431 of 1210

Pin

Selection Method and Pin Functions

PF₃/LWR

The pin function is switched as shown below according to the operating mode, bit PF3DDR, and bit LWROD in SYSCR.

Operating Mode		Modes 4 to 6	6	Mode 7		
LWROD	0		1			
PF3DDR	_	0	1	0	1	
Pin function	LWR output pin	PF ₃ PF ₃ input pin output pin		PF ₃ input pin	PF ₃ output pin	

PF₂/LCAS/ BREQO

The pin function is switched as shown below according to the combination of the operating mode, and bits RMTS2 to RMTS0, BREQOE, ABW5 to ABW2, BREQOPS, and PF2DDR.

Operating Mode		Modes	4 to 6		Мо	de 7
[DRAM space setting] · [16-bit access setting]		0		1	_	
[BREQOE · BREQOPS]	0		1	_	_	_
PF2DDR	0	1		_	0	1
Pin function	0 1 PF ₂ PF ₂ input pin output pin		BREQO output pin	CAS output pin	PF ₂ input pin	PF ₂ output pin

$\mathsf{PF}_1/\overline{\mathsf{BACK}}$

The pin function is switched as shown below according to the combination of the operating mode, and bits BRLE and PF1DDR.

Operating Mode		Modes 4 to 6	Mode 7		
BRLE	()	1	_	
PF1DDR	0	1	_	0	1
Pin function	PF ₁ PF ₁		BACK	PF ₁	PF ₁
	input pin	output pin	output pin	input pin	output pin

Pin Selection Method and Pin Functions

PF₀/BREQ

The pin function is switched as shown below according to the combination of the operating mode, and bits BRLE and PF0DDR.

Operating Mode		Modes 4 to 6	Mode 7		
BRLE	()	1	_	
PF0DDR	0	1	_	0	1
Pin function	PF ₀ input pin	PF ₀ output pin	BREQ input pin	PF ₀ input pin	PF ₀ output pin

9.17 Port G

9.17.1 Overview

Port G is a 5-bit I/O port. Port G pins also function as bus control signal output pins ($\overline{CS0}$ to $\overline{CS3}$, and \overline{CAS}). Enabling or disabling of \overline{CS}_1 to \overline{CS}_2 output can be changed by a setting in PFCR2.

Figure 9.26 shows the port G pin configuration.

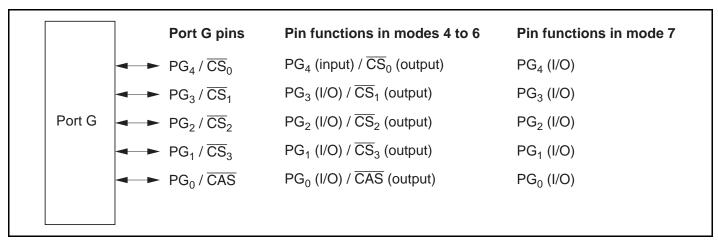


Figure 9.26 Port G Pin Functions

9.17.2 Register Configuration

Table 9.32 shows the port G register configuration.

Table 9.32 Port G Registers

Name	Abbreviation	R/W	Initial Value ^{*2}	Address*1
Port G data direction register	PGDDR	W	H'10/H'00*3	H'FEBF
Port G data register	PGDR	R/W	H'00	H'FF6F
Port G register	PORTG	R	Undefined	H'FF5F
Port function control register 2	PFCR2	R/W	H'30	H'FFAC

Notes: 1. Lower 16 bits of the address.

- 2. Value of bits 4 to 0.
- 3. Initial value depends on the mode.

Port G Data Direction Register (PGDDR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
Modes 4 and 5								
Initial value	Undefined	Undefined	Undefined	1	0	0	0	0
R/W	: <u> </u>	_	_	W	W	W	W	W
Modes 6 and 7								
Initial value	Undefined	Undefined	Undefined	0	0	0	0	0
R/W	: -			W	W	W	W	W

PGDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port G. PGDDR cannot be read, and bits 7 to 5 are reserved. If PGDDR is read, an undefined value will be read.

The PG4DDR bit is initialized by a reset, and in hardware standby mode, to 1 in modes 4 and 5, and to 0 in modes 6 and 7. PGDDR retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Port G Data Register (PGDR)

Bit	:	7	6	5	4	3	2	1	0	
			_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	
Init	ial value :	Undefined	Undefined	Undefined	0	0	0	0	0	•
R/\	N :	_		_	R/W	R/W	R/W	R/W	R/W	

PGDR is an 8-bit readable/writable register that stores output data for the port G pins (PG₄ to PG_0).

Bits 7 to 5 are reserved; they return an undefined value if read, and cannot be modified.

PGDR is initialized to H'00 (bits 4 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port G Register (PORTG)

Bit :	7	6	5	4	3	2	1	0
	_	_	_	PG4	PG3	PG2	PG1	PG0
Initial value:	Undefined	Undefined	Undefined	*	*	*	*	*
R/W :				R	R	R	R	R

Note: * Determined by state of pins PG₄ to PG₀.

PORTG is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port G pins (PG_4 to PG_0) must always be performed on PGDR.

Bits 7 to 5 are reserved; they return an undefined value if read, and cannot be modified.

If a port G read is performed while PGDDR bits are set to 1, the PGDR values are read. If a port G read is performed while PGDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTG contents are determined by the pin states, as PGDDR and PGDR are initialized. PORTG retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit		7	6	5	4	3	2	1	0	
		WAITPS	BREQOPS	CS167E	CS25E	ASOD	_	_		
Initial val	ue:	0	0	1	1	0	0	0	0	
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R	

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the WAIT input pin. For details, see section 9.6, Port 5.

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. For details, see section 9.6, Port 5.

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. Change the CS167E setting only when the DDR bits are cleared to 0.

Bit 5 CS167E	Description	
0	\overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output disabled (can be used as I/O ports)	
1	$\overline{\text{CS}}_1$, $\overline{\text{CS}}_6$, and $\overline{\text{CS}}_7$ output enabled	(Initial value)

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. Change the CS25E setting only when the DDR bits are cleared to 0.

Bit 4 CS25E	Description	
0	\overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output disabled (can be used as I/O ports)
1	$\overline{\text{CS}}_2$, $\overline{\text{CS}}_3$, $\overline{\text{CS}}_4$, and $\overline{\text{CS}}_5$ output enabled	(Initial value)

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 9.16, Port F.

Bits 2 to 0—Reserved: These bits are always read as 0.

9.17.3 Pin Functions

Port G pins also function as bus control signal output pins (\overline{CSO} to $\overline{CS3}$, and \overline{CAS}). The pin functions are different between in mode 7, and modes 4 to 6. Port G pin functions are shown in table 9.33.

Table 9.33 Port G Pin Functions

Pin Selection Method and Pin Functions

 PG_4/\overline{CS}_0

The pin function is switched as shown below according to the operating mode and bit PG4DDR.

Operating Mode	Modes	4 to 6	Mode 7		
PG4DDR	0 1		0	1	
Pin function	PG ₄ input pin	CS₀ output pin	PG ₄ input pin	PG₄ output pin	

PG₃/CS₁

The pin function is switched as shown below according to the operating mode and bits PG3DDR and CS167E.

Operating Mode		Mode	Mode 7			
CS167E	()		1	0	1
PG3DDR	0	1	0	1	_	
Pin function	PG₃ input pin	PG₃ output pin	•	CS₁ output pin	PG ₃ input pin	PG ₃ output pin

 $\overline{PG_2}/\overline{CS_2}$

The pin function is switched as shown below according to the operating mode and bits PG2DDR and CS25E.

Operating Mode		Mode	Mode 7			
CS25E	()		1	0	1
PG2DDR	0	1	0	1	_	
Pin function	PG ₂ input	PG ₂	PG ₂ input	CS₂ output	PG ₂ input	PG ₂
	pin	output pin	pin	pin	pin	output pin

Rev.4.00 Sep. 07, 2007 Page 437 of 1210

Pin Selection Method and Pin Functions

 PG_1/\overline{CS}_3

The pin function is switched as shown below according to the operating mode and bits PG1DDR and CS25E.

Operating Mode		Modes	Mode 7			
CS25E	() 1			0	1
PG1DDR	0	1	0	1	_	_
Pin function	PG₁ input pin	PG₁ output pin	PG₁ input pin	CS₃ output pin	•	PG₁ output pin

 PG_0/\overline{CAS}

The pin function is switched as shown below according to the combination of the operating mode and bits RMTS2 to RMTS0 and PG0DDR.

Operating Mode		Modes 4 to 6	Mode 7		
RMTS2 to	B'000,		B'001 to	_	
RMTS0	B'100 to B'111		B'011		
PG0DDR	0	1	_	0	1
Pin function	PG ₀	PG ₀	CAS	PG ₀	PG ₀
	input	output	output	input	output
	pin	pin	pin	pin	pin

Section 10 16-Bit Timer Pulse Unit (TPU)

10.1 Overview

The chip has an on-chip 16-bit timer pulse unit (TPU) that comprises six 16-bit timer channels.

10.1.1 Features

- Maximum 16-pulse input/output
 - A total of 16 timer general registers (TGRs) are provided (four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5), each of which can be set independently as an output compare/input capture register
 - TGRC and TGRD for channels 0 and 3 can also be used as buffer registers
- Selection of 8 counter input clocks for each channel
- The following operations can be set for each channel:
 - Waveform output at compare match: Selection of 0, 1, or toggle output
 - Input capture function: Selection of rising edge, falling edge, or both edge detection
 - Counter clear operation: Counter clearing possible by compare match or input capture
 - Synchronous operation:
 - Multiple timer counters (TCNT) can be written to simultaneously
 - Simultaneous clearing by compare match and input capture possible
 - Register simultaneous input/output possible by counter synchronous operation
 - PWM mode:
 - Any PWM output duty can be set
 - Maximum of 15-phase PWM output possible by combination with synchronous operation
- Buffer operation settable for channels 0 and 3
 - Input capture register double-buffering possible
 - Automatic rewriting of output compare register possible
- Phase counting mode settable independently for each of channels 1, 2, 4, and 5
 - Two-phase encoder pulse up/down-count possible
- Cascaded operation
 - Channel 2 (channel 5) input clock operates as 32-bit counter by setting channel 1 (channel
 4) overflow/underflow
- Fast access via internal 16-bit bus
 - Fast access is possible via a 16-bit bus interface

Rev.4.00 Sep. 07, 2007 Page 439 of 1210

- 26 interrupt sources
 - For channels 0 and 3, four compare match/input capture dual-function interrupts and one overflow interrupt can be requested independently
 - For channels 1, 2, 4, and 5, two compare match/input capture dual-function interrupts, one overflow interrupt, and one underflow interrupt can be requested independently
- Automatic transfer of register data
 - Block transfer, 1-word data transfer, and 1-byte data transfer possible by data transfer controller (DTC) or DMA controller (DMAC) activation
- Programmable pulse generator (PPG) output trigger can be generated
 - Channel 0 to 3 compare match/input capture signals can be used as PPG output trigger
- A/D converter conversion start trigger can be generated
 - Channel 0 to 5 compare match A/input capture A signals can be used as A/D converter conversion start trigger
- Module stop mode can be set
 - As the initial setting, TPU operation is halted. Register access is enabled by exiting module stop mode

Table 10.1 lists the functions of the TPU.

Table 10.1 TPU Functions

Item		Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
Count clos	ck	φ/1 φ/4 φ/16 φ/64 TCLKA TCLKB TCLKC TCLKC	φ/1 φ/4 φ/16 φ/64 φ/256 TCLKA TCLKB	φ/1 φ/4 φ/16 φ/64 φ/1024 TCLKA TCLKB TCLKC	φ/1 φ/4 φ/16 φ/64 φ/256 φ/1024 φ/4096 TCLKA	φ/1 φ/4 φ/16 φ/64 φ/1024 TCLKA TCLKC	φ/1 φ/4 φ/16 φ/64 φ/256 TCLKA TCLKC
General re	egisters	TGR0A TGR0B	TGR1A TGR1B	TGR2A TGR2B	TGR3A TGR3B	TGR4A TGR4B	TGR5A TGR5B
General re buffer regi	_	TGR0C TGR0D	_		TGR3C TGR3D	_	_
I/O pins		TIOCA0 TIOCB0 TIOCC0 TIOCD0	TIOCA1 TIOCB1	TIOCA2 TIOCB2	TIOCA3 TIOCB3 TIOCC3 TIOCD3	TIOCA4 TIOCB4	TIOCA5 TIOCB5
Counter cl function	Counter clear function		TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare	0 output	0	0	0	0	0	0
match	1 output	0	0	0	0	0	0
output	Toggle output	0	0	0	0	0	0
Input capt function	ure	0	0	0	0	0	0
Synchrono operation	ous	0	0	0	0	0	0
PWM mod	le	0	0	0	0	0	0
Phase cou	ınting	_	0	0	_	0	0
Buffer ope	eration	0	_	_	0	_	_

Rev.4.00 Sep. 07, 2007 Page 441 of 1210

ltem	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
DMAC activation	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture	TGR3A compare match or input capture	TGR4A compare match or input capture	TGR5A compare match or input capture
DTC activation	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
A/D conversion start trigger	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture	TGR3A compare match or input capture	TGR4A compare match or input capture	TGR5A compare match or input capture
PPG trigger	TGR0A/ TGR0B compare match or input capture	TGR1A/ TGR1B compare match or input capture	TGR2A/ TGR2B compare match or input capture	TGR3A/ TGR3B compare match or input capture	_	_
Interrupt sources	 5 sources Compare match or input capture 0A Compare match or input capture 0B Compare match or input capture 0C Compare match or input capture 0C Ocompare match or input capture 0D Overflow 	 4 sources Compare match or input capture 1A Compare match or input capture 1B Overflow Underflow 	 4 sources Compare match or input capture 2A Compare match or input capture 2B Overflow Underflow 	 5 sources Compare match or input capture 3A Compare match or input capture 3B Compare match or input capture 3C Compare match or input capture 3C Overflow 	 4 sources Compare match or input capture 4A Compare match or input capture 4B Overflow Underflow 	 4 sources Compare match or input capture 5A Compare match or input capture 5B Overflow Underflow

Legend:

O: Possible

—: Not possible

10.1.2 Block Diagram

Figure 10.1 shows a block diagram of the TPU.

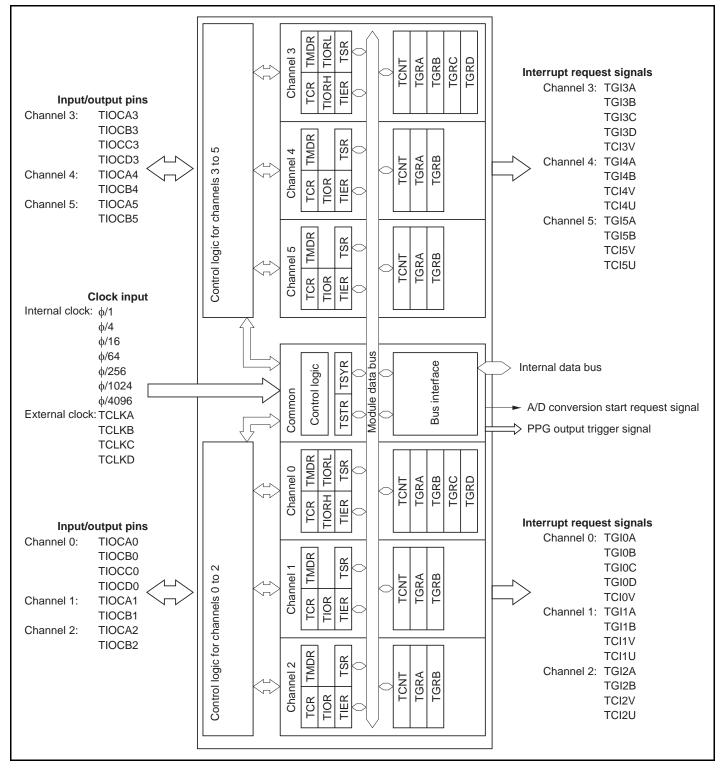


Figure 10.1 Block Diagram of TPU

10.1.3 **Pin Configuration**

Table 10.2 summarizes the TPU pins.

Table 10.2 TPU Pins

Channel	Name	Symbol	I/O	Function
All	Clock input A	TCLKA	Input	External clock A input pin (Channel 1 and 5 phase counting mode A phase input)
	Clock input B	TCLKB	Input	External clock B input pin (Channel 1 and 5 phase counting mode B phase input)
	Clock input C	TCLKC	Input	External clock C input pin (Channel 2 and 4 phase counting mode A phase input)
	Clock input D	TCLKD	Input	External clock D input pin (Channel 2 and 4 phase counting mode B phase input)
0	Input capture/out compare match A0	TIOCA0	I/O	TGR0A input capture input/output compare output/PWM output pin
	Input capture/out compare match B0	TIOCB0	I/O	TGR0B input capture input/output compare output/PWM output pin
	Input capture/out compare match C0	TIOCC0	I/O	TGR0C input capture input/output compare output/PWM output pin
	Input capture/out compare match D0	TIOCD0	I/O	TGR0D input capture input/output compare output/PWM output pin
1	Input capture/out compare match A1	TIOCA1	I/O	TGR1A input capture input/output compare output/PWM output pin
	Input capture/out compare match B1	TIOCB1	I/O	TGR1B input capture input/output compare output/PWM output pin
2	Input capture/out compare match A2	TIOCA2	I/O	TGR2A input capture input/output compare output/PWM output pin
	Input capture/out compare match B2	TIOCB2	I/O	TGR2B input capture input/output compare output/PWM output pin

Channel	Name	Symbol	I/O	Function
3	Input capture/out compare match A3	TIOCA3	I/O	TGR3A input capture input/output compare output/PWM output pin
	Input capture/out compare match B3	TIOCB3	I/O	TGR3B input capture input/output compare output/PWM output pin
	Input capture/out compare match C3	TIOCC3	I/O	TGR3C input capture input/output compare output/PWM output pin
	Input capture/out compare match D3	TIOCD3	I/O	TGR3D input capture input/output compare output/PWM output pin
4	Input capture/out compare match A4	TIOCA4	I/O	TGR4A input capture input/output compare output/PWM output pin
	Input capture/out compare match B4	TIOCB4	I/O	TGR4B input capture input/output compare output/PWM output pin
5	Input capture/out compare match A5	TIOCA5	I/O	TGR5A input capture input/output compare output/PWM output pin
	Input capture/out compare match B5	TIOCB5	I/O	TGR5B input capture input/output compare output/PWM output pin

Register Configuration 10.1.4

Table 10.3 summarizes the TPU registers.

Table 10.3 TPU Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Timer control register 0	TCR0	R/W	H'00	H'FFD0
	Timer mode register 0	TMDR0	R/W	H'C0	H'FFD1
	Timer I/O control register 0H	TIOR0H	R/W	H'00	H'FFD2
	Timer I/O control register 0L	TIOR0L	R/W	H'00	H'FFD3
	Timer interrupt enable register 0	TIER0	R/W	H'40	H'FFD4
	Timer status register 0	TSR0	R/(W)*2	H'C0	H'FFD5
	Timer counter 0	TCNT0	R/W	H'0000	H'FFD6
	Timer general register 0A	TGR0A	R/W	H'FFFF	H'FFD8
	Timer general register 0B	TGR0B	R/W	H'FFFF	H'FFDA
	Timer general register 0C	TGR0C	R/W	H'FFFF	H'FFDC
	Timer general register 0D	TGR0D	R/W	H'FFFF	H'FFDE
1	Timer control register 1	TCR1	R/W	H'00	H'FFE0
	Timer mode register 1	TMDR1	R/W	H'C0	H'FFE1
	Timer I/O control register 1	TIOR1	R/W	H'00	H'FFE2
	Timer interrupt enable register 1	TIER1	R/W	H'40	H'FFE4
	Timer status register 1	TSR1	R/(W)*2	H'C0	H'FFE5
	Timer counter 1	TCNT1	R/W	H'0000	H'FFE6
	Timer general register 1A	TGR1A	R/W	H'FFFF	H'FFE8
	Timer general register 1B	TGR1B	R/W	H'FFFF	H'FFEA
2	Timer control register 2	TCR2	R/W	H'00	H'FFF0
	Timer mode register 2	TMDR2	R/W	H'C0	H'FFF1
	Timer I/O control register 2	TIOR2	R/W	H'00	H'FFF2
	Timer interrupt enable register 2	TIER2	R/W	H'40	H'FFF4
	Timer status register 2	TSR2	R/(W)*2	H'C0	H'FFF5
	Timer counter 2	TCNT2	R/W	H'0000	H'FFF6
	Timer general register 2A	TGR2A	R/W	H'FFFF	H'FFF8
	Timer general register 2B	TGR2B	R/W	H'FFFF	H'FFFA

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
3	Timer control register 3	TCR3	R/W	H'00	H'FE80
	Timer mode register 3	TMDR3	R/W	H'C0	H'FE81
	Timer I/O control register 3H	TIOR3H	R/W	H'00	H'FE82
	Timer I/O control register 3L	TIOR3L	R/W	H'00	H'FE83
	Timer interrupt enable register 3	TIER3	R/W	H'40	H'FE84
	Timer status register 3	TSR3	R/(W)*2	H'C0	H'FE85
	Timer counter 3	TCNT3	R/W	H'0000	H'FE86
	Timer general register 3A	TGR3A	R/W	H'FFFF	H'FE88
	Timer general register 3B	TGR3B	R/W	H'FFFF	H'FE8A
	Timer general register 3C	TGR3C	R/W	H'FFFF	H'FE8C
	Timer general register 3D	TGR3D	R/W	H'FFFF	H'FE8E
4	Timer control register 4	TCR4	R/W	H'00	H'FE90
	Timer mode register 4	TMDR4	R/W	H'C0	H'FE91
	Timer I/O control register 4	TIOR4	R/W	H'00	H'FE92
	Timer interrupt enable register 4	TIER4	R/W	H'40	H'FE94
	Timer status register 4	TSR4	R/(W)*2	H'C0	H'FE95
	Timer counter 4	TCNT4	R/W	H'0000	H'FE96
	Timer general register 4A	TGR4A	R/W	H'FFFF	H'FE98
	Timer general register 4B	TGR4B	R/W	H'FFFF	H'FE9A
5	Timer control register 5	TCR5	R/W	H'00	H'FEA0
	Timer mode register 5	TMDR5	R/W	H'C0	H'FEA1
	Timer I/O control register 5	TIOR5	R/W	H'00	H'FEA2
	Timer interrupt enable register 5	TIER5	R/W	H'40	H'FEA4
	Timer status register 5	TSR5	R/(W)*2	H'C0	H'FEA5
	Timer counter 5	TCNT5	R/W	H'0000	H'FEA6
	Timer general register 5A	TGR5A	R/W	H'FFFF	H'FEA8
	Timer general register 5B	TGR5B	R/W	H'FFFF	H'FEAA
All	Timer start register	TSTR	R/W	H'00	H'FFC0
	Timer synchro register	TSYR	R/W	H'00	H'FFC1
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

10.2 Register Descriptions

10.2.1 Timer Control Registers (TCR)

Channel 0: TCR0 Channel 3: TCR3

Bit	: 7		6	5	4	3	2	1	0
		CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial value	e :	0	0	0	0	0	0	0	0
R/W	:	R/W							

Channel 1: TCR1
Channel 2: TCR2
Channel 4: TCR4
Channel 5: TCR5

Bit :	: 7		6	5	4	3	2	1	0
			CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	R/W						

The TCR registers are 8-bit registers that control the TCNT channels. The TPU has six TCR registers, one for each of channels 0 to 5. The TCR registers are initialized to H'00 by a reset and in hardware standby mode.

RENESAS

TCR register settings should be made only when TCNT operation is stopped.

Bits 7 to 5—Counter Clear 2 to 0 (CCLR2 to CCLR0): These bits select the TCNT counter clearing source.

Channel	Bit 7 CCLR2	Bit 6 CCLR1	Bit 5 CCLR0	Description
0, 3	0	0	0	TCNT clearing disabled (Initial value)
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation*1
	1	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRC compare match/input capture*2
		1	0	TCNT cleared by TGRD compare match/input capture*2
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation*1

Channel	Bit 7 Reserved*	Bit 6 ³ CCLR1	Bit 5 CCLR0	Description			
1, 2, 4, 5	0	0	0	TCNT clearing disabled (Initial value)			
		1	1	TCNT cleared by TGRA compare match/input capture			
	1 0 TCNT cleared capture	TCNT cleared by TGRB compare match/input capture					
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation*1			

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

- 2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.
- 3. Bit 7 is reserved in channels 1, 2, 4, and 5. It is always read as 0 and cannot be modified.

Bits 4 and 3—Clock Edge 1 and 0 (CKEG1, CKEG0): These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved (e.g. $\phi/4$ both edges = $\phi/2$ rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority.

Bit 4 CKEG1	Bit 3 CKEG0	Description	
0	0	Count at rising edge	(Initial value)
	1	Count at falling edge	
1		Count at both edges	

Note: Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. This setting is ignored if the input clock is $\phi/1$, or when overflow/underflow of another channel is selected.

Bits 2 to 0—Time Prescaler 2 to 0 (TPSC2 to TPSC0): These bits select the TCNT counter clock. The clock source can be selected independently for each channel. Table 10.4 shows the clock sources that can be set for each channel.

Table 10.4 TPU Clock Sources

	Inte	Internal Clock External Clock								Overflow/ Underflow		
Channel	ф/1	φ/4	ф/16	ф/64	φ/256	ф/1024	ф/4096	TCLKA	TCLKB	TCLKC	TCLKD	on Another Channel
0	0	0	0	0				0	0	0	0	
1	0	0	0	0	0			0	0			0
2	0	0	0	0		0		0	0	0		
3	0	0	0	0	0	0	0	0				
4	0	0	0	0		0		0		0		0
5	0	0	0	0	0			0		0	0	

Legend:

O: Setting Blank: No setting

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
0	0	0	0	Internal clock: counts on φ/1 (Initial value)
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	External clock: counts on TCLKD pin input

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
1	0	0	0	Internal clock: counts on φ/1 (Initial value)
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	Internal clock: counts on φ/256
			1	Counts on TCNT2 overflow/underflow

Note: This setting is ignored when channel 1 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
2	0	0	0	Internal clock: counts on φ/1 (Initial value)
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	Internal clock: counts on φ/1024

Note: This setting is ignored when channel 2 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
3	0	0	0	Internal clock: counts on φ/1 (Initial value)
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	Internal clock: counts on φ/1024
		1	0	Internal clock: counts on φ/256
			1	Internal clock: counts on φ/4096

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
4	0	0	0	Internal clock: counts on $\phi/1$ (Initial value)
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on \$\phi/64\$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on
			1	Counts on TCNT5 overflow/underflow

Note: This setting is ignored when channel 4 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
5	0	0 0		Internal clock: counts on φ/1 (Initial value)
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on φ/256
			1	External clock: counts on TCLKD pin input

Note: This setting is ignored when channel 5 is in phase counting mode.

10.2.2 Timer Mode Registers (TMDR)

Channel 0: TMDR0
Channel 3: TMDR3

Bit :	7	6	5	4	3	2	1	0
	_		BFB	BFA	MD3	MD2	MD1	MD0
Initial value :	1	1	0	0	0	0	0	0
R/W :			R/W	R/W	R/W	R/W	R/W	R/W

Channel 1: TMDR1
Channel 2: TMDR2
Channel 4: TMDR4
Channel 5: TMDR5

Bit :	:	7	6	5	4	3	2	1	0
			_		_	MD3	MD2	MD1	MD0
Initial value :	:	1	1	0	0	0	0	0	0
R/W		_	_	_	_	R/W	R/W	R/W	R/W

The TMDR registers are 8-bit readable/writable registers that are used to set the operating mode for each channel. The TPU has six TMDR registers, one for each channel. The TMDR registers are initialized to H'C0 by a reset and in hardware standby mode.

TMDR register settings should be made only when TCNT operation is stopped.

Bits 7 and 6—Reserved: These bits cannot be modified and are always read as 1.

Bit 5—Buffer Operation B (BFB): Specifies whether TGRB is to operate in the normal way, or TGRB and TGRD are to be used together for buffer operation. When TGRD is used as a buffer register, TGRD input capture/output compare is not generated.

In channels 1, 2, 4, and 5, which have no TGRD, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5 BFB	Description	
0	TGRB operates normally	(Initial value)
1	TGRB and TGRD used together for buffer operation	

Bit 4—Buffer Operation A (BFA): Specifies whether TGRA is to operate in the normal way, or TGRA and TGRC are to be used together for buffer operation. When TGRC is used as a buffer register, TGRC input capture/output compare is not generated.

In channels 1, 2, 4, and 5, which have no TGRC, bit 4 is reserved. It is always read as 0 and cannot be modified.

Bit 4
BFA Description

0 TGRA operates normally (Initial value)

1 TGRA and TGRC used together for buffer operation

Bits 3 to 0—Modes 3 to 0 (MD3 to MD0): These bits are used to set the timer operating mode.

Bit 3 MD3 ^{*1}	Bit 2 MD2*2	Bit 1 MD1	Bit 0 MD0	Description	
0	0	0	0	Normal operation	(Initial value)
			1	Reserved	
		1	0	PWM mode 1	
			1	PWM mode 2	
	1	0	0	Phase counting mode 1	
			1	Phase counting mode 2	
		1	0	Phase counting mode 3	
			1	Phase counting mode 4	
1	*	*	*	_	

*: Don't care

Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0.

2. Phase counting mode cannot be set for channels 0 and 3. For these channels, 0 should always be written to MD2.

RENESAS

10.2.3 Timer I/O Control Registers (TIOR)

Channel 0: TIOR0H
Channel 1: TIOR1
Channel 2: TIOR2
Channel 3: TIOR3H
Channel 4: TIOR4
Channel 5: TIOR5

Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

Channel 0: TIOR0L Channel 3: TIOR3L

Bit	:	7	6	5	4	3	2	1	0
		IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial valu	ie:	0	0	0	0	0	0	0	0
R/W	:	R/W							

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

The TIOR registers are 8-bit registers that control the TGR registers. The TPU has eight TIOR registers, two each for channels 0 and 3, and one each for channels 1, 2, 4, and 5. The TIOR registers are initialized to H'00 by a reset and in hardware standby mode.

Care is required since TIOR is affected by the TMDR setting. The initial output specified by TIOR is valid when the counter is stopped (the CST bit in TSTR is cleared to 0). Note also that, in PWM mode 2, the output at the point at which the counter is cleared to 0 is specified.

Bits 7 to 4— I/O Control B3 to B0 (IOB3 to IOB0) I/O Control D3 to D0 (IOD3 to IOD0):

Bits IOB3 to IOB0 specify the function of TGRB. Bits IOD3 to IOD0 specify the function of TGRD.

Bit 7 Bit 6 Bit 5 Bit 4

Channel	IOB3	IOB2	IOB1	IOB0	Descripti	on	
0	0	0	0	0	TGR0B	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register	· Oulbul	1 output at compare match
				1	_ ~		Toggle output at compare match
		1	0	0	_	Output disabled	
				1	_	Initial output is 1	0 output at compare match
			1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR0B	Capture input	Input capture at rising edge

source is

TIOCB0 pin

Capture input

1/count clock

*: Don't care

Input capture at falling edge

Input capture at both edges

Input capture at TCNT1

source is channel count-up/count-down*1

Note: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and φ/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

is input

capture

register

1

*

1

1

Channel	Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	Description	on	
0	0	0	0	0	TGR0D	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	 compare register*² 	output	1 output at compare match
				1	_		Toggle output at compare match
		1	0	0	_	Output disabled	
				1	_	Initial output is 1	0 output at compare match
		1	1	0		output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR0D	Capture input	Input capture at rising edge
				1	is input	source is TIOCD0 pin	Input capture at falling edge
		capture TIOCI 1 * register* ²	ПОСВО РІП	Input capture at both edges			
		1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down*1

Notes: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and φ/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

2. When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Descripti	on	
1	0	0	0	0	TGR1B	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register	output	1 output at compare match
	1		Toggle output at compare match				
		1	0	0	Output disabled		
	1 Initial output is	Initial output is 1	0 output at compare match				
			1	0	_	output	1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGR1B	Capture input	Input capture at rising edge
				1	is input source is	source is TIOCB1 pin	Input capture at falling edge
			capture TIOCB1 pin 1 * register	Input capture at both edges			
		1	*	*	_ 5	Capture input source is TGR0C compare match/ input capture	Input capture at generation of TGR0C compare match/input capture

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Descripti	on	
2	0	0	0	0	TGR2B	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register	output	1 output at compare match
				1	_		Toggle output at compare match
		1	0	0	_	Output disabled	
				1	_	Initial output is 1	0 output at compare match
			1	0	_	output	1 output at compare match
				1	=		Toggle output at compare match
	1 * 0 0 TGR2B Capture input	Capture input	Input capture at rising edge				
				1	is input	source is	Input capture at falling edge
			1	*	capture register	TIOCB2 pin	Input capture at both edges

^{*:} Don't care

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Description	on				
3	0	0	0	0	TGR3B	Output disabled	(Initial value)			
				1	is output	Initial output is 0	0 output at compare match			
			1	0	compare register	output	1 output at compare match			
				1	_ U		Toggle output at compare match			
		1	0	0	- <u></u>	Output disabled				
				1		Initial output is 1	0 output at compare match			
						1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match			
	1	0	0	0	TGR3B	Capture input	Input capture at rising edge			
		is input source is		Input capture at falling edge						
			1	*	capture register	TIOCB3 pin	Input capture at both edges			
		1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down*1			

Note: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and φ/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

Channel	Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	Description	on									
3	0	0	0	0	TGR3D	Output disabled	(Initial value)								
				1	is output	Initial output is 0	0 output at compare match								
		1	0	 compare register*² 	output	1 output at compare match									
			1	9		Toggle output at compare match									
	1 0 0 Output	Output disabled													
			1	_	Initial output is 1	0 output at compare match									
											1	0	_	output	1 output at compare match
				1			Toggle output at compare match								
	1	0	0	0	0	0	0	0	0	TGR3D	Capture input	Input capture at rising edge			
				1	is input	source is TIOCD3 pin	Input capture at falling edge								
			1	*	<pre>- capture _ register*2</pre>	ПОСВЗ ріп	Input capture at both edges								
		1	1 *	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count- up/count-down*1							

Notes: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and φ/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

2. When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Descripti	on					
4	0	0	0	0	TGR4B	Output disabled	(Initial value)				
				1	is output	Initial output is 0	0 output at compare match				
			1	0	compare register	output	1 output at compare match				
				1	• 9.•.•.		Toggle output at compare match				
	1	1	0	0	=	Output disabled					
			1	_	Initial output is 1	0 output at compare match					
			1	0	_	output	1 output at compare match				
				1	_		Toggle output at compare match				
	1	0	0	0	TGR4B	Capture input	Input capture at rising edge				
				1	is input	source is	Input capture at falling edge				
			1	*	capture register	TIOCB4 pin	Input capture at both edges				
							1	*	*	_ 39.2.27	Capture input source is TGR3C compare match/ input capture

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Descripti	on	
5	0	0	0	0	TGR5B	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	register	ompare output egister	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1	_	Initial output is 1	0 output at compare match
			1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match
	1	*	0	0	TGR5B	s input source is apture TIOCB5 pin	Input capture at rising edge
				1	is input		Input capture at falling edge
			1	*	register		Input capture at both edges

*: Don't care

Bits 3 to 0— I/O Control A3 to A0 (IOA3 to IOA0), I/O Control C3 to C0 (IOC3 to IOC0):

IOA3 to IOA0 specify the function of TGRA. IOC3 to IOC0 specify the function of TGRC.

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on		
0	0	0	0	0	TGR0A	Output disabled	(Initial value)	
				1	is output	Initial output is 0	0 output at compare match	
			1	0	compare register	output	1 output at compare match	
			1	_ 0		Toggle output at compare match		
		1	1	0	0	_	Output disabled	
				1	_	Initial output is 1	0 output at compare match	
			1	0	_	output	1 output at compare match	
				1	_		Toggle output at compare match	
	1	0	0	0	TGR0A	Capture input	Input capture at rising edge	
				1	is input	source is	Input capture at falling edge	
			1	*	capture register	TIOCA0 pin	Input capture at both edges	
		1	*	*	_ •	Capture input source is channel 1/ count clock	Input capture at TCNT1 count- up/count-down	

*: Don't care

Channel	Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	Descripti	on					
0	0	0	0	0	TGR0C	Output disabled	(Initial value)				
				1	is output	Initial output is 0	0 output at compare match				
			1	0	 compare register*¹ 	output	1 output at compare match				
-			1	_		Toggle output at compare match					
	1 0 0	_	Output disabled								
			1	_	Initial output is 1	0 output at compare match					
						1	0	_	output	1 output at compare match	
				1	_		Toggle output at compare match				
	1	0	0	0	0	0	0	0	TGR0C	Capture input	Input capture at rising edge
				1	is input	source is	Input capture at falling edge				
			1	*	 capture register*1 	TIOCC0 pin	Input capture at both edges				
		1	*	*	_ •	Capture input source is channel 1/count clock	Input capture at TCNT1 count- up/count-down				

Note: 1. When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on	
1	0	0	0	0	TGR1A	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register	output	1 output at compare match
			1	_		Toggle output at compare match	
	1	1	0	0	_	Output disabled	
			1	_	Initial output is 1	0 output at compare match	
			1	0	_	output	1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGR1A	Capture input	Input capture at rising edge
				1	is input	source is TIOCA1 pin	Input capture at falling edge
			1	*	capture register	TIOCAT pili	Input capture at both edges
			1	*	*	_ ~	Capture input source is TGR0A compare match/ input capture

^{*:} Don't care

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Descripti	on	
2	0	0	0	0	TGR2A	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	<pre>- compare output</pre>	output	1 output at compare match
				1			Toggle output at compare match
		1	0	0	_	Output disabled	
				1	_	Initial output is 1 output	0 output at compare match
			1	0	_		1 output at compare match
				1	_		Toggle output at compare match
	1	*	0	0	TGR2A	Capture input	Input capture at rising edge
				1	•	source is TIOCA2 pin	Input capture at falling edge
			1	*		ΠΟΟΛΣ ΡΙΙΙ	Input capture at both edges

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Descripti	on							
3	0	0	0	0	TGR3A	Output disabled	(Initial value)						
				1	is output	Initial output is 0	0 output at compare match						
			1	0	compare register	output	1 output at compare match						
				1			Toggle output at compare match						
		1	0	0	_	_	_	_	_	_	Output disabled	Output disabled	
				1		Initial output is 1	0 output at compare match						
			1	0	_	output	1 output at compare match						
				1			Toggle output at compare match						
	1	0	0	0	TGR3A	Capture input	Input capture at rising edge						
				1	⁻ is input - capture	source is TIOCA3 pin	Input capture at falling edge						
			1	*	register	ΠΟΟΛΟ ΡΙΠ	Input capture at both edges						
			1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down					

*: Don't care

Channel	Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	Description	on		
3	0	0	0	0	TGR3C	Output disabled	(Initial value)	
				1	is output	Initial output is 0	0 output at compare match	
			1	0	compare register*1	output	1 output at compare match	
	1	Toggle output at compare match						
		1	0	0	_	Output disabled Initial output is 1 output		
				1	_		0 output at compare match	
			1	0	_		1 output at compare match	
				1	_		Toggle output at compare match	
	1	0	0	0	TGR3C	Capture input	Input capture at rising edge	
				1	is input	source is TIOCC3 pin	Input capture at falling edge	
			1	*	 capture register*1 	110003 pili	Input capture at both edges	
			1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count- up/count-down

Note: 1. When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on									
4	0	0	0	0	TGR4A	Output disabled	(Initial value)								
				1	is output	Initial output is 0	0 output at compare match								
			1	0	compare register	output	1 output at compare match								
				1	9		Toggle output at compare match								
		1	1	1	1	1	1	1	1	1	0	0	=	Output disabled	
				1	_	Initial output is 1	0 output at compare match								
			1	0	_	output	1 output at compare match								
				1	_		Toggle output at compare match								
	1	0	0	0	0	0	0	0	TGR4A	Capture input	Input capture at rising edge				
				1	is input	source is	Input capture at falling edge								
					1	*	capture register	TIOCA4 pin	Input capture at both edges						
		1	*	*		Capture input source is TGR3A compare match/ input capture	Input capture at generation of TGR3A compare match/input capture								

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Descripti	on						
5	0	0	0	0	TGR5A	Output disabled	(Initial value)					
				1	is output	Initial output is 0	0 output at compare match					
			1	0	compare register	output	1 output at compare match					
				1	-	-			_	_ 0		Toggle output at compare match
		1	0	0		Output disabled Initial output is 1 output						
				1	_		0 output at compare match					
			1	0	_		1 output at compare match					
				1		Toggle output at compare match						
	1	*	0	0	TGR5A	s input source is capture TIOCA5 pin	Input capture at rising edge					
				1	is input		Input capture at falling edge					
			1	*	register		Input capture at both edges					

*: Don't care

10.2.4 Timer Interrupt Enable Registers (TIER)

Channel 0: TIER0
Channel 3: TIER3

Bit	:	7	6	5	4	3	2	1	0
		TTGE			TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial valu	e :	0	1	0	0	0	0	0	0
R/W	:	R/W	_		R/W	R/W	R/W	R/W	R/W

Channel 1: TIER1
Channel 2: TIER2
Channel 4: TIER4
Channel 5: TIER5

Bit	:	7	6	5	4	3	2	1	0
		TTGE		TCIEU	TCIEV	_		TGIEB	TGIEA
Initial valu	e :	0	1	0	0	0	0	0	0
R/W	:	R/W	_	R/W	R/W	_	_	R/W	R/W

The TIER registers are 8-bit registers that control enabling or disabling of interrupt requests for each channel. The TPU has six TIER registers, one for each channel. The TIER registers are initialized to H'40 by a reset and in hardware standby mode.

Bit 7—A/D Conversion Start Request Enable (TTGE): Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.

Bit 7	
TTGE	Description

	·	
0	A/D conversion start request generation disabled	(Initial value)
1	A/D conversion start request generation enabled	

Bit 6—Reserved: This bit cannot be modified and is always read as 1.

Rev.4.00 Sep. 07, 2007 Page 468 of 1210

Bit 5—Underflow Interrupt Enable (TCIEU): Enables or disables interrupt requests (TCIU) by the TCFU bit when the TCFU bit in TSR is set to 1 in channels 1 and 2.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5 TCIEU	Description	
0	Interrupt requests (TCIU) by TCFU disabled	(Initial value)
1	Interrupt requests (TCIU) by TCFU enabled	

Bit 4—Overflow Interrupt Enable (TCIEV): Enables or disables interrupt requests (TCIV) by the TCFV bit when the TCFV bit in TSR is set to 1.

Bit 4 TCIEV	Description	
0	Interrupt requests (TCIV) by TCFV disabled	(Initial value)
1	Interrupt requests (TCIV) by TCFV enabled	

Bit 3—TGR Interrupt Enable D (TGIED): Enables or disables interrupt requests (TGID) by the TGFD bit when the TGFD bit in TSR is set to 1 in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3 TGIED	Description	
0	Interrupt requests (TGID) by TGFD disabled	(Initial value)
1	Interrupt requests (TGID) by TGFD enabled	

Bit 2—TGR Interrupt Enable C (TGIEC): Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2		
TGIEC	Description	
0	Interrupt requests (TGIC) by TGFC disabled	(Initial value)
1	Interrupt requests (TGIC) by TGFC enabled	

Bit 1—TGR Interrupt Enable B (TGIEB): Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1.

Bit 1

TGIEB	Description	
0	Interrupt requests (TGIB) by TGFB disabled	(Initial value)
1	Interrupt requests (TGIB) by TGFB enabled	

Bit 0—TGR Interrupt Enable A (TGIEA): Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1.

Bit 0	
-------	--

TGIEA	Description	
0	Interrupt requests (TGIA) by TGFA disabled	(Initial value)
1	Interrupt requests (TGIA) by TGFA enabled	

10.2.5 Timer Status Registers (TSR)

Channel 0: TSR0 Channel 3: TSR3

Bit	:	7	6	5	4	3	2	1	0
					TCFV	TGFD	TGFC	TGFB	TGFA
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	_	_	_	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Note: * Only 0 can be written, to clear the flag.

Channel 1: TSR1
Channel 2: TSR2
Channel 4: TSR4
Channel 5: TSR5

Bit :	:	7	6	5	4	3	2	1	0
		TCFD		TCFU	TCFV			TGFB	TGFA
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*

Note: * Only 0 can be written, to clear the flag.

The TSR registers are 8-bit registers that indicate the status of each channel. The TPU has six TSR registers, one for each channel. The TSR registers are initialized to H'C0 by a reset and in hardware standby mode.

Bit 7—Count Direction Flag (TCFD): Status flag that shows the direction in which TCNT counts in channels 1, 2, 4, and 5.

In channels 0 and 3, bit 7 is reserved. It is always read as 1 and cannot be modified.

Bit 7 TCFD	Description	
0	TCNT counts down	
1	TCNT counts up	(Initial value)

Bit 6—Reserved: This bit cannot be modified and is always read as 1.

Bit 5—Underflow Flag (TCFU): Status flag that indicates that TCNT underflow has occurred when channels 1, 2, 4, and 5 are set to phase counting mode.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5 TCFU	Description	
0	[Clearing condition] When 0 is written to TCFU after reading TCFU = 1	(Initial value)
1	[Setting condition] When the TCNT value underflows (changes from H'0000 to H'FFFF)	

Bit 4—Overflow Flag (TCFV): Status flag that indicates that TCNT overflow has occurred.

Bit 4 TCFV	Description	
0	[Clearing condition]	(Initial value)
	When 0 is written to TCFV after reading TCFV = 1	
1	[Setting condition]	
	When the TCNT value overflows (changes from H'FFFF to H'0000)	

Bit 3—Input Capture/Output Compare Flag D (TGFD): Status flag that indicates the occurrence of TGRD input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3 TGFD	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGID interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFD after reading TGFD = 1
1	[Setting conditions]
	 When TCNT = TGRD while TGRD is functioning as output compare register
	 When TCNT value is transferred to TGRD by input capture signal while TGRD is functioning as input capture register
	ranous mig do input suprais register

Bit 2—Input Capture/Output Compare Flag C (TGFC): Status flag that indicates the occurrence of TGRC input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

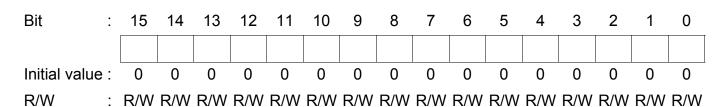
Bit 2 TGFC	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFC after reading TGFC = 1
1	[Setting conditions]
	 When TCNT = TGRC while TGRC is functioning as output compare register
	 When TCNT value is transferred to TGRC by input capture signal while TGRC is
	functioning as input capture register

Bit 1—Input Capture/Output Compare Flag B (TGFB): Status flag that indicates the occurrence of TGRB input capture or compare match.

Bit 1 TGFB	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFB after reading TGFB = 1
1	[Setting conditions]
	 When TCNT = TGRB while TGRB is functioning as output compare register
	 When TCNT value is transferred to TGRB by input capture signal while TGRB is
	functioning as input capture register

Bit 0—Input Capture/Output Compare Flag A (TGFA): Status flag that indicates the occurrence of TGRA input capture or compare match.

Bit 0 TGFA	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0
	 When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1
	 When 0 is written to TGFA after reading TGFA = 1
1	[Setting conditions]
	 When TCNT = TGRA while TGRA is functioning as output compare register
	 When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register


10.2.6 Timer Counters (TCNT)

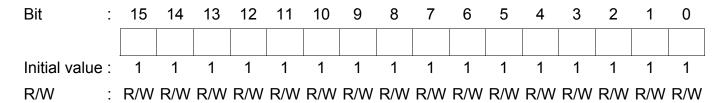
Channel 0: TCNT0 (up-counter)

Channel 1: TCNT1 (up/down-counter*)
Channel 2: TCNT2 (up/down-counter*)

Channel 3: TCNT3 (up-counter)

Channel 4: TCNT4 (up/down-counter*)
Channel 5: TCNT5 (up/down-counter*)

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as upcounters.


The TCNT registers are 16-bit counters. The TPU has six TCNT counters, one for each channel.

The TCNT counters are initialized to H'0000 by a reset and in hardware standby mode.

The TCNT counters cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

RENESAS

10.2.7 Timer General Registers (TGR)

The TGR registers are 16-bit registers with a dual function as output compare and input capture registers. The TPU has 16 TGR registers, four each for channels 0 and 3 and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also be designated for operation as buffer registers*. The TGR registers are initialized to H'FFFF by a reset and in hardware standby mode.

The TGR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

Note: * TGR buffer register combinations are TGRA-TGRC and TGRB-TGRD.

10.2.8 Timer Start Register (TSTR)

Bit	:	7	6	5	4	3	2	1	0
		_		CST5	CST4	CST3	CST2	CST1	CST0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels 0 to 5. TSTR is initialized to H'00 by a reset, and in hardware standby mode. When setting the operating mode in TMDR or setting the count clock in TCR, first stop the TCNT counter.

Bits 7 and 6—Reserved: Must always be written with 0.

Bits 5 to 0—Counter Start 5 to 0 (CST5 to CST0): These bits select operation or stoppage for TCNT.

Bit n CSTn	Description	
0	TCNTn count operation is stopped	(Initial value)
1	TCNTn performs count operation	
		n = 5 to 0

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

10.2.9 Timer Synchro Register (TSYR)

Bit	:	7	6	5	4	3	2	1	0
				SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

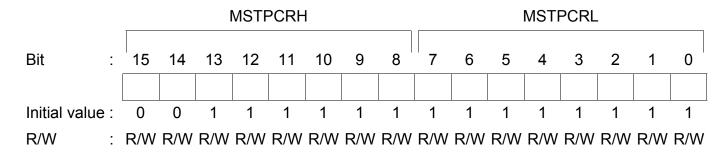
TSYR is an 8-bit readable/writable register that selects independent operation or synchronous operation for the channel 0 to 4 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1.

TSYR is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 and 6—Reserved: Must always be written with 0.

Bits 5 to 0—Timer Synchro 5 to 0 (SYNC5 to SYNC0): These bits select whether operation is independent of or synchronized with other channels.

When synchronous operation is selected, synchronous presetting of multiple channels^{*1}, and synchronous clearing through counter clearing on another channel^{*2} are possible.


Bit n SYNCn	Description	
0	TCNTn operates independently (TCNT presetting/clearing is unrelated to other channels)	(Initial value)
1	TCNTn performs synchronous operation	
	TCNT synchronous presetting*1/synchronous clearing*2 is possible	n = 5 to 0

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.

2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

10.2.10 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP13 bit in MSTPCR is set to 1, TPU operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 13—Module Stop (MSTP13): Specifies the TPU module stop mode.

Bit 13 MSTP13 Description

0	TPU module stop mode cleared	
1	TPU module stop mode set	(Initial value)

10.3 Interface to Bus Master

10.3.1 16-Bit Registers

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read or written to in 8-bit units; 16-bit access must always be used.

An example of 16-bit register access operation is shown in figure 10.2.

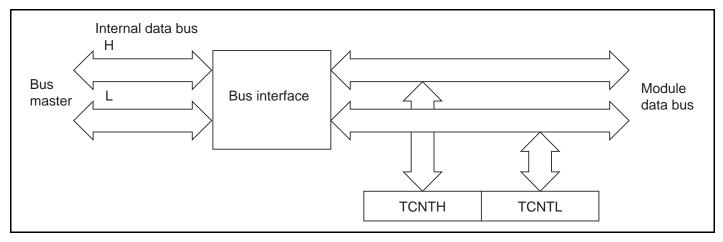
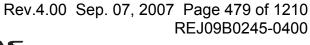



Figure 10.2 16-Bit Register Access Operation [Bus Master ↔ TCNT (16 Bits)]

10.3.2 8-Bit Registers

Registers other than TCNT and TGR are 8-bit. As the data bus to the CPU is 16 bits wide, these registers can be read and written to in 16-bit units. They can also be read and written to in 8-bit units.

Examples of 8-bit register access operation are shown in figures 10.3 to 10.5.

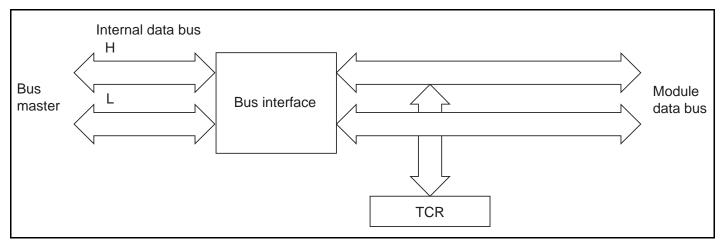


Figure 10.3 8-Bit Register Access Operation [Bus Master ↔ TCR (Upper 8 Bits)]

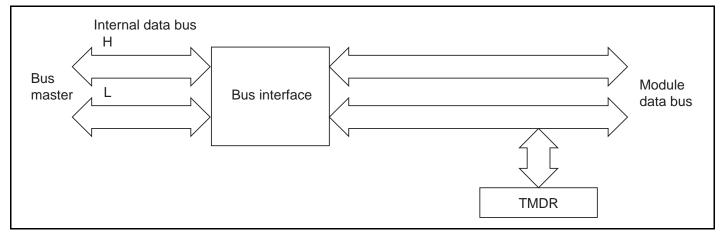


Figure 10.4 8-Bit Register Access Operation [Bus Master ↔ TMDR (Lower 8 Bits)]

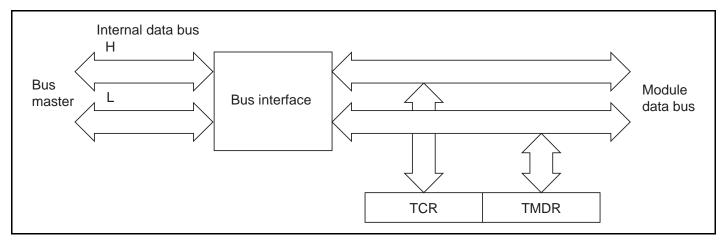


Figure 10.5 8-Bit Register Access Operation [Bus Master ↔ TCR and TMDR (16 Bits)]

10.4 Operation

10.4.1 Overview

Operation in each mode is outlined below.

Normal Operation: Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, synchronous counting, and external event counting.

Each TGR can be used as an input capture register or output compare register.

Synchronous Operation: When synchronous operation is designated for a channel, TCNT for that channel performs synchronous presetting. That is, when TCNT for a channel designated for synchronous operation is rewritten, the TCNT counters for the other channels are also rewritten at the same time. Synchronous clearing of the TCNT counters is also possible by setting the timer synchronization bits in TSYR for channels designated for synchronous operation.

Buffer Operation

- When TGR is an output compare register
 When a compare match occurs, the value in the buffer register for the relevant channel is transferred to TGR.
- When TGR is an input capture register
 When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in TGR is transferred to the buffer register.

Cascaded Operation: The channel 1 counter (TCNT1) and channel 2 counter (TCNT2), or the channel 4 counter (TCNT4) and channel 5 counter (TCNT5), can be connected together to operate as a 32-bit counter.

PWM Mode: In this mode, a PWM waveform is output. The output level can be set by means of TIOR. A PWM waveform with a duty of between 0% and 100% can be output, according to the setting of each TGR register.

Phase Counting Mode: In this mode, TCNT is incremented or decremented by detecting the phases of two clocks input from the external clock input pins in channels 1, 2, 4, and 5. When phase counting mode is set, the corresponding TCLK pin functions as the clock pin, and TCNT performs up/down-counting.

This can be used for two-phase encoder pulse input.

10.4.2 Basic Functions

Counter Operation: When one of bits CST0 to CST5 is set to 1 in TSTR, the TCNT counter for the corresponding channel starts counting. TCNT can operate as a free-running counter, periodic counter, and so on.

• Example of count operation setting procedure

Figure 10.6 shows an example of the count operation setting procedure.

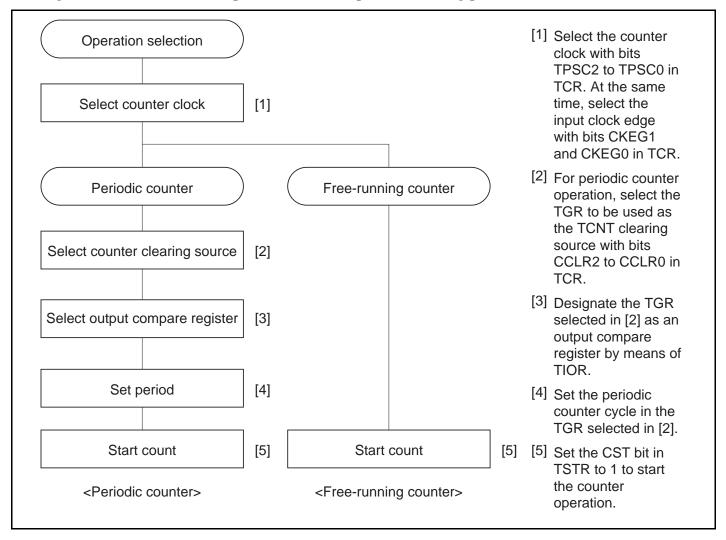
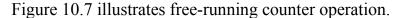
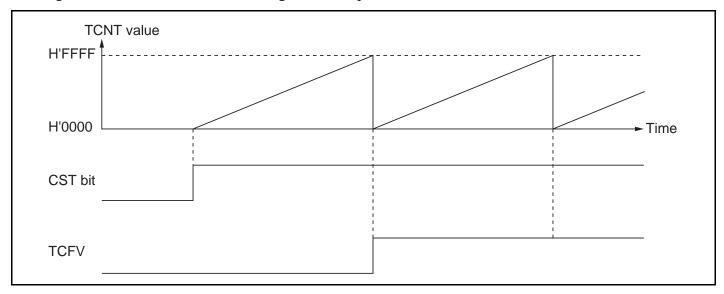




Figure 10.6 Example of Counter Operation Setting Procedure

Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000.

Figure 10.7 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 10.8 illustrates periodic counter operation.

Rev.4.00 Sep. 07, 2007 Page 483 of 1210

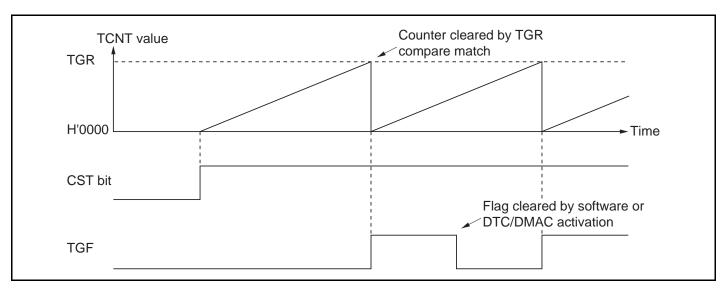


Figure 10.8 Periodic Counter Operation

Waveform Output by Compare Match: The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match.

• Example of setting procedure for waveform output by compare match
Figure 10.9 shows an example of the setting procedure for waveform output by compare match

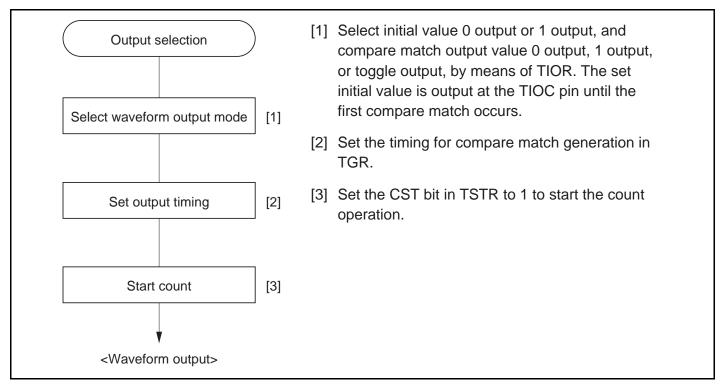


Figure 10.9 Example of Setting Procedure for Waveform Output by Compare Match

• Examples of waveform output operation
Figure 10.10 shows an example of 0 output/1 output.

In this example TCNT has been designated as a free-running counter, and settings have been made so that 1 is output by compare match A, and 0 is output by compare match B. When the set level and the pin level coincide, the pin level does not change.

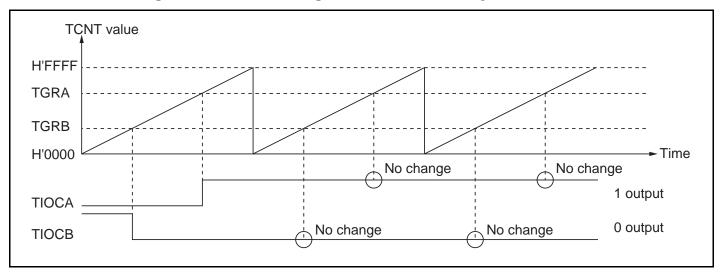


Figure 10.10 Example of 0 Output/1 Output Operation

Figure 10.11 shows an example of toggle output.

In this example TCNT has been designated as a periodic counter (with counter clearing performed by compare match B), and settings have been made so that output is toggled by both compare match A and compare match B.

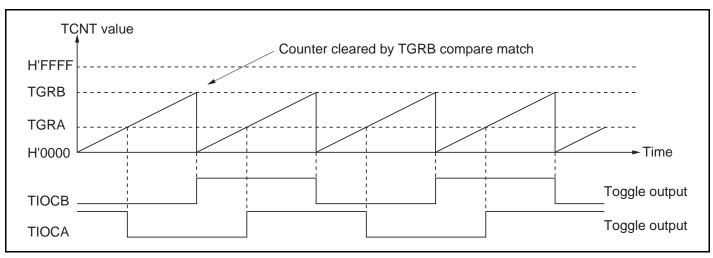


Figure 10.11 Example of Toggle Output Operation

Input Capture Function: The TCNT value can be transferred to TGR on detection of the TIOC pin input edge.

Rising edge, falling edge, or both edges can be selected as the detected edge. For channels 0, 1, 3, and 4, it is also possible to specify another channel's counter input clock or compare match signal as the input capture source.

Note: When another channel's counter input clock is used as the input capture input for channels 0 and 3, $\phi/1$ should not be selected as the counter input clock used for input capture input. Input capture will not be generated if $\phi/1$ is selected.

• Example of input capture operation setting procedure
Figure 10.12 shows an example of the input capture operation setting procedure.

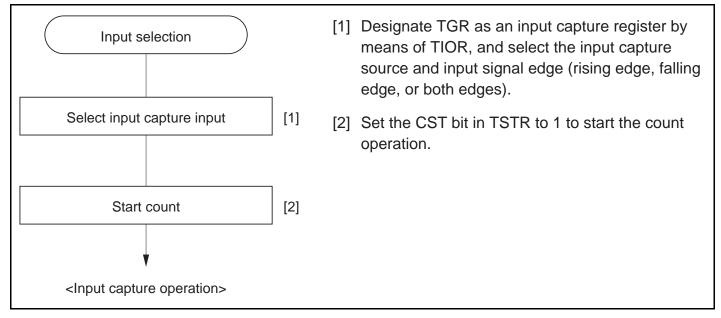


Figure 10.12 Example of Input Capture Operation Setting Procedure

Example of input capture operation
 Figure 10.13 shows an example of input capture operation.

In this example both rising and falling edges have been selected as the TIOCA pin input capture input edge, falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT.

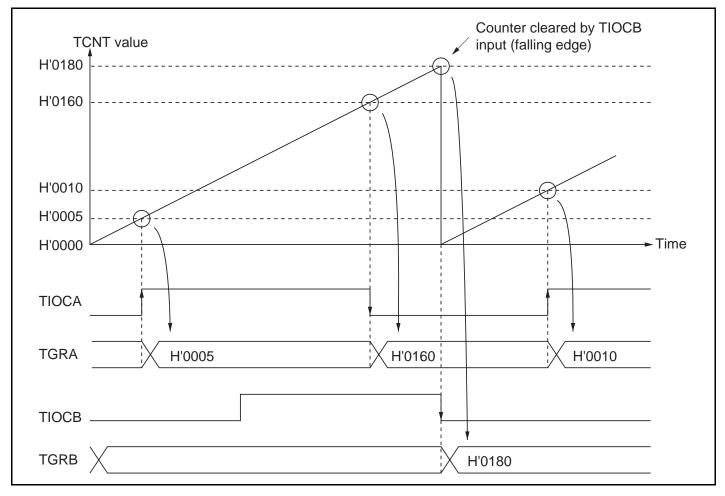


Figure 10.13 Example of Input Capture Operation

10.4.3 Synchronous Operation

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing).

Synchronous operation enables TGR to be incremented with respect to a single time base.

Channels 0 to 5 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure: Figure 10.14 shows an example of the synchronous operation setting procedure.

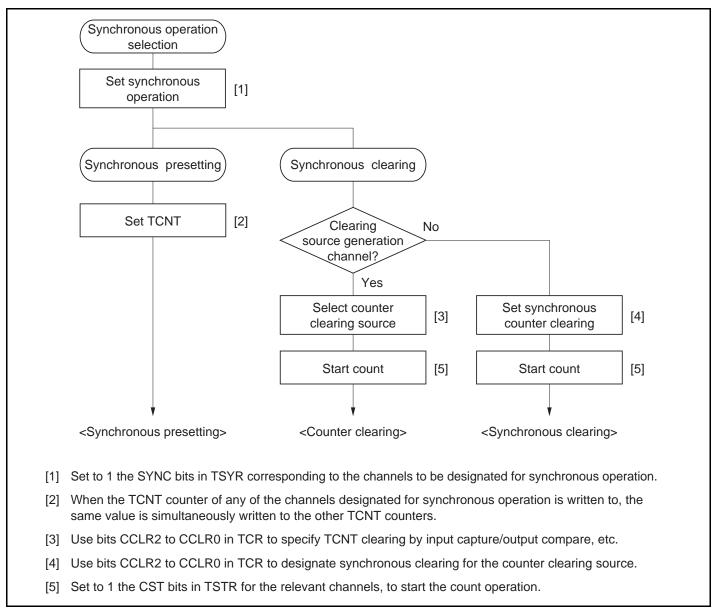


Figure 10.14 Example of Synchronous Operation Setting Procedure

Example of Synchronous Operation: Figure 10.15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

For details of PWM modes, see section 10.4.6, PWM Modes.

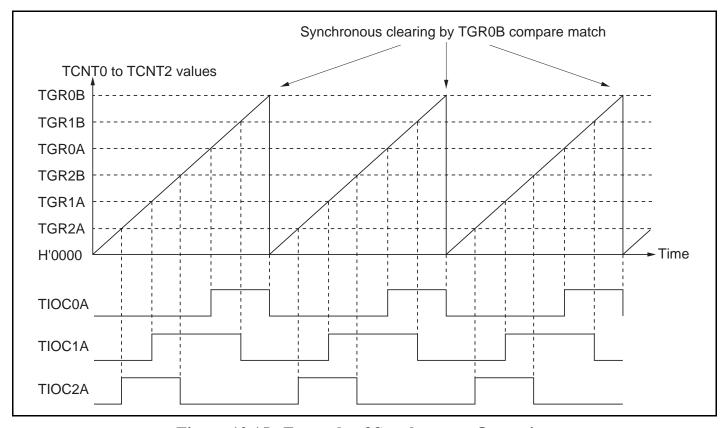


Figure 10.15 Example of Synchronous Operation

10.4.4 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers.

Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register.

Table 10.5 shows the register combinations used in buffer operation.

Table 10.5 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGR0A	TGR0C
	TGR0B	TGR0D
3	TGR3A	TGR3C
	TGR3B	TGR3D

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 10.16.

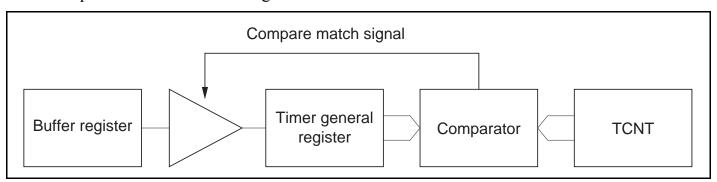


Figure 10.16 Compare Match Buffer Operation

• When TGR is an input capture register

When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register.

This operation is illustrated in figure 10.17.

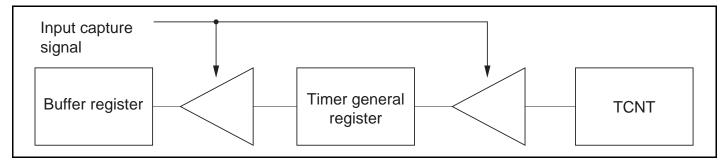


Figure 10.17 Input Capture Buffer Operation

Example of Buffer Operation Setting Procedure: Figure 10.18 shows an example of the buffer operation setting procedure.

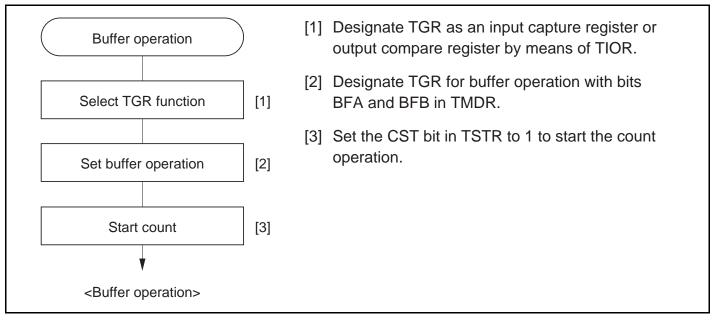


Figure 10.18 Example of Buffer Operation Setting Procedure

Examples of Buffer Operation

• When TGR is an output compare register

Figure 10.19 shows an operation example in which PWM mode 1 has been designated for channel 0, and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A, and 0 output at compare match B.

As buffer operation has been set, when compare match A occurs the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs.

For details of PWM modes, see section 10.4.6, PWM Modes.

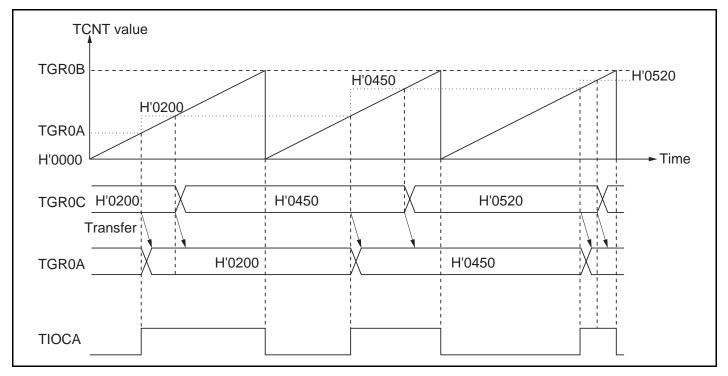


Figure 10.19 Example of Buffer Operation (1)

• When TGR is an input capture register

Figure 10.20 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC.

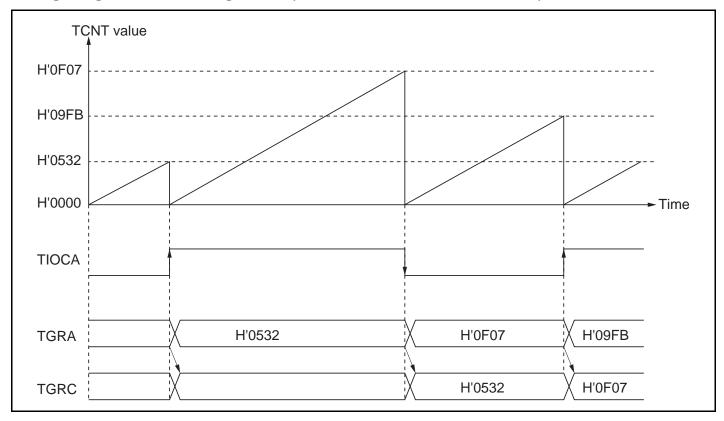


Figure 10.20 Example of Buffer Operation (2)

10.4.5 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 32-bit counter.

This function works by counting the channel 1 (channel 4) counter clock upon overflow/underflow of TCNT2 (TCNT5) as set in bits TPSC2 to TPSC0 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 10.6 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1 or 4, the counter clock setting is invalid and the counter operates independently in phase counting mode.

Table 10.6 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT1	TCNT2
Channels 4 and 5	TCNT4	TCNT5

Example of Cascaded Operation Setting Procedure: Figure 10.21 shows an example of the setting procedure for cascaded operation.

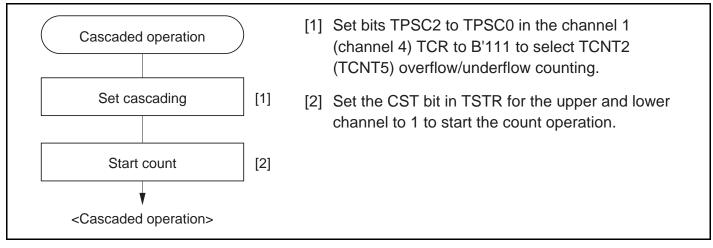


Figure 10.21 Cascaded Operation Setting Procedure

Examples of Cascaded Operation: Figure 10.22 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, TGR1A, and TGR2A have been designated as input capture registers, and TIOC pin rising edge has been selected.

When a rising edge is input to the TIOCA1 and TIOCA2 pins simultaneously, the upper 16 bits of the 32-bit data are transferred to TGR1A, and the lower 16 bits to TGR2A.

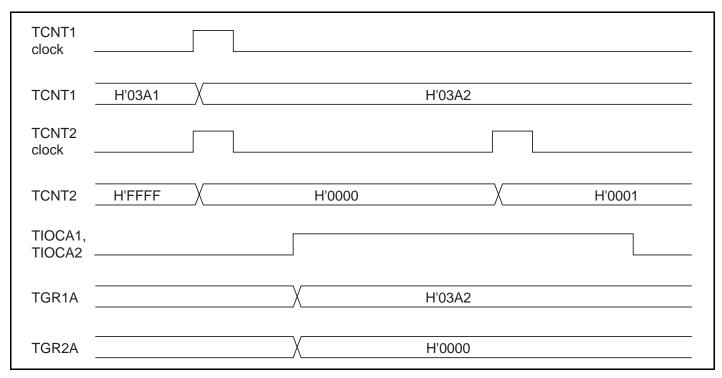


Figure 10.22 Example of Cascaded Operation (1)

Figure 10.23 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, and phase counting mode has been designated for channel 2.

TCNT1 is incremented by TCNT2 overflow and decremented by TCNT2 underflow.



Figure 10.23 Example of Cascaded Operation (2)

10.4.6 PWM Modes

In PWM mode, PWM waveforms are output from the output pins. 0, 1, or toggle output can be selected as the output level in response to compare match of each TGR.

Designating TGR compare match as the counter clearing source enables the period to be set in that register. All channels can be designated for PWM mode independently. Synchronous operation is also possible.

There are two PWM modes, as described below.

PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs. In PWM mode 1, a maximum 8-phase PWM output is possible.

• PWM mode 2

PWM output is generated using one TGR as the period register and the others as duty registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the period and duty registers are identical, the output value does not change when a compare match occurs.

In PWM mode 2, a maximum 15-phase PWM output is possible by combined use with synchronous operation.

The correspondence between PWM output pins and registers is shown in table 10.7.

Table 10.7 PWM Output Registers and Output Pins

Output Pins

Channel	Registers	PWM Mode 1	PWM Mode 2
0	TGR0A	TIOCA0	TIOCA0
	TGR0B		TIOCB0
	TGR0C	TIOCC0	TIOCC0
	TGR0D		TIOCD0
1	TGR1A	TIOCA1	TIOCA1
	TGR1B		TIOCB1
2	TGR2A	TIOCA2	TIOCA2
	TGR2B		TIOCB2
3	TGR3A	TIOCA3	TIOCA3
	TGR3B		TIOCB3
	TGR3C	TIOCC3	TIOCC3
	TGR3D		TIOCD3
4	TGR4A	TIOCA4	TIOCA4
	TGR4B		TIOCB4
5	TGR5A	TIOCA5	TIOCA5
	TGR5B		TIOCB5

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the period is set.

Example of PWM Mode Setting Procedure: Figure 10.24 shows an example of the PWM mode setting procedure.

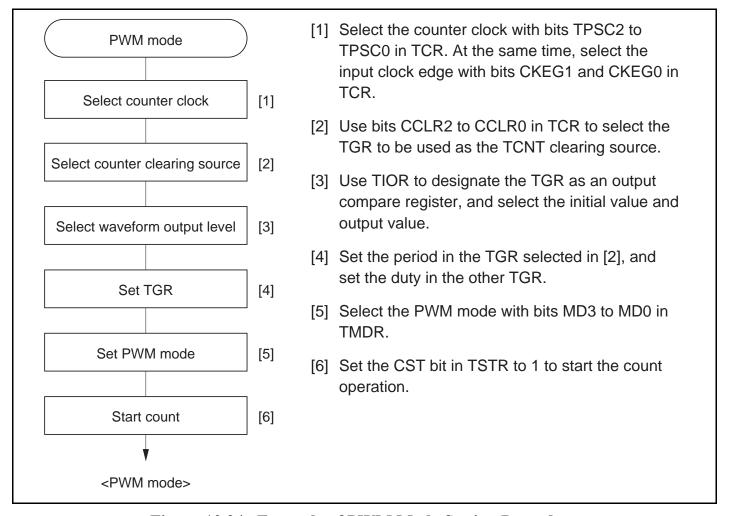


Figure 10.24 Example of PWM Mode Setting Procedure

Examples of PWM Mode Operation: Figure 10.25 shows an example of PWM mode 1 operation.

In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the TGRA initial output value and output value, and 1 is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the value set in TGRB as the duty.

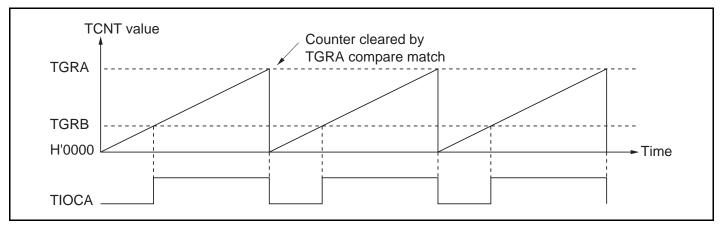


Figure 10.25 Example of PWM Mode Operation (1)

Rev.4.00 Sep. 07, 2007 Page 499 of 1210

Figure 10.26 shows an example of PWM mode 2 operation.

In this example, synchronous operation is designated for channels 0 and 1, TGR1B compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers (TGR0A to TGR0D, TGR1A), to output a 5-phase PWM waveform.

In this case, the value set in TGR1B is used as the period, and the values set in the other TGR registers as the duty.

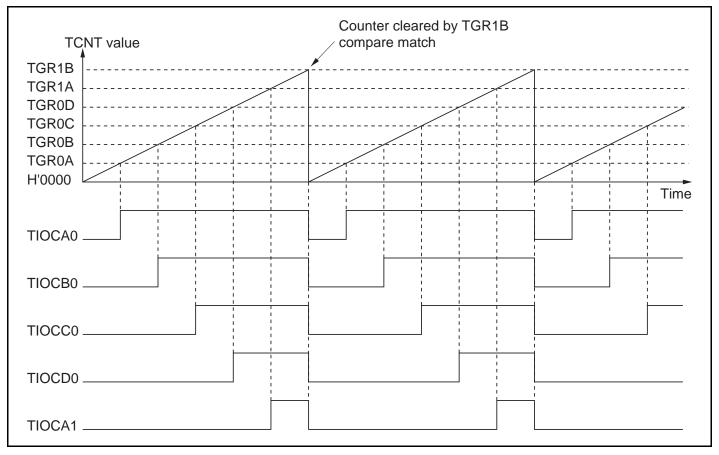


Figure 10.26 Example of PWM Mode Operation (2)

Figure 10.27 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

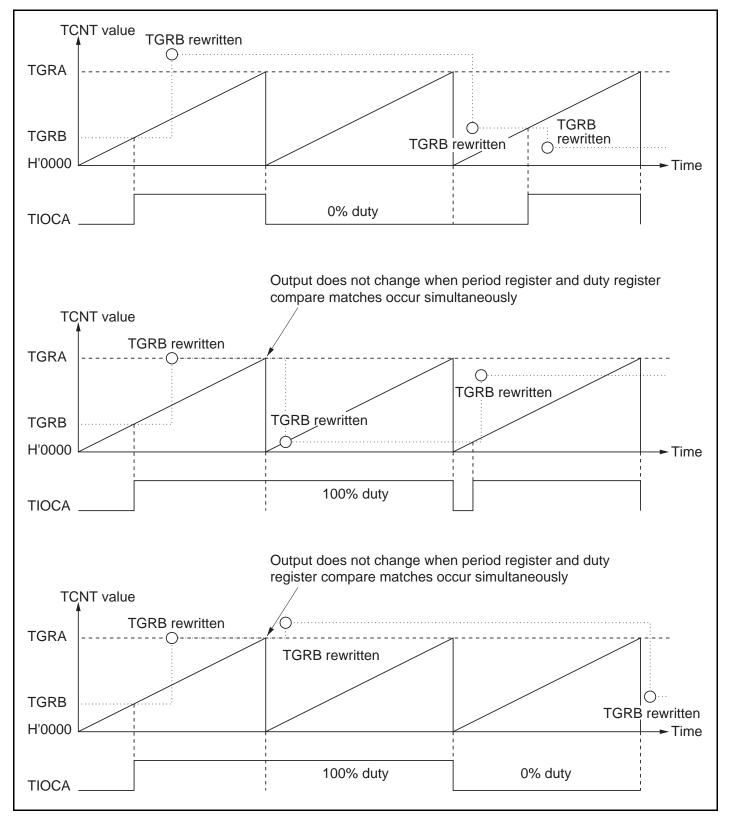


Figure 10.27 Examples of PWM Mode Operation (3)

10.4.7 Phase Counting Mode

In phase counting mode, the phase difference between two external clock inputs is detected and TCNT is incremented/decremented accordingly. This mode can be set for channels 1, 2, 4, and 5.

When phase counting mode is set, an external clock is selected as the counter input clock and TCNT operates as an up/down-counter regardless of the setting of bits TPSC2 to TPSC0 and bits CKEG1 and CKEG0 in TCR. However, the functions of bits CCLR1 and CCLR0 in TCR, and of TIOR, TIER, and TGR are valid, and input capture/compare match and interrupt functions can be used.

When overflow occurs while TCNT is counting up, the TCFV flag in TSR is set; when underflow occurs while TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag provides an indication of whether TCNT is counting up or down.

Table 10.8 shows the correspondence between external clock pins and channels.

Table 10.8 Phase Counting Mode Clock Input Pins

	External Clock Pins		
Channels	A-Phase	B-Phase	
When channel 1 or 5 is set to phase counting mode	TCLKA	TCLKB	
When channel 2 or 4 is set to phase counting mode	TCLKC	TCLKD	

Example of Phase Counting Mode Setting Procedure: Figure 10.28 shows an example of the phase counting mode setting procedure.

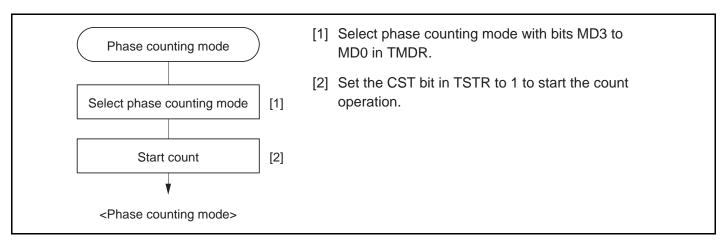


Figure 10.28 Example of Phase Counting Mode Setting Procedure

Examples of Phase Counting Mode Operation: In phase counting mode, TCNT counts up or down according to the phase difference between two external clocks. There are four modes, according to the count conditions.

Phase counting mode 1
 Figure 10.29 shows an example of phase counting mode 1 operation, and table 10.9
 summarizes the TCNT up/down-count conditions.

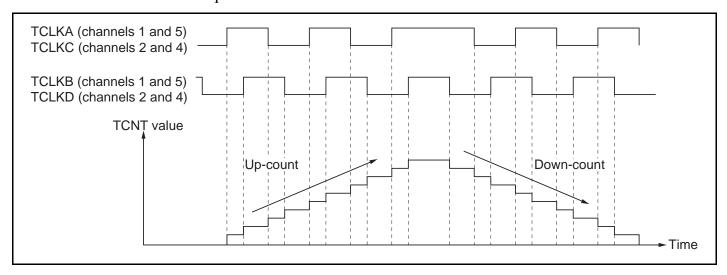


Figure 10.29 Example of Phase Counting Mode 1 Operation

Table 10.9 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Up-count
Low level	7	
	Low level	
—	High level	
High level	7_	Down-count
Low level		
<u></u>	High level	
-	Low level	

Legend:

: Rising edge

Phase counting mode 2
 Figure 10.30 shows an example of phase counting mode 2 operation, and table 10.10 summarizes the TCNT up/down-count conditions.

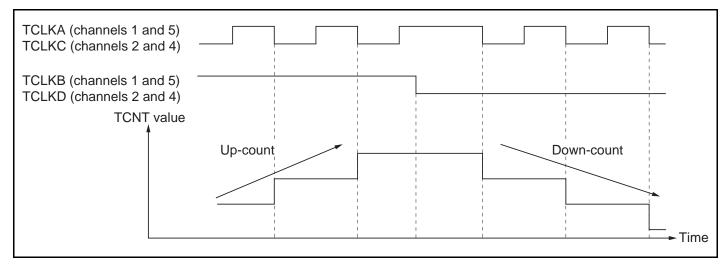


Figure 10.30 Example of Phase Counting Mode 2 Operation

TCLKB (Channels 1 and 5)

Table 10.10 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation	
	Don't care	
Low level		
High level	Up-count	
7	Don't care	
High level		
Low level	Down-count	
	TCLKD (Channels 2 and 4) Low level High level High level	

RENESAS

Legend:

: Rising edge

TCI KA (Channole 1 and 5)

t: Falling edge

• Phase counting mode 3

Figure 10.31 shows an example of phase counting mode 3 operation, and table 10.11 summarizes the TCNT up/down-count conditions.

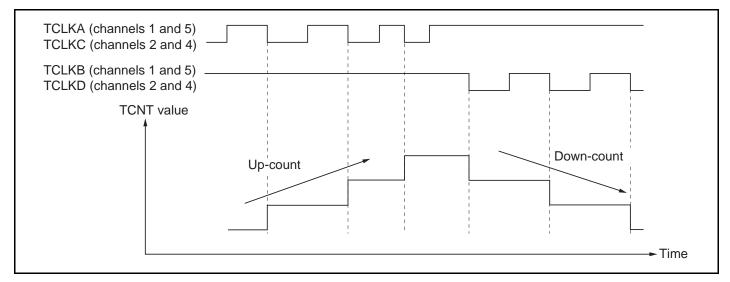


Figure 10.31 Example of Phase Counting Mode 3 Operation

Table 10.11 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Don't care
Low level	7_	
<u></u>	Low level	
7_	High level	Up-count
High level	7_	Down-count
Low level		Don't care
<u></u>	High level	
7_	Low level	

Legend:

: Rising edge

: Falling edge

• Phase counting mode 4

Figure 10.32 shows an example of phase counting mode 4 operation, and table 10.12 summarizes the TCNT up/down-count conditions.

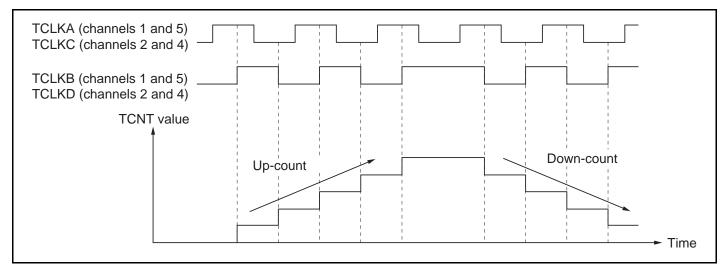


Figure 10.32 Example of Phase Counting Mode 4 Operation

Table 10.12 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Up-count
Low level	7_	
	Low level	Don't care
7_	High level	
High level	7_	Down-count
Low level		
	High level	Don't care
7_	Low level	

Legend:

: Rising edge

: Falling edge

Phase Counting Mode Application Example: Figure 10.33 shows an example in which phase counting mode is designated for channel 1, and channel 1 is coupled with channel 0 to input servo motor 2-phase encoder pulses in order to detect the position or speed.

Channel 1 is set to phase counting mode 1, and the encoder pulse A-phase and B-phase are input to TCLKA and TCLKB.

Channel 0 operates with TCNT counter clearing by TGR0C compare match; TGR0A and TGR0C are used for the compare match function, and are set with the speed control period and position control period. TGR0B is used for input capture, with TGR0B and TGR0D operating in buffer mode. The channel 1 counter input clock is designated as the TGR0B input capture source, and detection of the pulse width of 2-phase encoder 4-multiplication pulses is performed.

TGR1A and TGR1B for channel 1 are designated for input capture, channel 0 TGR0A and TGR0C compare matches are selected as the input capture source, and store the up/down-counter values for the control periods.

This procedure enables accurate position/speed detection to be achieved.

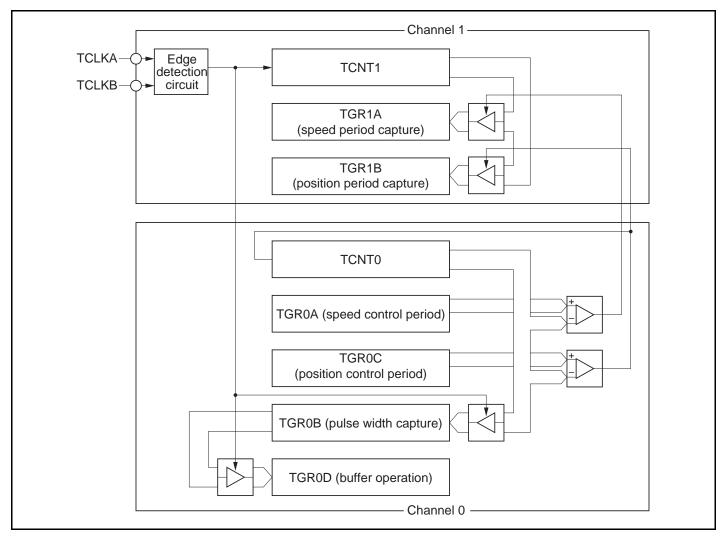


Figure 10.33 Phase Counting Mode Application Example

10.5 Interrupts

10.5.1 Interrupt Sources and Priorities

There are three kinds of TPU interrupt source: TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disable bit, allowing generation of interrupt request signals to be enabled or disabled individually.

When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0.

Relative channel priorities can be changed by the interrupt controller, but the priority order within a channel is fixed. For details, see section 5, Interrupt Controller.

Table 10.13 lists the TPU interrupt sources.

Table 10.13 TPU Interrupts

Channel	Interrupt Source	Description	DMAC Activation	DTC Activation	Priority
0	TGI0A	TGR0A input capture/compare match	Possible	Possible	High
	TGI0B	TGR0B input capture/compare match	Not possible	Possible	_
	TGI0C	TGR0C input capture/compare match	Not possible	Possible	
	TGI0D	TGR0D input capture/compare match	Not possible	Possible	_
	TCI0V	TCNT0 overflow	Not possible	Not possible	_
1	TGI1A	TGR1A input capture/compare match	Possible	Possible	_
	TGI1B	TGR1B input capture/compare match	Not possible	Possible	_
	TCI1V	TCNT1 overflow	Not possible	Not possible	
	TCI1U	TCNT1 underflow	Not possible	Not possible	_
2	TGI2A	TGR2A input capture/compare match	Possible	Possible	_
	TGI2B	TGR2B input capture/compare match	Not possible	Possible	_
	TCI2V	TCNT2 overflow	Not possible	Not possible	_
	TCI2U	TCNT2 underflow	Not possible	Not possible	_
3	TGI3A	TGR3A input capture/compare match	Possible	Possible	
	TGI3B	TGR3B input capture/compare match	Not possible	Possible	_
	TGI3C	TGR3C input capture/compare match	Not possible	Possible	_
	TGI3D	TGR3D input capture/compare match	Not possible	Possible	_
	TCI3V	TCNT3 overflow	Not possible	Not possible	_
4	TGI4A	TGR4A input capture/compare match	Possible	Possible	_
	TGI4B	TGR4B input capture/compare match	Not possible	Possible	_
	TCI4V	TCNT4 overflow	Not possible	Not possible	_
	TCI4U	TCNT4 underflow	Not possible	Not possible	_
5	TGI5A	TGR5A input capture/compare match	Possible	Possible	_
	TGI5B	TGR5B input capture/compare match	Not possible	Possible	_
	TCI5V	TCNT5 overflow	Not possible	Not possible	_
	TCI5U	TCNT5 underflow	Not possible	Not possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

Input Capture/Compare Match Interrupt: An interrupt is requested if the TGIE bit in TIER is set to 1 when the TGF flag in TSR is set to 1 by the occurrence of a TGR input capture/compare match on a particular channel. The interrupt request is cleared by clearing the TGF flag to 0. The TPU has 16 input capture/compare match interrupts, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

Overflow Interrupt: An interrupt is requested if the TCIEV bit in TIER is set to 1 when the TCFV flag in TSR is set to 1 by the occurrence of TCNT overflow on a channel. The interrupt request is cleared by clearing the TCFV flag to 0. The TPU has six overflow interrupts, one for each channel.

Underflow Interrupt: An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared by clearing the TCFU flag to 0. The TPU has four underflow interrupts, one each for channels 1, 2, 4, and 5.

10.5.2 DTC/DMAC Activation

DTC Activation: The DTC can be activated by the TGR input capture/compare match interrupt for a channel. For details, see section 8, Data Transfer Controller.

A total of 16 TPU input capture/compare match interrupts can be used as DTC activation sources, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

DMAC Activation: The DMAC can be activated by the TGRA input capture/compare match interrupt for a channel. For details, see section 7, DMA Controller.

In the TPU, a total of six TGRA input capture/compare match interrupts can be used as DMAC activation sources, one for each channel.

10.5.3 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a channel.

If the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel, a request to start A/D conversion is sent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

In the TPU, a total of six TGRA input capture/compare match interrupts can be used as A/D converter conversion start sources, one for each channel.

10.6 Operation Timing

10.6.1 Input/Output Timing

TCNT Count Timing: Figure 10.34 shows TCNT count timing in internal clock operation, and figure 10.35 shows TCNT count timing in external clock operation.

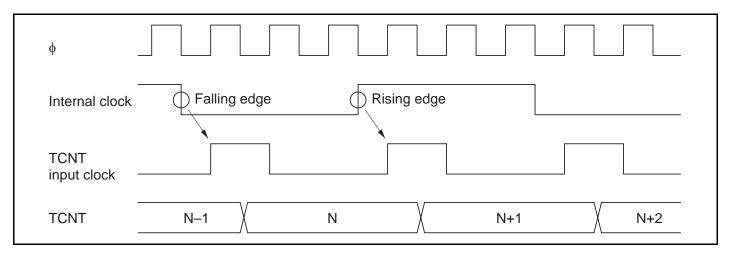


Figure 10.34 Count Timing in Internal Clock Operation

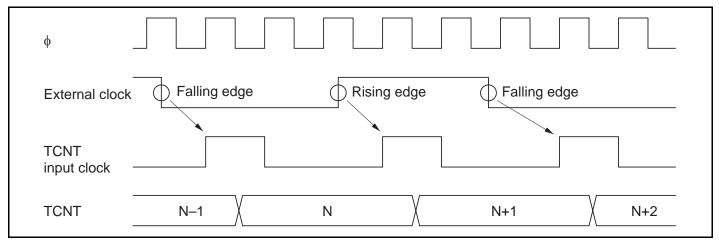


Figure 10.35 Count Timing in External Clock Operation

Rev.4.00 Sep. 07, 2007 Page 511 of 1210

Output Compare Output Timing: A compare match signal is generated in the final state in which TCNT and TGR match (the point at which the count value matched by TCNT is updated). When a compare match signal is generated, the output value set in TIOR is output at the output compare output pin (TIOC pin). After a match between TCNT and TGR, the compare match signal is not generated until the TCNT input clock is generated.

Figure 10.36 shows output compare output timing.

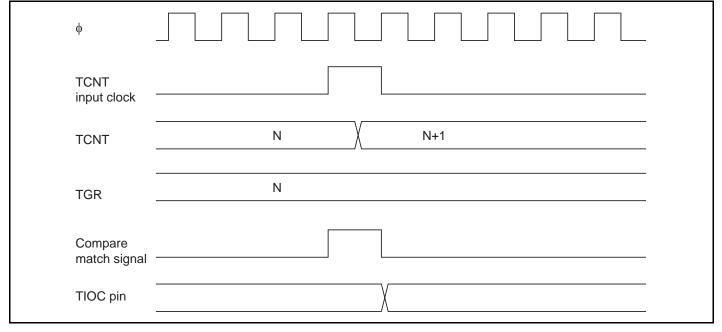


Figure 10.36 Output Compare Output Timing

Input Capture Signal Timing: Figure 10.37 shows input capture signal timing.

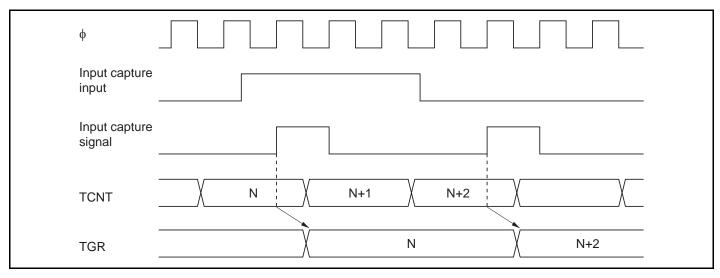


Figure 10.37 Input Capture Input Signal Timing

Timing for Counter Clearing by Compare Match/Input Capture: Figure 10.38 shows the timing when counter clearing by compare match occurrence is specified, and figure 10.39 shows the timing when counter clearing by input capture occurrence is specified.

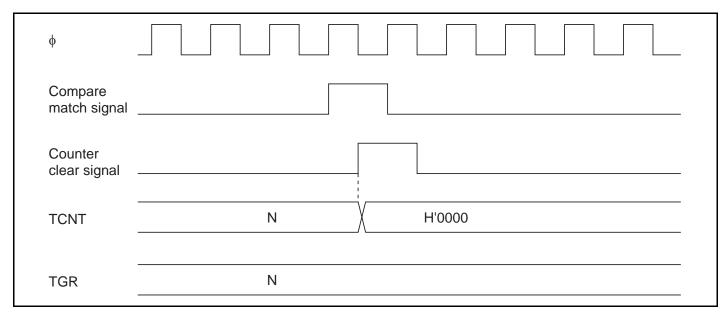


Figure 10.38 Counter Clear Timing (Compare Match)

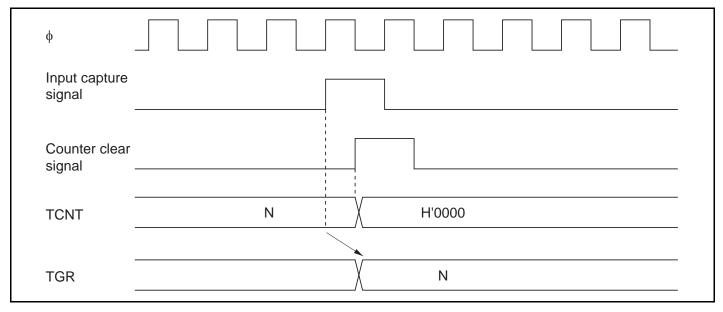


Figure 10.39 Counter Clear Timing (Input Capture)

Buffer Operation Timing: Figures 10.40 and 10.41 show the timing in buffer operation.

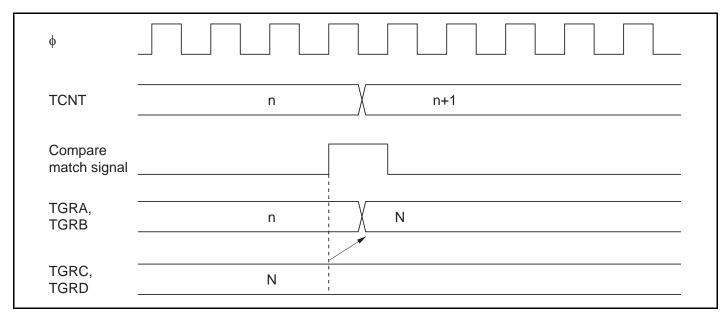


Figure 10.40 Buffer Operation Timing (Compare Match)

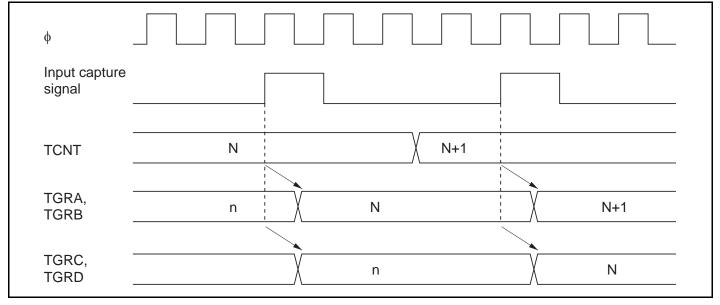


Figure 10.41 Buffer Operation Timing (Input Capture)

10.6.2 Interrupt Signal Timing

TGF Flag Setting Timing in Case of Compare Match: Figure 10.42 shows the timing for setting of the TGF flag in TSR by compare match occurrence, and TGI interrupt request signal timing.

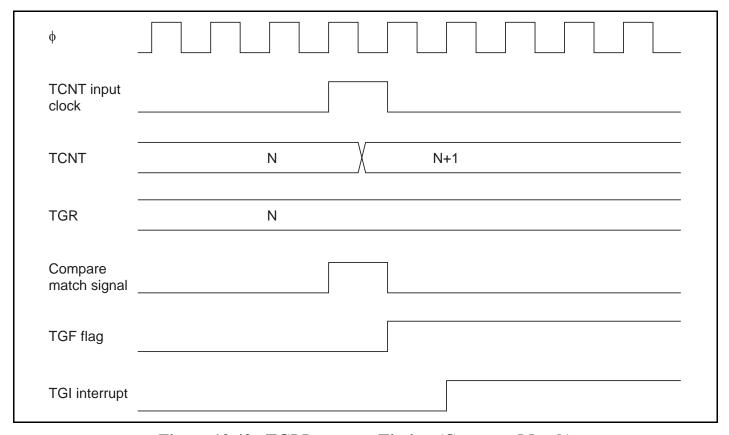


Figure 10.42 TGI Interrupt Timing (Compare Match)

TGF Flag Setting Timing in Case of Input Capture: Figure 10.43 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and TGI interrupt request signal timing.

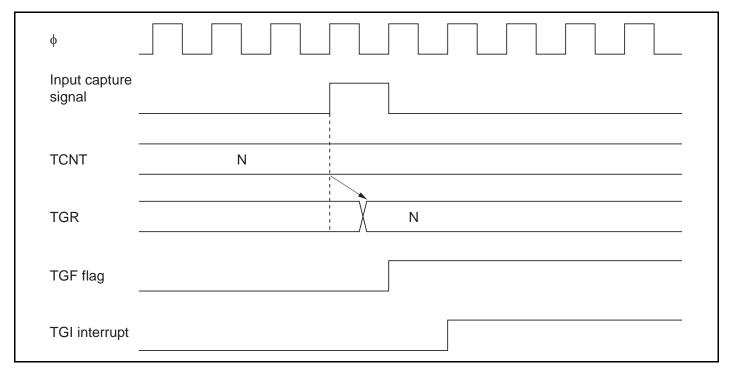


Figure 10.43 TGI Interrupt Timing (Input Capture)

TCFV Flag/TCFU Flag Setting Timing: Figure 10.44 shows the timing for setting of the TCFV flag in TSR by overflow occurrence, and TCIV interrupt request signal timing.

Figure 10.45 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and TCIU interrupt request signal timing.

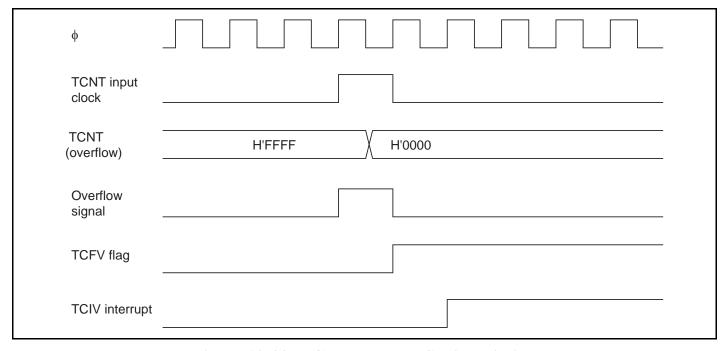


Figure 10.44 TCIV Interrupt Setting Timing

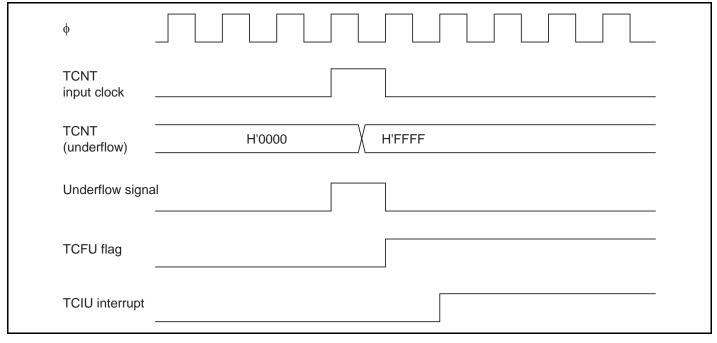


Figure 10.45 TCIU Interrupt Setting Timing

Status Flag Clearing Timing: After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DTC or DMAC is activated, the flag is cleared automatically. Figure 10.46 shows the timing for status flag clearing by the CPU, and figure 10.47 shows the timing for status flag clearing by the DTC or DMAC.

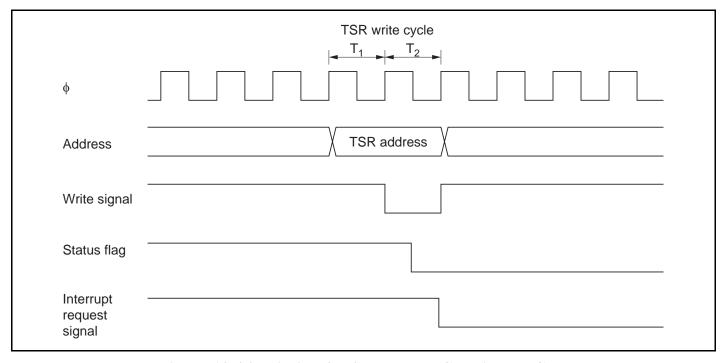


Figure 10.46 Timing for Status Flag Clearing by CPU

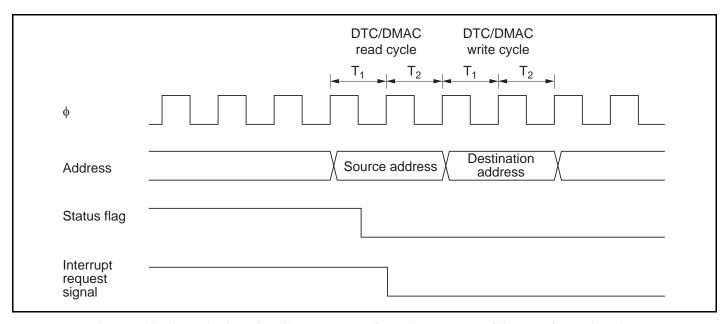


Figure 10.47 Timing for Status Flag Clearing by DTC/DMAC Activation

10.7 Usage Notes

Note that the kinds of operation and contention described below can occur during TPU operation.

Input Clock Restrictions: The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly with a narrower pulse width.

In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10.48 shows the input clock conditions in phase counting mode.

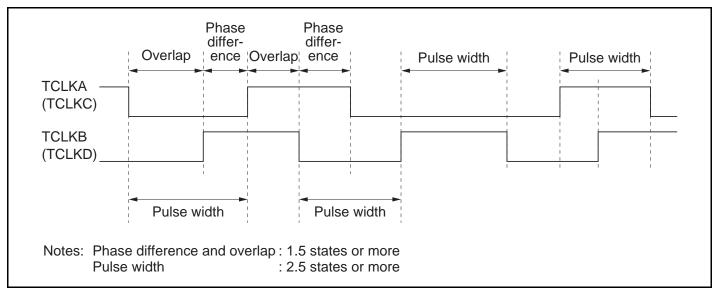


Figure 10.48 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

Caution on Period Setting: When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

$$f = \frac{\phi}{(N+1)}$$

Where

f : Counter frequency

φ : Operating frequency

N: TGR set value

Rev.4.00 Sep. 07, 2007 Page 519 of 1210

Contention between TCNT Write and Clear Operations: If the counter clear signal is generated in the T₂ state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed.

Figure 10.49 shows the timing in this case.

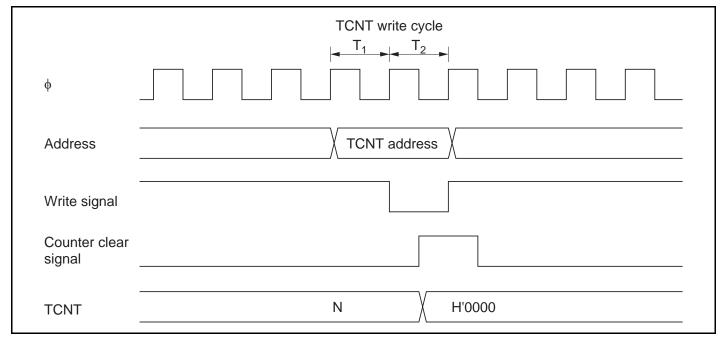


Figure 10.49 Contention between TCNT Write and Clear Operations

Contention between TCNT Write and Increment Operations: If incrementing occurs in the T₂ state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented.

Figure 10.50 shows the timing in this case.

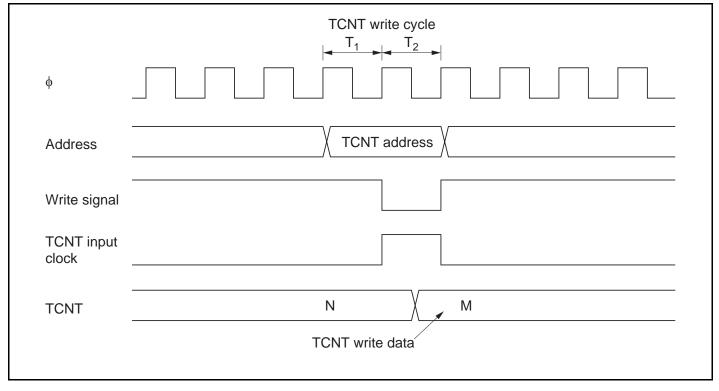


Figure 10.50 Contention between TCNT Write and Increment Operations

Contention between TGR Write and Compare Match: If a compare match occurs in the T₂ state of a TGR write cycle, the TGR write takes precedence and the compare match signal is inhibited. A compare match does not occur even if the same value as before is written.

Figure 10.51 shows the timing in this case.

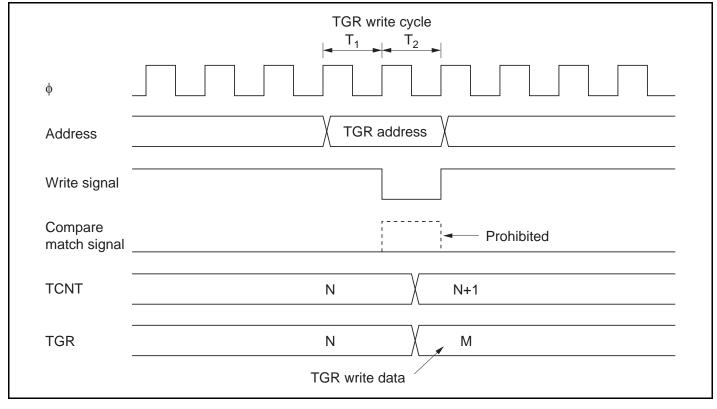


Figure 10.51 Contention between TGR Write and Compare Match

Contention between Buffer Register Write and Compare Match: If a compare match occurs in the T₂ state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the data prior to the write.

Figure 10.52 shows the timing in this case.

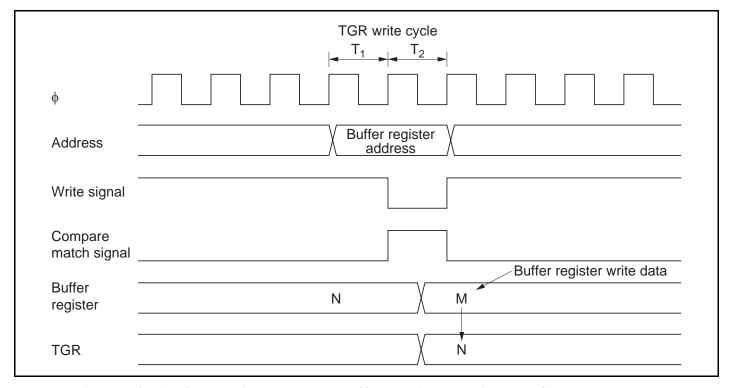


Figure 10.52 Contention between Buffer Register Write and Compare Match

Contention between TGR Read and Input Capture: If the input capture signal is generated in the T_1 state of a TGR read cycle, the data that is read will be the data after input capture transfer.

Figure 10.53 shows the timing in this case.

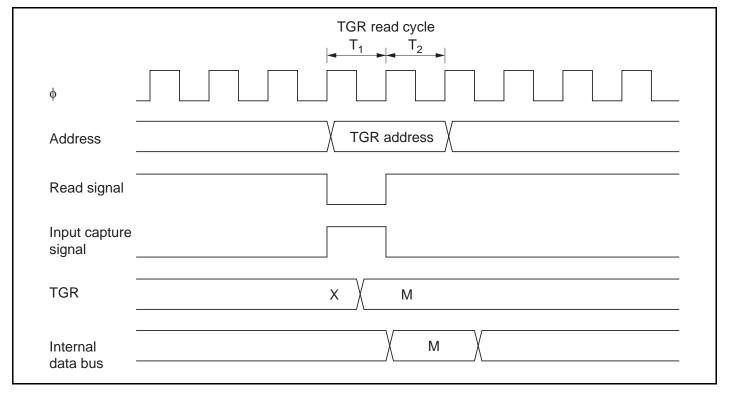


Figure 10.53 Contention between TGR Read and Input Capture

Contention between TGR Write and Input Capture: If the input capture signal is generated in the T_2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed.

Figure 10.54 shows the timing in this case.

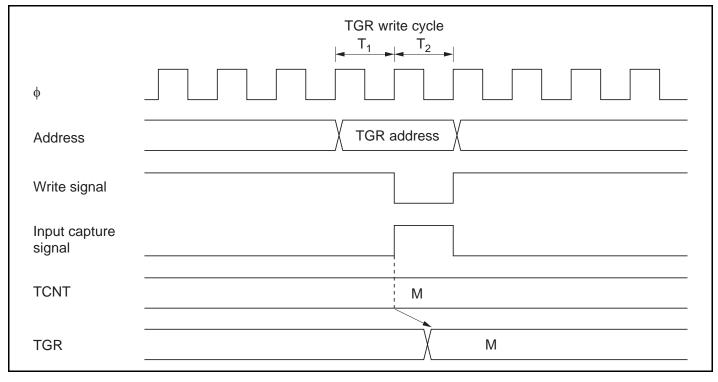


Figure 10.54 Contention between TGR Write and Input Capture

Contention between Buffer Register Write and Input Capture: If the input capture signal is generated in the T_2 state of a buffer write cycle, the buffer operation takes precedence and the write to the buffer register is not performed.

Figure 10.55 shows the timing in this case.

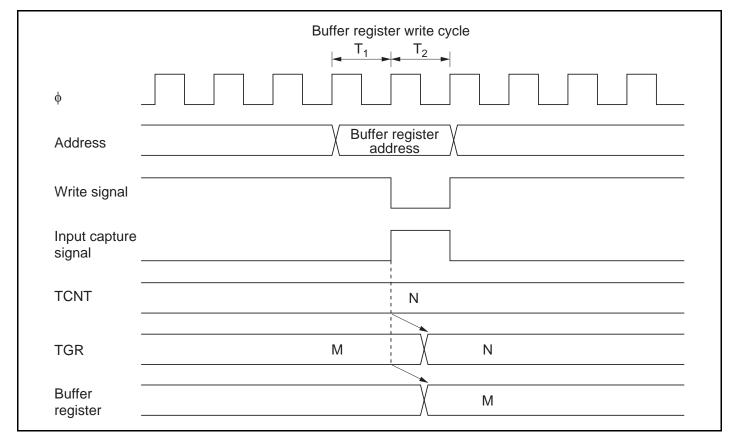


Figure 10.55 Contention between Buffer Register Write and Input Capture

Contention between Overflow/Underflow and Counter Clearing: If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 10.56 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

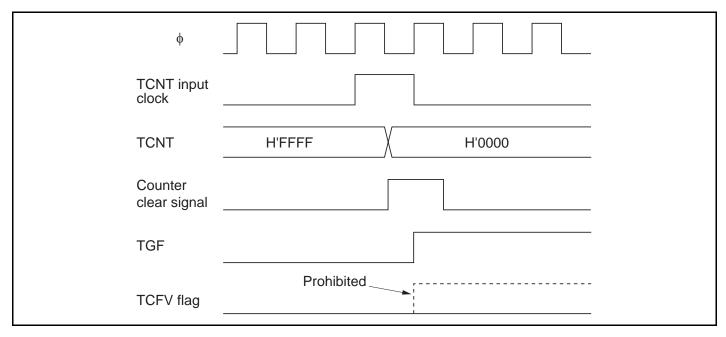


Figure 10.56 Contention between Overflow and Counter Clearing

Contention between TCNT Write and Overflow/Underflow: If there is an up-count or down-count in the T₂ state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

Figure 10.57 shows the operation timing when there is contention between TCNT write and overflow.

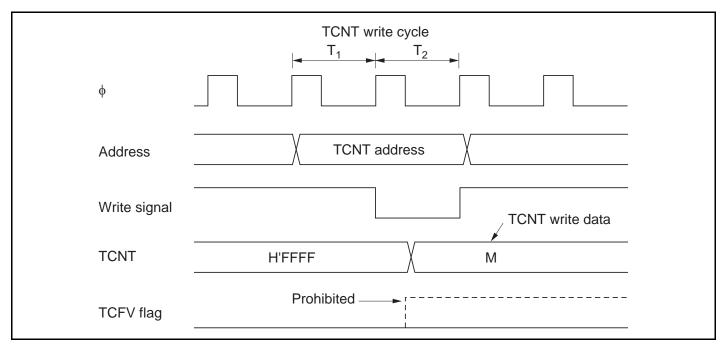


Figure 10.57 Contention between TCNT Write and Overflow

Multiplexing of I/O Pins: In the chip, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

Interrupts and Module Stop Mode: If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DMAC or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Section 11 Programmable Pulse Generator (PPG)

11.1 Overview

The chip has a built-in programmable pulse generator (PPG) that provides pulse outputs by using the 16-bit timer-pulse unit (TPU) as a time base. The PPG pulse outputs are divided into 4-bit groups (group 3 to group 0) that can operate both simultaneously and independently.

11.1.1 Features

PPG features are listed below.

- 16-bit output data
 - Maximum 16-bit data can be output, and output can be enabled on a bit-by-bit basis
- Four output groups
 - Output trigger signals can be selected in 4-bit groups to provide up to four different 4-bit outputs
- Selectable output trigger signals
 - Output trigger signals can be selected for each group from the compare match signals of four TPU channels
- Non-overlap mode
 - A non-overlap margin can be provided between pulse outputs
- Can operate together with the data transfer controller (DTC) and DMA controller (DMAC)
 - The compare match signals selected as output trigger signals can activate the DTC or DMAC for sequential output of data without CPU intervention
- Inverted output can be set
 - Inverted data can be output for each group
- Module stop mode can be set
 - As the initial setting, PPG operation is halted. Register access is enabled by exiting module stop mode

Rev.4.00 Sep. 07, 2007 Page 529 of 1210

11.1.2 Block Diagram

Figure 11.1 shows a block diagram of the PPG.

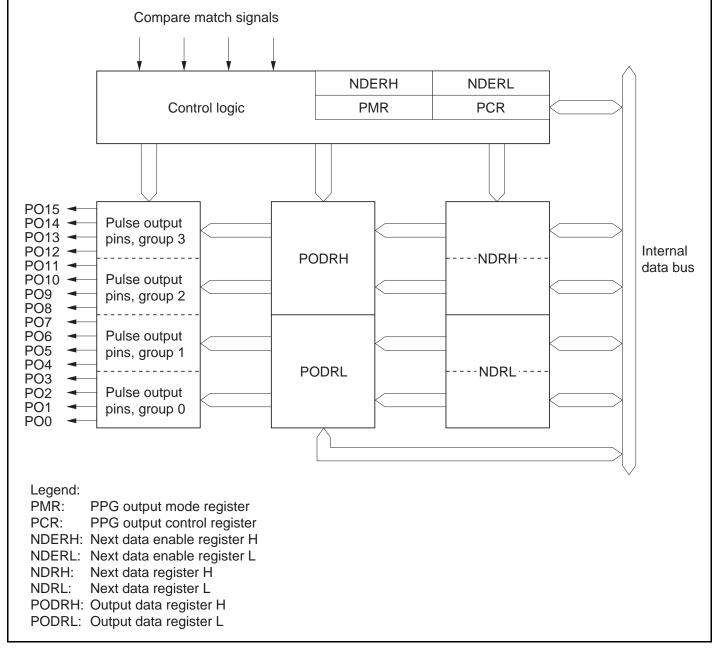


Figure 11.1 Block Diagram of PPG

11.1.3 Pin Configuration

Table 11.1 summarizes the PPG pins.

Table 11.1 PPG Pins

Name	Symbol	I/O	Function
Pulse output 0	PO0	Output	Group 0 pulse output
Pulse output 1	PO1	Output	
Pulse output 2	PO2	Output	
Pulse output 3	PO3	Output	
Pulse output 4	PO4 Output Group 1 pulse output		Group 1 pulse output
Pulse output 5	PO5	Output	
Pulse output 6	P06	Output	
Pulse output 7	PO7	Output	
Pulse output 8	PO8	Output	Group 2 pulse output
Pulse output 9	PO9	Output	
Pulse output 10	PO10	Output	
Pulse output 11	PO11	Output	
Pulse output 12	PO12	Output	Group 3 pulse output
Pulse output 13	PO13	Output	
Pulse output 14	PO14	Output	
Pulse output 15	PO15	Output	

11.1.4 Registers

Table 11.2 summarizes the PPG registers.

Table 11.2 PPG Registers

Abbreviation	R/W	Initial Value	Address*1
PCR	R/W	H'FF	H'FF46
PMR	R/W	H'F0	H'FF47
NDERH	R/W	H'00	H'FF48
NDERL	R/W	H'00	H'FF49
PODRH	R/(W)*2	H'00	H'FF4A
PODRL	R/(W) *2	H'00	H'FF4B
NDRH	R/W	H'00	H'FF4C/ H'FF4E ^{*3}
NDRL	R/W	H'00	H'FF4D/ H'FF4F ^{*3}
P1DDR	W	H'00	H'FEB0
P2DDR	W	H'00	H'FEB1
MSTPCR	R/W	H'3FFF	H'FF3C
	PCR PMR NDERH NDERL PODRH PODRL NDRH NDRL P1DDR P2DDR	PCR R/W PMR R/W NDERH R/W NDERL R/W PODRH R/(W)*2 PODRL R/(W)*2 NDRH R/W NDRL R/W NDRL R/W NDRL R/W P1DDR W P2DDR W	PCR R/W H'FF PMR R/W H'F0 NDERH R/W H'00 NDERL R/W H'00 PODRH R/(W)*2 H'00 PODRL R/(W)*2 H'00 NDRH R/W H'00 NDRL R/W H'00 P1DDR W H'00 P2DDR W H'00

Notes: 1. Lower 16 bits of the address.

- 2. Bits used for pulse output cannot be written to.
- 3. When the same output trigger is selected for pulse output groups 2 and 3 by the PCR setting, the NDRH address is H'FF4C. When the output triggers are different, the NDRH address is H'FF4E for group 2 and H'FF4C for group 3.

Similarly, when the same output trigger is selected for pulse output groups 0 and 1 by the PCR setting, the NDRL address is H'FF4D. When the output triggers are different, the NDRL address is H'FF4F for group 0 and H'FF4D for group 1.

11.2 Register Descriptions

11.2.1 Next Data Enable Registers H and L (NDERH, NDERL)

NDERH

Bit	7	6	5	4	3	2	1	0		
	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8		
Initial value	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
NDERL										
Bit	7	6	5	4	3	2	1	0		
	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0		
Initial value	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

NDERH and NDERL are 8-bit readable/writable registers that enable or disable pulse output on a bit-by-bit basis.

If a bit is enabled for pulse output by NDERH or NDERL, the NDR value is automatically transferred to the corresponding PODR bit when the TPU compare match event specified by PCR occurs, updating the output value. If pulse output is disabled, the bit value is not transferred from NDR to PODR and the output value does not change.

NDERH and NDERL are each initialized to H'00 by a reset and in hardware standby mode. They are not initialized in software standby mode.

NDERH Bits 7 to 0—Next Data Enable 15 to 8 (NDER15 to NDER8): These bits enable or disable pulse output on a bit-by-bit basis.

Bits 7 to 0 NDER15 to NDER8	Description	
0	Pulse outputs PO15 to PO8 are disabled (NDR15 transferred to POD15 to POD8)	to NDR8 are not (Initial value)
1	Pulse outputs PO15 to PO8 are enabled (NDR15 to POD15 to POD8)	to NDR8 are transferred

NDERL Bits 7 to 0—Next Data Enable 7 to 0 (NDER7 to NDER0): These bits enable or disable pulse output on a bit-by-bit basis.

Bits 7 to 0 NDER7 to NDER0	Description	
0	Pulse outputs PO7 to PO0 are disabled (NDR7 to NDF transferred to POD7 to POD0)	R0 are not (Initial value)
1	Pulse outputs PO7 to PO0 are enabled (NDR7 to NDF POD7 to POD0)	R0 are transferred to

11.2.2 Output Data Registers H and L (PODRH, PODRL)

P	מכ	RH	4
	,,		

Bit	:	7	6	5	4	3	2	1	0
		POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8
Initial value	e :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*							
BODBI									

PODRL

Bit	:	7	6	5	4	3	2	1	0
		POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0
Initial value	e :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*							

Note: * A bit that has been set for pulse output by NDER is read-only.

PODRH and PODRL are 8-bit readable/writable registers that store output data for use in pulse output.

11.2.3 Next Data Registers H and L (NDRH, NDRL)

NDRH and NDRL are 8-bit readable/writable registers that store the next data for pulse output. During pulse output, the contents of NDRH and NDRL are transferred to the corresponding bits in PODRH and PODRL when the TPU compare match event specified by PCR occurs. The NDRH and NDRL addresses differ depending on whether pulse output groups have the same output trigger or different output triggers. For details see section 11.2.4, Notes on NDR Access.

NDRH and NDRL are each initialized to H'00 by a reset and in hardware standby mode. They are not initialized in software standby mode.

11.2.4 Notes on NDR Access

The NDRH and NDRL addresses differ depending on whether pulse output groups have the same output trigger or different output triggers.

Same Trigger for Pulse Output Groups: If pulse output groups 2 and 3 are triggered by the same compare match event, the NDRH address is H'FF4C. The upper 4 bits belong to group 3 and the lower 4 bits to group 2. Address H'FF4E consists entirely of reserved bits that cannot be modified and are always read as 1.

Address H'FF4C

Bit :	/	6	5	4	3	2	1	0	
	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	
Initial value :	0	0	0	0	0	0	0	0	
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Address H'FF4E

Bit	:	7	6	5	4	3	2	1	0	
		_	_	_	_	_	_	_	_	
Initial valu	ue :	1	1	1	1	1	1	1	1	_
R/W	:	_	_	_	_	_	_	_	_	

If pulse output groups 0 and 1 are triggered by the same compare match event, the NDRL address is H'FF4D. The upper 4 bits belong to group 1 and the lower 4 bits to group 0. Address H'FF4F consists entirely of reserved bits that cannot be modified and are always read as 1.

Address H'FF4D

Bit	:	7	6	5	4	3	2	1	0
		NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

Address H'FF4F

Bit	: _	7	6	5	4	3	2	1	0
		_	_	_	_	_	_	_	_
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	_	_	_	_	_	_	_	_

Different Triggers for Pulse Output Groups: If pulse output groups 2 and 3 are triggered by different compare match events, the address of the upper 4 bits in NDRH (group 3) is H'FF4C and the address of the lower 4 bits (group 2) is H'FF4E. Bits 3 to 0 of address H'FF4C and bits 7 to 4 of address H'FF4E are reserved bits that cannot be modified and are always read as 1.

Address H'FF4C

Bit	•	7	6	5	4	3	2	1	0
		NDR15	NDR14	NDR13	NDR12				
Initial val	lue :	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	_	_	_	_

Address H'FF4E

Bit :	:	7	6	5	4	3	2	1	0
		_	_	_	_	NDR11	NDR10	NDR9	NDR8
Initial value :	:	1	1	1	1	0	0	0	0
R/W	:		_	_	_	R/W	R/W	R/W	R/W

If pulse output groups 0 and 1 are triggered by different compare match event, the address of the upper 4 bits in NDRL (group 1) is H'FF4D and the address of the lower 4 bits (group 0) is H'FF4F. Bits 3 to 0 of address H'FF4D and bits 7 to 4 of address H'FF4F are reserved bits that cannot be modified and are always read as 1.

Address H'FF4D

Bit	:	7	6	5	4	3	2	1	0	
		NDR7	NDR6	NDR5	NDR4	_		_		
Initial va	lue :	0	0	0	0	1	1	1	1	
R/W	:	R/W	R/W	R/W	R/W					

Address H'FF4F

Bit	:	7	6	5	4	3	2	1	0
		_	_	_		NDR3	NDR2	NDR1	NDR0
Initial value) :	1	1	1	1	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

11.2.5 PPG Output Control Register (PCR)

Bit	:	7	6	5	4	3	2	1	0
		G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0
Initial valu	ie :	1	1	1	1	1	1	1	1
R/W	:	R/W							

PCR is an 8-bit readable/writable register that selects output trigger signals for PPG outputs on a group-by-group basis.

PCR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 and 6—Group 3 Compare Match Select 1 and 0 (G3CMS1, G3CMS0): These bits select the compare match that triggers pulse output group 3 (pins PO15 to PO12).

Bit 7	Bit 6	Description					
G3CMS1	G3CMS0	Output Trigger for Pulse Output Group 3					
0	0	Compare match in TPU channel 0					
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

Bits 5 and 4—Group 2 Compare Match Select 1 and 0 (G2CMS1, G2CMS0): These bits select the compare match that triggers pulse output group 2 (pins PO11 to PO8).

Bit 5	Bit 4	Description					
G2CMS1	G2CMS0	Output Trigger for Pulse Output Group 2					
0	0	Compare match in TPU channel 0					
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

Bits 3 and 2—Group 1 Compare Match Select 1 and 0 (G1CMS1, G1CMS0): These bits select the compare match that triggers pulse output group 1 (pins PO7 to PO4).

Bit 3	Bit 2	Description					
G1CMS1	G1CMS0	Output Trigger for Pulse Output Group 1					
0	0	Compare match in TPU channel 0					
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

Bits 1 and 0—Group 0 Compare Match Select 1 and 0 (G0CMS1, G0CMS0): These bits select the compare match that triggers pulse output group 0 (pins PO3 to PO0).

Bit 1	Bit 0	Description					
G0CMS1	G0CMS0	Output Trigger for Pulse Output Group 0					
0	0	Compare match in TPU channel 0					
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

11.2.6 PPG Output Mode Register (PMR)

Bit	:	7	6	5	4	3	2	1	0
		G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV
Initial valu	e :	1	1	1	1	0	0	0	0
R/W	:	R/W							

PMR is an 8-bit readable/writable register that selects pulse output inversion and non-overlapping operation for each group.

The output trigger period of a non-overlapping operation PPG output waveform is set in TGRB and the non-overlap margin is set in TGRA. The output values change at compare match A and B.

For details, see section 11.3.4, Non-Overlapping Pulse Output.

PMR is initialized to H'F0 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Group 3 Inversion (G3INV): Selects direct output or inverted output for pulse output group 3 (pins PO15 to PO12).

Bit 7 G3INV	Description
0	Inverted output for pulse output group 3 (low-level output at pin for a 1 in PODRH)
1	Direct output for pulse output group 3 (high-level output at pin for a 1 in PODRH) (Initial value)

Bit 6—Group 2 Inversion (G2INV): Selects direct output or inverted output for pulse output group 2 (pins PO11 to PO8).

Bit 6 G2INV	Description
0	Inverted output for pulse output group 2 (low-level output at pin for a 1 in PODRH)
1	Direct output for pulse output group 2 (high-level output at pin for a 1 in PODRH) (Initial value)

Bit 5—Group 1 Inversion (G1INV): Selects direct output or inverted output for pulse output group 1 (pins PO7 to PO4).

Bit 5 G1INV	Description
0	Inverted output for pulse output group 1 (low-level output at pin for a 1 in PODRL)
1	Direct output for pulse output group 1 (high-level output at pin for a 1 in PODRL) (Initial value)

Bit 4—Group 0 Inversion (G0INV): Selects direct output or inverted output for pulse output group 0 (pins PO3 to PO0).

Bit 4 G0INV	Description
0	Inverted output for pulse output group 0 (low-level output at pin for a 1 in PODRL)
1	Direct output for pulse output group 0 (high-level output at pin for a 1 in PODRL) (Initial value)

Bit 3—Group 3 Non-Overlap (G3NOV): Selects normal or non-overlapping operation for pulse output group 3 (pins PO15 to PO12).

Bit 3 G3NOV	Description
0	Normal operation in pulse output group 3 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 3 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 2—Group 2 Non-Overlap (G2NOV): Selects normal or non-overlapping operation for pulse output group 2 (pins PO11 to PO8).

Bit 2 G2NOV	Description
0	Normal operation in pulse output group 2 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 2 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 1—Group 1 Non-Overlap (G1NOV): Selects normal or non-overlapping operation for pulse output group 1 (pins PO7 to PO4).

Bit 1 G1NOV	Description
0	Normal operation in pulse output group 1 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 1 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 0—Group 0 Non-Overlap (G0NOV): Selects normal or non-overlapping operation for pulse output group 0 (pins PO3 to PO0).

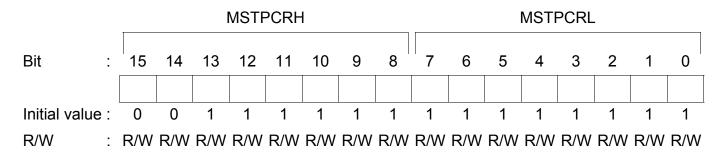
Bit 0 G0NOV	Description
0	Normal operation in pulse output group 0 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 0 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

11.2.7 Port 1 Data Direction Register (P1DDR)

Bit	:	7	6	5	4	3	2	1	0
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1.

Port 1 is multiplexed with pins PO15 to PO8. Bits corresponding to pins used for PPG output must be set to 1. For further information about P1DDR, see section 9, I/O Port.


11.2.8 Port 2 Data Direction Register (P2DDR)

Bit	:	7	6	5	4	3	2	1	0
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P2DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 2.

Port 2 is multiplexed with pins PO7 to PO0. Bits corresponding to pins used for PPG output must be set to 1. For further information about P2DDR, see section 9, I/O Port.

11.2.9 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP11 bit in MSTPCR is set to 1, PPG operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 11—Module Stop (MSTP11): Specifies the PPG module stop mode.

Bit 11	
MSTP11	Description

0	PPG module stop mode cleared	
1	PPG module stop mode set	(Initial value)

11.3 Operation

11.3.1 Overview

PPG pulse output is enabled when the corresponding bits in P1DDR, P2DDR, and NDER are set to 1. In this state the corresponding PODR contents are output.

When the compare match event specified by PCR occurs, the corresponding NDR bit contents are transferred to PODR to update the output values.

Figure 11.2 illustrates the PPG output operation and table 11.3 summarizes the PPG operating conditions.

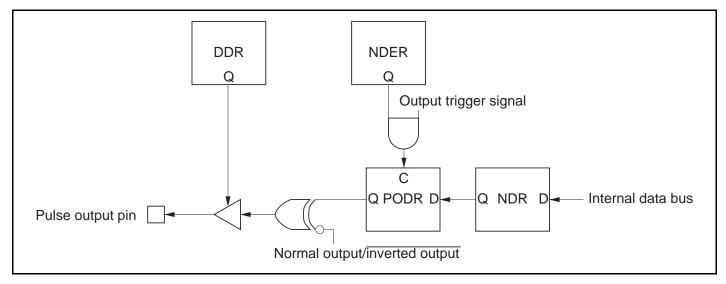


Figure 11.2 PPG Output Operation

Table 11.3 PPG Operating Conditions

NDER	DDR	Pin Function
0	0	Generic input port
	1	Generic output port
1	0	Generic input port (but the PODR bit is a read-only bit, and when compare match occurs, the NDR bit value is transferred to the PODR bit)
	1	PPG pulse output

Sequential output of data of up to 16 bits is possible by writing new output data to NDR before the next compare match. For details of non-overlapping operation, see section 11.3.4, Non-Overlapping Pulse Output.

11.3.2 Output Timing

If pulse output is enabled, NDR contents are transferred to PODR and output when the specified compare match event occurs. Figure 11.3 shows the timing of these operations for the case of normal output in groups 2 and 3, triggered by compare match A.

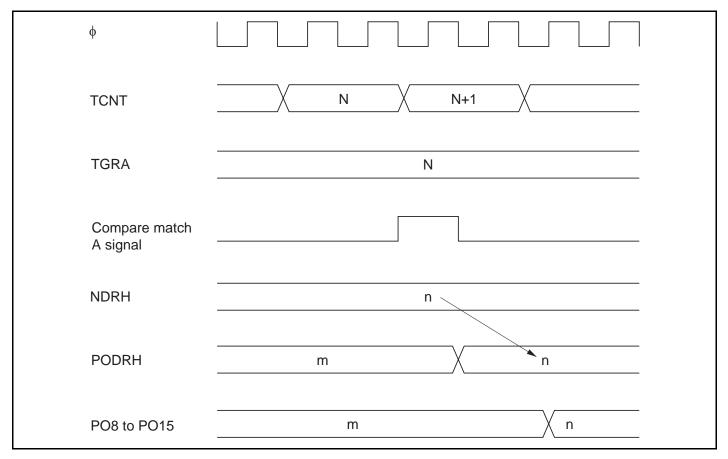


Figure 11.3 Timing of Transfer and Output of NDR Contents (Example)

11.3.3 Normal Pulse Output

Sample Setup Procedure for Normal Pulse Output: Figure 11.4 shows a sample procedure for setting up normal pulse output.

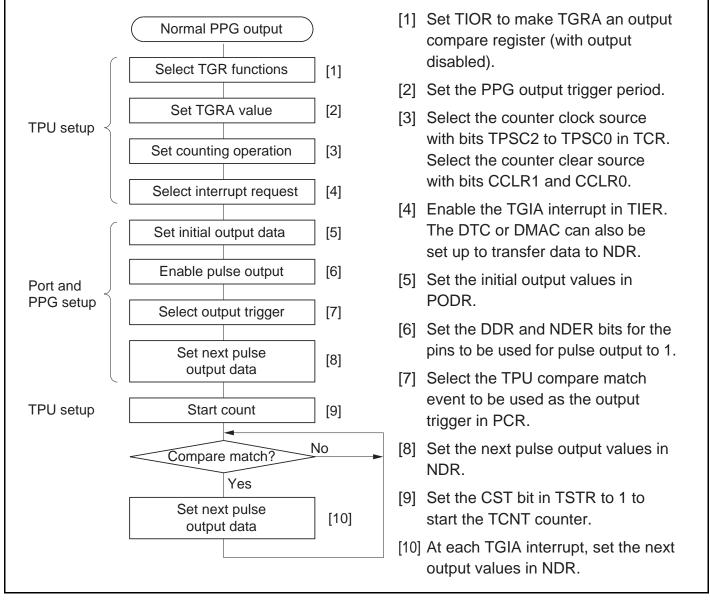


Figure 11.4 Setup Procedure for Normal Pulse Output (Example)

Example of Normal Pulse Output (Example of Five-Phase Pulse Output): Figure 11.5 shows an example in which pulse output is used for cyclic five-phase pulse output.

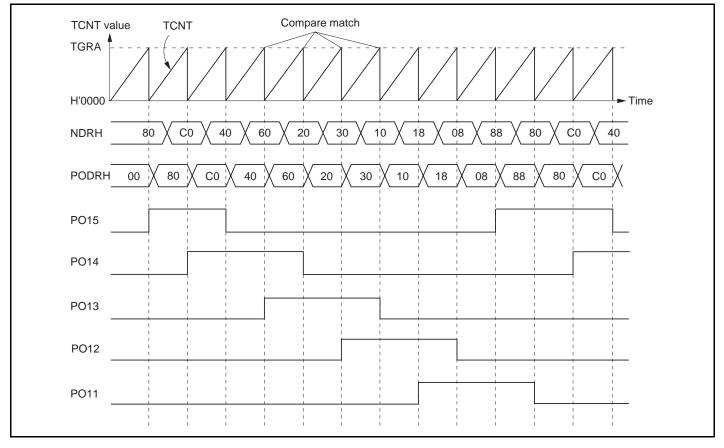


Figure 11.5 Normal Pulse Output Example (Five-Phase Pulse Output)

- [1] Set up the TPU channel to be used as the output trigger channel so that TGRA is an output compare register and the counter will be cleared by compare match A. Set the trigger period in TGRA and set the TGIEA bit in TIER to 1 to enable the compare match A (TGIA) interrupt.
- [2] Write H'F8 in P1DDR and NDERH, and set the G3CMS1, G3CMS0, G2CMS1, and G2CMS0 bits in PCR to select compare match in the TPU channel set up in the previous step to be the output trigger. Write output data H'80 in NDRH.
- [3] The timer counter in the TPU channel starts. When compare match A occurs, the NDRH contents are transferred to PODRH and output. The TGIA interrupt handling routine writes the next output data (H'C0) in NDRH.
- [4] Five-phase overlapping pulse output (one or two phases active at a time) can be obtained subsequently by writing H'40, H'60, H'20, H'30. H'10, H'18, H'08, H'88, ... at successive TGIA interrupts. If the DTC or DMAC is set for activation by this interrupt, pulse output can be obtained without imposing a load on the CPU.

11.3.4 Non-Overlapping Pulse Output

Sample Setup Procedure for Non-Overlapping Pulse Output: Figure 11.6 shows a sample procedure for setting up non-overlapping pulse output.

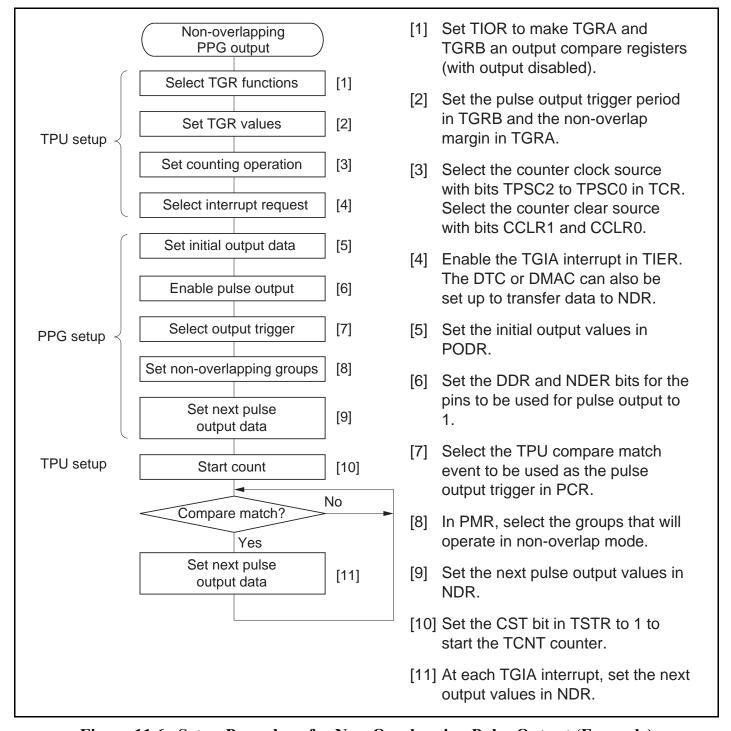


Figure 11.6 Setup Procedure for Non-Overlapping Pulse Output (Example)

Example of Non-Overlapping Pulse Output (Example of Four-Phase Complementary Non-Overlapping Output): Figure 11.7 shows an example in which pulse output is used for four-phase complementary non-overlapping pulse output.

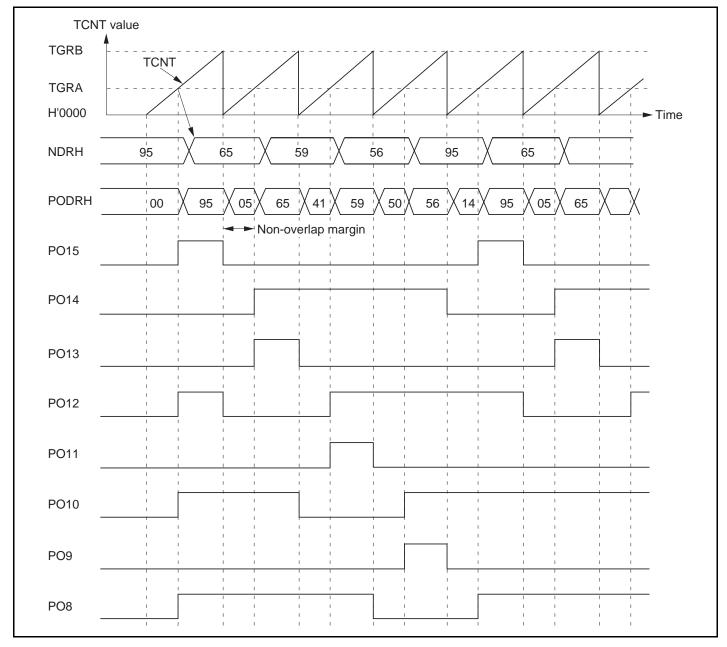


Figure 11.7 Non-Overlapping Pulse Output Example (Four-Phase Complementary)

RENESAS

- [1] Set up the TPU channel to be used as the output trigger channel so that TGRA and TGRB are output compare registers. Set the trigger period in TGRB and the non-overlap margin in TGRA, and set the counter to be cleared by compare match B. Set the TGIEA bit in TIER to 1 to enable the TGIA interrupt.
- [2] Write H'FF in P1DDR and NDERH, and set the G3CMS1, G3CMS0, G2CMS1, and G2CMS0 bits in PCR to select compare match in the TPU channel set up in the previous step to be the output trigger. Set the G3NOV and G2NOV bits in PMR to 1 to select non-overlapping output. Write output data H'95 in NDRH.
- [3] The timer counter in the TPU channel starts. When a compare match with TGRB occurs, outputs change from 1 to 0. When a compare match with TGRA occurs, outputs change from 0 to 1 (the change from 0 to 1 is delayed by the value set in TGRA). The TGIA interrupt handling routine writes the next output data (H'65) in NDRH.
- [4] Four-phase complementary non-overlapping pulse output can be obtained subsequently by writing H'59, H'56, H'95, ... at successive TGIA interrupts. If the DTC or DMAC is set for activation by this interrupt, pulse output can be obtained without imposing a load on the CPU.

11.3.5 Inverted Pulse Output

If the G3INV, G2INV, G1INV, and G0INV bits in PMR are cleared to 0, values that are the inverse of the PODR contents can be output.

Figure 11.8 shows the outputs when G3INV and G2INV are cleared to 0, in addition to the settings of figure 11.7.

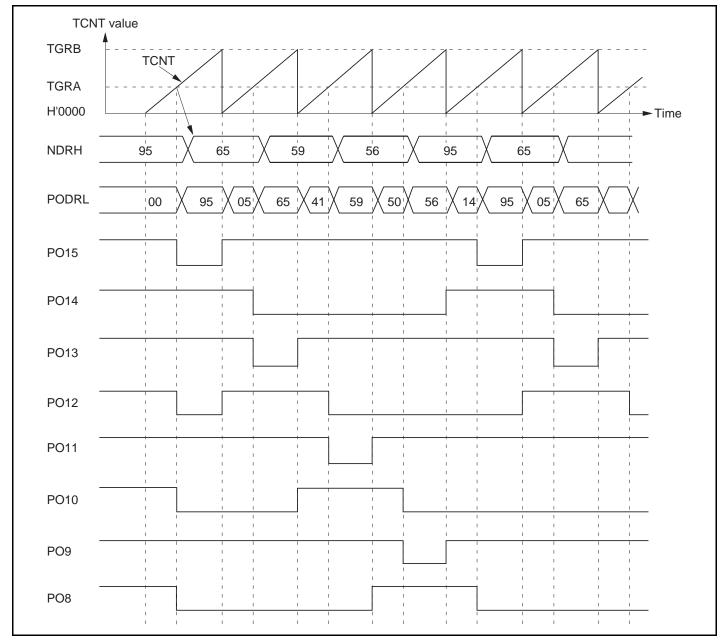


Figure 11.8 Inverted Pulse Output (Example)

11.3.6 Pulse Output Triggered by Input Capture

Pulse output can be triggered by TPU input capture as well as by compare match. If TGRA functions as an input capture register in the TPU channel selected by PCR, pulse output will be triggered by the input capture signal.

Figure 11.9 shows the timing of this output.

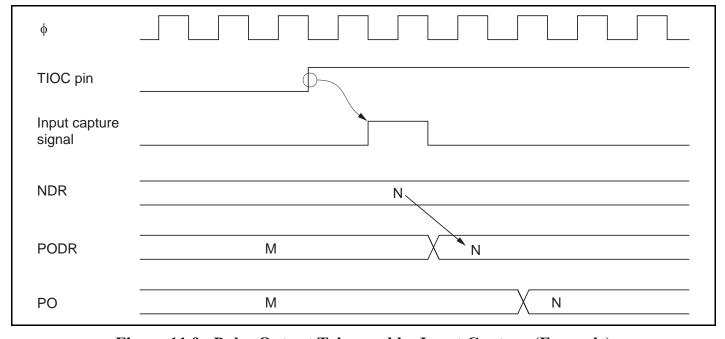


Figure 11.9 Pulse Output Triggered by Input Capture (Example)

Rev.4.00 Sep. 07, 2007 Page 551 of 1210

11.4 Usage Notes

11.4.1 Operation of Pulse Output Pins

Pins PO0 to PO15 are also used for other supporting functions such as the TPU. When output by another supporting function is enabled, the corresponding pins cannot be used for pulse output. Note, however, that data transfer from NDR bits to PODR bits takes place, regardless of the usage of the pins.

Pin functions should be changed only under conditions in which the output trigger event will not occur.

11.4.2 Note on Non-Overlapping Output

During non-overlapping operation, the transfer of NDR bit values to PODR bits takes place as follows.

- NDR bits are always transferred to PODR bits at compare match A.
- At compare match B, NDR bits are transferred only if their value is 0. Bits are not transferred if their value is 1.

Figure 11.10 illustrates the non-overlapping pulse output operation.

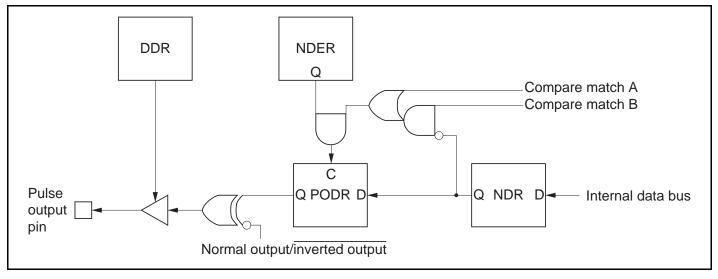


Figure 11.10 Non-Overlapping Pulse Output

RENESAS

Therefore, 0 data can be transferred ahead of 1 data by making compare match B occur before compare match A. The NDR contents should not be altered during the interval from compare match B to compare match A (the non-overlap margin).

This can be accomplished by having the TGIA interrupt handling routine write the next data in NDR, or by having the TGIA interrupt activate the DTC or DMAC. Note, however, that the next data must be written before the next compare match B occurs.

Figure 11.11 shows the timing of this operation.

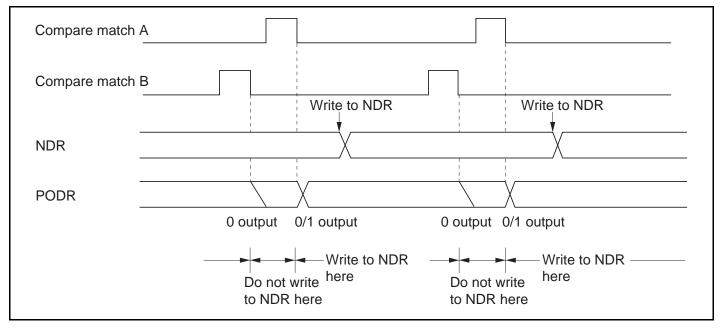


Figure 11.11 Non-Overlapping Operation and NDR Write Timing

Section 12 8-Bit Timers

12.1 Overview

The chip includes an 8-bit timer module with two channels (TMR0 and TMR1). Each channel has an 8-bit counter (TCNT) and two time constant registers (TCORA and TCORB) that are constantly compared with the TCNT value to detect compare match events. The 8-bit timer module can thus be used for a variety of functions, including pulse output with an arbitrary duty cycle.

12.1.1 Features

The features of the 8-bit timer module are listed below.

- Selection of four clock sources
 - The counters can be driven by one of three internal clock signals ($\phi/8$, $\phi/64$, or $\phi/8192$) or an external clock input (enabling use as an external event counter)
- Selection of three ways to clear the counters
 The counters can be cleared on compare match A or B, or by an external reset signal
- Timer output control by a combination of two compare match signals
 The timer output signal in each channel is controlled by a combination of two independent compare match signals, enabling the timer to generate output waveforms with an arbitrary duty cycle or PWM output
- Provision for cascading of two channels
 - Operation as a 16-bit timer is possible, using channel 0 for the upper 8 bits and channel 1 for the lower 8 bits (16-bit count mode)
 - Channel 1 can be used to count channel 0 compare matches (compare match count mode)
- Three independent interrupts
 - Compare match A and B and overflow interrupts can be requested independently
- A/D converter conversion start trigger can be generated
 Channel 0 compare match A signal can be used as an A/D converter conversion start trigger
- Module stop mode can be set
 - As the initial setting, 8-bit timer operation is halted. Register access is enabled by exiting module stop mode

12.1.2 Block Diagram

Figure 12.1 shows a block diagram of the 8-bit timer module.

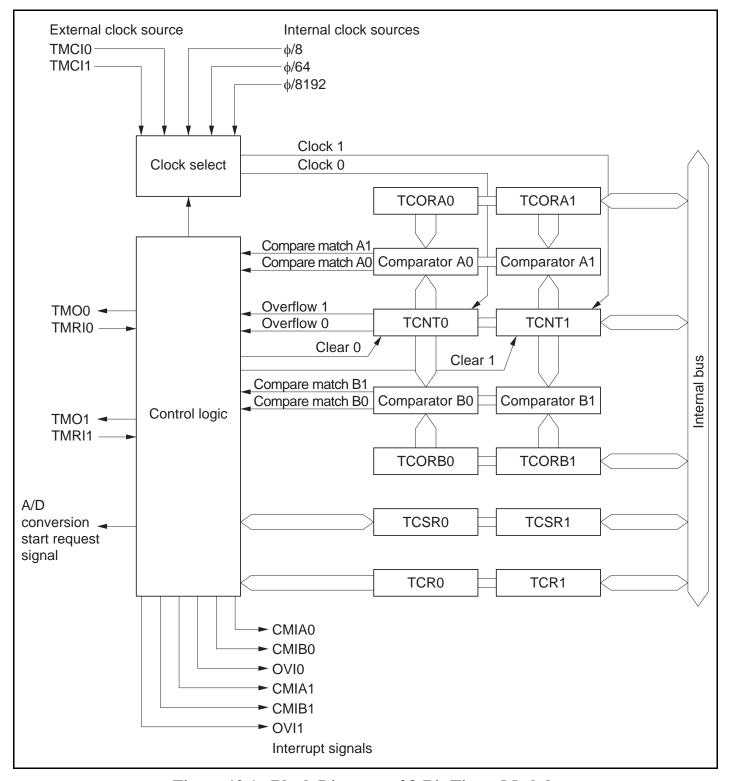


Figure 12.1 Block Diagram of 8-Bit Timer Module

12.1.3 Pin Configuration

Table 12.1 summarizes the input and output pins of the 8-bit timer module.

Table 12.1 Input and Output Pins of 8-Bit Timer

Channel	Name	Symbol	I/O	Function
0	Timer output pin 0	imer output pin 0 TMO0 Out		Outputs at compare match
	Timer clock input pin 0	TMCI0	Input	Inputs external clock for counter
	Timer reset input pin 0	TMRI0	Input	Inputs external reset to counter
1	Timer output pin 1	TMO1	Output	Outputs at compare match
	Timer clock input pin 1	TMCI1	Input	Inputs external clock for counter
	Timer reset input pin 1	TMRI1	Input	Inputs external reset to counter

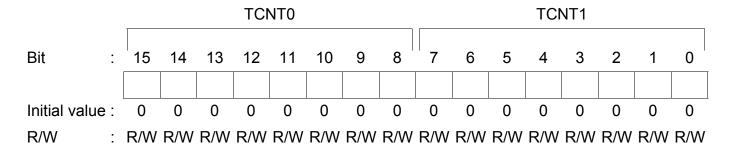
12.1.4 Register Configuration

Table 12.2 summarizes the registers of the 8-bit timer module.

Table 12.2 8-Bit Timer Registers

Channel	Name	Abbreviation	R/W	Initial value	Address*1
0	Timer control register 0	TCR0	R/W	H'00	H'FFB0
	Timer control/status register 0	TCSR0	R/(W)*2	H'00	H'FFB2
	Time constant register A0	TCORA0	R/W	H'FF	H'FFB4
	Time constant register B0	TCORB0	R/W	H'FF	H'FFB6
	Timer counter 0	TCNT0	R/W	H'00	H'FFB8
1	Timer control register 1	TCR1	R/W	H'00	H'FFB1
	Timer control/status register 1	TCSR1	R/(W)*2	H'10	H'FFB3
	Time constant register A1	TCORA1	R/W	H'FF	H'FFB5
	Time constant register B1	TCORB1	R/W	H'FF	H'FFB7
	Timer counter 1	TCNT1	R/W	H'00	H'FFB9
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address

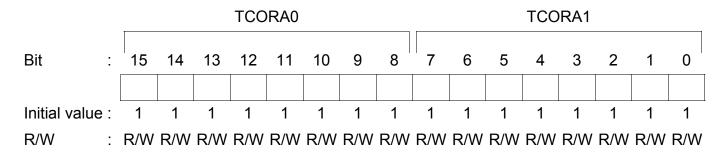

2. Only 0 can be written to bits 7 to 5, to clear these flags.

Each pair of registers for channel 0 and channel 1 is a 16-bit register with the upper 8 bits for channel 0 and the lower 8 bits for channel 1, so they can be accessed together by a word transfer instruction.

12.2 Register Descriptions

12.2.1 Timer Counters 0 and 1 (TCNT0, TCNT1)

TCNT0 and TCNT1 are 8-bit readable/writable up-counters that increment on pulses generated from an internal or external clock source. This clock source is selected by clock select bits CKS2 to CKS0 in TCR. The CPU can read or write to TCNT0 and TCNT1 at all times.


TCNT0 and TCNT1 comprise a single 16-bit register, so they can be accessed together by a word transfer instruction.

TCNT0 and TCNT1 can be cleared by an external reset input or by a compare match signal. Which signal is to be used for clearing is selected by clock clear bits CCLR1 and CCLR0 in TCR.

When a timer counter overflows from H'FF to H'00, OVF in TCSR is set to 1.

TCNT0 and TCNT1 are each initialized to H'00 by a reset and in hardware standby mode.

12.2.2 Time Constant Registers A0 and A1 (TCORA0, TCORA1)

TCORA0 and TCORA1 are 8-bit readable/writable registers. TCORA0 and TCORA1 comprise a single 16-bit register so they can be accessed together by a word transfer instruction.

TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding CMFA flag in TCSR is set. Note, however, that comparison is disabled during the T₂ state of a TCOR write cycle.

The timer output can be freely controlled by these compare match signals and the settings of bits OS1 and OS0 in TCSR.

TCORA0 and TCORA1 are each initialized to H'FF by a reset and in hardware standby mode.

12.2.3 Time Constant Registers B0 and B1 (TCORB0, TCORB1)

			TCORB0					TCORB1									
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCORB0 and TCORB1 are 8-bit readable/writable registers. TCORB0 and TCORB1 comprise a single 16-bit register so they can be accessed together by a word transfer instruction.

TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding CMFB flag in TCSR is set. Note, however, that comparison is disabled during the T_2 state of a TCOR write cycle.

The timer output can be freely controlled by these compare match signals and the settings of output select bits OS3 and OS2 in TCSR.

TCORB0 and TCORB1 are each initialized to H'FF by a reset and in hardware standby mode.

12.2.4 Time Control Registers 0 and 1 (TCR0, TCR1)

Bit	:	7	6	5	4	3	2	1	0
		CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR0 and TCR1 are 8-bit readable/writable registers that select the clock source and the time at which TCNT is cleared, and enable interrupts.

TCR0 and TCR1 are each initialized to H'00 by a reset and in hardware standby mode.

For details of this timing, see section 12.3, Operation.

Bit 7—Compare Match Interrupt Enable B (CMIEB): Selects whether CMFB interrupt requests (CMIB) are enabled or disabled when the CMFB flag in TCSR is set to 1.

Bit 7 CMIEB	Description	
0	CMFB interrupt requests (CMIB) are disabled	(Initial value)
1	CMFB interrupt requests (CMIB) are enabled	

Bit 6—Compare Match Interrupt Enable A (CMIEA): Selects whether CMFA interrupt requests (CMIA) are enabled or disabled when the CMFA flag in TCSR is set to 1.

Bit 6 CMIEA	Description	
0	CMFA interrupt requests (CMIA) are disabled	(Initial value)
1	CMFA interrupt requests (CMIA) are enabled	

Bit 5—Timer Overflow Interrupt Enable (OVIE): Selects whether OVF interrupt requests (OVI) are enabled or disabled when the OVF flag in TCSR is set to 1.

Bit 5 OVIE	Description	
0	OVF interrupt requests (OVI) are disabled	(Initial value)
1	OVF interrupt requests (OVI) are enabled	

Bits 4 and 3—Counter Clear 1 and 0 (CCLR1 and CCLR0): These bits select the method by which TCNT is cleared: by compare match A or B, or by an external reset input.

Bit 4 CCLR1	Bit 3 CCLR0	Description	
0	0	Clearing is disabled	(Initial value)
	1	Clear by compare match A	
1	0	Clear by compare match B	
	1	Clear by rising edge of external reset input	

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select whether the clock input to TCNT is an internal or external clock.

Three internal clocks can be selected, all divided from the system clock (ϕ): $\phi/8$, $\phi/64$, and $\phi/8192$. The falling edge of the selected internal clock triggers the count.

Rev.4.00 Sep. 07, 2007 Page 560 of 1210 REJ09B0245-0400

When use of an external clock is selected, three types of count can be selected: at the rising edge, the falling edge, and both rising and falling edges.

Some functions differ between channel 0 and channel 1.

Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	0	Clock input disabled	(Initial value)
		1	Internal clock, counted at falling edge of φ/8	
	1	0	Internal clock, counted at falling edge of φ/64	
		1	Internal clock, counted at falling edge of φ/8192	
1	0	0	For channel 0: count at TCNT1 overflow signal*	
			For channel 1: count at TCNT0 compare match A*	
		1	External clock, counted at rising edge	
	1	0	External clock, counted at falling edge	
		1	External clock, counted at both rising and falling edges	S

Note: * If the count input of channel 0 is the TCNT1 overflow signal and that of channel 1 is the TCNT0 compare match signal, no incrementing clock is generated. Do not use this setting.

12.2.5 Timer Control/Status Registers 0 and 1 (TCSR0, TCSR1)

TCSR0

Bit :	7	6	5	4	3	2	1	0
	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/(W)*	R/(W)*	R/(W)*	R/W	R/W	R/W	R/W	R/W
TCSR1								
Bit :	7	6	5	4	3	2	1	0
	CMFB	CMFA	OVF		OS3	OS2	OS1	OS0
Initial value :	0	0	0	1	0	0	0	0
R/W :	R/(W)*	R/(W)*	R/(W)*	_	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bits 7 to 5, to clear these flags.

TCSR0 and TCSR1 are 8-bit registers that display compare match and overflow statuses, and control compare match output.

TCSR0 is initialized to H'00, and TCSR1 to H'10, by a reset and in hardware standby mode.

Bit 7—Compare Match Flag B (CMFB): Status flag indicating whether the values of TCNT and TCORB match.

Bit 7 CMFB	Description							
0	[Clearing conditions] (Initial value							
	 Cleared by reading CMFB when CMFB = 1, then writing 0 to CMFB 							
	 When DTC is activated by CMIB interrupt while DISEL bit of MRB in DTC is 0 							
1	[Setting condition]							
	Set when TCNT matches TCORB							

Bit 6—Compare Match Flag A (CMFA): Status flag indicating whether the values of TCNT and TCORA match.

Bit 6 CMFA	Description							
0	[Clearing conditions] (Initial value							
	 Cleared by reading CMFA when CMFA = 1, then writing 0 to CMFA 	A						
	 When DTC is activated by CMIA interrupt while DISEL bit of MRB 	in DTC is 0						
1	[Setting condition]							
	Set when TCNT matches TCORA							

Bit 5—Timer Overflow Flag (OVF): Status flag indicating that TCNT has overflowed (changed from H'FF to H'00).

Bit 5 OVF	Description	
0	[Clearing condition]	(Initial value)
	Cleared by reading OVF when OVF = 1, then writing 0 to OVF	
1	[Setting condition]	
	Set when TCNT overflows from H'FF to H'00	

Bit 4—A/D Trigger Enable (ADTE) (TCSR0 Only): Selects enabling or disabling of A/D converter start requests by compare match A.

In TCSR1, this bit is reserved: it is always read as 1 and cannot be modified.

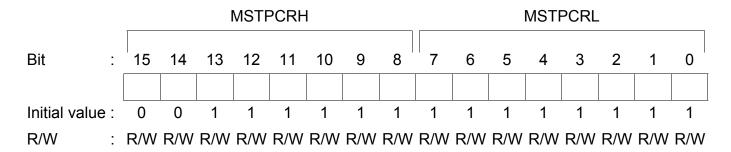
Bit 4 ADTE	Description					
0	A/D converter start requests by compare match A are disabled	(Initial value)				
1	A/D converter start requests by compare match A are enabled					

Bits 3 to 0—Output Select 3 to 0 (OS3 to OS0): These bits specify how the timer output level is to be changed by a compare match of TCOR and TCNT.

Bits OS3 and OS2 select the effect of compare match B on the output level, bits OS1 and OS0 select the effect of compare match A on the output level, and both of them can be controlled independently.

Note, however, that priorities are set such that: toggle output > 1 output > 0 output. If compare matches occur simultaneously, the output changes according to the compare match with the higher priority.

Timer output is disabled when bits OS3 to OS0 are all 0.


After a reset, the timer output is 0 until the first compare match event occurs.

Bit 3 OS3	Bit 2 OS2	Description	
0	0	No change when compare match B occurs	(Initial value)
	1	0 is output when compare match B occurs	
1	0	1 is output when compare match B occurs	
	1	Output is inverted when compare match B occurs (toggle output)	

Bit 1 OS1	Bit 0 OS0	Description	
0	0	No change when compare match A occurs	(Initial value)
	1	0 is output when compare match A occurs	
1	0	1 is output when compare match A occurs	
	1	Output is inverted when compare match A occurs (toggle output)	

12.2.6 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP12 bit in MSTPCR is set to 1, the 8-bit timer operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 12—Module Stop (MSTP12): Specifies the 8-bit timer module stop mode.

Bit 12 MSTP12 Description

0	8-bit timer module stop mode cleared	
1	8-bit timer module stop mode set	(Initial value)

RENESAS

Operation 12.3

12.3.1 **TCNT Incrementation Timing**

TCNT is incremented by input clock pulses (either internal or external).

Internal Clock: Three different internal clock signals ($\phi/8$, $\phi/64$, or $\phi/8192$) divided from the system clock (φ) can be selected, by setting bits CKS2 to CKS0 in TCR. Figure 12.2 shows the count timing.

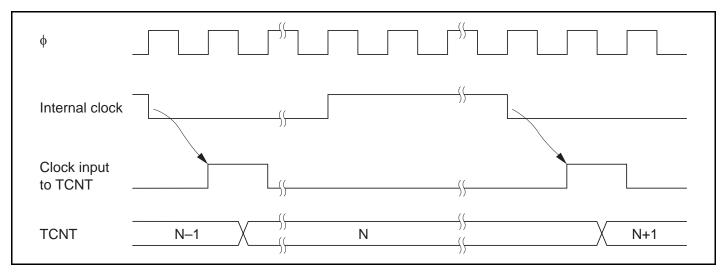


Figure 12.2 Count Timing for Internal Clock Input

External Clock: Three incrementation methods can be selected by setting bits CKS2 to CKS0 in TCR: at the rising edge, the falling edge, and both rising and falling edges.

Note that the external clock pulse width must be at least 1.5 states for incrementation at a single edge, and at least 2.5 states for incrementation at both edges. The counter will not increment correctly if the pulse width is less than these values.

Figure 12.3 shows the timing of incrementation at both edges of an external clock signal.

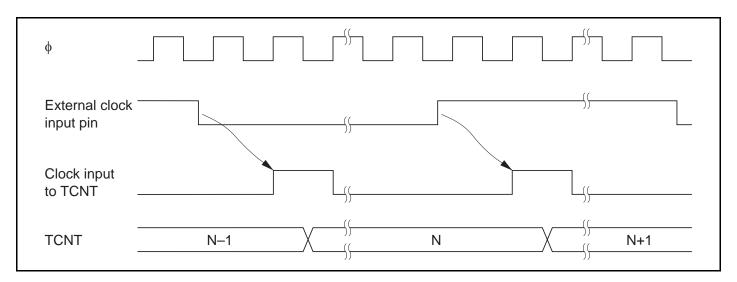


Figure 12.3 Count Timing for External Clock Input

12.3.2 Compare Match Timing

Setting of Compare Match Flags A and B (CMFA, CMFB): The CMFA and CMFB flags in TCSR are set to 1 by a compare match signal generated when the TCOR and TCNT values match. The compare match signal is generated at the last state in which the match is true, just before the timer counter is updated.

Therefore, when TCOR and TCNT match, the compare match signal is not generated until the next incrementation clock input. Figure 12.4 shows this timing.

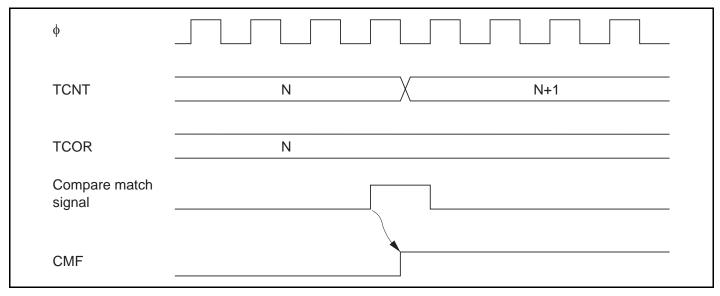


Figure 12.4 Timing of CMF Setting

Timer Output Timing: When compare match A or B occurs, the timer output changes as specified by bits OS3 to OS0 in TCSR. Depending on these bits, the output can remain the same, change to 0, change to 1, or toggle.

Figure 12.5 shows the timing when the output is set to toggle at compare match A.

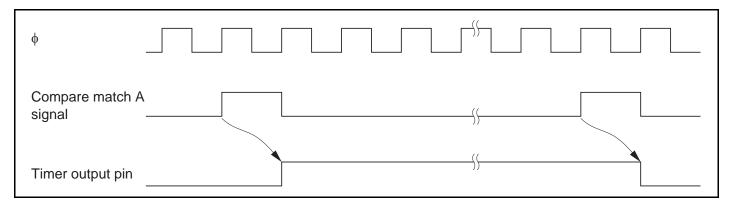


Figure 12.5 Timing of Timer Output

Timing of Compare Match Clear: The timer counter is cleared when compare match A or B occurs, depending on the setting of the CCLR1 and CCLR0 bits in TCR. Figure 12.6 shows the timing of this operation.

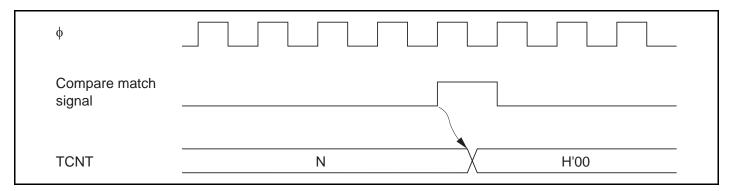


Figure 12.6 Timing of Compare Match Clear

12.3.3 Timing of TCNT External Reset

TCNT is cleared at the rising edge of an external reset input, depending on the settings of the CCLR1 and CCLR0 bits in TCR. The clear pulse width must be at least 1.5 states. Figure 12.7 shows the timing of this operation.

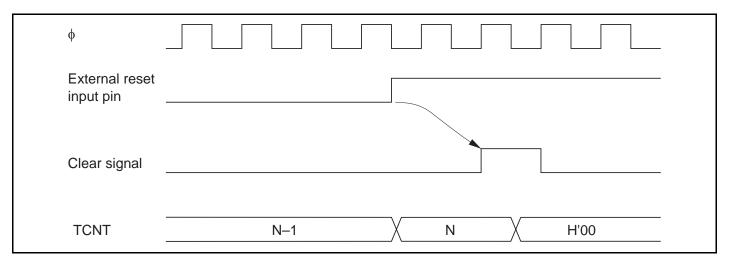


Figure 12.7 Timing of Clearance by External Reset

12.3.4 Timing of Overflow Flag (OVF) Setting

The OVF in TCSR is set to 1 when TCNT overflows (changes from H'FF to H'00). Figure 12.8 shows the timing of this operation.

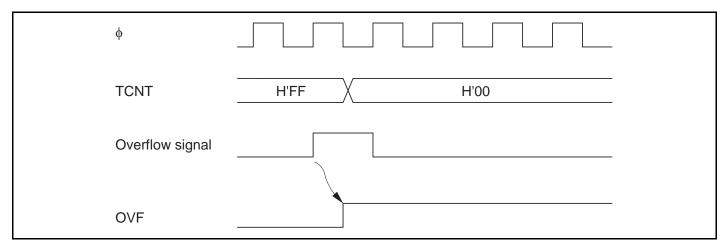


Figure 12.8 Timing of OVF Setting

RENESAS

12.3.5 Operation with Cascaded Connection

If bits CKS2 to CKS0 in either TCR0 or TCR1 are set to B'100, the 8-bit timers of the two channels are cascaded. With this configuration, a single 16-bit timer could be used (16-bit counter mode) or compare matches of the 8-bit channel 0 could be counted by the timer of channel 1 (compare match counter mode). In this case, the timer operates as below.

16-Bit Counter Mode: When bits CKS2 to CKS0 in TCR0 are set to B'100, the timer functions as a single 16-bit timer with channel 0 occupying the upper 8 bits and channel 1 occupying the lower 8 bits.

- Setting of compare match flags
 - The CMF flag in TCSR0 is set to 1 when a 16-bit compare match event occurs.
 - The CMF flag in TCSR1 is set to 1 when a lower 8-bit compare match event occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR0 have been set for counter clear at compare match, the 16-bit counter (TCNT0 and TCNT1 together) is cleared when a 16-bit compare match event occurs. The 16-bit counter (TCNT0 and TCNT1 together) is cleared even if counter clear by the TMRI0 pin has also been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR1 are ignored. The lower 8 bits cannot be cleared independently.
- Pin output
 - Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR0 is in accordance with the 16-bit compare match conditions.
 - Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR1 is in accordance with the lower 8-bit compare match conditions.

Compare Match Counter Mode: When bits CKS2 to CKS0 in TCR1 are B'100, TCNT1 counts compare match A's for channel 0.

Channels 0 and 1 are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clear are in accordance with the settings for each channel.

Usage Note: If the 16-bit counter mode and compare match counter mode are set simultaneously, the input clock pulses for TCNT0 and TCNT1 are not generated and thus the counters will stop operating. Software should therefore avoid using both these modes.

12.4 Interrupts

12.4.1 Interrupt Sources and DTC Activation

There are three 8-bit timer interrupt sources: CMIA, CMIB, and OVI. Their relative priorities are shown in table 12.3. Each interrupt source is set as enabled or disabled by the corresponding interrupt enable bit in TCR, and independent interrupt requests are sent for each to the interrupt controller. It is also possible to activate the DTC by means of CMIA and CMIB interrupts.

Table 12.3 8-Bit Timer Interrupt Sources

Channel	Interrupt Source	Description	DTC Activation	Priority
0	CMIA0	Interrupt by CMFA	Possible	High
	CMIB0	Interrupt by CMFB	Possible	†
	OVI0	Interrupt by OVF	Not possible	
1	CMIA1	Interrupt by CMFA	Possible	
	CMIB1	Interrupt by CMFB	Possible	
	OVI1	Interrupt by OVF	Not possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

12.4.2 A/D Converter Activation

The A/D converter can be activated only by channel 0 compare match A.

If the ADTE bit in TCSR0 is set to 1 when the CMFA flag is set to 1 by the occurrence of channel 0 compare match A, a request to start A/D conversion is sent to the A/D converter. If the 8-bit timer conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

RENESAS

12.5 Sample Application

In the example below, the 8-bit timer is used to generate a pulse output with a selected duty cycle, as shown in figure 12.9. The control bits are set as follows:

- [1] In TCR, bit CCLR1 is cleared to 0 and bit CCLR0 is set to 1 so that the timer counter is cleared when its value matches the constant in TCORA.
- [2] In TCSR, bits OS3 to OS0 are set to B'0110, causing the output to change to 1 at a TCORA compare match and to 0 at a TCORB compare match.

With these settings, the 8-bit timer provides output of pulses at a rate determined by TCORA with a pulse width determined by TCORB. No software intervention is required.

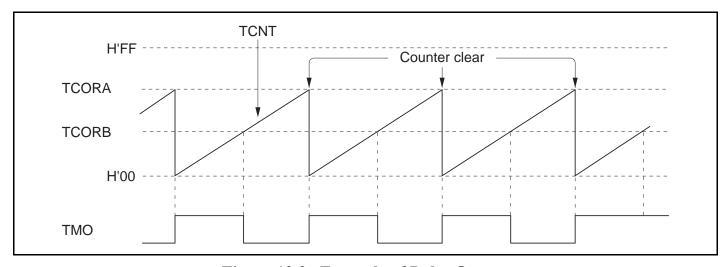


Figure 12.9 Example of Pulse Output

12.6 Usage Notes

Note that the following kinds of contention can occur in the 8-bit timer module.

12.6.1 Contention between TCNT Write and Clear

If a timer counter clock pulse is generated during the T₂ state of a TCNT write cycle, the clear takes priority, so that the counter is cleared and the write is not performed.

Figure 12.10 shows this operation.

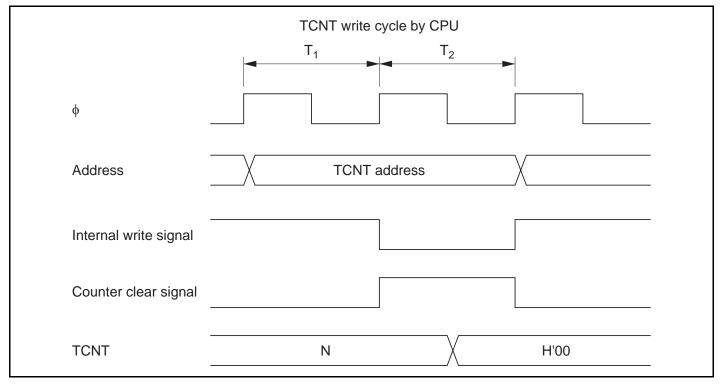


Figure 12.10 Contention between TCNT Write and Clear

12.6.2 Contention between TCNT Write and Increment

If a timer counter clock pulse is generated during the T₂ state of a TCNT write cycle, the write takes priority and the counter is not incremented.

Figure 12.11 shows this operation.

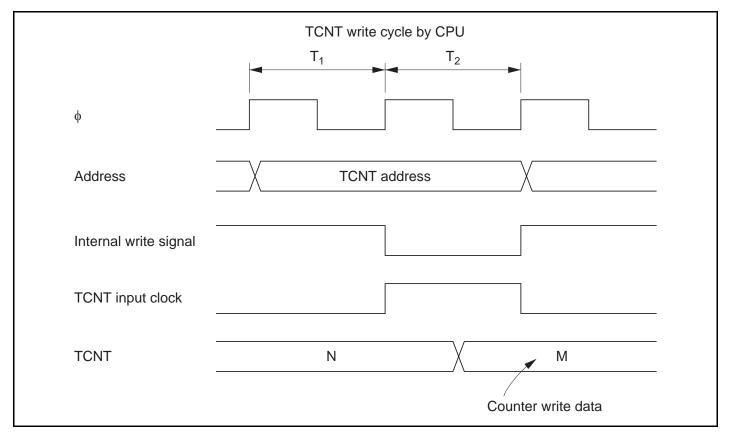


Figure 12.11 Contention between TCNT Write and Increment

Rev.4.00 Sep. 07, 2007 Page 573 of 1210

12.6.3 Contention between TCOR Write and Compare Match

During the T₂ state of a TCOR write cycle, the TCOR write has priority and the compare match signal is inhibited even if a compare match event occurs.

Figure 12.12 shows this operation.

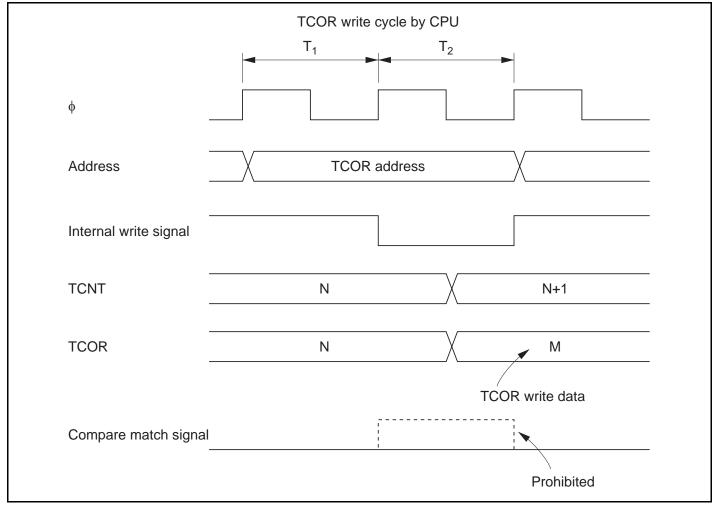


Figure 12.12 Contention between TCOR Write and Compare Match

Contention between Compare Matches A and B 12.6.4

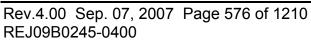
If compare match events A and B occur at the same time, the 8-bit timer operates in accordance with the priorities for the output statuses set for compare match A and compare match B, as shown in table 12.4.

Table 12.4 Timer Output Priorities

Output Setting	Priority			
Toggle output	High			
1 output	<u> </u>			
0 output				
No change	Low			

12.6.5 **Switching of Internal Clocks and TCNT Operation**

TCNT may increment erroneously when the internal clock is switched over. Table 12.5 shows the relationship between the timing at which the internal clock is switched (by writing to the CKS1 and CKS0 bits) and the TCNT operation.


When the TCNT clock is generated from an internal clock, the falling edge of the internal clock pulse is detected. If clock switching causes a change from high to low level, as shown in case 3 in table 12.5, a TCNT clock pulse is generated on the assumption that the switchover is a falling edge. This increments TCNT.

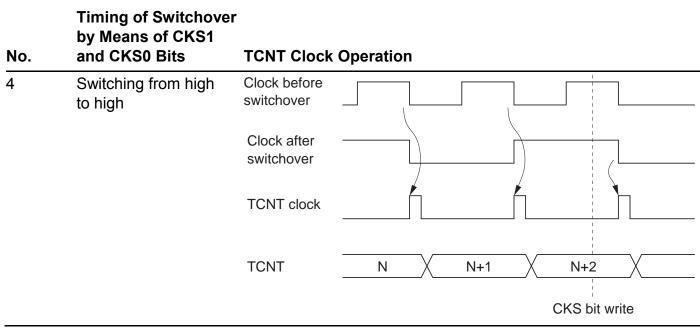

The erroneous incrementation can also happen when switching between internal and external clocks.

Table 12.5 Switching of Internal Clock and TCNT Operation

	Timing of Switchove by Means of CKS1		
No.	and CKS0 Bits	TCNT Clock	Operation
1	Switching from low to low*1	Clock before switchover	
		Clock after switchover	
		TCNT clock	
		TCNT	N N+1
			CKS bit write
2	Switching from low to high*2	Clock before switchover	
		Clock after switchover	
		TCNT clock	
		TCNT	N N+1 N+2
			CKS bit write
3	Switching from high to low*3	Clock before switchover	
		Clock after switchover	
		TCNT clock	*4
		TCNT	N N+1 N+2
			CKS bit write

Notes: 1. Includes switching from low to stop, and from stop to low.

- 2. Includes switching from stop to high.
- 3. Includes switching from high to stop.
- 4. Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

12.6.6 Interrupts and Module Stop Mode

If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DMAC or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Section 13 Watchdog Timer

13.1 Overview

The chip has a single-channel on-chip watchdog timer (WDT) for monitoring system operation. The WDT outputs an overflow signal (WDTOVF) if a system crash prevents the CPU from writing to the timer counter, allowing it to overflow. At the same time, the WDT can also generate an internal reset signal for the chip.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows.

13.1.1 Features

WDT features are listed below.

- Switchable between watchdog timer mode and interval timer mode
- WDTOVF output when in watchdog timer mode

 If the counter overflows, the WDT outputs WDTOVF. It is possible to select whether or not the entire chip is reset at the same time
- Interrupt generation when in interval timer mode

 If the counter overflows, the WDT generates an interval timer interrupt
- Choice of eight counter clock sources

13.1.2 Block Diagram

Figure 13.1 shows a block diagram of the WDT.

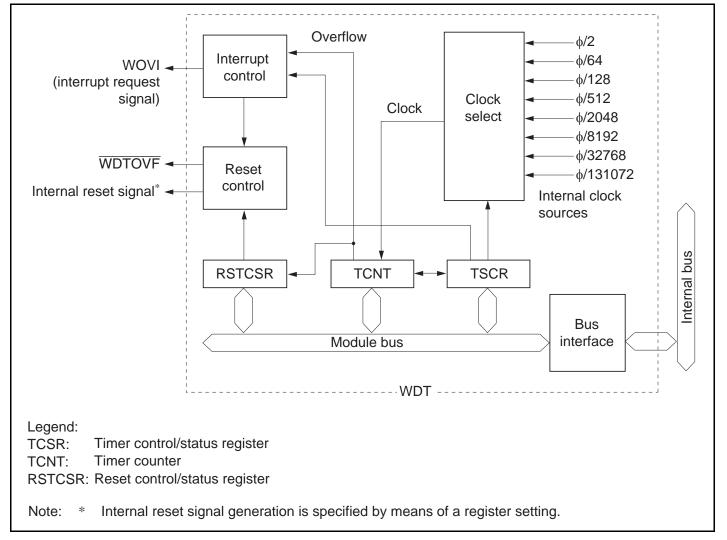


Figure 13.1 Block Diagram of WDT

13.1.3 Pin Configuration

Table 13.1 describes the WDT output pin.

Table 13.1 WDT Pin

Name	Symbol	I/O	Function
Watchdog timer overflow	WDTOVF	Output	Outputs counter overflow signal in watchdog timer mode

13.1.4 Register Configuration

The WDT has three registers, as summarized in table 13.2. These registers control clock selection, WDT mode switching, and the reset signal.

Table 13.2 WDT Registers

				Address*'		
Name	Abbreviation	R/W	Initial Value	Write*2	Read	
Timer control/status register	TCSR	R/(W)*3	H'18	H'FFBC	H'FFBC	
Timer counter	TCNT	R/W	H'00	H'FFBC	H'FFBD	
Reset control/status register	RSTCSR	R/(W)*3	H'1F	H'FFBE	H'FFBF	

Notes: 1. Lower 16 bits of the address.

- 2. For details of write operations, see section 13.2.4, Notes on Register Access.
- 3. Only a write of 0 is permitted to bit 7, to clear the flag.

13.2 Register Descriptions

13.2.1 Timer Counter (TCNT)

Bit	: _	7	6	5	4	3	2	1	0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	•	R/W							

TCNT is an 8-bit readable/writable* up-counter.

When the TME bit is set to 1 in TCSR, TCNT starts counting pulses generated from the internal clock source selected by bits CKS2 to CKS0 in TCSR. When the count overflows (changes from H'FF to H'00), either the watchdog timer overflow signal (WDTOVF) or an interval timer interrupt (WOVI) is generated, depending on the mode selected by the WT/IT bit in TCSR.

TCNT is initialized to H'00 by a reset, in hardware standby mode, or when the TME bit is cleared to 0. It is not initialized in software standby mode.

Note: * The WDTOVF pin function cannot be used in the F-ZTAT version.

13.2.2 Timer Control/Status Register (TCSR)

Bit	:	7	6	5	4	3	2	1	0	
		OVF	WT/ IT	TME	_		CKS2	CKS1	CKS0	
Initial va	alue :	0	0	0	1	1	0	0	0	_
R/W		R/(W)*	R/W	R/W	_	_	R/W	R/W	R/W	

Note: * Only 0 can be written, to clear the flag.

TCSR is an 8-bit readable/writable* register. Its functions include selecting the clock source to be input to TCNT, and the timer mode.

TCR is initialized to H'18 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: * TCSR is write-protected by a password to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.

Bit 7—Overflow Flag (OVF): Indicates that TCNT has overflowed from H'FF to H'00, when in interval timer mode. This flag cannot be set during watchdog timer operation.

Bit 7 OVF	Description						
0	[Clearing condition] (Initial value)						
	Cleared by reading TCSR when OVF = 1, then writing 0 to OVF						
1	[Setting condition]						
	Set when TCNT overflows (changes from H'FF to H'00) in interval time	er mode					

Bit 6—Timer Mode Select (WT/ĪT): Selects whether the WDT is used as a watchdog timer or interval timer. If used as an interval timer, the WDT generates an interval timer interrupt request (WOVI) when TCNT overflows. If used as a watchdog timer, the WDT generates the WDTOVF signal when TCNT overflows.

Bit 6 WT/IT	Description	
0	Interval timer: Sends the CPU an interval timer interrupt request (WOVI) when TCNT overflows	(Initial value)
1	Watchdog timer: Generates the WDTOVF signal when TCNT overflows*	

Note: * For details of the case where TCNT overflows in watchdog timer mode, see section 13.2.3, Reset Control/Status Register (RSTCSR).

Bit 5—Timer Enable (TME): Selects whether TCNT runs or is halted.

Bit 5
TME Description

0 TCNT is initialized to H'00 and halted (Initial value)

1 TCNT counts

Bits 4 and 3—Reserved: These bits cannot be modified and are always read as 1.

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select one of eight internal clock sources, obtained by dividing the system clock (ϕ) , for input to TCNT.

			Description	
Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock	Overflow Period (when φ = 20 MHz)*
0	0	0	φ/2 (Initial value)	25.6 μs
		1	φ/64	819.2 µs
	1	0	φ/128	1.6 ms
		1	φ/512	6.6 ms
1	0	0	φ/2048	26.2 ms
		1	φ/8192	104.9 ms
	1	0	φ/32768	419.4 ms
		1	φ/131072	1.68 s

Note: * The overflow period is the time from when TCNT starts counting up from H'00 until overflow occurs.

13.2.3 Reset Control/Status Register (RSTCSR)

Bit	:	7	6	5	4	3	2	1	0	
		WOVF	RSTE	_		_	_		_	
Initial val	ue:	0	0	0	1	1	1	1	1	
R/W	:	R/(W)*	R/W	R/W	_	_	_	_	_	

Note: * Only 0 can be written, to clear the flag.

RSTCSR is an 8-bit readable/writable* register that controls the generation of the internal reset signal when TCNT overflows, and selects the type of internal reset signal.

RSTCSR is initialized to H'1F by a reset signal from the \overline{RES} pin, but not by the WDT internal reset signal caused by overflows.

Note: * RSTCSR is write-protected by a password to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.

Bit 7—Watchdog Timer Overflow Flag (WOVF): Indicates that TCNT has overflowed (changed from H'FF to H'00) during watchdog timer operation. This bit is not set in interval timer mode.

WOVF	Description						
0	[Clearing condition]	(Initial value)					
	Cleared by reading RSTCSR when WOVF = 1, then writing 0 to WOVF						
1	[Setting condition]						
	Set when TCNT overflows (changes from H'FF to H'00) during watchdog operation	g timer					

Bit 6—Reset Enable (RSTE): Specifies whether or not a reset signal is generated in the chip if TCNT overflows during watchdog timer operation.

Bit 6 RSTE	Description	
0	Reset signal is not generated if TCNT overflows*	(Initial value)
1	Reset signal is generated if TCNT overflows	

Note: * The modules within the chip are not reset, but TCNT and TCSR within the WDT are reset.

Bit 5—Reserved: This bit should be written with 0.

Bits 4 to 0—Reserved: These bits cannot be modified and are always read as 1.

13.2.4 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below.

Writing to TCNT and TCSR: These registers must be written to by a word transfer instruction. They cannot be written to with byte instructions.

Figure 13.2 shows the format of data written to TCNT and TCSR. TCNT and TCSR both have the same write address. For a write to TCNT, the upper byte of the written word must contain H'5A and the lower byte must contain the write data. For a write to TCSR, the upper byte of the written word must contain H'A5 and the lower byte must contain the write data. This transfers the write data from the lower byte to TCNT or TCSR.

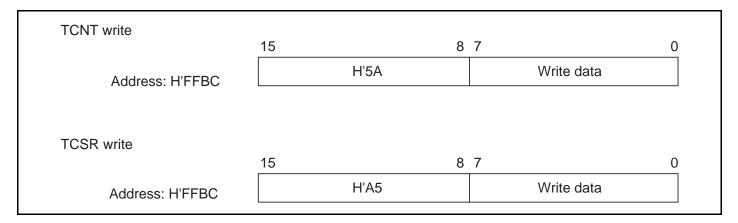


Figure 13.2 Writing to TCNT and TCSR

Writing to RSTCSR: RSTCSR must be written to by a word transfer instruction to address H'FFBE. It cannot be written to with byte instructions.

Figure 13.3 shows the format of data written to RSTCSR. The method of writing 0 to the WOVF bit differs from that for writing to the RSTE bit.

To write 0 to the WOVF bit, the write data must have H'A5 in the upper byte and H'00 in the lower byte. This clears the WOVF bit to 0, but has no effect on the RSTE bit. To write to the RSTE bit, the upper byte must contain H'5A and the lower byte must contain the write data. This writes the value in bit 6 of the lower byte into the RSTE bit, but has no effect on the WOVF bit.

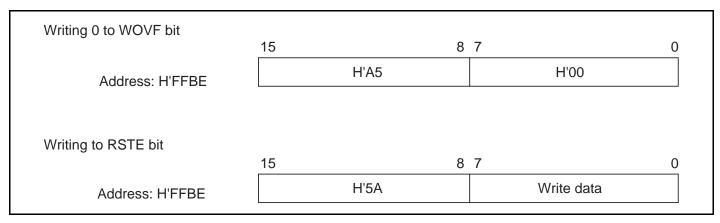


Figure 13.3 Writing to RSTCSR

Reading TCNT, TCSR, and RSTCSR: These registers are read in the same way as other registers. The read addresses are H'FFBC for TCSR, H'FFBD for TCNT, and H'FFBF for RSTCSR.

13.3 Operation

13.3.1 Operation in Watchdog Timer Mode

To use the WDT as a watchdog timer, set the WT/ $\overline{\text{IT}}$ and TME bits to 1. Software must prevent TCNT overflows by rewriting the TCNT value (normally be writing H'00) before overflow occurs. This ensures that TCNT does not overflow while the system is operating normally. If TCNT overflows without being rewritten because of a system crash or other error, the $\overline{\text{WDTOVF}}$ signal is output. This is shown in figure 13.4. This $\overline{\text{WDTOVF}}$ signal can be used to reset the system. The $\overline{\text{WDTOVF}}$ signal is output for 132 states when RSTE = 1, and for 130 states when RSTE = 0.

If TCNT overflows when 1 is set in the RSTE bit in RSTCSR, a signal that resets the chip internally is generated at the same time as the \overline{WDTOVF} signal. The internal reset signal is output for 518 states.

If a reset caused by a signal input to the \overline{RES} pin occurs at the same time as a reset caused by a WDT overflow, the \overline{RES} pin reset has priority and the WOVF bit in RSTCSR is cleared to 0.

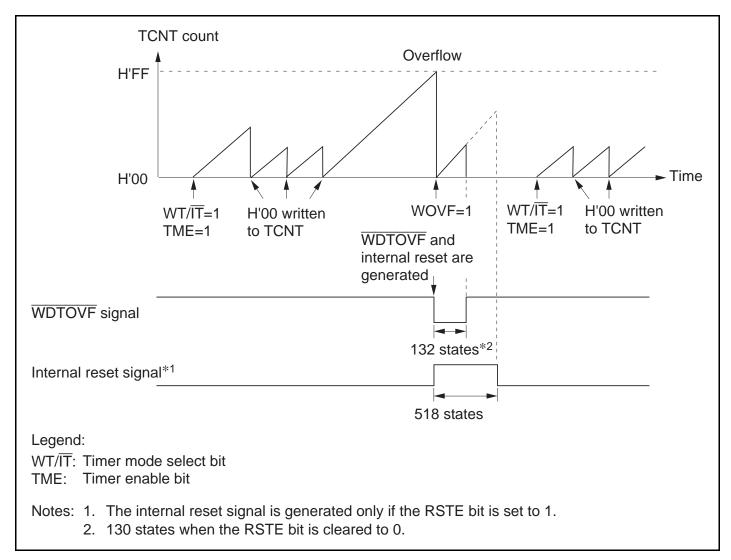


Figure 13.4 Operation in Watchdog Timer Mode

RENESAS

13.3.2 Operation in Interval Timer Mode

To use the WDT as an interval timer, clear the WT/IT bit in TCSR to 0 and set the TME bit to 1. An interval timer interrupt (WOVI) is generated each time TCNT overflows, provided that the WDT is operating as an interval timer, as shown in figure 13.5. This function can be used to generate interrupt requests at regular intervals.

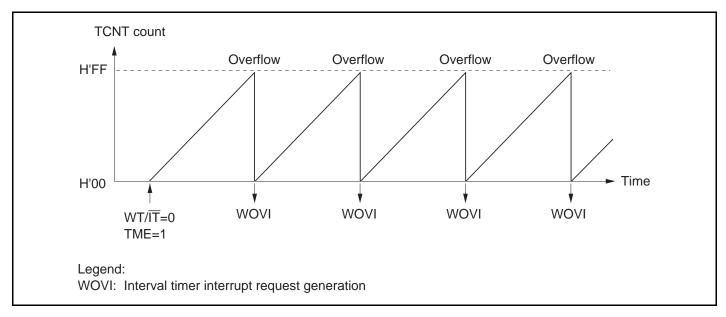


Figure 13.5 Operation in Interval Timer Mode

13.3.3 Timing of Overflow Flag (OVF) Setting

The OVF flag is set to 1 if TCNT overflows during interval timer operation. At the same time, an interval timer interrupt (WOVI) is requested. This timing is shown in figure 13.6.

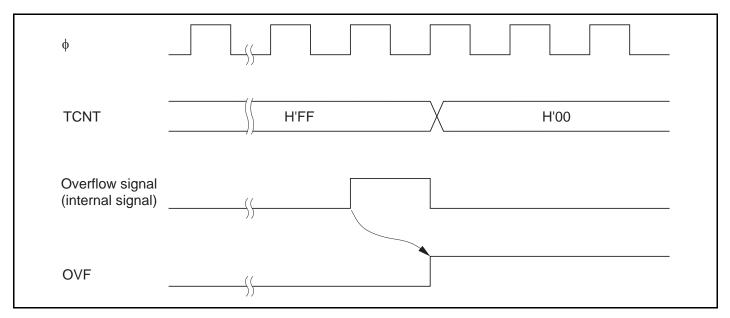


Figure 13.6 Timing of OVF Setting

RENESAS

13.3.4 Timing of Watchdog Timer Overflow Flag (WOVF) Setting

The WOVF flag is set to 1 if TCNT overflows during watchdog timer operation. At the same time, the WDTOVF signal goes low. If TCNT overflows while the RSTE bit in RSTCSR is set to 1, an internal reset signal is generated for the entire chip. Figure 13.7 shows the timing in this case.

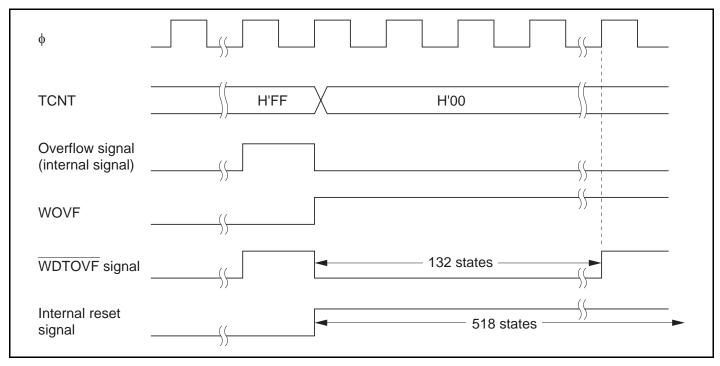


Figure 13.7 Timing of WOVF Setting

13.4 Interrupts

During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR.

13.5 Usage Notes

13.5.1 Contention between Timer Counter (TCNT) Write and Increment

If a timer counter clock pulse is generated during the T₂ state of a TCNT write cycle, the write takes priority and the timer counter is not incremented. Figure 13.8 shows this operation.

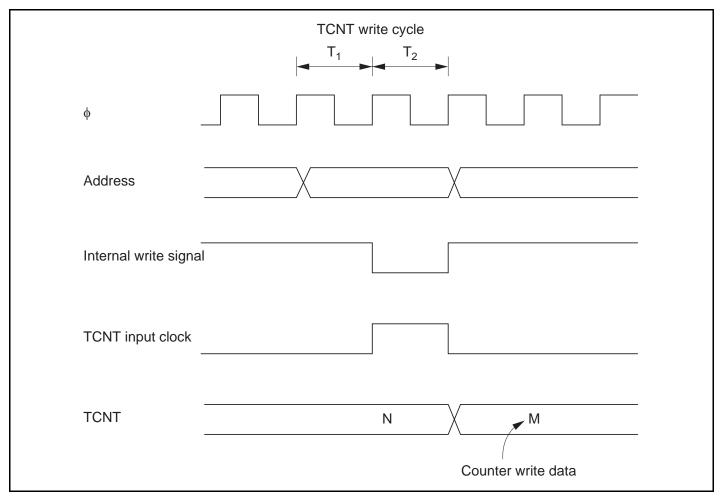


Figure 13.8 Contention between TCNT Write and Increment

RENESAS

13.5.2 Changing Value of CKS2 to CKS0

If bits CKS2 to CKS0 in TCSR are written to while the WDT is operating, errors may occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before changing the value of bits CKS2 to CKS0.

13.5.3 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from watchdog timer to interval timer, or vice versa, while the WDT is operating, errors may occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before switching the mode.

13.5.4 System Reset by WDTOVF Signal

If the $\overline{\text{WDTOVF}}$ output signal is input to the $\overline{\text{RES}}$ pin of the chip, the chip will not be initialized correctly. Make sure that the $\overline{\text{WDTOVF}}$ signal is not input logically to the $\overline{\text{RES}}$ pin. To reset the entire system by means of the $\overline{\text{WDTOVF}}$ signal, use the circuit shown in figure 13.9.

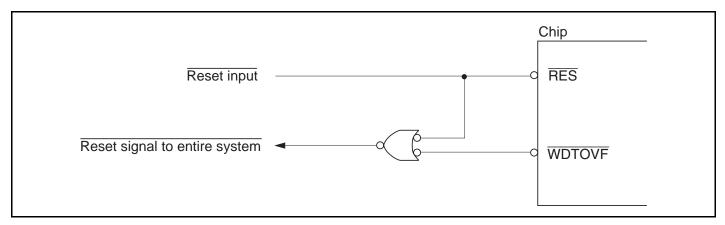


Figure 13.9 Circuit for System Reset by WDTOVF Signal (Example)

13.5.5 Internal Reset in Watchdog Timer Mode

The chip is not reset internally if TCNT overflows while the RSTE bit is cleared to 0 during watchdog timer operation, but TCNT and TCSR of the WDT are reset.

TCNT, TCSR, and RSTCSR cannot be written to while the WDTOVF signal is low. Also note that a read of the WOVF flag is not recognized during this period. To clear the WOVF flag, therefore, read RSTCSR after the WDTOVF signal goes high, then write 0 to the WOVF flag.

Section 14 Serial Communication Interface (SCI)

14.1 Overview

The chip is equipped with a serial communication interface (SCI) that can handle both asynchronous and synchronous serial communication. A function is also provided for serial communication between processors (multiprocessor communication function).

14.1.1 Features

SCI features are listed below.

- Choice of asynchronous or synchronous serial communication mode
 Asynchronous mode
 - Serial data communication executed using an asynchronous system in which synchronization is achieved character by character
 Serial data communication can be carried out with standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA)
 - A multiprocessor communication function is provided that enables serial data communication with a number of processors
 - Choice of 12 serial data transfer formats

Data length: 7 or 8 bits

Stop bit length: 1 or 2 bits

Parity: Even, odd, or none

Multiprocessor bit: 1 or 0

- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in case of a framing error

Synchronous mode

- Serial data communication synchronized with a clock
- Serial data communication can be carried out with other chips that have a synchronous communication function
- One serial data transfer format

Data length: 8 bits

— Receive error detection: Overrun errors detected

- Full-duplex communication capability
 - The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously
 - Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data
- Choice of LSB-first or MSB-first transfer
 - Can be selected regardless of the communication mode* (except in the case of asynchronous mode 7-bit data)
- Built-in baud rate generator allows any bit rate to be selected
- Choice of serial clock source: internal clock from baud rate generator or external clock from SCK pin
- Four interrupt sources
 - Four interrupt sources—transmit-data-empty, transmit-end, receive-data-full, and receive-error—that can issue requests independently
 - The transmit-data-empty and receive-data-full interrupts can activate the DMA controller (DMAC) or data transfer controller (DTC) to execute data transfer
- Module stop mode can be set
 - As the initial setting, SCI operation is halted. Register access is enabled by exiting module stop mode

RENESAS

Note: * Descriptions in this section refer to LSB-first transfer.

14.1.2 Block Diagram

Figure 14.1 shows a block diagram of the SCI.

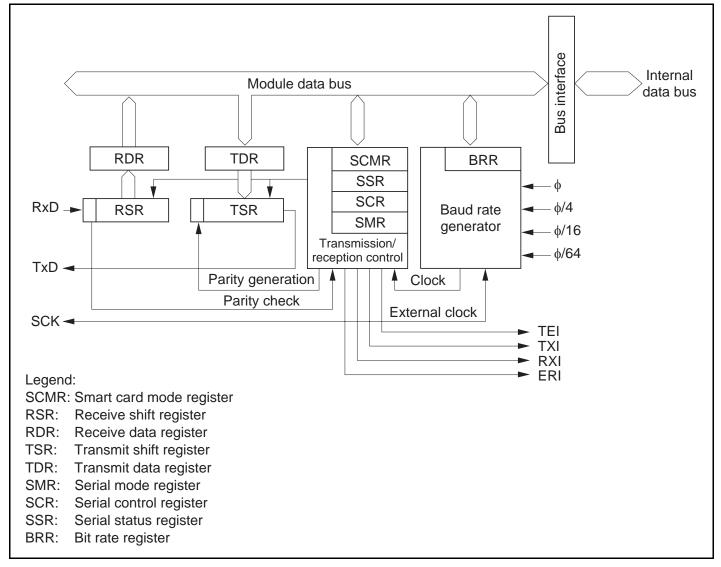


Figure 14.1 Block Diagram of SCI

14.1.3 Pin Configuration

Table 14.1 shows the serial pins for each SCI channel.

Table 14.1 SCI Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCI0 clock input/output
	Receive data pin 0	RxD0	Input	SCI0 receive data input
	Transmit data pin 0	TxD0	Output	SCI0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCI1 clock input/output
	Receive data pin 1	RxD1	Input	SCI1 receive data input
	Transmit data pin 1	TxD1	Output	SCI1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCI2 clock input/output
	Receive data pin 2	RxD2	Input	SCI2 receive data input
	Transmit data pin 2	TxD2	Output	SCI2 transmit data output

14.1.4 Register Configuration

The SCI has the internal registers shown in table 14.2. These registers are used to specify asynchronous mode or synchronous mode, the data format, and the bit rate, and to control the transmitter/receiver.

Table 14.2 SCI Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

14.2 Register Descriptions

14.2.1 Receive Shift Register (RSR)

Bit	:	7	6	5	4	3	2	1	0
R/W	:	_	_	_	_				_

RSR is a register used to receive serial data.

The SCI sets serial data input from the RxD pin in RSR in the order received, starting with the LSB (bit 0), and converts it to parallel data. When one byte of data has been received, it is transferred to RDR automatically.

RSR cannot be directly read or written to by the CPU.

14.2.2 Receive Data Register (RDR)

Bit	:	7	6	5	4	3	2	1	0
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R	R	R	R	R

RDR is a register that stores received serial data.

When the SCI has received one byte of serial data, it transfers the received serial data from RSR to RDR where it is stored, and completes the receive operation. After this, RSR is receive-enabled.

Since RSR and RDR function as a double buffer in this way, continuous receive operations can be performed.

RDR is a read-only register, and cannot be written to by the CPU.

RDR is initialized to H'00 by a reset, and in standby mode or module stop mode.

14.2.3 Transmit Shift Register (TSR)

TSR is a register used to transmit serial data.

To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting with the LSB (bit 0).

When transmission of one byte is completed, the next transmit data is transferred from TDR to TSR, and transmission started, automatically. However, data transfer from TDR to TSR is not performed if the TDRE bit in SSR is set to 1.

TSR cannot be directly read or written to by the CPU.

14.2.4 Transmit Data Register (TDR)

Bit	:	7	6	5	4	3	2	1	0
Initial va	lue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

TDR is an 8-bit register that stores data for serial transmission.

When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts serial transmission. Continuous serial transmission can be carried out by writing the next transmit data to TDR during serial transmission of the data in TSR.

TDR can be read or written to by the CPU at all times.

TDR is initialized to H'FF by a reset, and in standby mode or module stop mode.

14.2.5 Serial Mode Register (SMR)

Bit	:	7	6	5	4	3	2	1	0
		C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SMR is an 8-bit register used to set the SCI's serial transfer format and select the baud rate generator clock source.

SMR can be read or written to by the CPU at all times.

SMR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode and module stop mode it retains its previous state.

Bit 7—Communication Mode (C/\overline{A}): Selects asynchronous mode or synchronous mode as the SCI operating mode.

Bit 7 C/Ā	Description				
0	Asynchronous mode	(Initial value)			
1	Synchronous mode				

Bit 6—Character Length (CHR): Selects 7 or 8 bits as the data length in asynchronous mode. In synchronous mode, a fixed data length of 8 bits is used regardless of the CHR setting.

Bit 6 CHR	Description	
0	8-bit data	(Initial value)
1	7-bit data [*]	

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

Bit 5—Parity Enable (PE): In asynchronous mode, selects whether or not parity bit addition is performed in transmission, and parity bit checking in reception. In synchronous mode and with a multiprocessor format, parity bit addition and checking is not performed, regardless of the PE bit setting.

Bit 5 PE	Description	
0	Parity bit addition and checking disabled	(Initial value)
1	Parity bit addition and checking enabled*	

Note:* When the PE bit is set to 1, the parity (even or odd) specified by the O/\overline{E} bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the O/\overline{E} bit.

Bit 4—Parity Mode (O/\overline{E}): Selects either even or odd parity for use in parity addition and checking.

The O/\overline{E} bit setting is only valid when the PE bit is set to 1, enabling parity bit addition and checking, in asynchronous mode. The O/\overline{E} bit setting is invalid in synchronous mode, and when parity addition and checking is disabled in asynchronous mode.

Bit 4 O/E	Description	
0	Even parity*1	(Initial value)
1	Odd parity*2	

Notes: 1. When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even.

In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.

 When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd.
 In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

Bit 3—Stop Bit Length (STOP): Selects 1 or 2 bits as the stop bit length in asynchronous mode. The STOP bits setting is only valid in asynchronous mode. If synchronous mode is set the STOP bit setting is invalid since stop bits are not added.

Bit 3 STOP	Description
0	1 stop bit: In transmission, a single 1-bit (stop bit) is added to the end of a transmit character before it is sent. (Initial value)
1	2 stop bits: In transmission, two 1-bits (stop bits) are added to the end of a transmit character before it is sent.

In reception, only the first stop bit is checked, regardless of the STOP bit setting. If the second stop bit is 1, it is treated as a stop bit; if it is 0, it is treated as the start bit of the next transmit character.

Bit 2—Multiprocessor Mode (MP): Selects multiprocessor format. When multiprocessor format is selected, the PE bit and O/\overline{E} bit parity settings are invalid. The MP bit setting is only valid in asynchronous mode; it is invalid in synchronous mode.

For details of the multiprocessor communication function, see section 14.3.3, Multiprocessor Communication Function.

Bit 2 MP	Description	
0	Multiprocessor function disabled	(Initial value)
1	Multiprocessor format selected	

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the clock source for the baud rate generator. The clock source can be selected from ϕ , $\phi/4$, $\phi/16$, and $\phi/64$, according to the setting of bits CKS1 and CKS0.

For the relation between the clock source, the bit rate register setting, and the baud rate, see section 14.2.8, Bit Rate Register (BRR).

Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	φ clock	(Initial value)
	1	φ/4 clock	
1	0	φ/16 clock	
	1	φ/64 clock	

14.2.6 Serial Control Register (SCR)

Bit	:	7	6	5	4	3	2	1	0
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCR is a register that performs enabling or disabling of SCI transfer operations, serial clock output in asynchronous mode, and interrupt requests, and selection of the serial clock source.

SCR can be read or written to by the CPU at all times.

SCR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode and module stop mode it retains its previous state.

Bit 7—Transmit Interrupt Enable (TIE): Enables or disables transmit-data-empty interrupt (TXI) request generation when serial transmit data is transferred from TDR to TSR and the TDRE flag in SSR is set to 1.

TIE	Description				
0	Transmit-data-empty interrupt (TXI) requests disabled*	(Initial value)			
1	Transmit-data-empty interrupt (TXI) requests enabled				

Note:* TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or by clearing the TIE bit to 0.

Bit 6—Receive Interrupt Enable (RIE): Enables or disables receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request generation when serial receive data is transferred from RSR to RDR and the RDRF flag in SSR is set to 1.

Bit 6 RIE	Description
0	Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request disabled* (Initial value)
1	Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request enabled

Note:* RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or by clearing the RIE bit to 0.

Bit 5—Transmit Enable (TE): Enables or disables the start of serial transmission by the SCI.

Bit 5 TE		Description
0		Transmission disabled*1 (Initial value)
1		Transmission enabled*2
Notes:	1.	The TDRE flag in SSR is fixed at 1.
	2.	In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0.
		SMR setting must be performed to decide the transfer format before setting the TE bit to 1.

Bit 4—Receive Enable (RE): Enables or disables the start of serial reception by the SCI.

Bit 4 RE		Description	
0		Reception disabled*1	(Initial value)
1		Reception enabled*2	
Notes:	1.	Clearing the RE bit to 0 does not affect the RDRF, FER, PER, an retain their states.	d ORER flags, which
	2.	Serial reception is started in this state when a start bit is detected mode or serial clock input is detected in synchronous mode.	I in asynchronous
		SMR setting must be performed to decide the transfer format before to 1.	ore setting the RE bit

Bit 3—Multiprocessor Interrupt Enable (MPIE): Enables or disables multiprocessor interrupts. The MPIE bit setting is only valid in asynchronous mode when the MP bit in SMR is set to 1.

The MPIE bit setting is invalid in synchronous mode or when the MP bit is cleared to 0.

Bit 3 MPIE	Description	
0	Multiprocessor interrupts disabled (normal reception performed)	(Initial value)
	[Clearing conditions]	
	 When the MPIE bit is cleared to 0 	
	 When data with MPB = 1 is received 	
1	Multiprocessor interrupts enabled*	
	Receive-data-full interrupt (RXI) requests, receive-error interrupt (ER setting of the RDRF, FER, and ORER flags in SSR are disabled untimultiprocessor bit set to 1 is received.	

Note: * When receive data including MPB = 0 is received, receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.

Bit 2—Transmit End Interrupt Enable (TEIE): Enables or disables transmit-end interrupt (TEI) request generation when there is no valid transmit data in TDR in MSB data transmission.

Bit 2 TEIE	Description			
0	Transmit end interrupt (TEI) request disabled*	(Initial value)		
1	Transmit end interrupt (TEI) request enabled*			

Note: * TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or by clearing the TEIE bit to 0.

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin. The combination of the CKE1 and CKE0 bits determines whether the SCK pin functions as an I/O port, the serial clock output pin, or the serial clock input pin.

The setting of the CKE0 bit, however, is only valid for internal clock operation (CKE1 = 0) in asynchronous mode. The CKE0 bit setting is invalid in synchronous mode, and in the case of external clock operation (CKE1 = 1). Set CKE1 and CKE0 before determining the SCI operating mode with SMR.

For details of clock source selection, see table 14.9.

Bit 1 CKE1	Bit 0 CKE0	Description	
0	0	Asynchronous mode	Internal clock/SCK pin functions as I/O port*1
		Synchronous mode	Internal clock/SCK pin functions as serial clock output
	1	Asynchronous mode	Internal clock/SCK pin functions as clock output*2
		Synchronous mode	Internal clock/SCK pin functions as serial clock output
1	0	Asynchronous mode	External clock/SCK pin functions as clock input*3
		Synchronous mode	External clock/SCK pin functions as serial clock input
	1	Asynchronous mode	External clock/SCK pin functions as clock input*3
		Synchronous mode	External clock/SCK pin functions as serial clock input

Notes: 1. Initial value

- 2. Outputs a clock of the same frequency as the bit rate.
- 3. Inputs a clock with a frequency 16 times the bit rate.

14.2.7 Serial Status Register (SSR)

Bit	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial val	lue :	1	0	0	0	0	1	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: * Only 0 can be written, to clear the flag.

SSR is an 8-bit register containing status flags that indicate the operating status of the SCI, and multiprocessor bits.

SSR can be read or written to by the CPU at all times. However, 1 cannot be written to flags TDRE, RDRF, ORER, PER, and FER. Also note that in order to clear these flags they must be read as 1 beforehand. The TEND flag and MPB flag are read-only flags and cannot be modified.

SSR is initialized to H'84 by a reset, and in standby mode or module stop mode.

Bit 7—Transmit Data Register Empty (TDRE): Indicates that data has been transferred from TDR to TSR and the next serial data can be written to TDR.

Bit 7		
TDRE	Description	
0	[Clearing conditions]	
	 When 0 is written to TDRE after reading TDRE = 1 	
	 When the DMAC or DTC is activated by a TXI interrupt and w 	rites data to TDR
1	[Setting conditions]	(Initial value)
	 When the TE bit in SCR is 0 	
	 When data is transferred from TDR to TSR and data can be w 	vritten to TDR

error will occur and the receive data will be lost.

Bit 6—Receive Data Register Full (RDRF): Indicates that the received data is stored in RDR.

Bit 6	
RDRF	Description
0	[Clearing conditions] (Initial value)
	 When 0 is written to RDRF after reading RDRF = 1
	 When the DMAC or DTC is activated by an RXI interrupt and reads data from RDR
1	[Setting condition]
	When serial reception ends normally and receive data is transferred from RSR to RDR
Note:	J
	detected during reception or when the RE bit in SCR is cleared to 0.
	If reception of the next data is completed while the RDRF flag is still set to 1, an overrun

Bit 5—Overrun Error (ORER): Indicates that an overrun error occurred during reception, causing abnormal termination.

Bit 5 ORER		Description	
0		[Clearing condition]	(Initial value)*1
		When 0 is written to ORER after reading ORER = 1	
1		[Setting condition]	
		When the next serial reception is completed while RDRF = 1^{*2}	
Notes:	1.	The ORER flag is not affected and retains its previous state when the R cleared to 0.	E bit in SCR is
	2.	The receive data prior to the overrun error is retained in RDR, and the composition subsequently is lost. Also, subsequent serial reception cannot be continuously of the continuous of the continuous serial transmission cannot either.	ued while the

RENESAS

Bit 4—Framing Error (FER): Indicates that a framing error occurred during reception in asynchronous mode, causing abnormal termination.

Bit 4 FER		Description	
0		[Clearing condition]	(Initial value)*1
		When 0 is written to FER after reading FER = 1	
1		[Setting condition]	
		When the SCI checks the stop bit at the end of the receive data wh and the stop bit is 0 $^{\ast 2}$	nen reception ends,
Notes:	1.	The FER flag is not affected and retains its previous state when the cleared to 0.	RE bit in SCR is
	2.	In 2-stop-bit mode, only the first stop bit is checked for a value of 0; is not checked. If a framing error occurs, the receive data is transfer RDRF flag is not set. Also, subsequent serial reception cannot be conference for the flag is set to 1. In synchronous mode, serial transmission cannot either.	red to RDR but the ontinued while the

Bit 3—Parity Error (PER): Indicates that a parity error occurred during reception using parity addition in asynchronous mode, causing abnormal termination.

Bit 3 PER		Description	
0		[Clearing condition]	(Initial value)*1
		When 0 is written to PER after reading PER = 1	
1		[Setting condition] When, in reception, the number of 1 bits in the receive data plus the match the parity setting (even or odd) specified by the O/\overline{E} bit in SN	
Notes:	1.	The PER flag is not affected and retains its previous state when the cleared to 0.	RE bit in SCR is
	2.	If a parity error occurs, the receive data is transferred to RDR but the set. Also, subsequent serial reception cannot be continued while the 1. In synchronous mode, serial transmission cannot be continued, eight	PER flag is set to

Bit 2—Transmit End (TEND): Indicates that there is no valid data in TDR when the last bit of the transmit character is sent, and transmission has been ended.

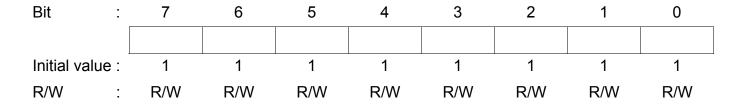
The TEND flag is read-only and cannot be modified.

Bit 2 TEND	Description	
0	[Clearing conditions]	
	 When 0 is written to TDRE after reading TDRE = 1 	
	 When the DMAC or DTC is activated by a TXI interrupt ar 	nd writes data to TDR
1	[Setting conditions]	(Initial value)
	 When the TE bit in SCR is 0 	
	 When TDRE = 1 at transmission of the last bit of a 1-byte 	serial transmit character

Bit 1—Multiprocessor Bit (MPB): When reception is performed using multiprocessor format in asynchronous mode, MPB stores the multiprocessor bit in the receive data.

MPB is a read-only bit, and cannot be modified.

Bit 1 MPB	Description	
0	[Clearing condition] When data with a 0 multiprocessor bit is received	(Initial value)*
1	[Setting condition] When data with a 1 multiprocessor bit is received	


Note: * Retains its previous state when the RE bit in SCR is cleared to 0 with multiprocessor format.

Bit 0—Multiprocessor Bit Transfer (MPBT): When transmission is performed using multiprocessor format in asynchronous mode, MPBT stores the multiprocessor bit to be added to the transmit data.

The MPBT bit setting is invalid when multiprocessor format is not used, when not transmitting, and in synchronous mode.

Bit 0 MPBT	Description	
0	Data with a 0 multiprocessor bit is transmitted	(Initial value)
1	Data with a 1 multiprocessor bit is transmitted	

14.2.8 Bit Rate Register (BRR)

BRR is an 8-bit register that sets the serial transfer bit rate in accordance with the baud rate generator operating clock selected by bits CKS1 and CKS0 in SMR.

BRR can be read or written to by the CPU at all times.

BRR is initialized to H'FF by a reset and in hardware standby mode. In software standby mode and module stop mode it retains its previous state.

As baud rate generator control is performed independently for each channel, different values can be set for each channel.

Table 14.3 shows sample BRR settings in asynchronous mode, and table 14.4 shows sample BRR settings in synchronous mode.

Table 14.3 BRR Settings for Various Bit Rates (Asynchronous Mode)

		φ = 2 N	lHz	φ:	= 2.0971	52 MHz	(φ = 2.4576	MHz		$\phi = 3 \text{ N}$	ИHz
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	1	141	0.03	1	148	-0.04	1	174	-0.26	1	212	0.03
150	1	103	0.16	1	108	0.21	1	127	0.00	1	155	0.16
300	0	207	0.16	0	217	0.21	0	255	0.00	1	77	0.16
600	0	103	0.16	0	108	0.21	0	127	0.00	0	155	0.16
1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77	0.16
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38	0.16
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19	-2.34
9600	_	_	_	0	6	-2.48	0	7	0.00	0	9	-2.34
19200	_	_	_	_	_	_	0	3	0.00	0	4	-2.34
31250	0	1	0.00	_	_	_	_	_	_	0	2	0.00
38400				_	_		0	1	0.00			

	ф	= 3.686	4 MHz		ϕ = 4 N	1Hz		$\phi = 4.9152$	2 MHz		φ = 5 N	ИHz
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	64	0.70	2	70	0.03	2	86	0.31	2	88	-0.25
150	1	191	0.00	1	207	0.16	1	255	0.00	2	64	0.16
300	1	95	0.00	1	103	0.16	1	127	0.00	1	129	0.16
600	0	191	0.00	0	207	0.16	0	255	0.00	1	64	0.16
1200	0	95	0.00	0	103	0.16	0	127	0.00	0	129	0.16
2400	0	47	0.00	0	51	0.16	0	63	0.00	0	64	0.16
4800	0	23	0.00	0	25	0.16	0	31	0.00	0	32	-1.36
9600	0	11	0.00	0	12	0.16	0	15	0.00	0	15	1.73
19200	0	5	0.00	_	_	_	0	7	0.00	0	7	1.73
31250	_	_	_	0	3	0.00	0	4	-1.70	0	4	0.00
38400	0	2	0.00	_	_	_	0	3	0.00	0	3	1.73

		$\phi = 6 \text{ N}$	lHz		ϕ = 6.144	MHz		$\phi = 7.3728$	MHz		φ = 8 N	1Hz
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	106	-0.44	2	108	0.08	2	130	-0.07	2	141	0.03
150	2	77	0.16	2	79	0.00	2	95	0.00	2	103	0.16
300	1	155	0.16	1	159	0.00	1	191	0.00	1	207	0.16
600	1	77	0.16	1	79	0.00	1	95	0.00	1	103	0.16
1200	0	155	0.16	0	159	0.00	0	191	0.00	0	207	0.16
2400	0	77	0.16	0	79	0.00	0	95	0.00	0	103	0.16
4800	0	38	0.16	0	39	0.00	0	47	0.00	0	51	0.16
9600	0	19	-2.34	0	19	0.00	0	23	0.00	0	25	0.16
19200	0	9	-2.34	0	9	0.00	0	11	0.00	0	12	0.16
31250	0	5	0.00	0	5	2.40	_	_	_	0	7	0.00
38400	0	4	-2.34	0	4	0.00	0	5	0.00		_	

	ф	φ = 9.8304 MHz			φ = 10 N	ИHz		φ = 12 N	lHz	φ = 12.288 MHz			
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08	
150	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00	
300	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00	
600	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00	
1200	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00	
2400	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00	
4800	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00	
9600	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00	
19200	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00	
31250	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40	
38400	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00	

		$\phi = 14 \text{ N}$	ИHz	ф	= 14.745	66 MHz		$\phi = 16 \text{ N}$	ИHz	¢	= 17.203	32 MHz
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	248	-0.17	3	64	0.70	3	70	0.03	3	75	0.48
150	2	181	0.16	2	191	0.00	2	207	0.16	2	223	0.00
300	2	90	0.16	2	95	0.00	2	103	0.16	2	111	0.00
600	1	181	0.16	1	191	0.00	1	207	0.16	1	223	0.00
1200	1	90	0.16	1	95	0.00	1	103	0.16	1	111	0.00
2400	0	181	0.16	0	191	0.00	0	207	0.16	0	223	0.00
4800	0	90	0.16	0	95	0.00	0	103	0.16	0	111	0.00
9600	0	45	-0.93	0	47	0.00	0	51	0.16	0	55	0.00
19200	0	22	-0.93	0	23	0.00	0	25	0.16	0	27	0.00
31250	0	13	0.00	0	14	-1.70	0	15	0.00	0	16	1.20
38400	_	_	_	0	11	0.00	0	12	0.16	0	13	0.00

	φ = 18 MHz			,	φ = 19.6608	3 MHz		φ = 20 N	1Hz		φ = 25 MHz		
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	3	79	-0.12	3	86	0.31	3	88	-0.25	3	110	-0.02	
150	2	233	0.16	2	255	0.00	3	64	0.16	3	80	0.47	
300	2	116	0.16	2	127	0.00	2	129	0.16	2	162	-0.15	
600	1	233	0.16	1	255	0.00	2	64	0.16	2	80	0.47	
1200	1	116	0.16	1	127	0.00	1	129	0.16	1	162	-0.15	
2400	0	233	0.16	0	255	0.00	1	64	0.16	1	80	0.47	
4800	0	116	0.16	0	127	0.00	0	129	0.16	0	162	-0.15	
9600	0	58	-0.69	0	63	0.00	0	64	0.16	0	80	0.47	
19200	0	28	1.02	0	31	0.00	0	32	-1.36	0	40	-0.76	
31250	0	17	0.00	0	19	-1.70	0	19	0.00	0	24	1.00	
38400	0	14	-2.34	0	15	0.00	0	15	1.73	0	19	1.73	

Table 14.4 BRR Settings for Various Bit Rates (Synchronous Mode)

Bit Rate	φ =	2 MHz	φ=	4 MHz	ф	= 8 MHz	φ=	= 10 MHz	z	= 16 MHz	φ=	= 20 MHz	ф	= 25 MHz
(bits/s)	n	N	n	N	n	N	n	N	n	N	n	N	n	N
110	3	70												
250	2	124	2	249	3	124	_	_	3	249				
500	1	249	2	124	2	249	_	_	3	124	_	_		
1 k	1	124	1	249	2	124	_	_	2	249	_	_	3	97
2.5 k	0	199	1	99	1	199	2	124	2	99	2	124	2	155
5 k	0	99	0	199	1	99	1	249	1	199	1	249	2	77
10 k	0	49	0	99	0	199	1	124	1	99	1	124	1	155
25 k	0	19	0	39	0	79	0	199	0	159	0	199	0	249
50 k	0	9	0	19	0	39	0	99	0	79	0	99	0	124
100 k	0	4	0	9	0	19	0	49	0	39	0	49	0	62
250 k	0	1	0	3	0	7	0	19	0	15	0	19	0	24
500 k	0	0*	0	1	0	3	0	9	0	7	0	9	_	
1 M			0	0*	0	1			0	3	0	4	_	_
2.5 M							0	0*			0	1	_	
5 M											0	0*	_	

Legend:

Blank: Cannot be set.

—: Can be set, but there will be a degree of error.

*: Continuous transfer is not possible.

Note: As far as possible, the setting should be made so that the error is no more than 1%.

The BRR setting is found from the following formulas.

Asynchronous mode:

$$N = \frac{\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Synchronous mode:

$$N = \frac{\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Where B: Bit rate (bits/s)

N: BRR setting for baud rate generator $(0 \le N \le 255)$

φ: Operating frequency (MHz)

n: Baud rate generator input clock (n = 0 to 3) (See the table below for the relation between n and the clock.)

	SM	R Setting
Clock	CK61	CKGU

Clock	CKS1	CKS0	
ф	0	0	
φ/4	0	1	
φ/16	1	0	
φ/64	1	1	
	φ/4 φ/16	φ 0 φ/4 0 φ/16 1	φ 0 0 φ/4 0 1 φ/16 1 0

The bit rate error in asynchronous mode is found from the following formula:

Error (%) = {
$$\frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1} \times 100$$

Table 14.5 shows the maximum bit rate for each frequency in asynchronous mode. Tables 14.6 and 14.7 show the maximum bit rates with external clock input.

Table 14.5 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

φ (MHz)	Maximum Bit Rate (bits/s)	n	N	
2	62500	0	0	
2.097152	65536	0	0	
2.4576	76800	0	0	
3	93750	0	0	
3.6864	115200	0	0	
4	125000	0	0	
4.9152	153600	0	0	
5	156250	0	0	
6	187500	0	0	
6.144	192000	0	0	
7.3728	230400	0	0	
8	250000	0	0	
9.8304	307200	0	0	
10	312500	0	0	
12	375000	0	0	
12.288	384000	0	0	
14	437500	0	0	
14.7456	460800	0	0	
16	500000	0	0	
17.2032	537600	0	0	-
18	562500	0	0	
19.6608	614400	0	0	
20	625000	0	0	-
25	781250	0	0	

Table 14.6 Maximum Bit Rate with External Clock Input (Asynchronous Mode)

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bits/s)
2	0.5000	31250
2.097152	0.5243	32768
2.4576	0.6144	38400
3	0.7500	46875
3.6864	0.9216	57600
4	1.0000	62500
4.9152	1.2288	76800
5	1.2500	78125
6	1.5000	93750
6.144	1.5360	96000
7.3728	1.8432	115200
8	2.0000	125000
9.8304	2.4576	153600
10	2.5000	156250
12	3.0000	187500
12.288	3.0720	192000
14	3.5000	218750
14.7456	3.6864	230400
16	4.0000	250000
17.2032	4.3008	268800
18	4.5000	281250
19.6608	4.9152	307200
20	5.0000	312500
25	6.2500	390625

Table 14.7 Maximum Bit Rate with External Clock Input (Synchronous Mode)

External Input Clock (MHz)	Maximum Bit Rate (bits/s)	
0.3333	333333.3	
0.6667	666666.7	
1.0000	1000000.0	
1.3333	1333333.3	
1.6667	1666666.7	
2.0000	2000000.0	
2.3333 2333333.3		
2.6667 2666666.7		
3.0000 3000000.0		
3.3333 3333333.3		
5 4.1667 4166666.7		
	0.3333 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000 3.3333	

14.2.9 Smart Card Mode Register (SCMR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	SDIR	SINV	_	SMIF
Initial value):	1	1	1	1	0	0	1	0
R/W	:	_	_	_		R/W	R/W		R/W

SCMR selects LSB-first or MSB-first transfer by means of bit SDIR. Except in the case of asynchronous mode 7-bit data, LSB-first or MSB-first transfer can be selected regardless of the serial communication mode. The descriptions in this chapter refer to LSB-first transfer.

For details of the other bits in SCMR, see section 15.2.1, Smart Card Mode Register (SCMR).

SCMR is initialized to H'F2 by a reset and in hardware standby mode. In software standby mode and module stop mode it retains its previous state.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 1.

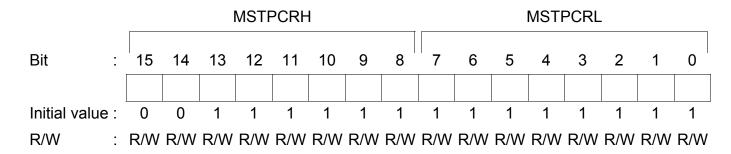
Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

This bit is valid when 8-bit data is used as the transmit/receive format.

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit(s): parity bit inversion requires inversion of the O/\overline{E} bit in SMR.

Bit 2 SINV	Description	
0	TDR contents are transmitted without modification	(Initial value)
	Receive data is stored in RDR without modification	
1	TDR contents are inverted before being transmitted	
	Receive data is stored in RDR in inverted form	


Bit 1—Reserved: This bit cannot be modified and is always read as 1.

Bit 0—Smart Card Interface Mode Select (SMIF): When the smart card interface operates as a normal SCI, 0 should be written to this bit.

Bit 0		
SMIF	Description	
0	Operates as normal SCI (smart card interface function disabled)	(Initial value)
1	Smart card interface function enabled	

Downloaded from Elcodis.com electronic components distributor

14.2.10 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the corresponding bit of bits MSTP7 to MSTP5 is set to 1, SCI operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Module Stop (MSTP7): Specifies the SCI channel 2 module stop mode.

Bit 7 MSTP7	Description	
0	SCI channel 2 module stop mode cleared	
1	SCI channel 2 module stop mode set	(Initial value)

Bit 6—Module Stop (MSTP6): Specifies the SCI channel 1 module stop mode.

Bit 6 MSTP6	Description	
0	SCI channel 1 module stop mode cleared	
1	SCI channel 1 module stop mode set	(Initial value)

Bit 5—Module Stop (MSTP5): Specifies the SCI channel 0 module stop mode.

Bit 5 MSTP5	Description	
0	SCI channel 0 module stop mode cleared	
1	SCI channel 0 module stop mode set	(Initial value)

14.3 Operation

14.3.1 Overview

The SCI can carry out serial communication in two modes: asynchronous mode in which synchronization is achieved character by character, and synchronous mode in which synchronization is achieved with clock pulses.

Selection of asynchronous or synchronous mode and the transmission format is made using SMR as shown in table 14.8. The SCI clock is determined by a combination of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR, as shown in table 14.9.

Asynchronous Mode

- Data length: Choice of 7 or 8 bits
- Choice of parity addition, multiprocessor bit addition, and addition of 1 or 2 stop bits (the combination of these parameters determines the transfer format and character length)
- Detection of framing, parity, and overrun errors, and breaks, during reception
- Choice of internal or external clock as SCI clock source
 - When internal clock is selected:
 - The SCI operates on the baud rate generator clock and a clock with the same frequency as the bit rate can be output
 - When external clock is selected:
 - A clock with a frequency of 16 times the bit rate must be input (the built-in baud rate generator is not used)

Synchronous Mode

- Transfer format: Fixed 8-bit data
- Detection of overrun errors during reception
- Choice of internal or external clock as SCI clock source
 - When internal clock is selected:
 - The SCI operates on the baud rate generator clock and a serial clock is output off-chip
 - When external clock is selected:
 - The built-in baud rate generator is not used, and the SCI operates on the input serial clock

Table 14.8 SMR Settings and Serial Transfer Format Selection

SMR Settings SCI Transfer Format Multi-Bit 7 Bit 6 Bit 3 Bit 2 Bit 5 Data **Parity Stop Bit** processor C/\overline{A} Length Bit Length **CHR** MP PE STOP Mode Bit 0 0 0 0 0 Asynchronous 8-bit data No No 1 bit mode 1 2 bits 1 0 Yes 1 bit 1 2 bits 1 0 0 7-bit data No 1 bit 1 2 bits 0 1 Yes 1 bit 1 2 bits 0 1 0 Asynchronous 8-bit data Yes No 1 bit mode (multi-1 2 bits processor 0 1 7-bit data 1 bit format) 1 2 bits 1 Synchronous mode 8-bit data No None

Table 14.9 SMR and SCR Settings and SCI Clock Source Selection

SMR	R SCR Setting		SCR Setting		SCI Transmit/Receive Clock
Bit 7	Bit 7 Bit 1 B		Clock		
C/Ā	CKE1	CKE0	Mode	Source	SCK Pin Function
0 0		0	Asynchronous	Internal	SCI does not use SCK pin
		1 mo	mode		Outputs clock with same frequency as bit rate
	1	1 0	0	_	External
		1	-	the bit rate	the bit rate
1	0	0	Synchronous	Internal	Outputs serial clock
		1	mode		
	1	0	_	External	Inputs serial clock
		1	_		

14.3.2 Operation in Asynchronous Mode

In asynchronous mode, characters are sent or received, each preceded by a start bit indicating the start of communication and one or two stop bits indicating the end of communication. Serial communication is thus carried out with synchronization established on a character-by-character basis.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 14.2 shows the general format for asynchronous serial communication.

In asynchronous serial communication, the communication line is usually held in the mark state (high level). The SCI monitors the communication line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication.

One serial communication character consists of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and finally one or two stop bits (high level).

In asynchronous mode, the SCI performs synchronization at the falling edge of the start bit in reception. The SCI samples the data on the 8th pulse of a clock with a frequency of 16 times the length of one bit, so that the transfer data is latched at the center of each bit.

Figure 14.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

Data Transfer Format

Table 14.10 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting.

Table 14.10 Serial Transfer Formats (Asynchronous Mode)

SMR Settings				Serial Transfer Format and Frame Length
CHR	PE	MP	STOP	1 2 3 4 5 6 7 8 9 10 11 12
0	0	0	0	S 8-bit data STOP
0	0	0	1	S 8-bit data STOP STOP
0	1	0	0	S 8-bit data P STOP
0	1	0	1	S 8-bit data P STOP STOP
1	0	0	0	S 7-bit data STOP
1	0	0	1	S 7-bit data STOP STOP
1	1	0	0	S 7-bit data P STOP
1	1	0	1	S 7-bit data P STOP STOP
0	_	1	0	S 8-bit data MPB STOP
0		1	1	S 8-bit data MPB STOP STOP
1		1	0	S 7-bit data MPB STOP
1		1	1	S 7-bit data MPB STOP STOP

Legend:

S: Start bit STOP: Stop bit P: Parity bit

MPB: Multiprocessor bit

Clock

Either an internal clock generated by the built-in baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 14.9.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is at the center of each transmit data bit, as shown in figure 14.3.

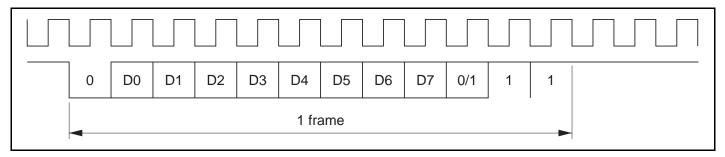


Figure 14.3 Relation between Output Clock and Transfer Data Phase (Asynchronous Mode)

Data Transfer Operations

SCI initialization (asynchronous mode): Before transmitting or receiving data, first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation will be unreliable in this case.

Figure 14.4 shows a sample SCI initialization flowchart.

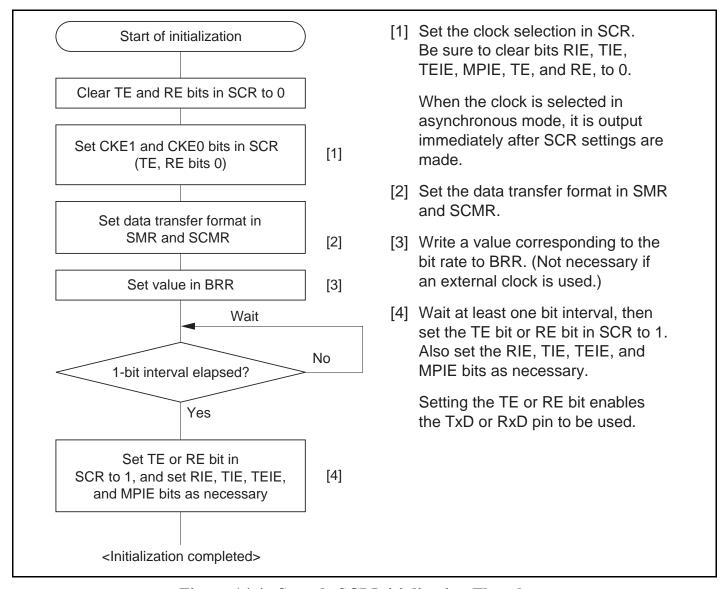


Figure 14.4 Sample SCI Initialization Flowchart

Serial data transmission (asynchronous mode): Figure 14.5 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

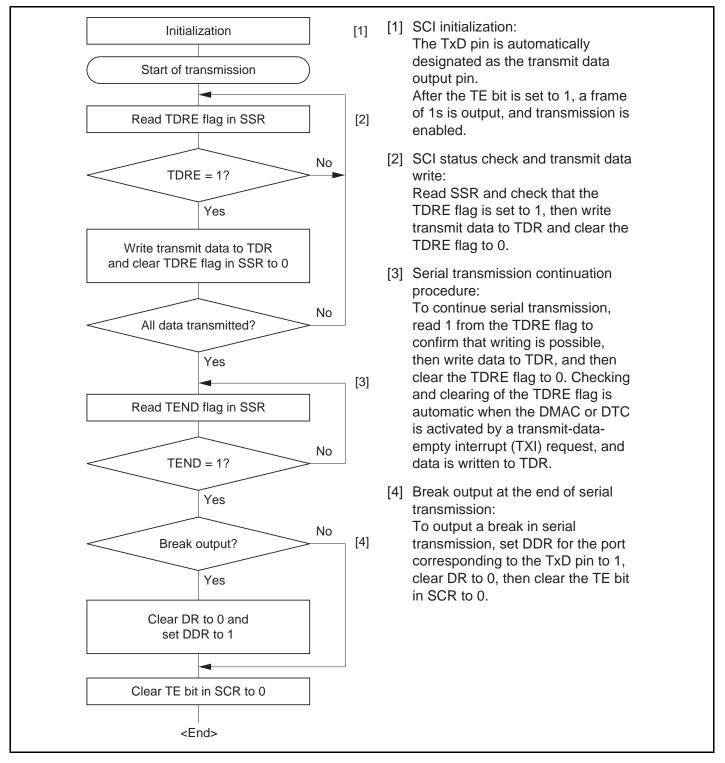


Figure 14.5 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit is set to 1 at this time, a transmit-data-empty interrupt (TXI) is generated.

The serial transmit data is sent from the TxD pin in the following order.

[a] Start bit:

One 0-bit is output.

[b] Transmit data:

8-bit or 7-bit data is output in LSB-first order.

[c] Parity bit or multiprocessor bit:

One parity bit (even or odd parity), or one multiprocessor bit is output.

A format in which neither a parity bit nor a multiprocessor bit is output can also be selected.

[d] Stop bit(s):

One or two 1-bits (stop bits) are output.

[e] Mark state:

1 is output continuously until the start bit that starts the next transmission is sent.

[3] The SCI checks the TDRE flag at the timing for sending the stop bit.

If the TDRE flag is cleared to 0, the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the mark state is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.

Figure 14.6 shows an example of the operation for transmission in asynchronous mode.

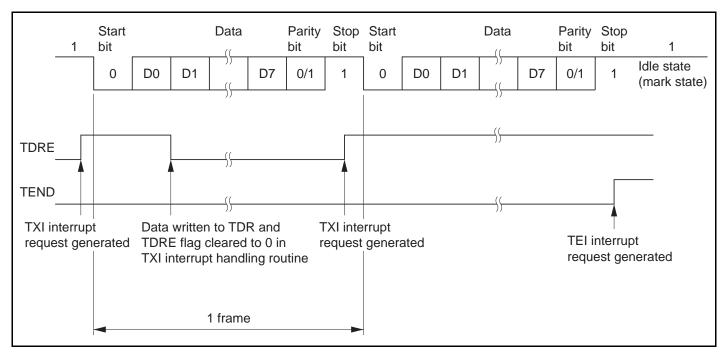


Figure 14.6 Example of Transmit Operation in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)

Serial data reception (asynchronous mode): Figure 14.7 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.

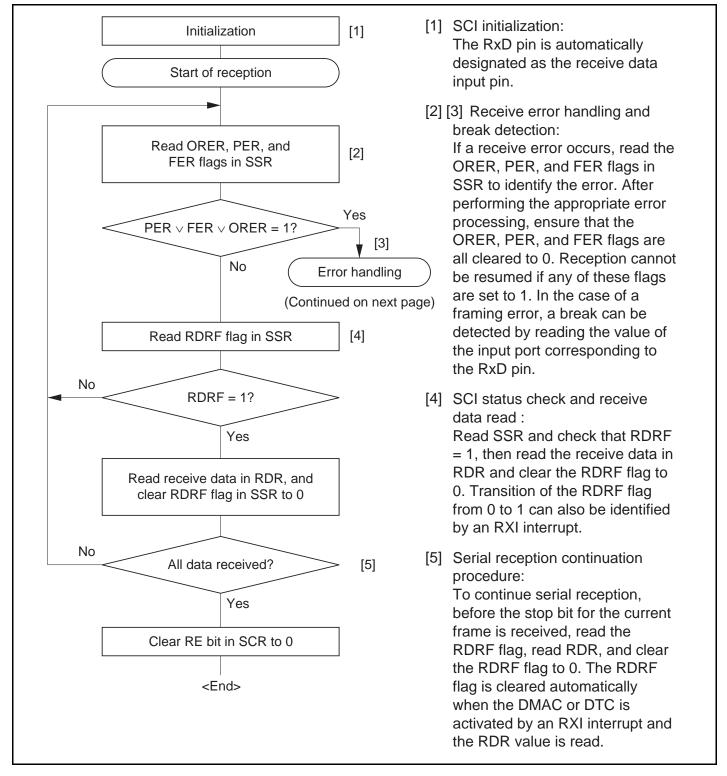


Figure 14.7 Sample Serial Reception Flowchart

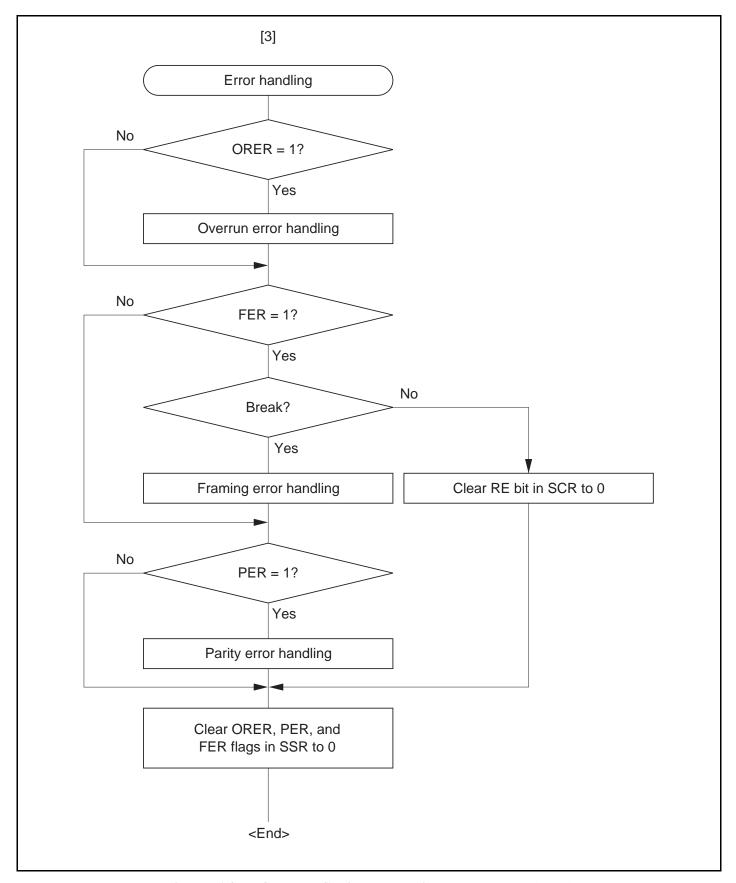


Figure 14.7 Sample Serial Reception Flowchart (cont)

In serial reception, the SCI operates as described below.

- [1] The SCI monitors the communication line, and if a 0 stop bit is detected, performs internal synchronization and starts reception.
- [2] The received data is stored in RSR in LSB-to-MSB order.
- [3] The parity bit and stop bit are received.

After receiving these bits, the SCI carries out the following checks.

[a] Parity check:

The SCI checks whether the number of 1 bits in the receive data agrees with the parity (even or odd) set in the O/\overline{E} bit in SMR.

[b] Stop bit check:

The SCI checks whether the stop bit is 1.

If there are two stop bits, only the first is checked.

[c] Status check:

The SCI checks whether the RDRF flag is 0, indicating that the receive data can be transferred from RSR to RDR.

If all the above checks are passed, the RDRF flag is set to 1, and the receive data is stored in RDR.

If a receive error* is detected in the error check, the operation is as shown in table 14.11.

- Note: * Subsequent receive operations cannot be performed when a receive error has occurred. Also note that the RDRF flag is not set to 1 in reception, and so the error flags must be cleared to 0.
- [4] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1, a receive-data-full interrupt (RXI) request is generated.

Also, if the RIE bit in SCR is set to 1 when the ORER, PER, or FER flag changes to 1, a receive-error interrupt (ERI) request is generated.

Table 14.11 Receive Error Conditions

Receive Error	Abbreviation	Condition	Data Transfer
Overrun error	ORER	When the next data reception is completed while the RDRF flag in SSR is set to 1	Receive data is not transferred from RSR to RDR
Framing error	FER	When the stop bit is 0	Receive data is transferred from RSR to RDR
Parity error	PER	When the received data differs from the parity (even or odd) set in SMR	Receive data is transferred from RSR to RDR

Figure 14.8 shows an example of the operation for reception in asynchronous mode.

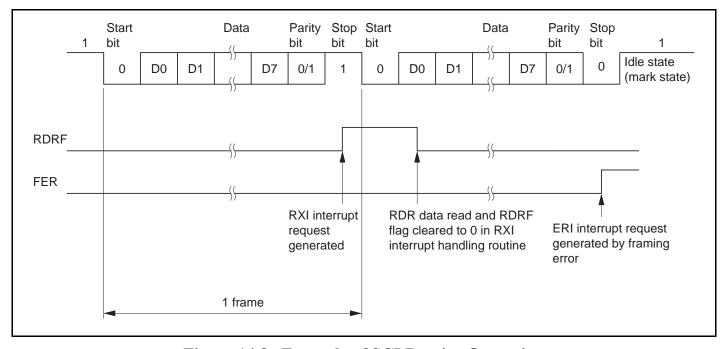


Figure 14.8 Example of SCI Receive Operation (Example with 8-Bit Data, Parity, One Stop Bit)

14.3.3 Multiprocessor Communication Function

The multiprocessor communication function performs serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data, in asynchronous mode. Use of this function enables data transfer to be performed among a number of processors sharing a single serial communication line.

When multiprocessor communication is carried out, each receiving station is addressed by a unique ID code.

The serial communication cycle consists of two component cycles: an ID transmission cycle which specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle.

The transmitting station first sends the ID of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.

The receiving station skips the data until data with a 1 multiprocessor bit is sent.

When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose ID does not match continue to skip the data until data with a 1 multiprocessor bit is again received. In this way, data communication is carried out among a number of processors.

Figure 14.9 shows an example of inter-processor communication using the multiprocessor format.

Data Transfer Formats

There are four data transfer formats.

When the multiprocessor format is specified, the parity bit specification is invalid.

For details, see table 14.10.

Clock

See section 14.3.2, Operation in Asynchronous Mode.

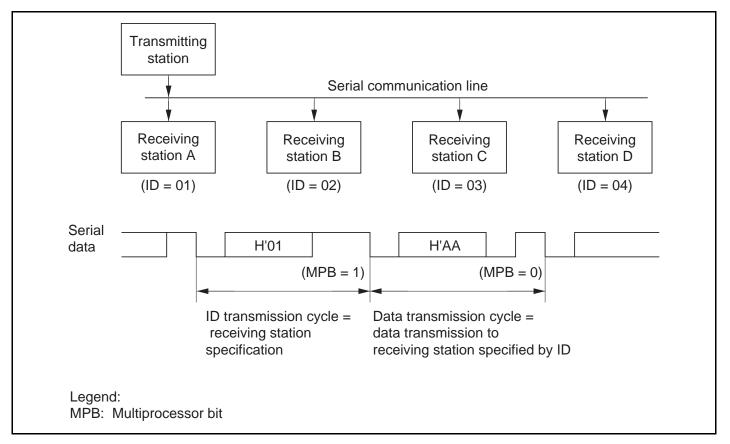


Figure 14.9 Example of Inter-Processor Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Data Transfer Operations

Multiprocessor serial data transmission: Figure 14.10 shows a sample flowchart for multiprocessor serial data transmission.

The following procedure should be used for multiprocessor serial data transmission.

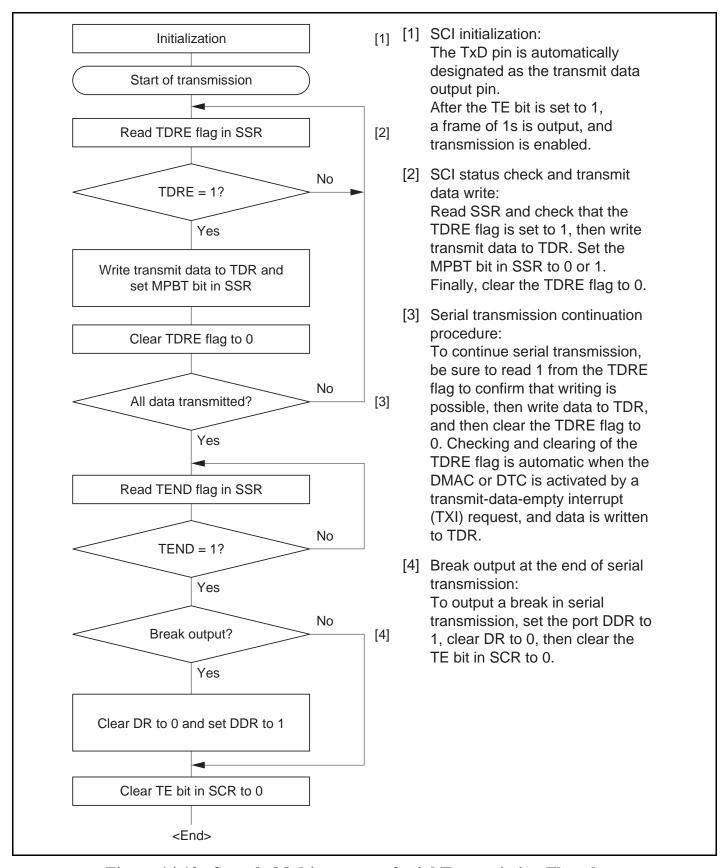


Figure 14.10 Sample Multiprocessor Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit is set to 1 at this time, a transmit-data-empty interrupt $\mbox{(TXI)}$ is generated.

The serial transmit data is sent from the TxD pin in the following order.

[a] Start bit:

One 0-bit is output.

[b] Transmit data:

8-bit or 7-bit data is output in LSB-first order.

[c] Multiprocessor bit

One multiprocessor bit (MPBT value) is output.

[d] Stop bit(s):

One or two 1-bits (stop bits) are output.

[e] Mark state:

1 is output continuously until the start bit that starts the next transmission is sent.

[3] The SCI checks the TDRE flag at the timing for sending the stop bit.

If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the mark state is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a transmit-end interrupt (TEI) request is generated.

Figure 14.11 shows an example of SCI operation for transmission using the multiprocessor format.

Figure 14.11 Example of SCI Transmit Operation (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Multiprocessor serial data reception: Figure 14.12 shows a sample flowchart for multiprocessor serial reception.

The following procedure should be used for multiprocessor serial data reception.

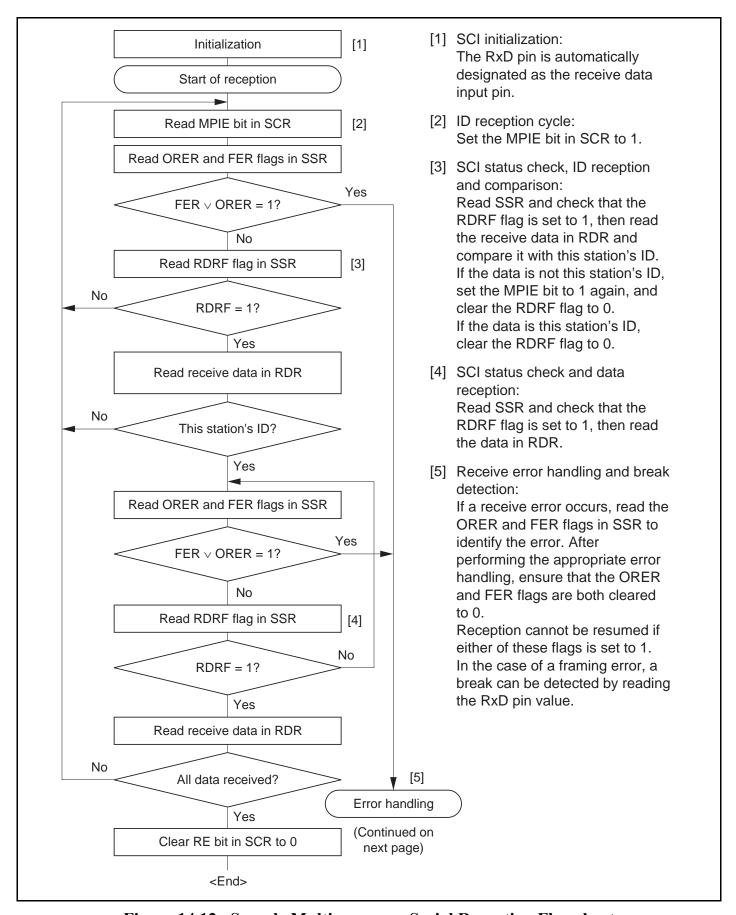


Figure 14.12 Sample Multiprocessor Serial Reception Flowchart

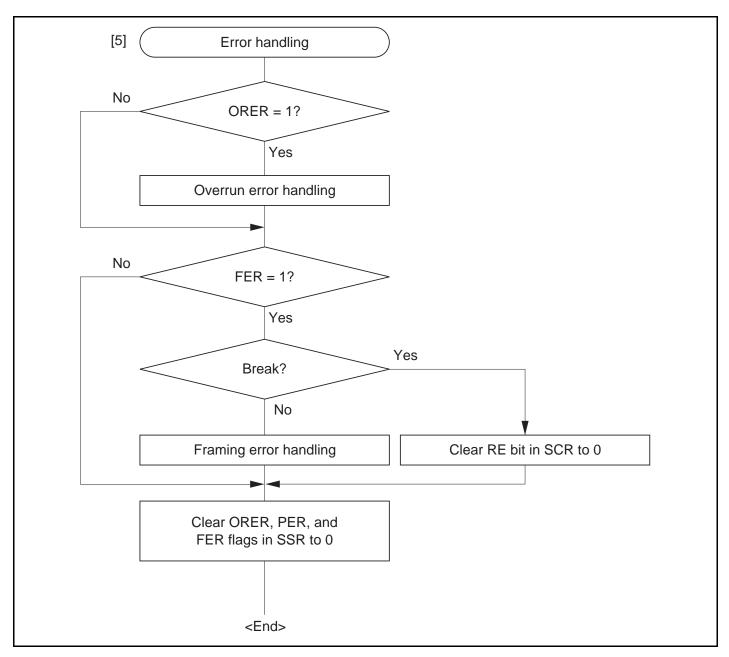


Figure 14.12 Sample Multiprocessor Serial Reception Flowchart (cont)

Rev.4.00 Sep. 07, 2007 Page 643 of 1210

Figure 14.13 shows an example of SCI operation for multiprocessor format reception.

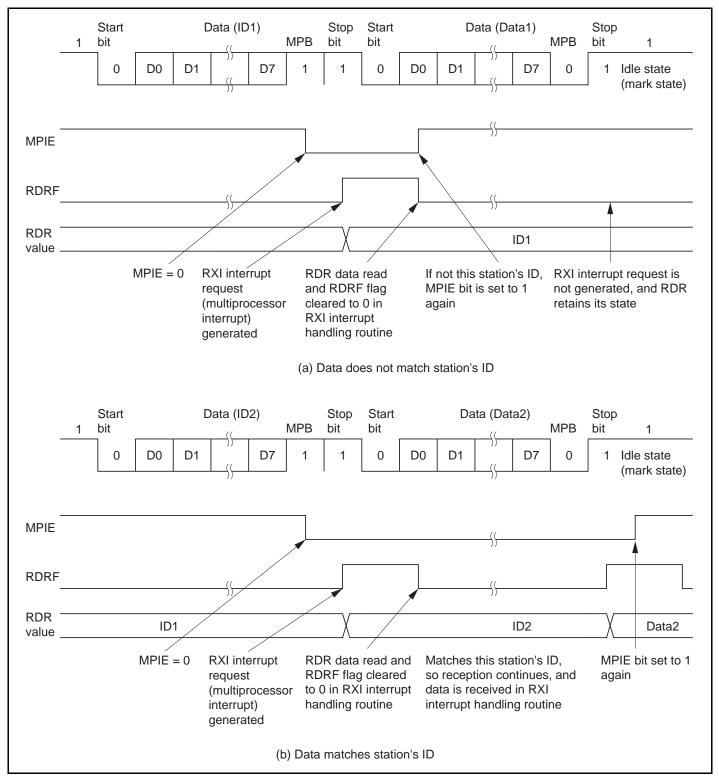


Figure 14.13 Example of SCI Receive Operation (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

14.3.4 **Operation in Synchronous Mode**

In synchronous mode, data is transmitted or received in synchronization with clock pulses, making it suitable for high-speed serial communication.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 14.14 shows the general format for synchronous serial communication.

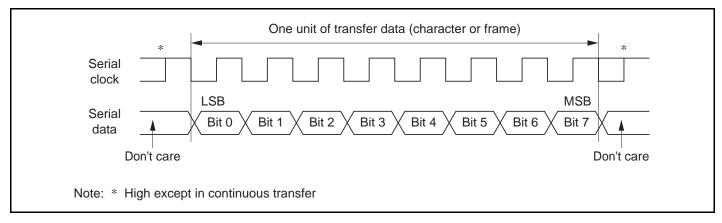


Figure 14.14 Data Format in Synchronous Communication

In synchronous serial communication, data on the communication line is output from one falling edge of the serial clock to the next. Data confirmation is guaranteed at the rising edge of the serial clock.

In synchronous serial communication, one character consists of data output starting with the LSB and ending with the MSB. After the MSB is output, the communication line holds the MSB state.

In synchronous mode, the SCI receives data in synchronization with the rising edge of the serial clock.

Data Transfer Format

A fixed 8-bit data format is used.

No parity or multiprocessor bits are added.

Clock

Either an internal clock generated by the built-in baud rate generator or an external serial clock input at the SCK pin can be selected, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 14.9.

When the SCI is operated on an internal clock, the serial clock is output from the SCK pin.

Eight serial clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high. When only receive operations are performed, however, the serial clock is output until an overrun error occurs or the RE bit is cleared to 0. To perform receive operations in units of one character, an external clock should be selected as the clock source.

Data Transfer Operations

SCI initialization (synchronous mode): Before transmitting or receiving data, first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

Figure 14.15 shows a sample SCI initialization flowchart.



Figure 14.15 Sample SCI Initialization Flowchart

Serial data transmission (synchronous mode): Figure 14.16 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

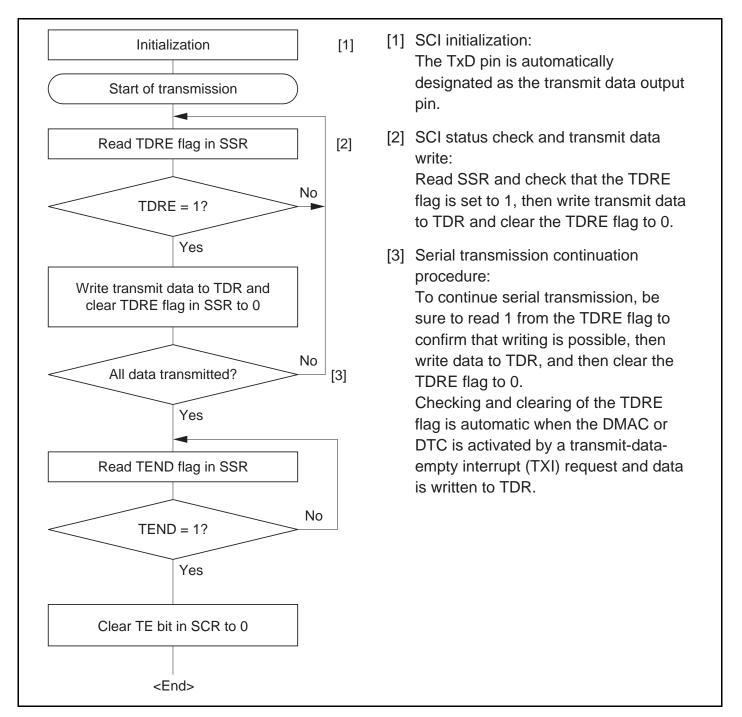


Figure 14.16 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit is set to 1 at this time, a transmit-data-empty interrupt (TXI) is generated.
 - When clock output mode has been set, the SCI outputs 8 serial clock pulses. When use of an external clock has been specified, data is output synchronized with the input clock.
 - The serial transmit data is sent from the TxD pin starting with the LSB (bit 0) and ending with the MSB (bit 7).
- [3] The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).
 - If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started.
 - If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the MSB (bit 7) is sent, and the TxD pin maintains its state.
 - If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.
- [4] After completion of serial transmission, the SCK pin is fixed.
- Figure 14.17 shows an example of SCI operation in transmission.

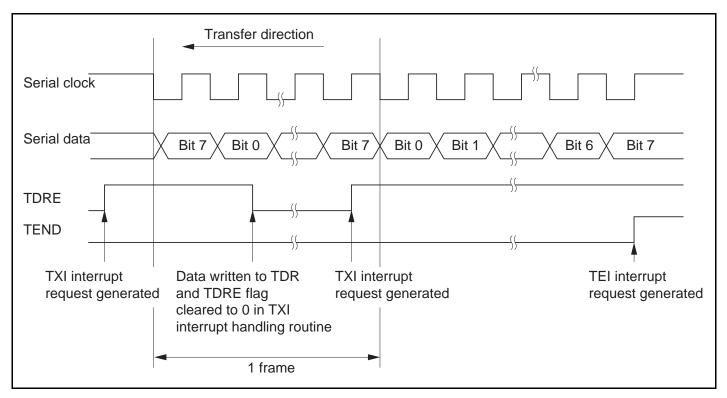


Figure 14.17 Example of SCI Transmit Operation

Serial data reception (synchronous mode): Figure 14.18 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.

When changing the operating mode from asynchronous to synchronous, be sure to check that the ORER, PER, and FER flags are all cleared to 0.

The RDRF flag will not be set if the FER or PER flag is set to 1, and neither transmit nor receive operations will be possible.

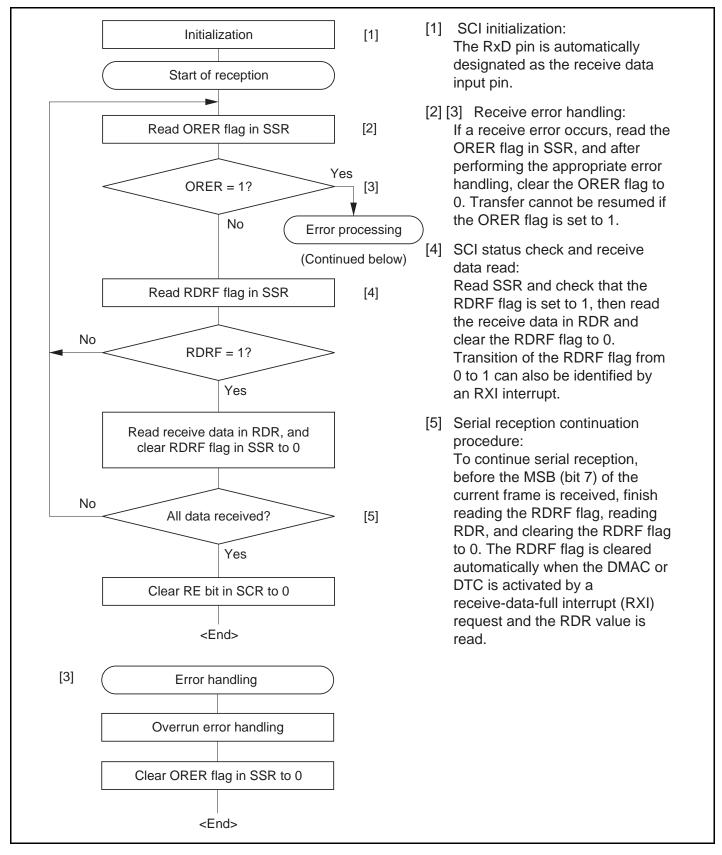


Figure 14.18 Sample Serial Reception Flowchart

In serial reception, the SCI operates as described below.

- [1] The SCI performs internal initialization in synchronization with serial clock input or output.
- [2] The received data is stored in RSR in LSB-to-MSB order.

After reception, the SCI checks whether the RDRF flag is 0 and the receive data can be transferred from RSR to RDR.

If this check is passed, the RDRF flag is set to 1, and the receive data is stored in RDR. If a receive error is detected in the error check, the operation is as shown in table 14.11.

Neither transmit nor receive operations can be performed subsequently when a receive error has been found in the error check.

[3] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1, a receive-data-full interrupt (RXI) request is generated.

Also, if the RIE bit in SCR is set to 1 when the ORER flag changes to 1, a receive-error interrupt (ERI) request is generated.

Figure 14.19 shows an example of SCI operation in reception.

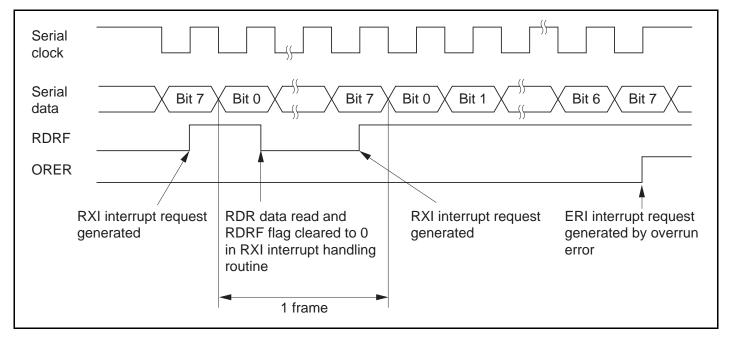


Figure 14.19 Example of SCI Receive Operation

Simultaneous serial data transmission and reception (synchronous mode): Figure 14.20 shows a sample flowchart for simultaneous serial transmit and receive operations.

The following procedure should be used for simultaneous serial data transmit and receive operations.

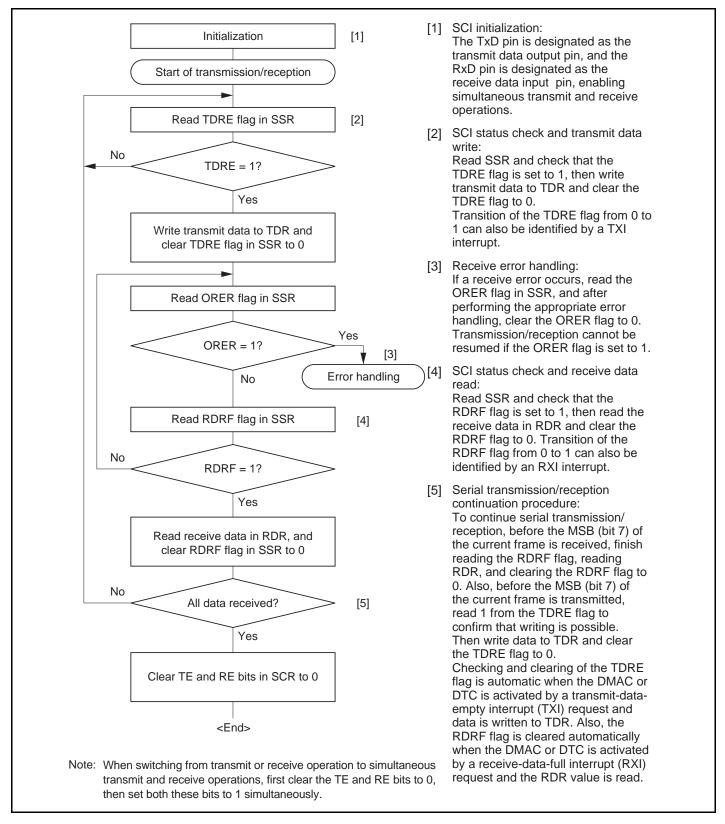


Figure 14.20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations

14.4 SCI Interrupts

The SCI has four interrupt sources: the transmit-end interrupt (TEI) request, receive-error interrupt (ERI) request, receive-data-full interrupt (RXI) request, and transmit-data-empty interrupt (TXI) request. Table 14.12 shows the interrupt sources and their relative priorities. Individual interrupt sources can be enabled or disabled with the TIE, RIE, and TEIE bits in the SCR. Each kind of interrupt request is sent to the interrupt controller independently.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the DMAC or DTC to perform data transfer. The TDRE flag is cleared to 0 automatically when data transfer is performed by the DMAC or DTC. The DMAC and DTC cannot be activated by a TEI interrupt request.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt can activate the DMAC or DTC to perform data transfer. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DMAC or DTC. The DMAC and DTC cannot be activated by an ERI interrupt request.

RENESAS

Also note that the DMAC cannot be activated by an SCI channel 2 interrupt.

Table 14.12 SCI Interrupt Sources

Channel	Interrupt Source	Description	DTC Activation	DMAC Activation	Priority*	
0	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	Not possible	High	
	RXI	Interrupt due to receive data full state (RDRF)	Possible	Possible	_	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	Possible		
	TEI	Interrupt due to transmission end (TEND)	Not possible	Not possible	_	
1	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	Not possible	_	
	RXI	Interrupt due to receive data full state (RDRF)	Possible	Possible	_	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	Possible	_	
	TEI	Interrupt due to transmission end (TEND)	Not possible	Not possible	_	
2	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	Not possible	_	
	RXI	Interrupt due to receive data full state (RDRF)	Possible	Not possible	_	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	Not possible		
	TEI	Interrupt due to transmission end (TEND)	Not possible	Not possible	Low	

Note: * This table shows the initial state immediate after a reset. Relative priorities among channels can be changed by the interrupt controller.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1. The TEND flag is cleared at the same time as the TDRE flag. Consequently, if a TEI interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt may be accepted first, with the result that the TDRE and TEND flags are cleared. Note that the TEI interrupt will not be accepted in this case.

14.5 Usage Notes

The following points should be noted when using the SCI.

Relation between Writes to TDR and the TDRE Flag: The TDRE flag in SSR is a status flag that indicates that transmit data has been transferred from TDR to TSR. When the SCI transfers data from TDR to TSR, the TDRE flag is set to 1.

Data can be written to TDR regardless of the state of the TDRE flag. However, if new data is written to TDR when the TDRE flag is cleared to 0, the data stored in TDR will be lost since it has not yet been transferred to TSR. It is therefore essential to check that the TDRE flag is set to 1 before writing transmit data to TDR.

Operation when Multiple Receive Errors Occur Simultaneously: If a number of receive errors occur at the same time, the state of the status flags in SSR is as shown in table 14.13. If there is an overrun error, data is not transferred from RSR to RDR, and the receive data is lost.

Table 14.13 State of SSR Status Flags and Transfer of Receive Data

SSR Status Flags				Receive Data Transfer			
RDRF	ORER	FER	PER	from RSR to RDR	Receive Error Status		
1	1	0	0	Х	Overrun error		
0	0	1	0	0	Framing error		
0	0	0	1	0	Parity error		
1	1	1	0	Х	Overrun error + framing error		
1	1	0	1	Х	Overrun error + parity error		
0	0	1	1	0	Framing error + parity error		
1	1	1	1	Х	Overrun error + framing error + parity error		

RENESAS

Notes: O: Receive data is transferred from RSR to RDR.

X: Receive data is not transferred from RSR to RDR.

Break Detection and Processing (Asynchronous Mode Only): When framing error (FER) detection is performed, a break can be detected by reading the RxD pin value directly. In a break, the input from the RxD pin becomes all 0s, and so the FER flag is set, and the parity error flag (PER) may also be set.

Note that, since the SCI continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

Sending a Break (Asynchronous Mode Only): The TxD pin has a dual function as an I/O port whose direction (input or output) is determined by DR and DDR. This can be used to send a break.

Between serial transmission initialization and setting of the TE bit to 1, the mark state is replaced by the value of DR (the pin does not function as the TxD pin until the TE bit is set to 1). Therefore, DDR and DR for the port corresponding to the TxD pin should first be set to 1.

To send a break during serial transmission, first clear DR to 0, then clear the TE bit to 0.

When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin.

Receive Error Flags and Transmit Operations (Synchronous Mode Only): Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission.

Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

Receive Data Sampling Timing and Receive Margin in Asynchronous Mode: In asynchronous mode, the SCI operates on a base clock with a frequency of 16 times the transfer rate.

In reception, the SCI samples the falling edge of the start bit using the base clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the base clock. This is illustrated in figure 14.21.

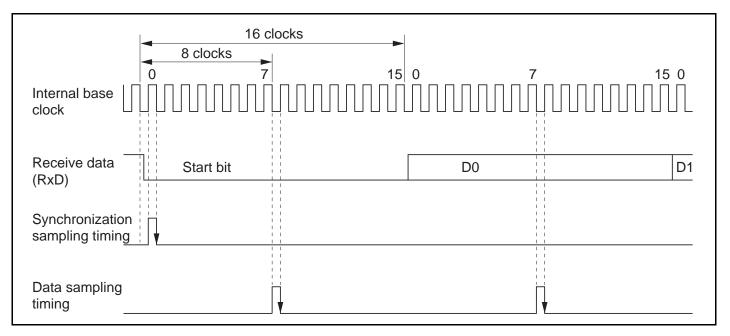


Figure 14.21 Receive Data Sampling Timing in Asynchronous Mode

Thus the receive margin in asynchronous mode is given by formula (1) below.

$$M = |(0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F)| \times 100\%$$
... Formula (1)

Where M: Receive margin (%)

N : Ratio of bit rate to clock (N = 16)

D : Clock duty (D = 0 to 1.0) L : Frame length (L = 9 to 12)

F : Absolute value of clock rate deviation

Assuming values of F = 0 and D = 0.5 in formula (1), a receive margin of 46.875% is given by formula (2) below.

When D = 0.5 and F = 0,

$$M = (0.5 - \frac{1}{2 \times 16}) \times 100\%$$
= 46.875% ... Formula (2)

However, this is a theoretical value, and a margin of 20% to 30% should be allowed in system design.

Restrictions on Use of DMAC or DTC

- When an external clock source is used as the serial clock, the transmit clock should not be input until at least 5 φ clock cycles after TDR is updated by the DMAC or DTC. Misoperation may occur if the transmit clock is input within 4 φ clocks after TDR is updated. (Figure 14.22)
- When RDR is read by the DMAC or DTC, be sure to set the activation source to the relevant SCI receive-data-full interrupt (RXI).

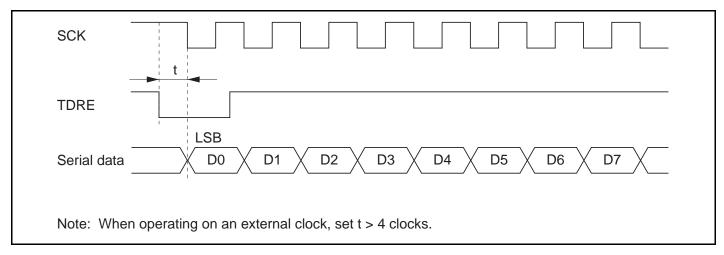


Figure 14.22 Example of Synchronous Transmission Using DTC

Operation in Case of Mode Transition

Transmission

Operation should be stopped (by clearing TE, TIE, and TEIE to 0) before making a module stop mode or software standby mode transition. TSR, TDR, and SSR are reset. The output pin states in module stop mode or software standby mode depend on the port settings, and becomes high-level output after the relevant mode is cleared. If a transition is made during transmission, the data being transmitted will be undefined. When transmitting without changing the transmit mode after the relevant mode is cleared, transmission can be started by setting TE to 1 again, and performing the following sequence: SSR read → TDR write → TDRE clearance. To transmit with a different transmit mode after clearing the relevant mode, the procedure must be started again from initialization. Figure 14.23 shows a sample flowchart for mode transition during transmission. Port pin states are shown in figures 14.24 and 14.25. Operation should also be stopped (by clearing TE, TIE, and TEIE to 0) before making a transition from transmission by DTC transfer to module stop mode or software standby mode transition. To perform transmission with the DTC after the relevant mode is cleared, setting TE and TIE to 1 will set the TXI flag and start DTC transmission.

Reception

Receive operation should be stopped (by clearing RE to 0) before making a module stop mode or software standby mode transition. RSR, RDR, and SSR are reset. If a transition is made without stopping operation, the data being received will be invalid.

To continue receiving without changing the reception mode after the relevant mode is cleared, set RE to 1 before starting reception. To receive with a different receive mode, the procedure must be started again from initialization.

RENESAS

Figure 14.26 shows a sample flowchart for mode transition during reception.

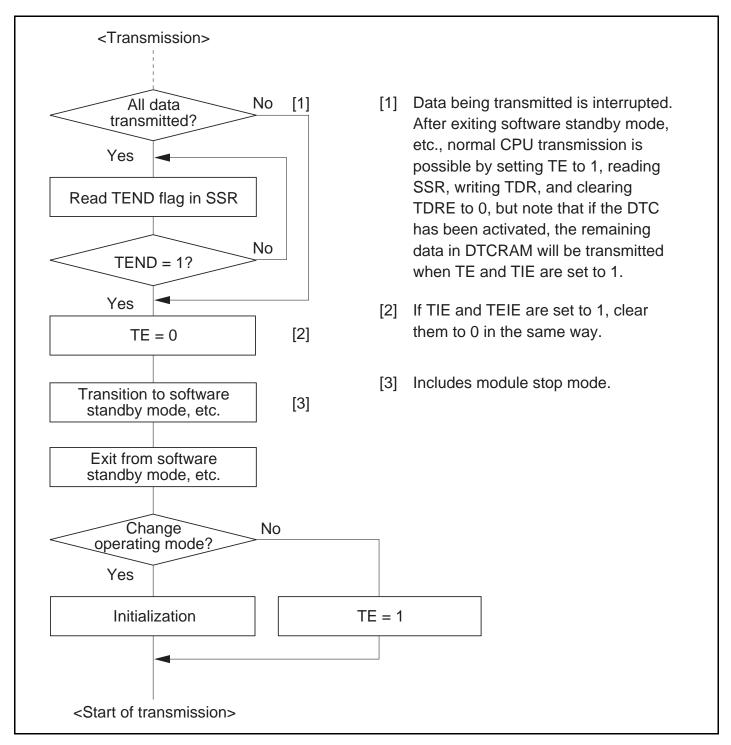


Figure 14.23 Sample Flowchart for Mode Transition during Transmission

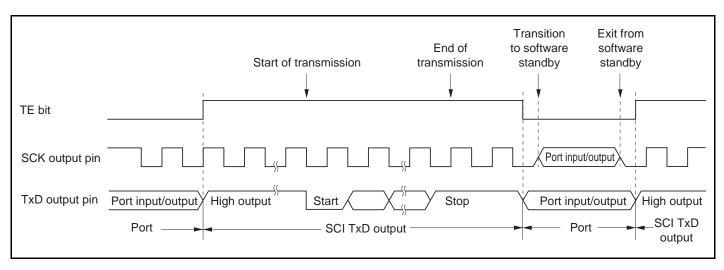


Figure 14.24 Asynchronous Transmission Using Internal Clock

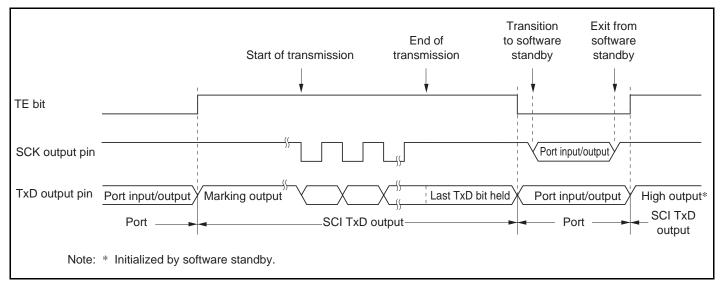


Figure 14.25 Synchronous Transmission Using Internal Clock

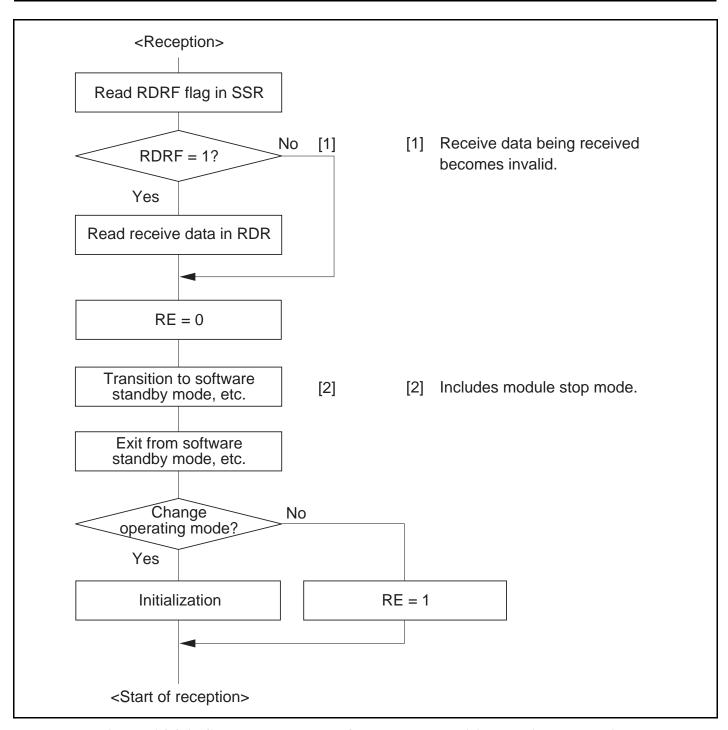


Figure 14.26 Sample Flowchart for Mode Transition during Reception

Section 15 Smart Card Interface

15.1 Overview

The SCI supports an IC card (smart card) interface conforming to ISO/IEC 7816-3 (identification card) as a serial communication interface extension function.

Switching between the normal serial communication interface and the smart card interface is carried out by means of a register setting.

15.1.1 Features

Features of the smart card interface supported by the chip is as follows.

- Asynchronous mode
 - Data length: 8 bits
 - Parity bit generation and checking
 - Transmission of error signal (parity error) in receive mode
 - Error signal detection and automatic data retransmission in transmit mode
 - Direct convention and inverse convention both supported
- Built-in baud rate generator allows any bit rate to be selected
- Three interrupt sources
 - Three interrupt sources (transmit-data-empty, receive-data-full, and transmit/receive-error) that can issue requests independently
 - The transmit-data-empty and receive-data-full interrupts can activate the DMA controller (DMAC) or data transfer controller (DTC) to execute data transfer

15.1.2 Block Diagram

Figure 15.1 shows a block diagram of the smart card interface.

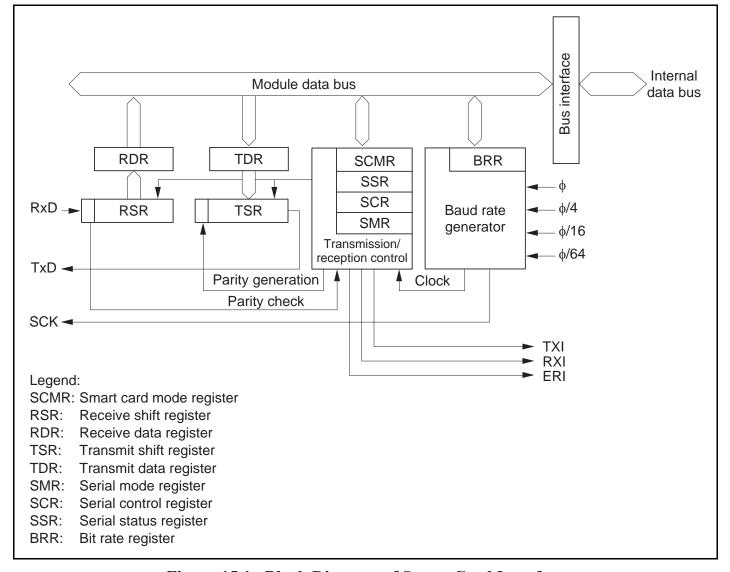


Figure 15.1 Block Diagram of Smart Card Interface

15.1.3 Pin Configuration

Table 15.1 shows the smart card interface pin configuration.

Table 15.1 Smart Card Interface Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCI0 clock input/output
	Receive data pin 0	RxD0	Input	SCI0 receive data input
	Transmit data pin 0	TxD0	Output	SCI0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCI1 clock input/output
	Receive data pin 1	RxD1	Input	SCI1 receive data input
	Transmit data pin 1	TxD1	Output	SCI1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCI2 clock input/output
	Receive data pin 2	RxD2	Input	SCI2 receive data input
	Transmit data pin 2	TxD2	Output	SCI2 transmit data output

15.1.4 Register Configuration

Table 15.2 shows the registers used by the smart card interface. Details of SMR, BRR, SCR, TDR, RDR, and MSTPCR are the same as for the normal SCI function: see the register descriptions in section 14, Serial Communication Interface (SCI).

Table 15.2 Smart Card Interface Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W) *2	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W) *2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

15.2 Register Descriptions

Registers added with the smart card interface and bits for which the function changes are described here.

15.2.1 Smart Card Mode Register (SCMR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	SDIR	SINV	_	SMIF
Initial value	e :	1	1	1	1	0	0	1	0
R/W	:					R/W	R/W		R/W

SCMR is an 8-bit readable/writable register that selects the smart card interface function.

SCMR is initialized to H'F2 by a reset and in hardware standby mode. In software standby mode and module stop mode it retains its previous state.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 1.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. This function is used together with the SDIR bit for communication with an inverse convention card. The SINV bit does not affect the logic level of the parity bit. For parity-related setting procedures, see section 15.3.4, Register Settings.

Bit 2 SINV	Description	
0	TDR contents are transmitted as they are	(Initial value)
	Receive data is stored as it is in RDR	
1	TDR contents are inverted before being transmitted	
	Receive data is stored in inverted form in RDR	

Bit 1—Reserved: Read-only bit, always read as 1.

Bit 0—Smart Card Interface Mode Select (SMIF): Enables or disables the smart card interface function.

Bit 0		
SMIF	Description	
0	Smart card interface function is disabled	(Initial value)
1	Smart card interface function is enabled	

15.2.2 Serial Status Register (SSR)

Bit	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
Initial val	lue :	1	0	0	0	0	1	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: * Only 0 can be written to bits 7 to 3, to clear these flags.

Bit 4 of SSR has a different function in smart card interface mode. Coupled with this, the setting conditions for bit 2, TEND, are also different.

Bits 7 to 5—Operate in the same way as for the normal SCI. For details, see section 14.2.7, Serial Status Register (SSR).

Bit 4—Error Signal Status (ERS): In smart card interface mode, bit 4 indicates the status of the error signal sent back from the receiving end in transmission. Framing errors are not detected in smart card interface mode.

ERS	Description					
0	Indicates data received normally with no error signal (Initial value) [Clearing conditions]					
	 Upon reset, and in standby mode or module stop mode 					
	 When 0 is written to ERS after reading ERS = 1 					
1	Indicates an error signal was sent showing detection of a parity error at the receiving side					
	[Setting condition]					
	When the low level of the error signal is sampled					

Note: Clearing the TE bit in SCR to 0 does not affect the ERS flag, which retains its previous state.

Dit A

Bits 3 to 0—Operate in the same way as for the normal SCI. For details, see section 14.2.7, Serial Status Register (SSR).

However, the setting conditions for the TEND bit, are as shown below.

Bit 2 TEND	Description
0	Indicates transfer in progress
	[Clearing conditions]
	 When 0 is written to TDRE after reading TDRE = 1
	 When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR
1	Indicates transfer complete (Initial value)
	[Setting conditions]
	 Upon reset, and in standby mode or module stop mode
	 When the TE bit in SCR is 0 and the ERS bit is also 0
	 When TDRE = 1 and ERS = 0 (normal transmission) 2.5 etu after transmission of a 1-byte serial character when GM = 0 and BLK = 0
	 When TDRE = 1 and ERS = 0 (normal transmission) 1.5 etu after transmission of a 1-byte serial character when GM = 0 and BLK = 1
	 When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a 1-byte serial character when GM = 1 and BLK = 0
	 When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a 1-byte serial character when GM = 1 and BLK = 1

RENESAS

Note: etu: Elementary time unit (time for transfer of 1 bit)

15.2.3 Serial Mode Register (SMR)

Bit	:	7	6	5	4	3	2	1	0
		GM	BLK	PE	O/Ē	BCP1	BCP0	CKS1	CKS0
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * When using the smart card interface, set bit 5 to 1.

The function of bits 7, 6, 3, and 2 of SMR changes in smart card interface mode.

Bit 7—GSM Mode (GM): Sets the smart card interface function to GSM mode.

This bit is cleared to 0 when the normal smart card interface is used. In GSM mode, this bit is set to 1, the timing of setting of the TEND flag that indicates transmission completion is advanced, and clock output control mode addition is performed. The contents of the clock output control mode addition are specified by bits 1 and 0 of the serial control register (SCR).

Bit 7 GM	Description						
0	Normal smart card interface mode operation (Initial value)						
	 TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning o start bit 						
	Clock output on/off control only						
1	GSM mode smart card interface mode operation						
	 TEND flag generation 11.0 etu after beginning of start bit 						
	 High/low fixing control possible in addition to clock output on/off control (set by SCR) 						

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bit 6—Block Transfer Mode (BLK): Selects block transfer mode.

Bit 6 BLK	Description
0	Normal smart card interface mode operation (Initial value)
	 Error signal transmission/detection and automatic data retransmission performed
	TXI interrupt generated by TEND flag
	 TEND flag set 12.5 etu after start of transmission (11.0 etu in GSM mode)
1	Block transfer mode operation
	 Error signal transmission/detection and automatic data retransmission not performed
	TXI interrupt generated by TDRE flag
	 TEND flag set 11.5 etu after start of transmission (11.0 etu in GSM mode)

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bits 3 and 2—Base Clock Pulse 1 and 2 (BCP1, BCP0): These bits specify the number of base clock periods in a 1-bit transfer interval on the smart card interface.

Bit 3 BCP1	Bit 2 BCP0	Description	
0	0	32 clock periods	(Initial value)
	1	64 clock periods	
1	0	372 clock periods	
	1	256 clock periods	

Bits 5, 4, 1, and 0—Operate in the same way as for the normal SCI. For details, see section 14.2.5, Serial Mode Register (SMR).

15.2.4 Serial Control Register (SCR)

Bit	:	7	6	5	4	3	2	1	0
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

In smart card interface mode, the function of bits 1 and 0 of SCR changes when bit 7 of the serial mode register (SMR) is set to 1.

Bits 7 to 2—Operate in the same way as for the normal SCI. For details, see section 14.2.6, Serial Control Register (SCR).

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin.

In smart card interface mode, in addition to the normal switching between clock output enabling and disabling, the clock output can be specified as being fixed high or low.

SCMR	SMR	SC	R Setting	
SMIF	GM	CKE1	CKE0	SCK Pin Function
0	See the SC	I specificati	on	
1	0	0	0	Operates as port I/O pin
1	0	0	1	Outputs clock as SCK output pin
1	1	0	0	Operates as SCK output pin, with output fixed low
1	1	0	1	Outputs clock as SCK output pin
1	1	1	0	Operates as SCK output pin, with output fixed high
1	1	1	1	Outputs clock as SCK output pin

15.3 Operation

15.3.1 Overview

The main functions of the smart card interface are as follows.

- One frame consists of 8-bit data plus a parity bit.
- In transmission, a guard time of at least 2 etu (1 etu in block transfer mode) (elementary time unit: the time for transfer of 1 bit) is left between the end of the parity bit and the start of the next frame.
- If a parity error is detected during reception, a low error signal level is output for one etu period, 10.5 etu after the start bit. (This does not apply to block transfer mode.)
- If the error signal is sampled during transmission, the same data is transmitted automatically after the elapse of 2 etu or longer. (This does not apply to block transfer mode.)
- Only asynchronous communication is supported; there is no synchronous communication function.

15.3.2 Pin Connections

Figure 15.2 shows a schematic diagram of smart card interface related pin connections.

In communication with an IC card, since both transmission and reception are carried out on a single data communication line, the chip's TxD pin and RxD pin should both be connected to the line, as shown in the figure. The data communication line should be pulled up to the V_{CC} power supply with a resistor.

When the clock generated on the smart card interface is used by an IC card, the SCK pin output is input to the CLK pin of the IC card. No connection is needed if the IC card uses an internal clock.

RENESAS

Chip port output is used as the reset signal.

Other pins must normally be connected to the power supply or ground.

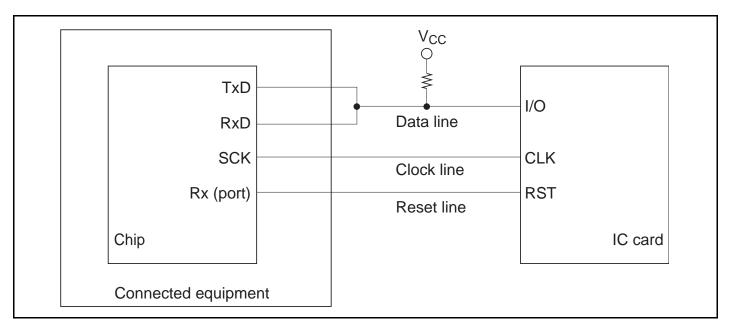


Figure 15.2 Schematic Diagram of Smart Card Interface Pin Connections

Note: If an IC card is not connected, and the TE and RE bits are both set to 1, closed transmission/reception is possible, enabling self-diagnosis to be carried out.

Rev.4.00 Sep. 07, 2007 Page 677 of 1210

15.3.3 Data Format

Normal Transfer Mode: Figure 15.3 shows the smart card interface data format in the normal transfer mode. In reception in this mode, a parity check is carried out on each frame. If an error is detected an error signal is sent back to the transmitting end, and retransmission of the data is requested. If an error signal is sampled during transmission, the same data is retransmitted.

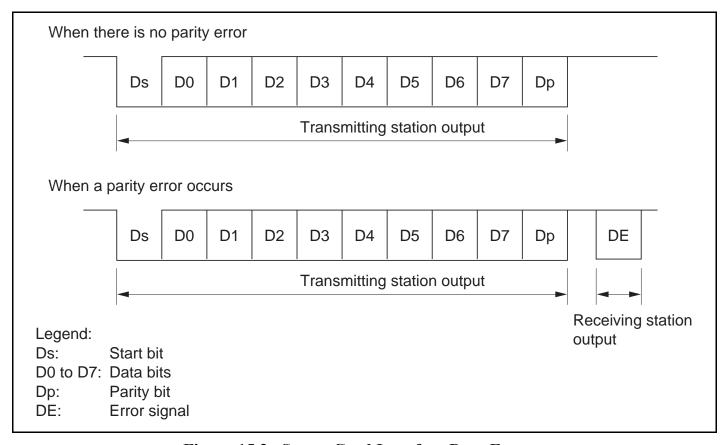


Figure 15.3 Smart Card Interface Data Format

The operation sequence is as follows.

- [1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pull-up resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the smart card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] The receiving station carries out a parity check.
 - If there is no parity error and the data is received normally, the receiving station waits for reception of the next data.
 - If a parity error occurs, however, the receiving station outputs an error signal (DE, low-level) to request retransmission of the data. After outputting the error signal for the prescribed length of time, the receiving station places the signal line in the high-impedance state again. The signal line is pulled high again by a pull-up resistor.
- [5] If the transmitting station does not receive an error signal, it proceeds to transmit the next data frame.
 - If it does receive an error signal, however, it returns to step [2] and retransmits the data in which the error occurred.

Block Transfer Mode: The operation sequence in block transfer mode is as follows.

- [1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pull-up resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the smart card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] The receiving station carries out a parity check, but does not output an error signal even if an error has occurred. Since subsequent receive operations cannot be carried out if an error occurs, the error flag must be cleared to 0 before the parity bit for the next frame is received.
- [5] The transmitting station proceeds to transmit the next data frame.

15.3.4 Register Settings

Table 15.3 shows a bit map of the registers used by the smart card interface.

Bits indicated as 0 or 1 must be set to the value shown. The setting of other bits is described below.

Table 15.3 Smart Card Interface Register Settings

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SMR	GM	BLK	1	O/Ē	BCP1	BCP0	CKS1	CKS0		
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0		
SCR	TIE	RIE	TE	RE	0	0	CKE1*	CKE0		
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0		
SSR	TDRE	RDRF	ORER	ERS	PER	TEND	0	0		
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0		
SCMR		_	_	_	SDIR	SINV		SMIF		

Notes: —: Unused bit.

SMR Settings: The GM bit is cleared to 0 in normal smart card interface mode, and set to 1 in GSM mode. The O/\overline{E} bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

Bits CKS1 and CKS0 select the clock source of the built-in baud rate generator, and bits BCP1 and BCP0 select the number of base clock cycles during transfer of one bit. For details, see section 15.3.5, Clock.

The BLK bit is cleared to 0 when using the normal smart card interface mode, and set to 1 when using block transfer mode.

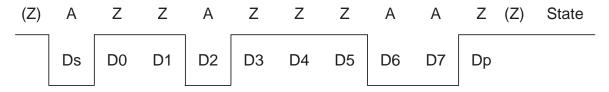
BRR Setting: BRR is used to set the bit rate. See section 15.3.5, Clock, for the method of calculating the value to be set.

SCR Settings: The function of the TIE, RIE, TE, and RE bits is the same as for the normal SCI. For details, see section 14, Serial Communication Interface (SCI).

Bits CKE1 and CKE0 specify the clock output. When the GM bit in SMR is cleared to 0, set these bits to B'00 if a clock is not to be output, or to B'01 if a clock is to be output. When the GM bit in SMR is set to 1, clock output is performed. The clock output can also be fixed high or low.

Rev.4.00 Sep. 07, 2007 Page 680 of 1210 REJ09B0245-0400

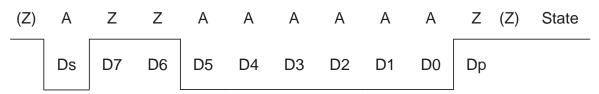
^{*} The CKE1 bit must be cleared to 0 when the GM bit in SMR is cleared to 0.


Smart Card Mode Register (SCMR) Settings: The SDIR bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SINV bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SMIF bit is set to 1 when the smart card interface is used.

Examples of register settings and the waveform of the start character are shown below for the two types of IC card (direct convention and inverse convention).


• Direct convention (SDIR = SINV = $O/\overline{E} = 0$)

With the direct convention type, the logic 1 level corresponds to state Z and the logic 0 level to state A, and transfer is performed in LSB-first order. The start character data above is H'3B.

The parity bit is 1 since even parity is stipulated for the smart card.

• Inverse convention (SDIR = SINV = $O/\overline{E} = 1$)

With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 level to state Z, and transfer is performed in MSB-first order. The start character data above is H'3F.

The parity bit is 0, corresponding to state Z, since even parity is stipulated for the smart card.

With the chip, inversion specified by the SINV bit applies only to the data bits, D7 to D0. For parity bit inversion, the O/\overline{E} bit in SMR should be set to odd parity mode (the same applies to both transmission and reception).

15.3.5 Clock

Only an internal clock generated by the built-in baud rate generator can be used as the transmit/receive clock for the smart card interface. The bit rate is set with BRR and the CKS1, CKS0, BCP1, and BCP0 bits in SMR. The formula for calculating the bit rate is as shown below. Table 15.5 shows some sample bit rates.

If clock output is selected by setting CKE0 to 1, the clock is output from the SCK pin. The clock frequency is determined by the bit rate and the setting of bits BCP1 and BCP0.

$$B = \frac{\phi}{S \times 2^{2n+1} \times (N+1)} \times 10^6$$

Where: $N = Value set in BRR (0 \le N \le 255)$

B = Bit rate (bits/s)

 ϕ = Operating frequency (MHz)

n = See table 15.4

S = Number of internal clock cycles in 1-bit period set by bits BCP1 and BCP0

Table 15.4 Correspondence between n and CKS1, CKS0

n	CKS1	CKS0	
0	0	0	
1		1	
2	1	0	
3		1	

Table 15.5 Examples of Bit Rate B (bits/s) for Various BRR Settings (When n = 0 and S = 372)

	φ (MHz)									
N	10.00	10.714	13.00	14.285	16.00	18.00	20.00	25.00		
0	13441	14400	17473	19200	21505	24194	26882	33602		
1	6720	7200	8737	9600	10753	12097	13441	16801		
2	4480	4800	5824	6400	7168	8065	8961	11201		

Note: Bit rates are rounded to the nearest whole number.

The method of calculating the value to be set in the bit rate register (BRR) from the operating frequency and bit rate, on the other hand, is shown below. N is an integer, $0 \le N \le 255$, and the smaller error is specified.

$$N = \frac{\phi}{S \times 2^{2n+1} \times B} \times 10^6 - 1$$

Table 15.6 Examples of BRR Settings for Bit Rate B (bits/s) (When n = 0 and S = 372)

	φ (MHZ)																	
	7	.1424	•	10.00	10	0.7136	•	13.00	14	4.2848	•	16.00	•	18.00	2	20.00	7	25.00
Bits/s	N	Error	N	Error	N	Error	N	Error	N	Error	N	Error	N	Error	N	Error	N	Error
9600	0	0.00	1	30	1	25	1	8.99	1	0.00	1	12.01	2	15.99	2	6.60	3	12.49

Table 15.7 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (When S = 372)

φ (MHz)	Maximum Bit Rate (bits/s)	N	n	
7.1424	9600	0	0	
10.00	13441	0	0	
10.7136	14400	0	0	
13.00	17473	0	0	
14.2848	19200	0	0	
16.00	21505	0	0	
18.00	24194	0	0	
20.00	26882	0	0	
25.00	33602	0	0	

The bit rate error is given by the following formula:

Error (%) =
$$(\frac{\phi}{S \times 2^{2n+1} \times B \times (N+1)} \times 10^6 - 1) \times 100$$

15.3.6 Data Transfer Operations

Initialization: Before transmitting or receiving data, initialize the SCI as described below. Initialization is also necessary when switching from transmit mode to receive mode, or vice versa.

- [1] Clear the TE and RE bits in SCR to 0.
- [2] Clear the error flags ERS, PER, and ORER in SSR to 0.
- [3] Set the GM, BLK, O/\overline{E} , BCP1, BCP0, CKS1, and CKS0 bits in SMR, and set the PE bit to 1.
- [4] Set the SMIF, SDIR, and SINV bits in SCMR.

 When the SMIF bit is set to 1, the TxD and RxD pins are both switched from ports to SCI pins, and are placed in the high-impedance state.
- [5] Set the value corresponding to the bit rate in BRR.
- [6] Set the CKE1 and CKE0 bits in SCR. Clear the TIE, RIE, TE, RE, MPIE, and TEIE bits to 0. If the CKE0 bit is set to 1, the clock is output from the SCK pin.
- [7] Wait at least one bit interval, then set the TIE, RIE, TE, and RE bits in SCR. Do not set the TE bit and RE bit at the same time, except for self-diagnosis.

Serial Data Transmission (Except Block Transfer Mode): As data transmission in smart card mode involves error signal sampling and retransmission processing, the processing procedure is different from that for the normal SCI. Figure 15.4 shows a flowchart for transmitting, and figure 15.5 shows the relation between a transmit operation and the internal registers.

- [1] Perform smart card interface mode initialization as described above in Initialization.
- [2] Check that the ERS error flag in SSR is cleared to 0.
- [3] Repeat steps [2] and [3] until it can be confirmed that the TEND flag in SSR is set to 1.
- [4] Write the transmit data to TDR, clear the TDRE flag to 0, and perform the transmit operation. The TEND flag is cleared to 0.
- [5] When transmitting data continuously, go back to step [2].
- [6] To end transmission, clear the TE bit to 0.

With the above processing, interrupt handling or data transfer by the DMAC or DTC is possible.

If transmission ends and the TEND flag is set to 1 while the TIE bit is set to 1 and interrupt requests are enabled, a transmit-data-empty interrupt (TXI) request will be generated. If an error occurs in transmission and the ERS flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a transmit/receive-error interrupt (ERI) request will be generated.

The timing for setting the TEND flag depends on the value of the GM bit in SMR. The TEND flag setting timing is shown in figure 15.6.

If the DMAC or DTC is activated by a TXI request, the number of bytes set in the DMAC or DTC can be transmitted automatically, including automatic retransmission.

For details, see Interrupt Operation (Except Block Transfer Mode) and Data Transfer Operation by DMAC or DTC below.

Note: For details of operation in block transfer mode, see section 14.3.2, Operation in Asynchronous Mode.

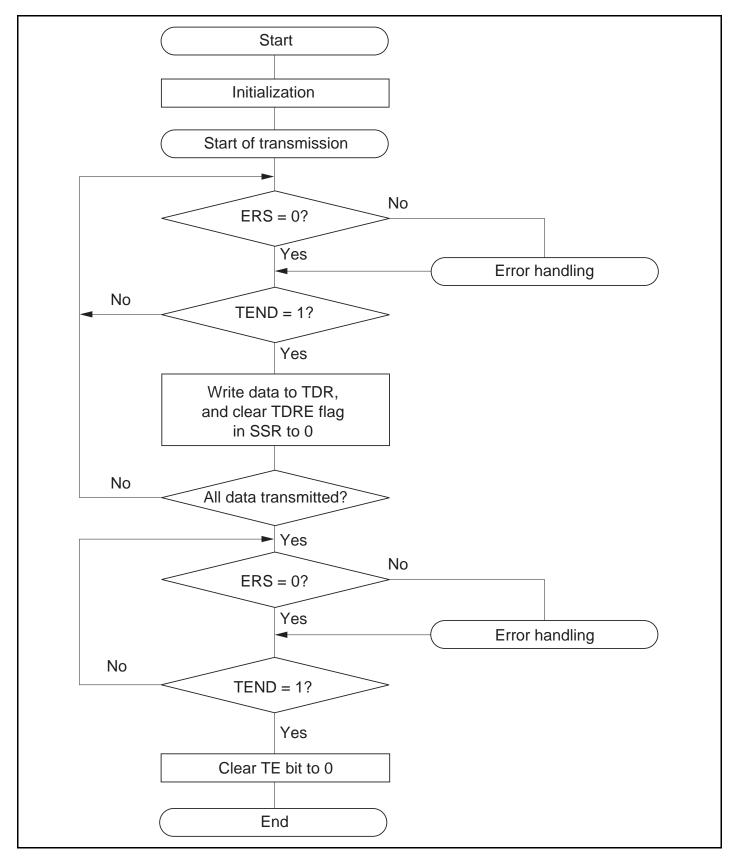


Figure 15.4 Sample Transmission Flowchart

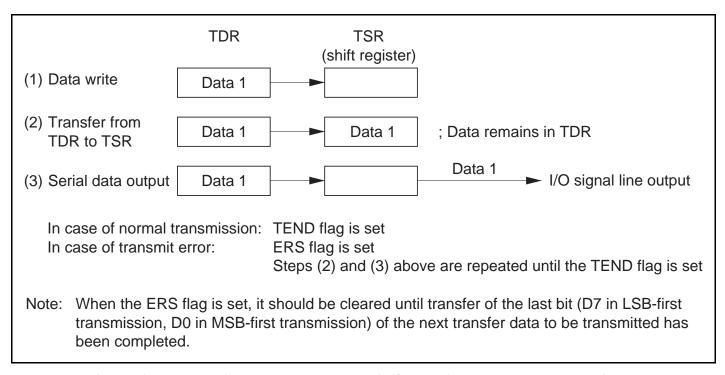


Figure 15.5 Relation between Transmit Operation and Internal Registers

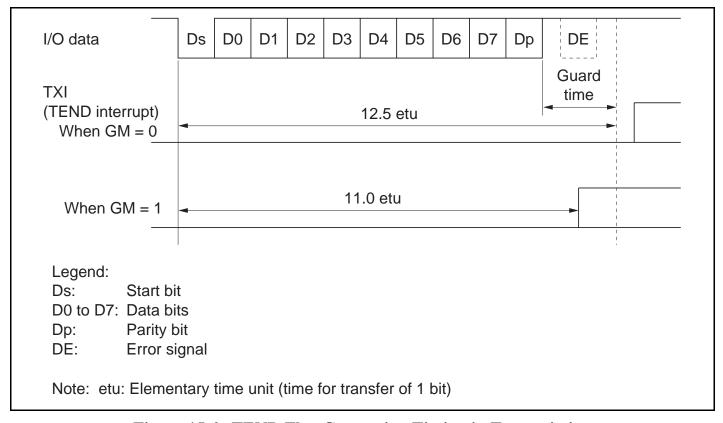


Figure 15.6 TEND Flag Generation Timing in Transmission

Serial Data Reception (Except Block Transfer Mode): Data reception in smart card mode uses the same processing procedure as for the normal SCI. Figure 15.7 shows an example of the transmission processing flow.

- [1] Perform smart card interface mode initialization as described above in Initialization.
- [2] Check that the ORER flag and PER flag in SSR are cleared to 0. If either is set, perform the appropriate receive error handling, then clear both the ORER and the PER flag to 0.
- [3] Repeat steps [2] and [3] until it can be confirmed that the RDRF flag is set to 1.
- [4] Read the receive data from RDR.
- [5] When receiving data continuously, clear the RDRF flag to 0 and go back to step [2].
- [6] To end reception, clear the RE bit to 0.

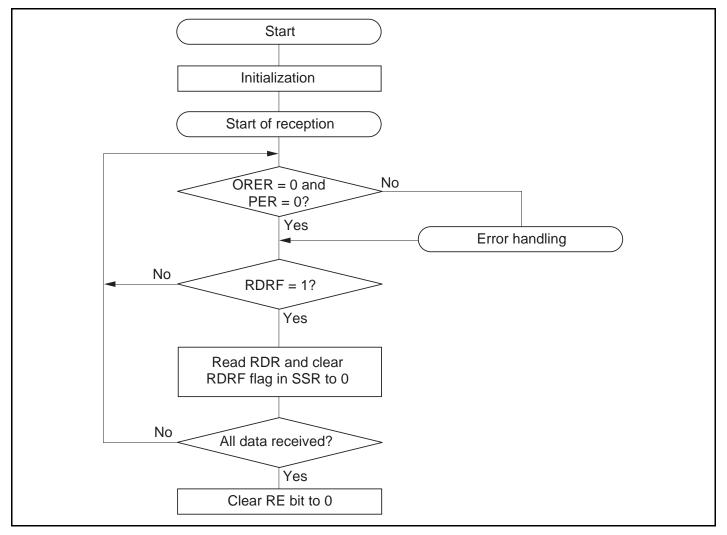


Figure 15.7 Sample Reception Flowchart

With the above processing, interrupt handling or data transfer by the DMAC or DTC is possible.

If reception ends and the RDRF flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a receive data full interrupt (RXI) request will be generated. If an error occurs in reception and either the ORER flag or the PER flag is set to 1, a transmit/receive-error interrupt (ERI) request will be generated.

If the DMAC or DTC is activated by an RXI request, the receive data in which the error occurred is skipped, and only the number of bytes of receive data set in the DMAC or DTC are transferred.

For details, see Interrupt Operation (Except Block Transfer Mode) and Data Transfer Operation by DMAC or DTC below.

If a parity error occurs during reception and the PER is set to 1, the received data is still transferred to RDR, and therefore this data can be read.

Note: For details of operation in block transfer mode, see section 14.3.2, Operation in Asynchronous Mode.

Mode Switching Operation: When switching from receive mode to transmit mode, first confirm that the receive operation has been completed, then start from initialization, clearing RE bit to 0 and setting TE bit to 1. The RDRF flag or the PER and ORER flags can be used to check that the receive operation has been completed.

When switching from transmit mode to receive mode, first confirm that the transmit operation has been completed, then start from initialization, clearing TE bit to 0 and setting RE bit to 1. The TEND flag can be used to check that the transmit operation has been completed.

Fixing Clock Output: When the GM bit in SMR is set to 1, the clock output can be fixed with bits CKE1 and CKE0 in SCR. At this time, the minimum clock pulse width can be made the specified width.

Figure 15.8 shows the timing for fixing the clock output. In this example, GM is set to 1, CKE1 is cleared to 0, and the CKE0 bit is controlled.

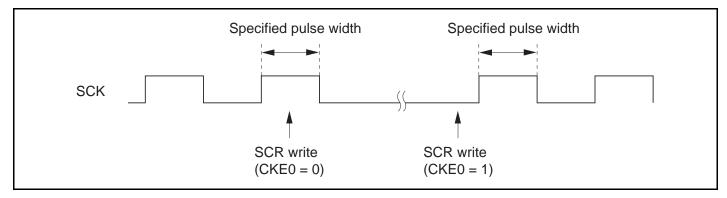


Figure 15.8 Timing for Fixing Clock Output

Interrupt Operation (Except Block Transfer Mode): There are three interrupt sources in smart card interface mode: transmit-data-empty interrupt (TXI) requests, transmit/receive-error interrupt (ERI) requests, and receive-data-full interrupt (RXI) requests. The transmit-end interrupt (TEI) request is not used in this mode.

When the TEND flag in SSR is set to 1, a TXI interrupt request is generated.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated.

When any of flags ORER, PER, and ERS in SSR is set to 1, an ERI interrupt request is generated. The relationship between the operating states and interrupt sources is shown in table 15.8.

Note: For details of operation in block transfer mode, see section 14.4, SCI Interrupts.

Table 15.8 Smart Card Mode Operating States and Interrupt Sources

Operating State		Flag Enable Bit		Interrupt Source	DTC Activation	DMAC Activation
Transmit Mode	Normal operation	TEND	TIE	TXI	Possible	Possible
	Error	ERS	RIE	ERI	Not possible	Not possible
Receive Mode	Normal operation	RDRF	RIE	RXI	Possible	Possible
	Error	PER, ORER	RIE	ERI	Not possible	Not possible

Data Transfer Operation by DMAC or DTC: In smart card mode, as with the normal SCI, transfer can be carried out using the DMAC or DTC. In a transmit operation, the TDRE flag is also set to 1 at the same time as the TEND flag in SSR, and a TXI interrupt is generated. If the TXI request is designated beforehand as a DMAC or DTC activation source, the DMAC or DTC will be activated by the TXI request, and transfer of the transmit data will be carried out. The TDRE and TEND flags are automatically cleared to 0 when data transfer is performed by the DMAC or DTC. In the event of an error, the SCI retransmits the same data automatically. The TEND flag remains cleared to 0 during this time, and the DMAC is not activated. Thus, the number of bytes specified by the SCI and DMAC are transmitted automatically even in retransmission following an error. However, the ERS flag is not cleared automatically when an error occurs, and so the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the event of an error, and the ERS flag will be cleared.

When performing transfer using the DMAC or DTC, it is essential to set and enable the DMAC or DTC before carrying out SCI setting. For details of the DMAC and DTC setting procedures, see section 7, DMA Controller, and section 8, Data Transfer Controller.

In a receive operation, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If the RXI request is designated beforehand as a DMAC or DTC activation source, the DMAC or DTC will be activated by the RXI request, and transfer of the receive data will be carried out. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DMAC or DTC. If an error occurs, an error flag is set but the RDRF flag is not. Consequently, the DMAC or DTC is not activated, but instead, an ERI interrupt request is sent to the CPU. Therefore, the error flag should be cleared.

Note: For details of operation in block transfer mode, see section 14.4, SCI Interrupts.

Rev.4.00 Sep. 07, 2007 Page 691 of 1210

15.3.7 Operation in GSM Mode

Switching the Mode: When switching between smart card interface mode and software standby mode, the following switching procedure should be followed in order to maintain the clock duty.

- When changing from smart card interface mode to software standby mode
- [1] Set the data register (DR) and data direction register (DDR) corresponding to the SCK pin to the value for the fixed output state in software standby mode.
- [2] Write 0 to the TE bit and RE bit in the serial control register (SCR) to halt the transmit/receive operation. At the same time, set the CKE1 bit to the value for the fixed output state in software standby mode.
- [3] Write 0 to the CKE0 bit in SCR to halt the clock.
- [4] Wait for one serial clock period.

 During this interval, clock output is fixed at the specified level, with the duty preserved.
- [5] Write H'00 to SMR and SCMR.
- [6] Make the transition to the software standby state.
- When returning to smart card interface mode from software standby mode
- [7] Exit the software standby state.
- [8] Set the CKE1 bit in SCR to the value for the fixed output state (current SCK pin state) when software standby mode is initiated.
- [9] Set smart card interface mode and output the clock. Signal generation is started with the normal duty.

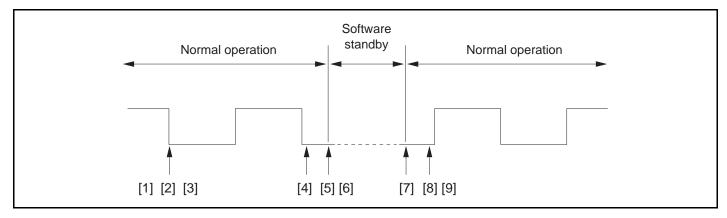


Figure 15.9 Clock Halt and Restart Procedure

Powering On: To secure the clock duty from power-on, the following switching procedure should be followed.

- [1] The initial state is port input and high impedance. Use a pull-up resistor or pull-down resistor to fix the potential.
- [2] Fix the SCK pin to the specified output level with the CKE1 bit in SCR.
- [3] Set SMR and SCMR, and switch to smart card mode operation.
- [4] Set the CKE0 bit in SCR to 1 to start clock output.

15.3.8 Operation in Block Transfer Mode

Operation in block transfer mode is the same as in SCI asynchronous mode, except for the following points. For details, see section 14.3.2, Operation in Asynchronous Mode.

Data Format: The data format is 8 bits with parity. There is no stop bit, but there is a guard time of 2 or more bits (1 or more bits in reception).

Also, except during transmission (with start bit, data bits, and parity bit), the transmission pins go to the high-impedance state, so the signal lines must be fixed high with a pull-up resistor.

Transmit/Receive Clock: Only an internal clock generated by the built-in baud rate generator can be used as the transmit/receive clock. The number of basic clock periods in a 1-bit transfer interval can be set to 32, 64, 372, or 256 with bits BCP1 and BCP0. For details, see section 15.3.5, Clock.

ERS (FER) Flag: As with the normal smart card interface, the ERS flag indicates the error signal status, but since error signal transmission and reception is not performed, this flag is always cleared to 0.

15.4 Usage Notes

The following points should be noted when using the SCI as a smart card interface.

Receive Data Sampling Timing and Receive Margin in Smart Card Interface Mode: In smart card interface mode, the SCI operates on a base clock with a frequency of 32, 64, 372, or 256 times the transfer rate (determined by bits BCP1 and BCP0).

In reception, the SCI samples the falling edge of the start bit using the base clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 16th, 32nd, 186th, or 128th pulse of the base clock. Use of a 372-times clock is illustrated in figure 15.10.

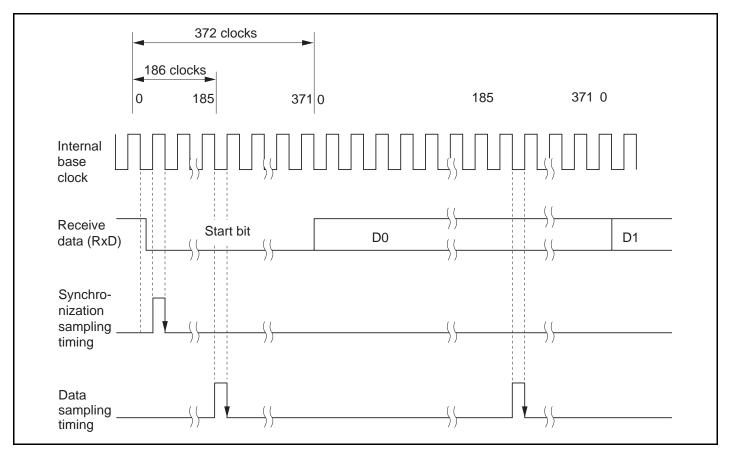


Figure 15.10 Receive Data Sampling Timing in Smart Card Mode (When Using 372-Times Clock)

Thus the receive margin in asynchronous mode is given by the following formula.

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

Where M: Receive margin (%)

N: Ratio of bit rate to clock (N = 32, 64, 372, 256)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 10)

F: Absolute value of clock frequency deviation

Assuming values of F = 0, D = 0.5, and N = 372 in the above formula, the receive margin formula is as follows.

When D = 0.5 and F = 0,

$$M = (0.5 - 1/2 \times 372) \times 100\%$$
$$= 49.866\%$$

Rev.4.00 Sep. 07, 2007 Page 695 of 1210

Retransfer Operations (Except Block Transfer Mode): Retransfer operations are performed by the SCI in receive mode and transmit mode as described below.

- Retransfer operation when SCI is in receive mode
 Figure 15.11 illustrates the retransfer operation when the SCI is in receive mode.
- [1] If an error is found when the received parity bit is checked, the PER bit in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The PER bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
- [2] The RDRF bit in SSR is not set for a frame in which an error has occurred.
- [3] If no error is found when the received parity bit is checked, the PER bit in SSR is not set.
- [4] If no error is found when the received parity bit is checked, the receive operation is judged to have been completed normally, and the RDRF flag in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an RXI interrupt request is generated.

 If DMAC or DTC data transfer by an RXI source is enabled, the contents of RDR can be read automatically. When the RDR data is read by the DMAC or DTC, the RDRF flag is automatically cleared to 0.
- [5] When a normal frame is received, the pin retains the high-impedance state at the timing for error signal transmission.

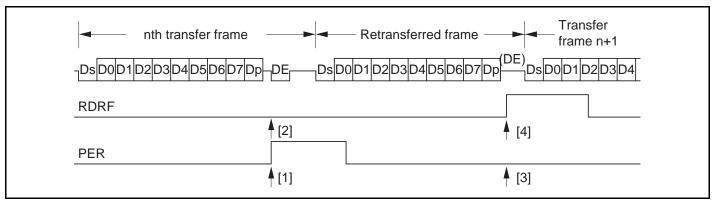


Figure 15.11 Retransfer Operation in SCI Receive Mode

- Retransfer operation when SCI is in transmit mode
 Figure 15.12 illustrates the retransfer operation when the SCI is in transmit mode.
- [6] If an error signal is sent back from the receiving end after transmission of one frame is completed, the ERS bit in SSR is set to 1. If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The ERS bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
- [7] The TEND bit in SSR is not set for a frame for which an error signal indicating an abnormality is received.
- [8] If an error signal is not sent back from the receiving end, the ERS bit in SSR is not set.
- [9] If an error signal is not sent back from the receiving end, transmission of one frame, including a retransfer, is judged to have been completed, and the TEND bit in SSR is set to 1. If the TIE bit in SCR is enabled at this time, a TXI interrupt request is generated.
 - If data transfer by the DMAC or DTC by means of the TXI source is enabled, the next data can be written to TDR automatically. When data is written to TDR by the DMAC or DTC, the TDRE bit is automatically cleared to 0.

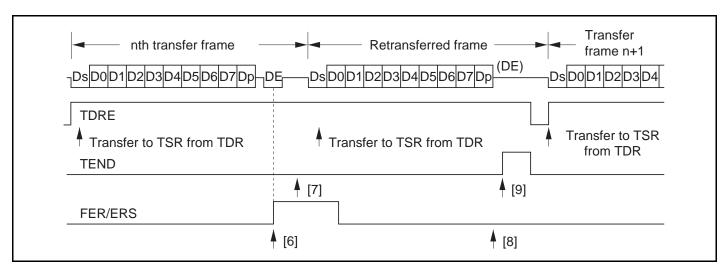


Figure 15.12 Retransfer Operation in SCI Transmit Mode

Section 16 A/D Converter (12 Analog Input Channel Version)


16.1 Overview

The chip incorporates a successive-approximations type 10-bit A/D converter that allows up to twelve analog input channels to be selected.

16.1.1 Features

A/D converter features are listed below.

- 10-bit resolution
- Twelve input channels
- Settable analog conversion voltage range
 - Conversion of analog voltages with the reference voltage pin (V_{ref}) as the analog reference voltage
- High-speed conversion
 - Minimum conversion time: 6.7 μs per channel (at 20-MHz operation)
- Choice of single mode or scan mode
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three kinds of conversion start
 - Choice of software or timer conversion start trigger (TPU or 8-bit timer), or ADTRG pin
- A/D conversion end interrupt generation
 - A/D conversion end interrupt (ADI) request can be generated at the end of A/D conversion
 - The DMA controller (DMAC) or data transfer controller (DTC) can be activated for data transfer by an interrupt
- Module stop mode can be set
 - As the initial setting, A/D converter operation is halted. Register access is enabled by exiting module stop mode.

Rev.4.00 Sep. 07, 2007 Page 699 of 1210

16.1.2 Block Diagram

Figure 16.1 shows a block diagram of the A/D converter.

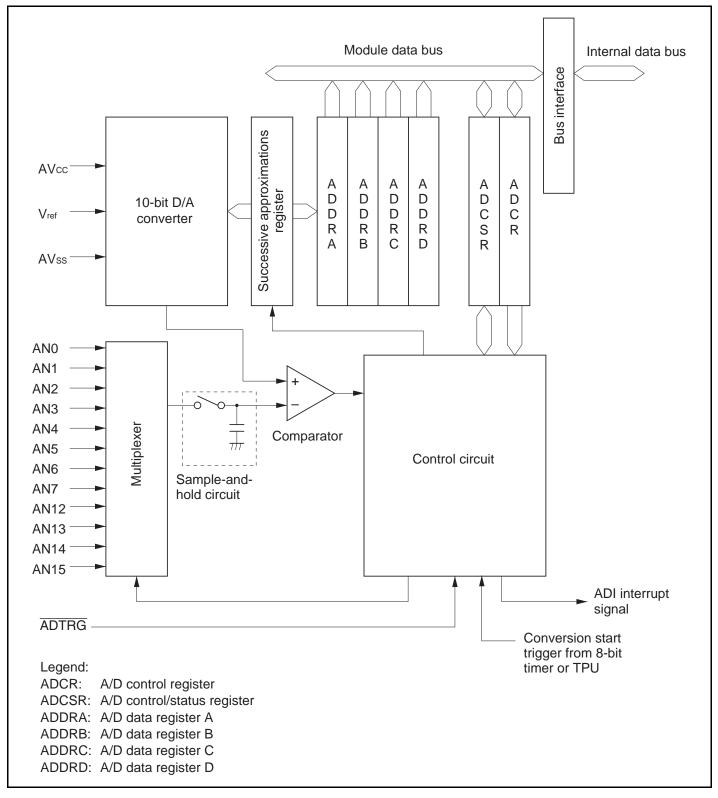


Figure 16.1 Block Diagram of A/D Converter

16.1.3 Pin Configuration

Table 16.1 summarizes the input pins used by the A/D converter.

The AV_{CC} and AV_{SS} pins are the power supply pins for the analog block in the A/D converter. The V_{ref} pin is the A/D conversion reference voltage pin.

The twelve analog input pins are divided into two channel sets and two groups: channel set 0 (AN0 to AN7), channel set 1 (AN12 to AN15), group 0 (AN0 to AN3), and group 1 (AN4 to AN7, AN12 to AN15).

Table 16.1 A/D Converter Pins

Pin Name	Symbol	I/O	Function
Analog power supply pin	AV _{CC}	Input	Analog block power supply
Analog ground pin	AV _{SS}	Input	Analog block ground and A/D conversion reference voltage
Reference voltage pin	V_{ref}	Input	A/D conversion reference voltage
Analog input pin 0	AN0	Input	Channel set 0 (CH3 = 1), group 0 analog inputs
Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	Channel set 0 (CH3 = 1), group 1 analog inputs
Analog input pin 5	AN5	Input	
Analog input pin 6	AN6	Input	
Analog input pin 7	AN7	Input	
Analog input pin 12	AN12	Input	Channel set 1 (CH3 = 0), group 1 analog inputs
Analog input pin 13	AN13	Input	
Analog input pin 14	AN14	Input	
Analog input pin 15	AN15	Input	
A/D external trigger input pin	ADTRG	Input	External trigger input for starting A/D conversion

16.1.4 **Register Configuration**

Table 16.2 summarizes the registers of the A/D converter.

Table 16.2 A/D Converter Registers

Name	Abbreviation	R/W	Initial Value	Address*1
A/D data register AH	ADDRAH	R	H'00	H'FF90
A/D data register AL	ADDRAL	R	H'00	H'FF91
A/D data register BH	ADDRBH	R	H'00	H'FF92
A/D data register BL	ADDRBL	R	H'00	H'FF93
A/D data register CH	ADDRCH	R	H'00	H'FF94
A/D data register CL	ADDRCL	R	H'00	H'FF95
A/D data register DH	ADDRDH	R	H'00	H'FF96
A/D data register DL	ADDRDL	R	H'00	H'FF97
A/D control/status register	ADCSR	R/(W)*2	H'00	H'FF98
A/D control register	ADCR	R/W	H'3F	H'FF99
Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Lower 16 bits of the address.

2. Bit 7 can only be written with 0 for flag clearing.

16.2 Register Descriptions

16.2.1 A/D Data Registers A to D (ADDRA to ADDRD)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	_	_	_	_	_	_	ı
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W	:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the results of A/D conversion.

The 10-bit data resulting from A/D conversion is transferred to the ADDR register for the selected channel and stored there. The upper 8 bits of the converted data are transferred to the upper byte (bits 15 to 8) of ADDR, and the lower 2 bits are transferred to the lower byte (bits 7 and 6) and stored. Bits 5 to 0 are always read as 0.

The correspondence between the analog input channels and ADDR registers is shown in table 16.3.

The ADDR registers can always be read by the CPU. The upper byte can be read directly, but for the lower byte, data transfer is performed via a temporary register (TEMP). For details, see section 16.3, Interface to Bus Master.

The ADDR registers are initialized to H'0000 by a reset, and in standby mode or module stop mode.

Table 16.3 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel Channel Set 0 (CH3 = 1) Channel Set 1 (CH3 = 0) Group 0 Group 1 Group 0 Group 1 (CH2 = 0)(CH2 = 1)(CH2 = 0)(CH2 = 1)A/D Data Register AN₀ AN4 **ADDRA** Setting prohibited AN12 AN1 AN5 **AN13 ADDRB** Setting prohibited AN₂ AN6 Setting prohibited AN14 **ADDRC** AN3 AN7 AN15 **ADDRD** Setting prohibited

16.2.2 A/D Control/Status Register (ADCSR)

Bit	:	7	6	5	4	3	2	1	0
		ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bit 7, to clear this flag.

ADCSR is an 8-bit readable/writable register that controls A/D conversion operations and shows the status of the operation.

ADCSR is initialized to H'00 by a reset, and in standby mode or module stop mode.

Bit 7—A/D End Flag (ADF): Status flag that indicates the end of A/D conversion.

Bit 7 ADF	Description
0	[Clearing conditions] (Initial value
	 When 0 is written to the ADF flag after reading ADF = 1
	 When the DMAC or DTC is activated by an ADI interrupt and ADDR is read
1	[Setting conditions]
	Single mode: When A/D conversion ends
	Scan mode: When A/D conversion ends on all specified channels

Bit 6—A/D Interrupt Enable (ADIE): Selects enabling or disabling of interrupt (ADI) requests at the end of A/D conversion.

Bit 6		
ADIE	Description	
0	A/D conversion end interrupt (ADI) request disabled	(Initial value)
1	A/D conversion end interrupt (ADI) request enabled	

Bit 5—A/D Start (ADST): Selects starting or stopping of A/D conversion. Holds a value of 1 during A/D conversion.

The ADST bit can be set to 1 by software, a timer conversion start trigger, or the A/D external trigger input pin (ADTRG).

Bit 5 ADST	D	escription		
0	•	A/D conversion	on stopped	(Initial value)
1	•	Single mode:	A/D conversion is started. Cleared to 0 autom conversion on the specified channel ends	atically when
	•	Scan mode:	A/D conversion is started. Conversion continuous selected channels until ADST is cleared to 0 to a transition to standby mode or module stop in	by software, a reset, or

Bit 4—Scan Mode (SCAN): Selects single mode or scan mode as the A/D conversion operating mode. See section 16.4, Operation, for details of single mode and scan mode operation. Only set the SCAN bit while conversion is stopped (ADST = 0).

Bit 4 SCAN	Description	
0	Single mode	(Initial value)
1	Scan mode	

Bit 3—Clock Select (CKS): Used together with the CKS1 bit in ADCR to set the A/D conversion time. Only change the conversion time while conversion is stopped (ADST = 0).

ADCR B	it 3 Bit 3		
CKS1	CKS	Description	
0	0	Conversion time = 530 states (max.)	
	1	Conversion time = 68 states (max.)	
1	0	Conversion time = 266 states (max.)	(Initial value)
	1	Conversion time = 134 states (max.)	

Bits 2 to 0—Channel Select 2 to 0 (CH2 to CH0): These bits are used together with the CH3 bit in ADCR and SCAN bit to select the analog input channels.

Only set the input channel(s) while conversion is stopped (ADST = 0).

	Chan	nel Selecti	ion	Description			
СНЗ	CH2	CH1	CH0	Single Mode (SCAN = 0)	Scan Mode (SCAN = 1)		
0	0	0	0	Setting prohibited	Setting prohibited		
			1	<u> </u>			
		1	0	<u> </u>			
			1	<u> </u>			
	1	0	0	AN12	AN12		
			1	AN13	AN12, AN13		
		1	0	AN14	AN12 to AN14		
			1	AN15	AN12 to AN15		
1	0	0	0	AN0 (Initial value)	AN0		
			1	AN1	AN0, AN1		
		1	0	AN2	AN0 to AN2		
			1	AN3	AN0 to AN3		
	1	0	0	AN4	AN4		
			1	AN5	AN4, AN5		
		1	0	AN6	AN4 to AN6		
			1	AN7	AN4 to AN7		

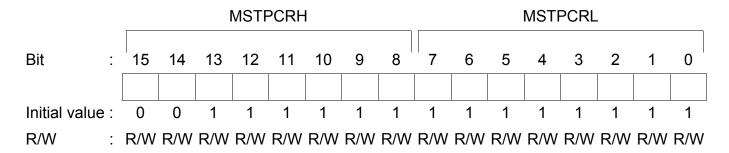
16.2.3 A/D Control Register (ADCR)

Bit	:	7	6	5	4	3	2	1	0	
		TRGS1	TRGS0	_	_	CKS1	CH3	_	_	
Initial va	lue :	0	0	1	1	1	1	1	1	_
R/W	:	R/W	R/W			R/W	R/W			

ADCR is an 8-bit readable/writable register that enables or disables external triggering of A/D conversion operations.

ADCR is initialized to H'3F by a reset, and in standby mode or module stop mode.

Bits 7 and 6—Timer Trigger Select 1 and 0 (TRGS1, TRGS0): These bits select enabling or disabling of the start of A/D conversion by a trigger signal. Only set bits TRGS1 and TRGS0 while conversion is stopped (ADST = 0).


Bit 7 TRGS1	Bit 6 TRGS0	Description	
0	0	A/D conversion start by external trigger is disabled (Initial v	alue)
	1	A/D conversion start by external trigger (TPU) is enabled	
1	0	A/D conversion start by external trigger (8-bit timer) is enabled	
	1	A/D conversion start by external trigger pin (ADTRG) is enabled	

Bits 5, 4, 1, and 0—Reserved: These bits cannot be modified and are always read as 1.

Bit 3—Clock Select 1 (CKS1): Used together with the CKS bit in ADCSR to set the A/D conversion time. See the description of the CKS bit for details.

Bit 2—Channel Select 3 (CH3): Used together with bits CH2, CH1, and CH0 in ADCSR to select the analog input channel(s). See the description of bits CH2, CH1, and CH0 for details.

16.2.4 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP9 bit in MSTPCR is set to 1, A/D converter operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 9—Module Stop (MSTP9): Specifies the A/D converter module stop mode.

Bit 9 MSTP9	Description	
0	A/D converter module stop mode cleared	
1	A/D converter module stop mode set	(Initial value)

16.3 Interface to Bus Master

ADDRA to ADDRD are 16-bit registers, and the data bus to the bus master is 8 bits wide. Therefore, in accesses by the bus master, the upper byte is accessed directly, but the lower byte is accessed via a temporary register (TEMP).

A data read from ADDR is performed as follows. When the upper byte is read, the upper byte value is transferred to the CPU and the lower byte value is transferred to TEMP. Next, when the lower byte is read, the TEMP contents are transferred to the CPU.

When reading ADDR, always read the upper byte before the lower byte. It is possible to read only the upper byte, but if only the lower byte is read, incorrect data may be obtained.

Figure 16.2 shows the data flow for ADDR access.

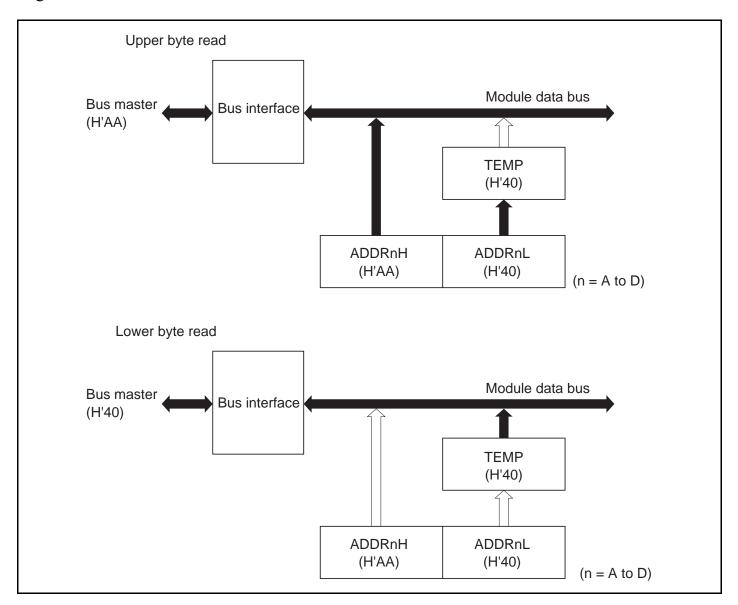


Figure 16.2 ADDR Access Operation (Reading H'AA40)

16.4 Operation

The A/D converter operates by successive approximations with 10-bit resolution. It has two operating modes: single mode and scan mode.

16.4.1 Single Mode (SCAN = 0)

Single mode is selected when A/D conversion is to be performed on a single channel only. A/D conversion is started when the ADST bit is set to 1 by software or by external trigger input. The ADST bit remains set to 1 during A/D conversion, and is automatically cleared to 0 when conversion ends.

On completion of conversion, the ADF flag is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. The ADF flag is cleared by writing 0 to it after reading ADCSR.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described next. Figure 16.3 shows a timing diagram for this example.

- [1] Single mode is selected (SCAN = 0), input channel AN1 is selected (CH3 = 1, CH2 = 0, CH1 = 0, CH0 = 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST = 1).
- [2] When A/D conversion is completed, the result is transferred to ADDRB. At the same time the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes idle.
- [3] Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- [4] The A/D interrupt handling routine starts.
- [5] The routine reads ADCSR, then writes 0 to the ADF flag.
- [6] The routine reads and processes the conversion result (ADDRB).
- [7] Execution of the A/D interrupt handling routine ends. After that, if the ADST bit is set to 1, A/D conversion starts again and steps [2] to [7] are repeated.

Rev.4.00 Sep. 07, 2007 Page 709 of 1210

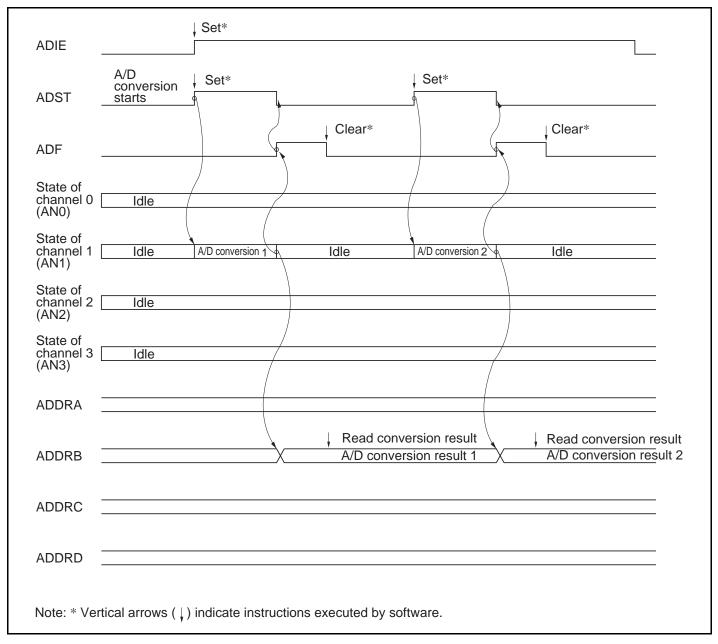


Figure 16.3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

16.4.2 Scan Mode (SCAN = 1)

Scan mode is useful for monitoring analog inputs in a group of one or more channels. When the ADST bit is set to 1 by software, timer, or external trigger input, A/D conversion starts on the first channel in the group (AN0). When two or more channels are selected, after conversion of the first channel ends, conversion of the second channel (AN1) starts immediately. A/D conversion continues cyclically on the selected channels until the ADST bit is cleared to 0. The conversion results are transferred for storage into the ADDR registers corresponding to the channels.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when three channels (AN0 to AN2) are selected in scan mode are described next. Figure 16.4 shows a timing diagram for this example.

- [1] Scan mode is selected (SCAN = 1), channel set 0 is selected (CH3 = 0), scan group 0 is selected (CH2 = 0), analog input channels AN0 to AN2 are selected (CH1 = 1, CH0 = 0), and A/D conversion is started (ADST = 1)
- [2] When A/D conversion of the first channel (AN0) is completed, the result is transferred to ADDRA. Next, conversion of the second channel (AN1) starts automatically.
- [3] Conversion proceeds in the same way through the third channel (AN2).
- [4] When conversion of all the selected channels (AN0 to AN2) is completed, the ADF flag is set to 1 and conversion of the first channel (AN0) starts again. If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conversion ends.
- [5] Steps [2] to [4] are repeated as long as the ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops. After that, if the ADST bit is set to 1, A/D conversion starts again from the first channel (AN0).

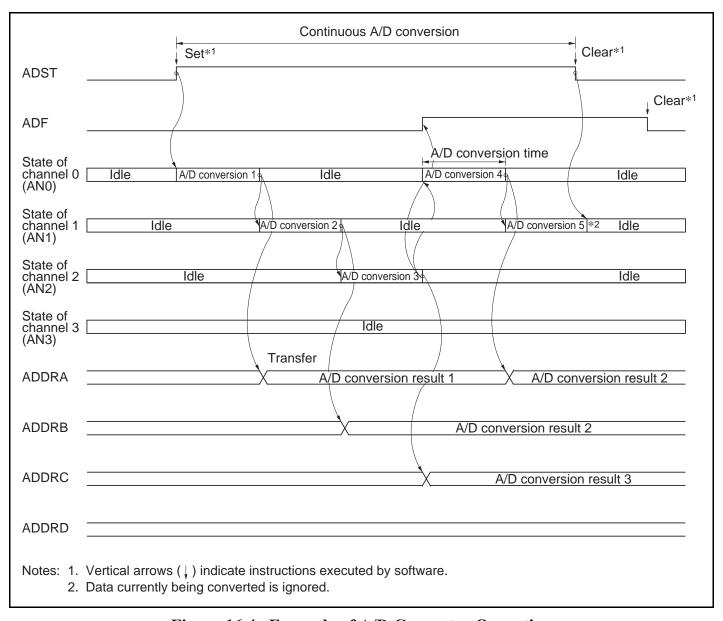


Figure 16.4 Example of A/D Converter Operation (Scan Mode, Channels AN0 to AN2 Selected)

16.4.3 Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog input at a time t_D after the ADST bit is set to 1, then starts conversion. Figure 16.5 shows the A/D conversion timing. Table 16.4 indicates the A/D conversion time.

As indicated in figure 16.5, the A/D conversion time includes t_D and the input sampling time. The length of t_D varies depending on the timing of the write access to ADCSR. The total conversion time therefore varies within the ranges indicated in table 16.4.

In scan mode, the values given in table 16.4 apply to the first conversion time. In the second and subsequent conversions the conversion time is as shown in table 16.5.

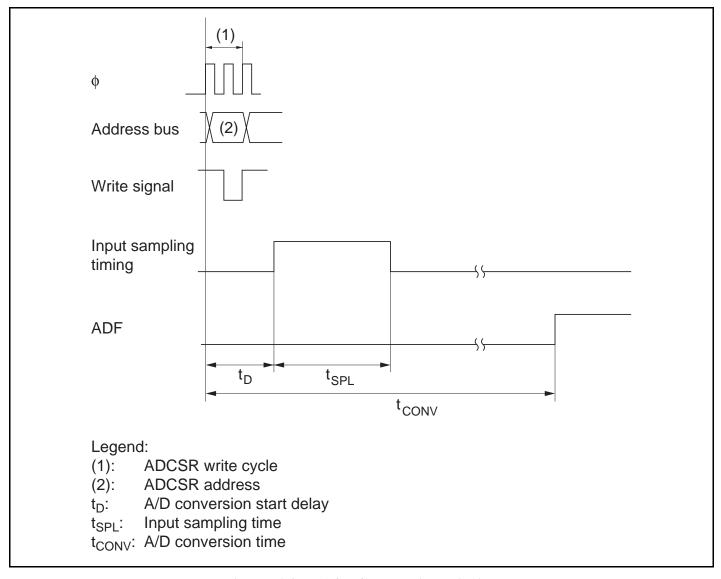


Figure 16.5 A/D Conversion Timing

Table 16.4 A/D Conversion Time (Single Mode)

			CKS1 = 0			CKS1 = 1							
			CKS =	0	(CKS =	: 1		CKS =	0	C	CKS =	1
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
A/D conversion start delay	t _D	18	_	33	4	_	5	10	_	17	6	_	9
Input sampling time	t _{SPL}	_	127	_		15	_	_	63	_		31	_
A/D conversion time	t _{CONV}	515	_	530	67	_	68	259	_	266	131	_	134

Note: Values in the table are the number of states.

Table 16.5 A/D Conversion Time (Scan Mode)

CKS1	CKS	Conversion Time (States)
0	0	512 (Fixed)
	1	64 (Fixed)
1	0	256 (Fixed)
	1	128 (Fixed)

16.4.4 External Trigger Input Timing

A/D conversion can be externally triggered. When the TRGS1 and TRGS0 bits are set to B'11 in ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTRG pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single and scan modes, are the same as when the ADST bit has been set to 1 by software. Figure 16.6 shows the timing.

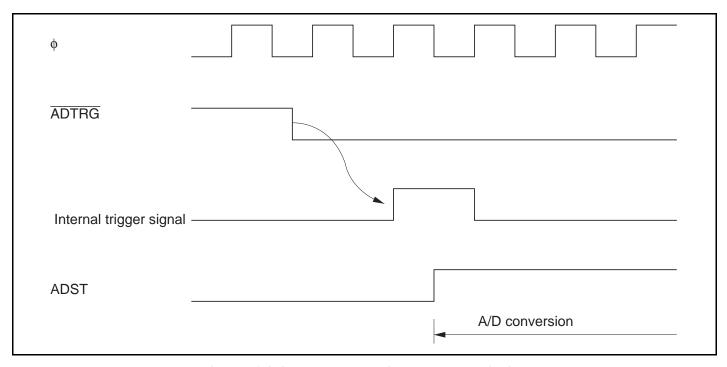


Figure 16.6 External Trigger Input Timing

16.5 Interrupts

The A/D converter generates an A/D conversion end interrupt (ADI) at the end of A/D conversion. ADI interrupt requests can be enabled or disabled by means of the ADIE bit in ADCSR.

The DTC or DMAC can be activated by an ADI interrupt. Having the converted data read by the DTC or DMAC in response to an ADI interrupt enables continuous conversion to be achieved without imposing a load on software.

The A/D converter interrupt source is shown in table 16.6.

Table 16.6 A/D Converter Interrupt Source

Interrupt Source	Description	DTC Activation	DMAC Activation
ADI	Interrupt due to end of conversion	Possible	Possible

16.6 Usage Notes

The following points should be noted when using the A/D converter.

Setting Range of Analog Power Supply and Other Pins

- 1. Analog input voltage range
 - The voltage applied to analog input pins ANn during A/D conversion should be in the range $AV_{SS} \le ANn \le V_{ref}$.
- 2. Relation between AV_{CC} , AV_{SS} and V_{CC} , V_{SS} and V_{CC} , V_{SS} , set $AV_{SS} = V_{SS}$. If the A/D converter is not used, the AV_{CC} and AV_{SS} pins must not be left open.
- 3. V_{ref} input range

The analog reference voltage input at the V_{ref} pin should be set in the range $V_{ref} \le AV_{CC}$. The V_{ref} pin should be set as $V_{ref} = V_{CC}$ when the A/D converter is not used. Do not leave the V_{ref} pin open.

If conditions 1, 2, and 3 above are not met, the reliability of the device may be adversely affected.

Notes on Board Design: In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values.

Also, digital circuitry must be isolated from the analog input signals (AN0 to AN7 and AN12 to AN15), analog reference power supply (V_{ref}) , and analog power supply (AV_{CC}) by the analog ground (AV_{SS}) . Also, the analog ground (AV_{SS}) should be connected at one point to a stable digital ground (V_{SS}) on the board.

Notes on Noise Countermeasures: A protection circuit connected to prevent damage due to an abnormal voltage such as an excessive surge at the analog input pins (AN0 to AN7 and AN12 to AN15) and analog reference power supply (V_{ref}) should be connected between AV_{CC} and AV_{SS} as shown in figure 16.7.

Also, the bypass capacitors connected to AV_{CC} and V_{ref} and the filter capacitor connected to AN0 to AN7 must be connected to AV_{SS} .

If a filter capacitor is connected as shown in figure 16.7, the input currents at the analog input pins (AN0 to AN7 and AN12 to AN15) are averaged, and so an error may arise. Also, when A/D

conversion is performed frequently, as in scan mode, if the current charged and discharged by the capacitance of the sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance (R_{in}), an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding the circuit constants.

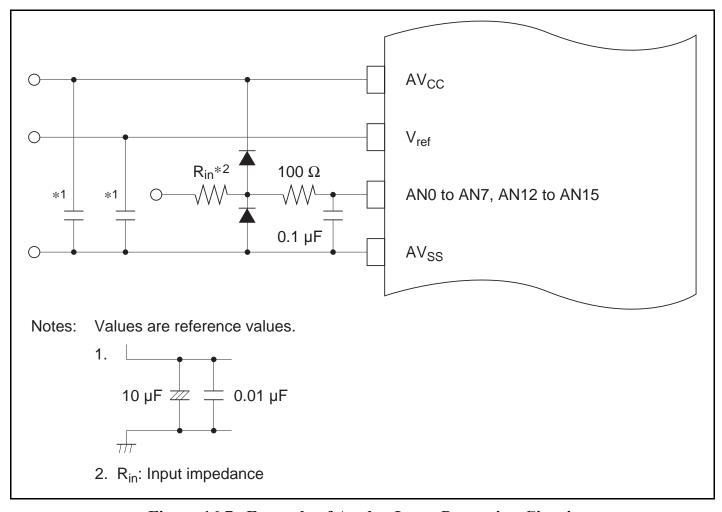


Figure 16.7 Example of Analog Input Protection Circuit

A/D Conversion Precision Definitions: The chip's A/D conversion precision definitions are given below.

Resolution

The number of A/D converter digital output codes

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value B'0000000000 to B'0000000001. (See figure 16.9.)

Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from B'11111111110 to B'11111111111. (See figure 16.9.)

Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB. (See figure 16.8.)

Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between the zero voltage and the full-scale voltage. Does not include the offset error, full-scale error, or quantization error.

Absolute precision

The deviation between the digital value and the analog input value. Includes the offset error, full-scale error, quantization error, and nonlinearity error.

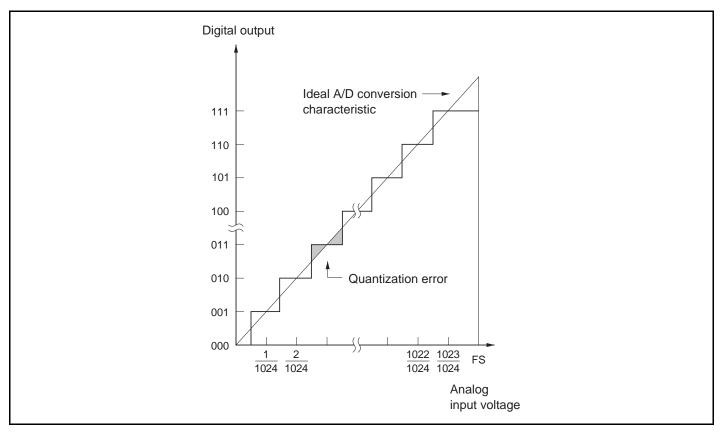


Figure 16.8 A/D Conversion Precision Definitions (1)

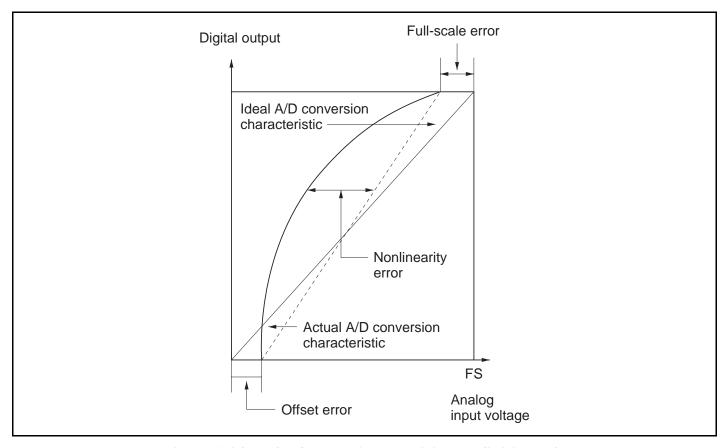


Figure 16.9 A/D Conversion Precision Definitions (2)

Rev.4.00 Sep. 07, 2007 Page 719 of 1210

Permissible Signal Source Impedance: The chip's analog input is designed so that conversion precision is guaranteed for an input signal for which the signal source impedance is $5 \text{ k}\Omega$ or less. This specification is provided to enable the A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds $5 \text{ k}\Omega$, charging may be insufficient and it may not be possible to guarantee the A/D conversion precision.

If a large capacitance is provided externally, the input load will essentially comprise only the internal input resistance of $10 \text{ k}\Omega$, and the signal source impedance is ignored. However, since a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., 5 mV/\mu s or greater).

When converting a high-speed analog signal, a low-impedance buffer should be inserted.

Influences on Absolute Precision: Adding capacitance results in coupling with GND, and therefore noise in GND may adversely affect absolute precision. Be sure to make the connection to an electrically stable GND such as AV_{SS} .

Care is also required to insure that filter circuits do not communicate with digital signals on the mounting board, so acting as antennas.

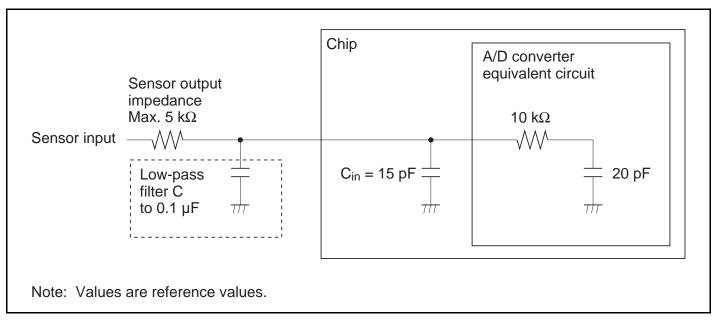


Figure 16.10 Example of Analog Input Circuit

Section 17 D/A Converter

17.1 Overview

The chip includes an 8-bit resolution D/A converter with maximum four analog signal output channels.

17.1.1 Features

D/A converter features are listed below.

- 8-bit resolution
- Four output channels
- Maximum conversion time of 10 µs (with 20 pF-load)
- Output voltage of 0 V to V_{ref}
- D/A output hold function in software standby mode
- Module stop mode can be set
 - As the initial setting, D/A converter operation is halted. Register access is enabled by exiting module stop mode.

17.1.2 Block Diagram

Figure 17.1 shows a block diagram of the D/A converter.

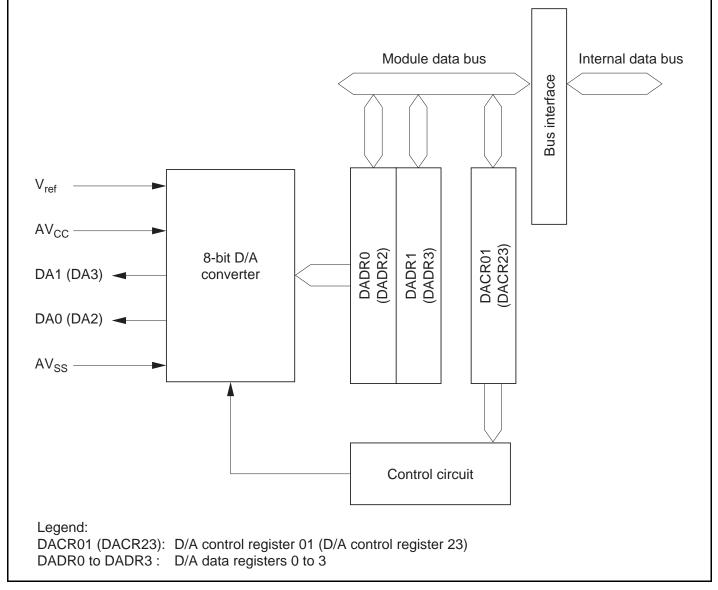


Figure 17.1 Block Diagram of D/A Converter

17.1.3 Pin Configuration

Table 17.1 summarizes the input and output pins of the D/A converter.

Table 17.1 Pin Configuration

Pin Name	Symbol	I/O	Function
Analog power pin	AV _{CC}	Input	Analog power source
Analog ground pin	AV _{SS}	Input	Analog ground and reference voltage
Analog output pin 0	DA0	Output	Channel 0 analog output
Analog output pin 1	DA1	Output	Channel 1 analog output
Analog output pin 2	DA2	Output	Channel 2 analog output
Analog output pin 3	DA3	Output	Channel 3 analog output
Reference voltage pin	V_{ref}	Input	Analog reference voltage

17.1.4 Register Configuration

Table 17.2 summarizes the registers of the D/A converter.

Table 17.2 D/A Converter Registers

Channels	Name	Abbreviation	R/W	Initial Value	Address*
0, 1	D/A data register 0	DADR0	R/W	H'00	H'FFA4
	D/A data register 1	DADR1	R/W	H'00	H'FFA5
	D/A control register 01	DACR01	R/W	H'1F	H'FFA6
2, 3	D/A data register 2	DADR2	R/W	H'00	H'FFA8
	D/A data register 3	DADR3	R/W	H'00	H'FFA9
	D/A control register 23	DACR12	R/W	H'1F	H'FFAA
Common	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Note: * Lower 16 bits of the address.

17.2 Register Descriptions

17.2.1 D/A Data Registers 0 to 3 (DADR0 to DADR3)

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

DADR0 to DADR3 are 8-bit readable/writable registers that store data for conversion.

Whenever output is enabled, the values in DADR0 to DADR3 are converted and output from the analog output pins.

DADR0 to DADR3 are each initialized to H'00 by a reset and in hardware standby mode.

17.2.2 D/A Control Registers 01 and 23 (DACR01, DACR23)

Bit	:	7	6	5	4	3	2	1	0
		DAOE1	DAOE0	DAE	_	_	_	_	
Initial valu	ue :	0	0	0	1	1	1	1	1
R/W	:	R/W	R/W	R/W	_	_	_	_	_

DACR01 and DACR23 are 8-bit readable/writable registers that control the operation of the D/A converter.

DACR01 and DACR23 are each initialized to H'1F by a reset and in hardware standby mode.

Bit 7—D/A Output Enable 1 (DAOE1): Controls D/A conversion and analog output.

Bit 7 DAOE1	Description	
0	Analog output DA1 (DA3) is disabled	(Initial value)
1	Channel 1 (channel 3) D/A conversion is enabled; analog output DA1 (I	DA3) is enabled

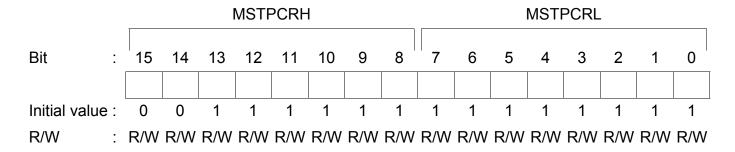
Bit 6—D/A Output Enable 0 (DAOE0): Controls D/A conversion and analog output.

Bit 6		
DAOE0	Description	
0	Analog output DA0 (DA2) is disabled	(Initial value)
1	Channel 0 (channel 2) D/A conversion is enabled; analog	output DA0 (DA2) is enabled

Bit 5—D/A Enable (DAE): Used together with the DAOE0 and DAOE1 bits to control D/A conversion. When the DAE bit is cleared to 0, channel 0 and 1 D/A conversions are controlled independently. When the DAE bit is set to 1, channel 0 and 1 D/A conversions are controlled together.

Output of conversion results is always controlled independently by the DAOE0 and DAOE1 bits.

Bit 6 DAOE0	Bit 5 DAE	Description
0	*	Channel 0 and 1 (channel 2 and 3) D/A conversions disabled
1	0	Channel 0 (channel 2) D/A conversion enabled Channel 1 (channel 3) D/A conversion disabled
	1	Channel 0 and 1 (channel 2 and 3) D/A conversions enabled
1 0		Channel 0 (channel 2) D/A conversion disabled Channel 1 (channel 3) D/A conversion enabled
	1	Channel 0 and 1 (channel 2 and 3) D/A conversions enabled
1	*	Channel 0 and 1 (channel 2 and 3) D/A conversions enabled
	DAOE0 0 1	DAOE0 DAE 0 * 1 0


*: Don't care

If the chip enters software standby mode when D/A conversion is enabled, the D/A output is held and the analog power current is the same as during D/A conversion. When it is necessary to reduce the analog power current in software standby mode, clear both the DAOE0 and DAOE1 bits to 0 to disable D/A output.

Bits 4 to 0—Reserved: These bits cannot be modified and are always read as 1.

17.2.3 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP10 bit or MSTP4 bit in MSTPCR is set to 1, D/A converter operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 10—Module Stop (MSTP10): Specifies the D/A converter channel 0 and 1 module stop mode.

Bit 10 MSTP10	Description	
0	D/A converter (channel 0 and 1) module stop mode cleared	
1	D/A converter (channel 0 and 1) module stop mode set	(Initial value)

Bit 4—Module Stop (MSTP4): Specifies the D/A converter channel 2 and 3 module stop mode.

Bit 4		
MSTP4	Description	
0	D/A converter (channel 2 and 3) module stop mode cleared	
1	D/A converter (channel 2 and 3) module stop mode set	(Initial value)

17.3 Operation

The D/A converter includes D/A conversion circuits for two channels, each of which can operate independently.

D/A conversion is performed continuously while enabled by DACR. If either DADR0 or DADR1 is written to, the new data is immediately converted. The conversion result is output by setting the corresponding DAOE0 or DAOE1 bit to 1.

The operation example described in this section concerns D/A conversion on channel 0. Figure 17.2 shows the timing of this operation.

- [1] Write the conversion data to DADR0.
- [2] Set the DAOE0 bit in DACR01 to 1. D/A conversion is started and the DA0 pin becomes an output pin. The conversion result is output after the conversion time has elapsed. The output value is expressed by the following formula:

$$\frac{\text{DADR contents}}{256} \times V_{\text{ref}}$$

The conversion results are output continuously until DADR0 is written to again or the DAOE0 bit is cleared to 0.

- [3] If DADR0 is written to again, the new data is immediately converted. The new conversion result is output after the conversion time has elapsed.
- [4] If the DAOE0 bit is cleared to 0, the DA0 pin becomes an input pin.

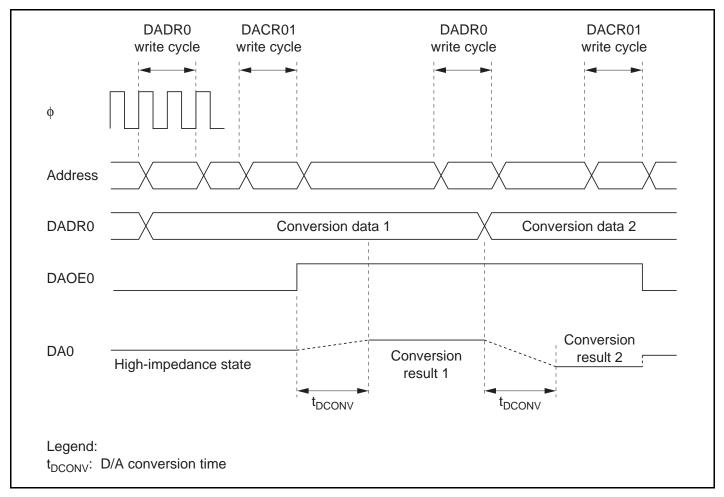


Figure 17.2 Example of D/A Converter Operation

Section 18 RAM

18.1 Overview

The H8S/2339 has 32 kbytes of on-chip high-speed static RAM, the H8S/2338 and H8S/2332 have 8 kbytes. The RAM is connected to the CPU by a 16-bit data bus, enabling one-state access by the CPU to both byte data and word data. This makes it possible to perform fast word data transfer.

The on-chip RAM can be enabled or disabled by means of the RAM enable bit (RAME) in the system control register (SYSCR).

18.1.1 Block Diagram

Figure 18.1 shows a block diagram of 32 kbytes of on-chip RAM.

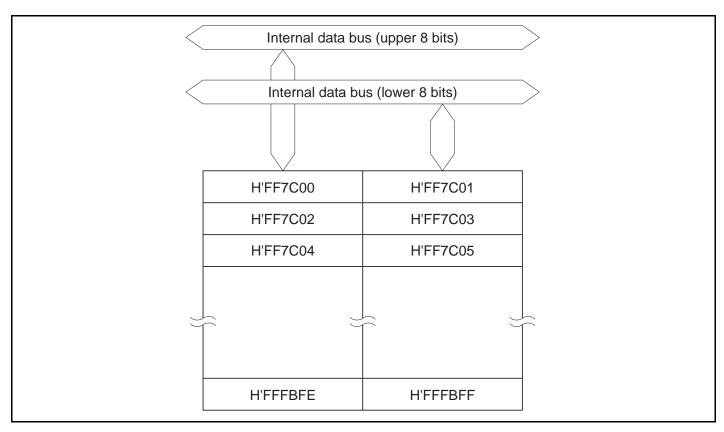


Figure 18.1 Block Diagram of RAM (32 kbytes)

Rev.4.00 Sep. 07, 2007 Page 729 of 1210

18.1.2 Register Configuration

The on-chip RAM is controlled by SYSCR. Table 18.1 shows the address and initial value of SYSCR.

Table 18.1 RAM Register

Name	Abbreviation	R/W	Initial Value	Address*
System control register	SYSCR	R/W	H'01	H'FF39

Note: * Lower 16 bits of the address.

18.2 Register Descriptions

18.2.1 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
				INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial valu	e :	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W

The on-chip RAM is enabled or disabled by the RAME bit in SYSCR. For details of other bits in SYSCR, see section 5.2.1, System Control Register (SYSCR).

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset state is released. It is not initialized in software standby mode.

Bit 0		
RAME	Description	
0	On-chip RAM is disabled	
1	On-chip RAM is enabled	(Initial value)

RENESAS

18.3 Operation

When the RAME bit is set to 1, accesses to addresses H'FFDC00 to H'FFFBFF are directed to the on-chip RAM. When the RAME bit is cleared to 0, the off-chip address space is accessed.

Since the on-chip RAM is connected to the CPU by an internal 16-bit data bus, it can be written to and read in byte or word units. Each type of access can be performed in one state.

Even addresses use the upper 8 bits, and odd addresses use the lower 8 bits. Word data must start at an even address.

Note: The amount of on-chip RAM differs depending on the product. Refer to section 3.5, Memory Map in Each Operating Mode, for details.

18.4 Usage Note

DTC register information can be located in addresses H'FFF800 to H'FFFBFF. When the DTC is used, the RAME bit must not be cleared to 0.

Section 19 ROM

19.1 Overview

This chip has 384 or 256 kbytes of on-chip flash memory, or 256 or 128 kbytes of on-chip mask ROM. The ROM is connected to the bus master via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching is thus speeded up, and processing speed increased.

The on-chip ROM is enabled and disabled by means of the mode pins (MD2 to MD0) and the EAE bit in BCRL.

The flash memory version of the chip can be erased and programmed with a PROM programmer, as well as on-board.

19.1.1 Block Diagram

Figure 19.1 shows a block diagram of 256 kbytes of on-chip ROM.

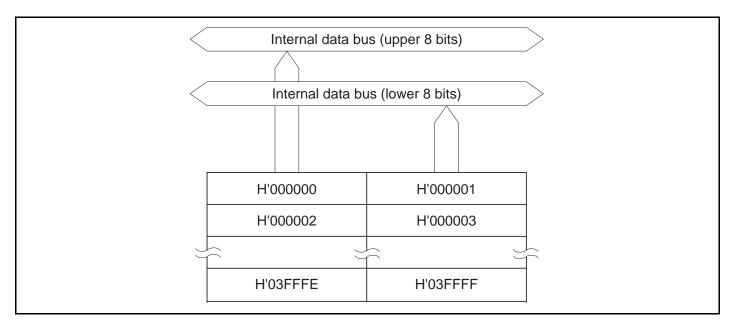


Figure 19.1 Block Diagram of ROM (256 kbytes)

19.1.2 Register Configuration

The operating mode of the chip is controlled by the mode pins and the BCRL register. The ROM-related registers are shown in table 19.1.

Table 19.1 ROM Registers

Register Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R/W	Undefined	H'FF3B
Bus controller register	BCRL	R/W	Undefined	H'FED5

Note: * Lower 16 bits of the address.

19.2 Register Descriptions

19.2.1 Mode Control Register (MDCR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	_	MDS2	MDS1	MDS0
Initial value	:	1	0	0	0	0	*	*	*
R/W	:	_	_	_	_	_	R	R	R

Note: * Determined by pins MD2 to MD0.

MDCR is an 8-bit read-only register used to monitor the current operating mode of the chip.

Bit 7—Reserved: This bit cannot be modified and is always read as 1.

Bits 6 to 3—Reserved: These bits cannot be modified and are always read as 0.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD2 to MD0. MDS2 to MDS0 are read-only bits, and cannot be modified. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

19.2.2 Bus Control Register L (BCRL)

Bit	:	7	6	5	4	3	2	1	0
		BRLE	BREQOE	EAE	_	DDS	_	WDBE	WAITE
Initial va	ılue :	0	0	1	1	1	1	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Enabling or disabling of part of the on-chip ROM area in the chip can be selected by means of the EAE bit in BCRL. For details of the other bits in BCRL, see section 6.2.5, Bus Control Register L (BCRL).

Bit 5—External Address Enable (EAE): Selects whether addresses H'010000 to H'03FFFF*² are to be internal addresses or external addresses.

Bit 5	Description						
Dit 3	H8S/2339, H8S/2338	H8S/2337					
0	On-chip ROM Addresses H'010000 to H'01FFFF are on-chip ROM or address H'020000 to H'03FFFF are reserved area*1						
1	Addresses H'010000 to H'03FFFF*2 are external addresses in external expanded mode or reserved area*1 in single-chip mode (Initial value)						

Notes: 1. Do not access a reserved area.

2. Addresses H'010000 to H'05FFFF in the H8S/2339.

19.3 Operation

The on-chip ROM is connected to the CPU by a 16-bit data bus, and both byte and word data can be accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2 to MD0) and the EAE bit in BCRL. These settings are shown in tables 19.2 and 19.3.

Table 19.2 Operating Modes and ROM (H8S/2338 F-ZTAT)

			Мос	de Pins		BCRL	
Mode	Operating Mode	FWE	MD2	MD1	MD0	EAE	On-Chip ROM
1	_	0	0	0	1	_	_
2	_			1	0		
3	_				1	_	
4	Advanced expanded mode with on-chip ROM disabled		1	0	0	_	Disabled
5	Advanced expanded mode with on-chip ROM disabled				1		
6	Advanced expanded mode with on-chip ROM enabled	_		1	0	0	Enabled (256 kbytes)*1*5
						1	Enabled (64 kbytes)
7	Advanced single-chip mode	_			1	0	Enabled (256 kbytes) *1*5
						1	Enabled (64 kbytes)
8	_	1	0	0	0	_	_
9		_			1		
10	Boot mode (advanced expanded mode with on-chip			1	0	0	Enabled (256 kbytes) *2*5
	ROM enabled)*3					1	Enabled (64 kbytes)
11	Boot mode (advanced single-chip mode) *4	_			1	0	Enabled (256 kbytes) *2*5
						1	Enabled (64 kbytes)
12	_	_	1	0	0	_	_
13	_				1	_	
14	User program mode (advanced expanded mode			1	0	0	Enabled (256 kbytes) *1*5
	with on-chip ROM enabled)*3					1	Enabled (64 kbytes)
15	User program mode (advanced single-chip	_			1	0	Enabled (256 kbytes) *1*5
	mode)*4					1	Enabled (64 kbytes)
						_	

Notes: 1. Note that in modes 6, 7, 14, and 15, the on-chip ROM that can be used after a reset is the 64-kbyte area from H'000000 to H'00FFFF.

Rev.4.00 Sep. 07, 2007 Page 736 of 1210 REJ09B0245-0400


- 2. Note that in the mode 10 and mode 11 boot modes, the on-chip ROM that can be used immediately after all flash memory is erased by the boot program is the 64-kbyte area from H'000000 to H'00FFFF.
- 3. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced expanded mode with on-chip ROM enabled.
- 4. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced single-chip mode.
- 5. The capacity of on-chip ROM in the H8S/2338 F-ZTAT is 256 kbytes.

Table 19.3 Operating Modes and ROM (H8S/2339 F-ZTAT and Mask ROM Version)

		Mode Pins			BCRL			
Mode	Operating Mode	MD2	MD1	MD0	EAE	On-Chip ROM		
1	_	0	0	1	_	_		
2*3	_		1	0	-			
3*3	_			1	-			
4	Advanced expanded mode with on-chip ROM disabled	1	0	0	_	Disabled		
5	Advanced expanded mode with on-chip ROM disabled			1	-			
6	Advanced expanded mode		1	0	0	Enabled (256 kbytes)*1*2		
	with on-chip ROM enabled				1	Enabled (64 kbytes)		
7	Advanced single-chip mode			1	0	Enabled (256 kbytes)*1*2		
					1	Enabled (64 kbytes)		

Notes: 1. Note that in modes 6 and 7, the on-chip ROM that can be used after a reset is the 64-kbyte area from H'000000 to H'00FFFF.

- 2. The amount of on-chip RAM differs depending on the product. Refer to section 3.5, Memory Map in Each Operating Mode, for details.
- 3. Boot mode in the H8S/2339 F-ZTAT. See table 19.9, for information on H8S/2339 F-ZTAT user boot modes. See table 19.9, for information on H8S/2339 F-ZTAT user program modes.

19.4 Overview of Flash Memory (H8S/2339 F-ZTAT)

19.4.1 Features

The H8S/2339 F-ZTAT has 384 kbytes of on-chip flash memory. The features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 128 bytes at a time. Erasing is performed by block erase (in single-block units). To erase the entire flash memory, the individual blocks must be erased sequentially. Block erasing can be performed as required on 4-kbyte, 32-kbyte, and 64-kbyte blocks.

Programming/erase times

The flash memory programming time is 10.0 ms (typ.) for simultaneous 128-byte programming, equivalent to 78 µs (typ.) per byte, and the erase time is 50 ms (typ.).

Reprogramming capability

The flash memory can be reprogrammed min. 100 times.

• On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

With data transfer in boot mode, the bit rate of the chip can be automatically adjusted to match the transfer bit rate of the host.

• Flash memory emulation by RAM

Rev.4.00 Sep. 07, 2007 Page 738 of 1210

Part of the RAM area can be overlapped onto flash memory, to emulate flash memory updates in real time.

Protect modes

There are three protect modes, hardware, software, and error protect, which allow protected status to be designated for flash memory program/erase/verify operations.

PROM mode

Flash memory can be programmed/erased in PROM mode, using a PROM programmer, as well as in on-board programming mode.

19.4.2 Overview

Block Diagram

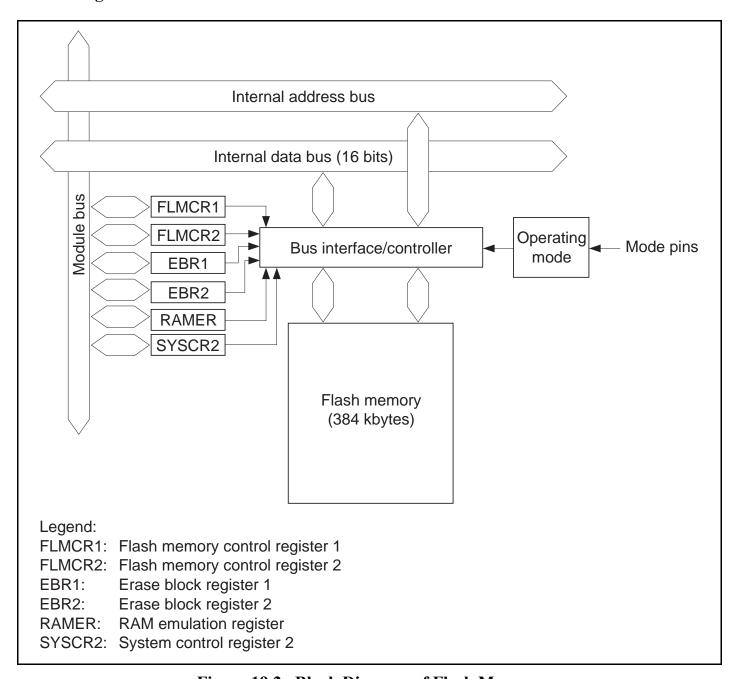
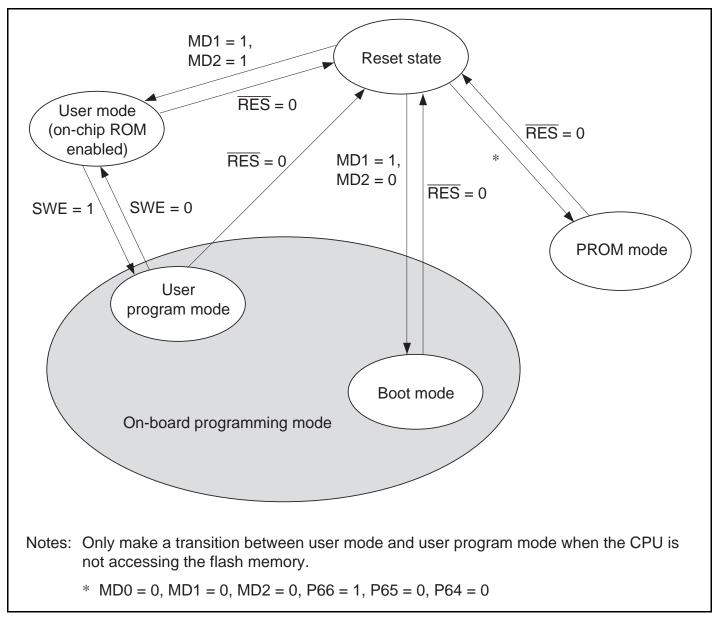


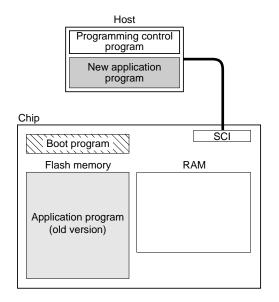
Figure 19.2 Block Diagram of Flash Memory

19.4.3 Flash Memory Operating Modes

Mode Transitions: When the mode pins are set in the reset state and a reset-start is executed, the chip enters one of the operating modes shown in figure 19.3. In user mode, flash memory can be read but not programmed or erased.

Flash memory can be programmed and erased in boot mode, user program mode, and PROM mode.

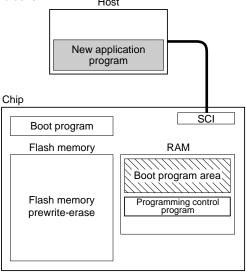


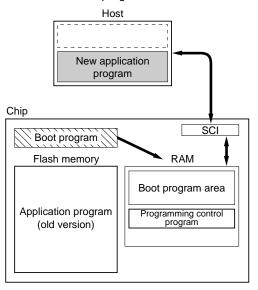

Figure 19.3 Flash Memory Mode Transitions

19.4.4 On-Board Programming Modes

Boot mode

1. Initial state


The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host.


3. Flash memory initialization

The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, entire flash memory erasure is performed, without regard to blocks.

Host

Programming control program transfer
 When boot mode is entered, the boot program in
 the chip (originally incorporated in the chip) is
 started and the programming control program in
 the host is transferred to RAM via SCI
 communication. The boot program required for
 flash memory erasing is automatically transferred
 to the RAM boot program area.

Writing new application program
 The programming control program transferred from the host to RAM is executed, and the new application program in the host is written into the flash memory.

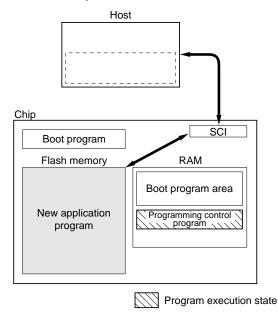


Figure 19.4 Boot Mode

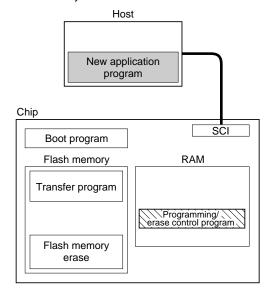
• User program mode

- Initial state

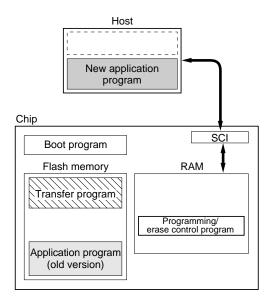
 (1) The program that will transfer the programming/erase control program to on-chip RAM should be written into the flash memory by the user beforehand.
 (2) The programming/erase control program should be prepared in the host or in the flash memory.
 - Programming/
 erase control program

 New application program

 Chip


 Boot program

 Flash memory


 RAM

 Transfer program

 Application program
 (old version)
- Flash memory initialization
 The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units, but not in byte units.

 Programming/erase control program transfer Executes the transfer program in the flash memory, and transfers the programming/erase control program to RAM.

Writing new application program
 Next, the new application program in the host is
 written into the erased flash memory blocks. Do
 not write to unerased blocks.

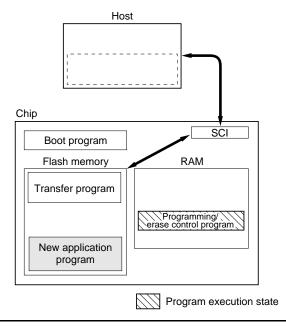


Figure 19.5 User Program Mode (Example)

RENESAS

19.4.5 Flash Memory Emulation in RAM

Reading Overlap RAM Data in User Mode and User Program Mode: Emulation should be performed in user mode or user program mode. When the emulation block set in RAMER is accessed while the emulation function is being executed, data written in the overlap RAM is read.

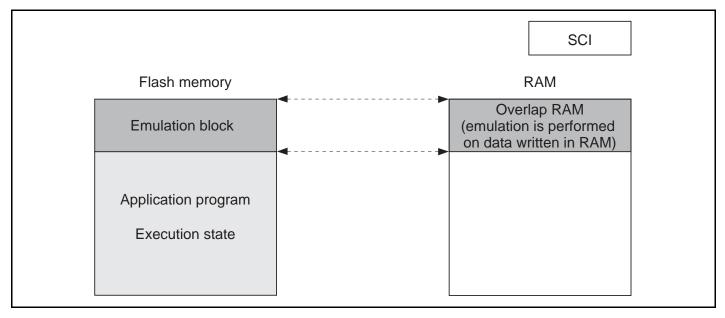


Figure 19.6 Reading Overlap RAM Data in User Mode and User Program Mode

Writing Overlap RAM Data in User Program Mode: When overlap RAM data is confirmed, the RAMS bit is cleared, RAM overlap is released, and writes should actually be performed to the flash memory.

When the programming control program is transferred to RAM, ensure that the transfer destination and the overlap RAM do not overlap, as this will cause data in the overlap RAM to be rewritten.

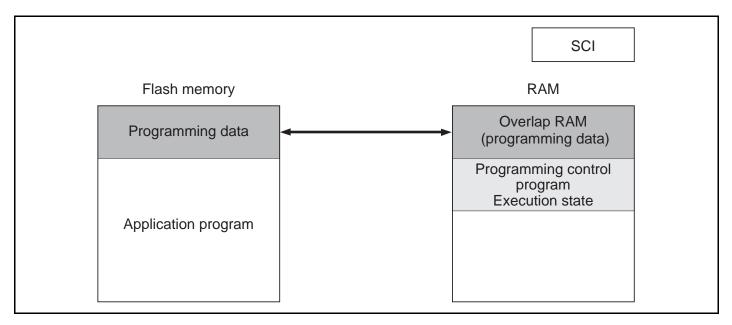


Figure 19.7 Writing Overlap RAM Data in User Program Mode

19.4.6 Differences between Boot Mode and User Program Mode

Table 19.4 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mode
Entire memory erase	Yes	Yes
Block erase	No	Yes
Programming control program*	Program/program-verify	Erase/erase-verify/program/ program-verify/emulation

Note: * To be provided by the user, in accordance with the recommended algorithm.

19.4.7 Block Configuration

The flash memory is divided into five 64-kbyte blocks, one 32-kbyte block, and eight 4-kbyte blocks.

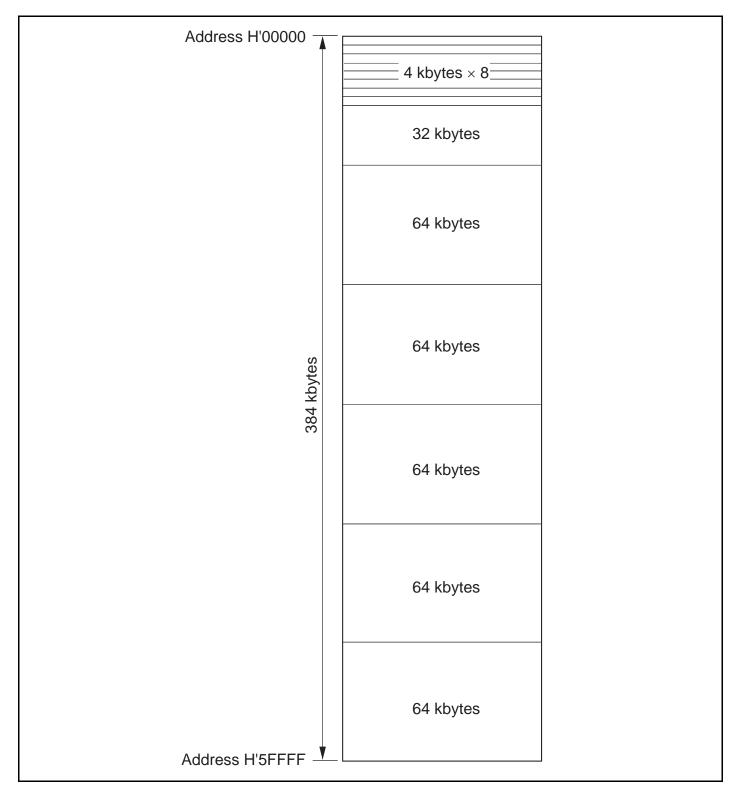


Figure 19.8 Flash Memory Block Configuration

19.4.8 Pin Configuration

The flash memory is controlled by means of the pins shown in table 19.5.

Table 19.5 Flash Memory Pins

Pin Name	Abbreviation	I/O	Function
Reset	RES	Input	Reset
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port 64	P64	Input	Sets MCU operating mode in PROM mode
Port 65	P65	Input	Sets MCU operating mode in PROM mode
Port 66	P66	Input	Sets MCU operating mode in PROM mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

19.4.9 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 19.6. In order to access the FLMCR1, FLMCR2, EBR1, and EBR2 registers, the FLSHE bit must be set to 1 in SYSCR2 (except RAMER).

Table 19.6 Flash Memory Registers

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*5	R/W*3	H'80	H'FFC8*2
Flash memory control register 2	FLMCR2*5	R/W*3	H'00	H'FFC9*2
Erase block register 1	EBR1*5	R/W*3	H'00*4	H'FFCA*2
Erase block register 2	EBR2*5	R/W*3	H'00*4	H'FFCB*2
System control register 2	SYSCR2*6	R/W	H'00	H'FF42
RAM emulation register	RAMER	R/W	H'00	H'FEDB

- Notes: 1. Lower 16 bits of the address.
 - 2. Flash memory. Registers selection is performed by the FLSHE bit in system control register 2 (SYSCR2).
 - In modes in which the on-chip flash memory is disabled, a read will return H'00, and writes are invalid.
 - 4. If the SWE bit in FLMCR1 is not set, these registers are initialized to H'00.
 - 5. FLMCR1, FLMCR2, EBR1, and EBR2 are 8-bit registers. Only byte accesses are valid for these registers, the access requiring 2 states.
 - 6. The SYSCR2 register can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be modified.

19.5 Register Descriptions

19.5.1 Flash Memory Control Register 1 (FLMCR1)

Bit	:	7	6	5	4	3	2	1	0
		FWE	SWE	ESU	PSU	EV	PV	Е	Р
Initial val	ue :	1	0	0	0	0	0	0	0
R/W	:	R	R/W						

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode is entered by setting SWE to 1, then setting the EV or PV bit. Program mode is entered by setting SWE to 1, then setting the PSU bit, and finally setting the P bit. Erase mode is entered by setting SWE to 1, then setting the ESU bit, and finally setting the E bit. FLMCR1 is initialized to H'80 by a reset, and in hardware standby mode and software standby mode. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writing to bits ESU, PSU, EV, and PV in FLMCR1 is enabled only when SWE = 1; writing to the E bit is enabled only when SWE = 1, and ESU = 1; and writing to the P bit is enabled only when SWE = 1, and PSU = 1.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing. These bits cannot be modified and are always read as 1 in this model.

Bit 6—Software Write Enable Bit (SWE): Enables or disables flash memory programming and erasing. This bit should be set when setting FLMCR1 bits 5 to 0, EBR1 bits 7 to 0, and EBR2 bits 5 to 0.

When SWE = 1, the flash memory can only be read in program-verify or erase-verify mode.

Bit 6		
SWE	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	

Bit 5—Erase Setup Bit (ESU): Prepares for a transition to erase mode. Do not set the SWE, PSU, EV, PV, E, or P bit at the same time.

Bit 5 ESU	Description	
0	Erase setup cleared	(Initial value)
1	Erase setup	
	[Setting condition]	
	When SWE = 1	

Bit 4—Program Setup Bit (PSU): Prepares for a transition to program mode. Do not set the SWE, ESU, EV, PV, E, or P bit at the same time.

Bit 4 PSU	Description	
0	Program setup cleared	(Initial value)
1	Program setup	
	[Setting condition]	
	When SWE = 1	

Bit 3—Erase-Verify (EV): Selects erase-verify mode transition or clearing. Do not set the SWE, ESU, PSU, PV, E, or P bit at the same time.

Bit 3 EV	Description	
0	Erase-verify mode cleared	(Initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When SWE = 1	

Bit 2—Program-Verify (PV): Selects program-verify mode transition or clearing. Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.

Bit 2 PV	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When SWE = 1	

Bit 1—Erase (E): Selects erase mode transition or clearing. Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.

Bit 1

E	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When SWE = 1, and ESU = 1	

Bit 0—Program (P): Selects program mode transition or clearing. Do not set the SWE, PSU, ESU, EV, PV, or E bit at the same time.

Р	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When SWE = 1, and PSU = 1	

RENESAS

19.5.2 Flash Memory Control Register 2 (FLMCR2)

Bit	:	7	6	5	4	3	2	1	0	
		FLER	_	_	_	_		_	_	
Initial valu	ue :	0	0	0	0	0	0	0	0	_
R/W	:	R	_	_	_	_		_		

FLMCR2 is an 8-bit register that controls the flash memory operating modes. FLMCR2 is initialized to H'00 by a reset, and in hardware standby mode and software standby mode.

When on-chip flash memory is disabled, a read will return H'00 and writes are invalid.

Bit 7—Flash Memory Error (FLER): Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

FLER Description

O Flash memory is operating normally (Initial value)
Flash memory program/erase protection (error protection) is disabled
[Clearing condition]
Reset or hardware standby mode

An error has occurred during flash memory programming/erasing
Flash memory program/erase protection (error protection) is enabled
[Setting condition]
See section 19.8.3, Error Protection

Bits 6 to 0—Reserved: These bits cannot be modified and are always read as 0.

19.5.3 Erase Block Register 1 (EBR1)

Bit	:	7	6	5	4	3	2	1	0	
EBR1		EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	Ī
Initial valu	ie:	0	0	0	0	0	0	0	0	
R/W	:	R/W								

EBR1 is an 8-bit register that specifies the flash memory erase area block by block. EBR1 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, and the SWE bit in FLMCR1 is not set. When a bit in EBR1 is set, the corresponding block can be erased. Other blocks are erase-protected. Set only one bit in EBR1 and EBR2 together (setting more than one bit will automatically clear all EBR1 and EBR2 bits to 0). When on-chip flash memory is disabled, a read will return H'00 and writes are invalid.

The flash memory block configuration is shown in table 19.7.

19.5.4 Erase Block Registers 2 (EBR2)

Bit :	7	6	5	4	3	2	1	0
EBR2	_	_	EB13	EB12	EB11	EB10	EB9	EB8
Initial value:	0	0	0	0	0	0	0	0
R/W :			R/W	R/W	R/W	R/W	R/W	R/W

EBR2 is an 8-bit register that specifies the flash memory erase area block by block. EBR2 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, and when the SWE bit in FLMCR1 is not set. When a bit in EBR2 is set, the corresponding block can be erased. Other blocks are erase-protected. Set only one bit in EBR2 and EBR1 together (setting more than one bit will automatically clear all EBR1 and EBR2 bits to 0). Bits 7 and 6 are reserved; they are always read as 0 and cannot be modified. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

RENESAS

The flash memory block configuration is shown in table 19.7.

Table 19.7 Flash Memory Erase Blocks

Block (Size)	Address
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF
EB11 (64 kbytes)	H'030000 to H'03FFFF
EB12 (64 kbytes)	H'040000 to H'04FFFF
EB13 (64 kbytes)	H'050000 to H'05FFFF

19.5.5 System Control Register 2 (SYSCR2)

Bit	:	7	6	5	4	3	2	1	0
		_			_	FLSHE		_	_
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	•	_	_	_	_	R/W	_	_	R/W

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset and in hardware standby mode.

SYSCR2 can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be modified.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). Writing 1 to the FLSHE bit enables the flash memory control registers to be read and written to. Clearing FLSHE to 0 designates these registers as unselected (the register contents are retained).

Bit 3 FLSHE	Description
0	Flash control registers are not selected for addresses H'FFFC8 to H'FFFCB (Initial value)
1	Flash control registers are selected for addresses H'FFFFC8 to H'FFFFCB

Bits 2 and 1—Reserved: These bits cannot be modified and are always read as 0.

Bit 0—Reserved: This bit should be written with 0.

19.5.6 RAM Emulation Register (RAMER)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	RAMS	RAM2	RAM1	RAM0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:					R/W	R/W	R/W	R/W

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 19.8. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory blocks are program/erase-protected.

Bit 3 RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection (RAM2 to RAM0): These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM. (See table 19.8.)

Table 19.8 Flash Memory Area Divisions

RAM Area	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFDC00 to H'FFEBFF	RAM area, 4 kbytes	0	*	*	*
H'000000 to H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000 to H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000 to H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000 to H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000 to H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000 to H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1

*: Don't care

19.6 On-Board Programming Modes

When pins are set to on-board programming mode, program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 19.9. For a diagram of the transitions to the various flash memory modes, see figure 19.3.

Table 19.9 Setting On-Board Programming Modes

	Mode		Pins	5
MCU Mode	CPU Operating Mode	MD2	MD1	MD0
Boot mode	Advanced expanded mode with on-chip ROM enabled	0	1	0
	Advanced single-chip mode			1
User program mode*	Advanced expanded mode with on-chip ROM enabled	1	1	0
	Advanced single-chip mode	_		1

Note: * Normally, user mode should be used. Set the SWE bit to 1 to make a transition to user program mode before performing a program/erase/verify operation.

19.6.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The channel 1 SCI to be used is set to asynchronous mode.

When a reset-start is executed after the H8S/2339 F-ZTAT chip's pins have been set to boot mode, the boot program built into the chip is started and the programming control program prepared in the host is serially transmitted to the chip via the SCI. In the chip, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 19.9, and the boot program mode execution procedure in figure 19.10.

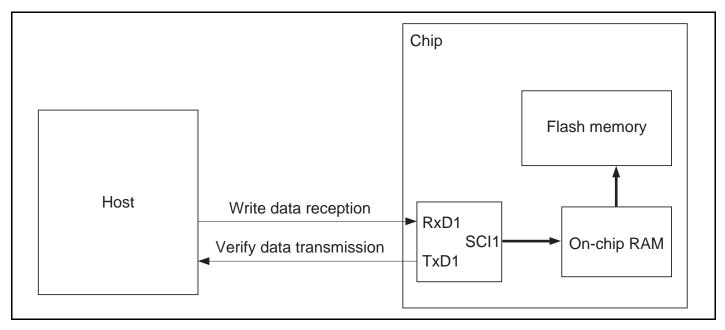


Figure 19.9 System Configuration in Boot Mode

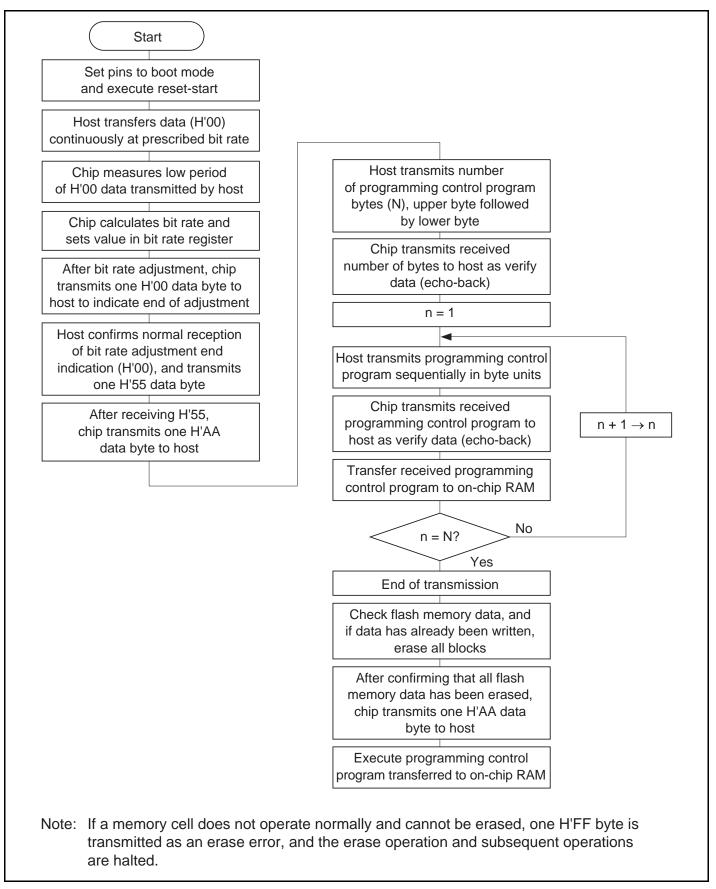


Figure 19.10 Boot Mode Execution Procedure

Automatic SCI Bit Rate Adjustment: When boot mode is initiated, the H8S/2339 F-ZTAT chip measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The chip calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the chip's system clock frequency, there will be a discrepancy between the bit rates of the host and the chip. To ensure correct SCI operation, the host's transfer bit rate should be set to 9,600 or 19,200 bps.

Table 19.10 shows typical host transfer bit rates and system clock frequencies for which automatic adjustment of the MCU's bit rate is possible. The boot program should be executed within this system clock range.

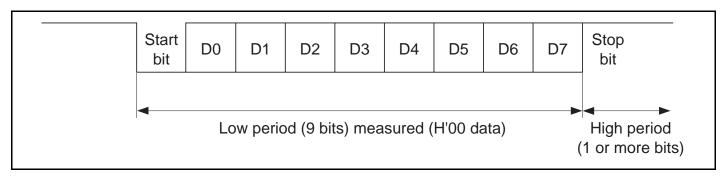
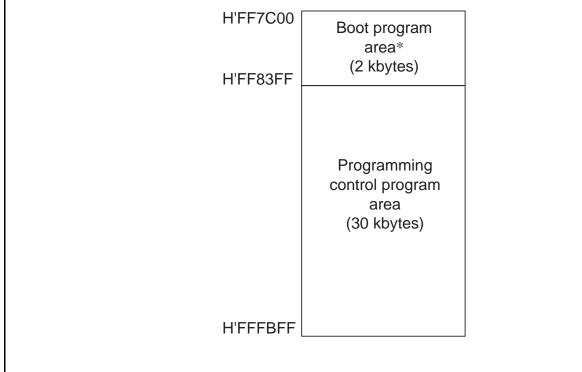



Figure 19.11 Automatic SCI Bit Rate Adjustment

Table 19.10 System Clock Frequencies for which Automatic Adjustment of H8S/2339 F-ZTAT Bit Rate is Possible

Host Bit Rate	System Clock Frequency for which Automatic Adjustment of H8S/2339 F-ZTAT Bit Rate is Possible
19,200 bps	16 MHz to 25 MHz
9,600 bps	8 MHz to 25 MHz

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the 2-kbyte area from H'FF7C00 to H'FF83FF is reserved for use by the boot program, as shown in figure 19.12. The area to which the programming control program is transferred is H'FF8400 to H'FFFBFF. The boot program area can be used when the programming control program transferred into RAM enters the execution state. A stack area should be set up as required.

Note: * The boot program area cannot be used until a transition is made to the execution state for the programming control program transferred to RAM. Note that the boot program remains stored in this area after a branch is made to the programming control program.

Figure 19.12 RAM Areas in Boot Mode

Notes on Use of Boot Mode

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes approximately 100 states before the chip is ready to measure the low-level period of the RxD1 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all flash memory blocks are erased. Boot mode is for use when user program mode is unavailable, such as the first time on-board programming is performed, or if the program activated in user program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.

- Before branching to the programming control program (RAM area H'FF8400 to H'FFFBFF), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P31DDR = 1, P31DR = 1). The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program. Initial settings must also be made for the other on-chip registers.
- Boot mode can be entered by making the pin settings shown in table 19.9 and executing a reset-start.
 - Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the mode pins, and executing reset release*1. Boot mode can also be cleared by a WDT overflow reset.
 - Do not change the mode pin input levels in boot mode.
- If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, HWR) will change according to the change in the microcomputer's operating mode*2.

 Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.
- Notes: 1. Mode pins input must satisfy the mode programming setup time ($t_{MDS} = 200 \text{ ns}$) with respect to the reset release timing.
 - 2. See section 9, I/O Ports.

19.6.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means supply of programming data, and storing a program/erase control program in part of the program area if necessary.

To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7). In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

The flash memory itself cannot be read while the SWE bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip

RAM or external memory. When the program is located in external memory, an instruction for programming the flash memory and the following instruction should be located in on-chip RAM.

Figure 19.13 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

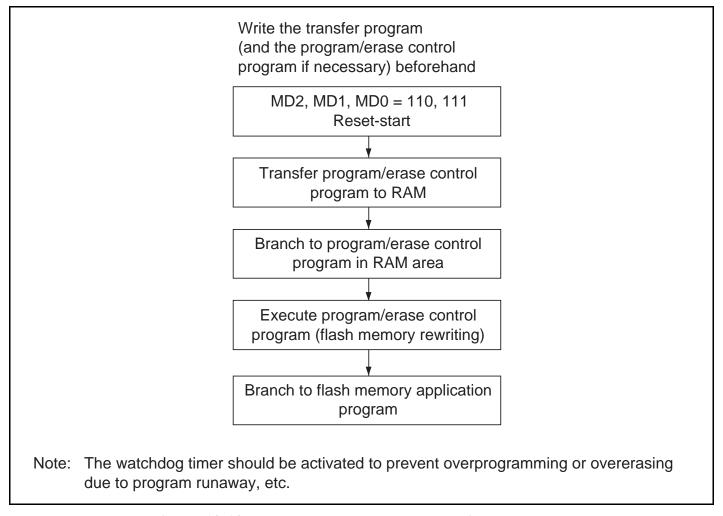


Figure 19.13 User Program Mode Execution Procedure

19.7 Programming/Erasing Flash Memory

In the on-board programming modes, flash memory programming and erasing is performed by software, using the CPU. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transitions to these modes can be made by setting the PSU, ESU, P, E, PV, and EV bits in FLMCR1.

The flash memory cannot be read while being programmed or erased. Therefore, the program that controls flash memory programming/erasing (the programming control program) should be located and executed in on-chip RAM or external memory. When the program is located in external memory, an instruction for programming the flash memory and the following instruction should be located in on-chip RAM. The DMAC or DTC should not be activated before or after the instruction for programming the flash memory is executed.

- Notes: 1. Operation is not guaranteed if setting/resetting of the SWE, ESU, PSU, EV, PV, E, and P bits in FLMCR1 is executed by a program in flash memory.
 - 2. Perform programming in the erased state. Do not perform additional programming on previously programmed addresses.

19.7.1 Program Mode

Follow the procedure shown in the program/program-verify flowchart in figure 19.14 to write data or programs to flash memory. Performing program operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

For the wait times $(x, y, z1, z2, z3 \alpha, \beta, \gamma, \epsilon, \eta, and \theta)$ after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N), see section 22.2.6, Flash Memory Characteristics.

Following the elapse of (x) µs or more after the SWE bit is set to 1 in flash memory control register 1 (FLMCR1), 128-byte program data is stored in the program data area and reprogram data area, and the 128-byte data in the reprogram data area is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 or H'80. 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer is set to prevent overprogramming in the event of program runaway, etc. Set a value greater than $(y + z2 + \alpha + \beta)$ µs as the WDT overflow period. After this, preparation for program mode (program setup) is carried out by setting the PSU bit in FLMCR1, and after the

elapse of (y) µs or more, the operating mode is switched to program mode by setting the P bit in FLMCR1. The time during which the P bit is set is the flash memory programming time. Set the programming time according to the table in the programming flowchart.

19.7.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of a given programming time, the programming mode is exited (the P bit in FLMCR1 is cleared to 0, then the PSU bit is cleared to 0 at least (α) μ s later). Next, the watchdog timer is cleared after the elapse of (β) μ s or more, and the operating mode is switched to programverify mode by setting the PV bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (γ) μ s or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (ϵ) μ s after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogram data is computed (see figure 19.14) and transferred to the reprogram data area. After 128 bytes of data have been verified, exit program-verify mode, wait for at least (η) μ s, then clear the SWE bit in FLMCR1 to 0, and wait again for at least (θ) μ s. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence as before. However, ensure that the program/program-verify sequence is not repeated more than (N) times on the same bits.

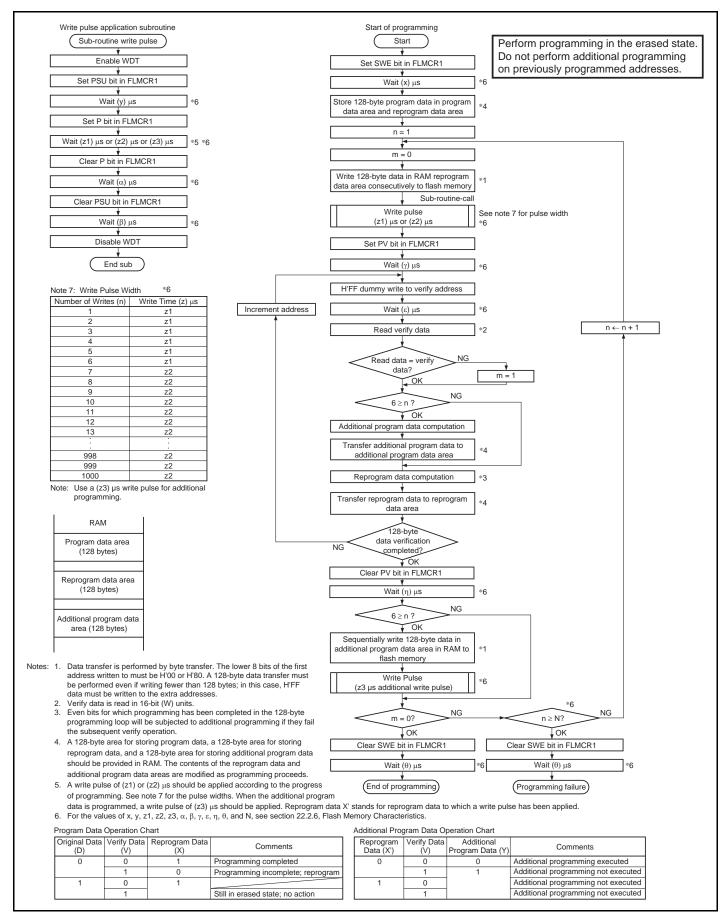


Figure 19.14 Program/Program-Verify Flowchart

19.7.3 Erase Mode

Flash memory erasing should be performed block by block following the procedure shown in the erase/erase-verify flowchart (single-block erase) shown in figure 19.15.

For the wait times $(x, y, z, \alpha, \beta, \gamma, \varepsilon, \eta, \theta)$ after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N), see section 22.2.6, Flash Memory Characteristics.

To perform data or program erasure, make a 1 bit setting for the flash memory area to be erased in erase block register 1 or 2 (EBR1 or EBR2) at least (x) μ s after setting the SWE bit to 1 in flash memory control register 1 (FLMCR1). Next, the watchdog timer is set to prevent overerasing in the event of program runaway, etc. Set a value greater than $(y + z + \alpha + \beta)$ ms as the WDT overflow period. After this, preparation for erase mode (erase setup) is carried out by setting the ESU bit in FLMCR1, and after the elapse of (y) μ s or more, the operating mode is switched to erase mode by setting the E bit in FLMCR1. The time during which the E bit is set is the flash memory erase time. Ensure that the erase time does not exceed (z) ms.

Note: With flash memory erasing, prewriting (setting all data in the memory to be erased to 0) is not necessary before starting the erase procedure.

19.7.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the erase time, erase mode is exited (the E bit in FLMCR1 is cleared to 0, then the ESU bit in FLMCR1 is cleared to 0 at least (α) μ s later), the watchdog timer is cleared after the elapse of (β) μ s or more, and the operating mode is switched to erase-verify mode by setting the EV bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (γ) μ s or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (ϵ) μ s after the dummy write before performing this read operation. If the read data has been erased (all 1), a dummy write is performed to the next address, and erase-verify is performed. If the read data has not been erased, set erase mode again, and repeat the erase/erase-verify sequence in the same way. However, ensure that the erase/erase-verify sequence is not repeated more than (N) times. When verification is completed, exit erase-verify mode, and wait for at least (η) μ s. If erasure has been completed on all the erase blocks, clear the SWE bit in FLMCR1 to 0 and wait for at least (θ) μ s. If there are any unerased blocks, make a 1 bit setting for the flash memory area to be erased, and repeat the erase/erase-verify sequence in the same way.

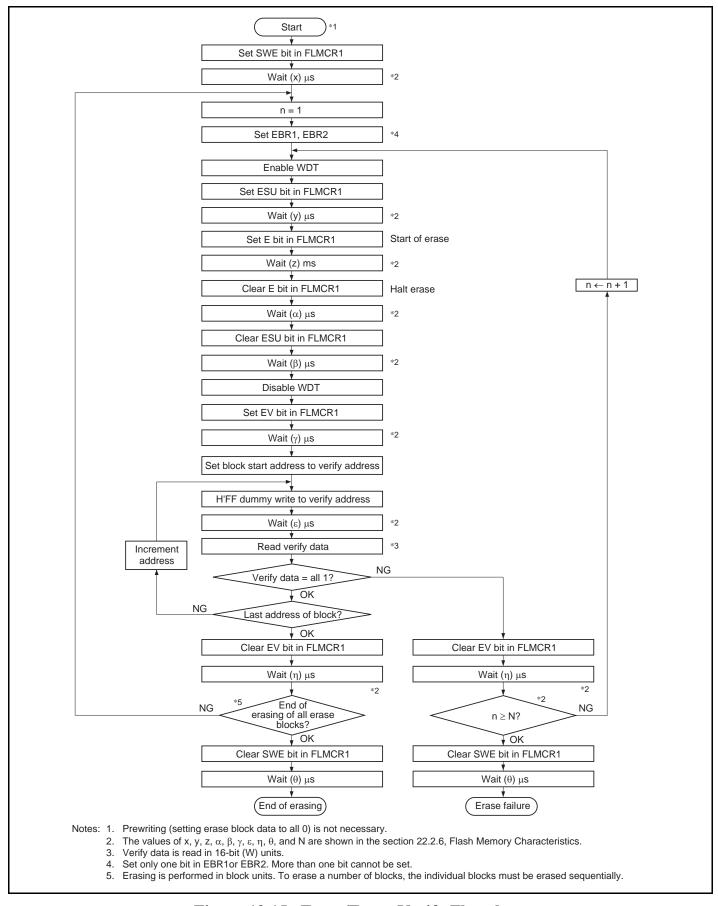


Figure 19.15 Erase/Erase-Verify Flowchart

RENESAS

19.8 Flash Memory Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

19.8.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Settings in flash memory control registers 1 and 2 (FLMCR1, FLMCR2) and erase block registers 1 and 2 (EBR1, EBR2) are reset. (See table 19.11.)

Table 19.11 Hardware Protection

		Functions				
Item	Description	Program	Erase			
Reset/standby protection	 In a reset (including a WDT overflow reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in section 22.2.3, AC Characteristics. 	Yes	Yes			

19.8.2 Software Protection

Software protection can be implemented by setting the SWE bit in flash memory control register 1 (FLMCR1), erase block registers 1 and 2 (EBR1, EBR2), and the RAMS bit in the RAM emulation register (RAMER). When software protection is in effect, setting the P or E bit in FLMCR1 does not cause a transition to program mode or erase mode. (See table 19.12.)

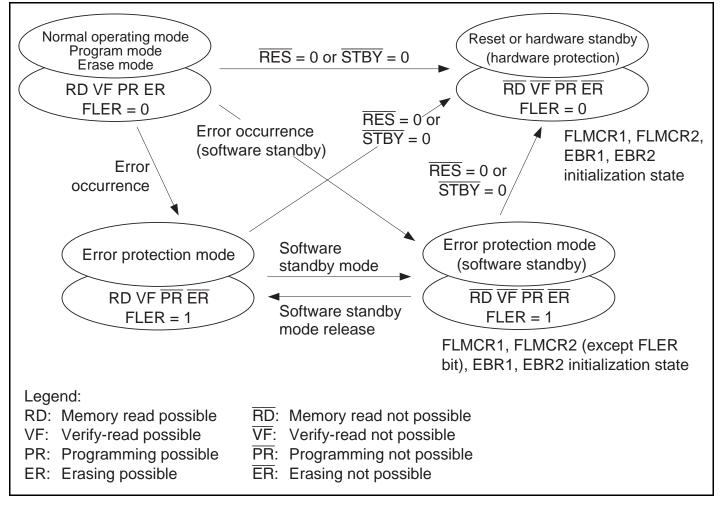
Table 19.12 Software Protection

		Fun	ctions
Item	Description	Program	Erase
SWE bit protection	Clearing the SWE bit to 0 in FLMCR1 sets the program/erase-protected state for all blocks. (Execute in on-chip RAM or external memory.)	Yes	Yes
Block specification protection	 Erase protection can be set for individual blocks by settings in erase block registers 1 and 2 (EBR1, EBR2). 	_	Yes
	 Setting EBR1 and EBR2 to H'00 places all blocks in the erase-protected state. 		
Emulation protection	Setting the RAMS bit to 1 in the RAM emulation register (RAMER) places all blocks in the program/erase-protected state.	Yes	Yes

19.8.3 Error Protection

In error protection, an error is detected when MCU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the MCU malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode.


FLER bit setting conditions are as follows:

- When flash memory is read during programming/erasing (including a vector read or instruction fetch)
- Immediately after exception handling (excluding a reset) during programming/erasing
- When a SLEEP instruction (including software standby) is executed during programming/erasing
- When a bus master other than the CPU (the DMAC or DTC) has control of the bus during programming/erasing

Error protection is released only by a reset and in hardware standby mode.

Figure 19.16 shows the flash memory state transition diagram.

Figure 19.16 Flash Memory State Transitions

RENESAS

19.9 Flash Memory Emulation in RAM

19.9.1 Emulation in RAM

Making a setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. After the RAMER setting has been made, accesses can be made from the flash memory area or the RAM area overlapping flash memory. Emulation can be performed in user mode and user program mode. Figure 19.17 shows an example of emulation of real-time flash memory programming.

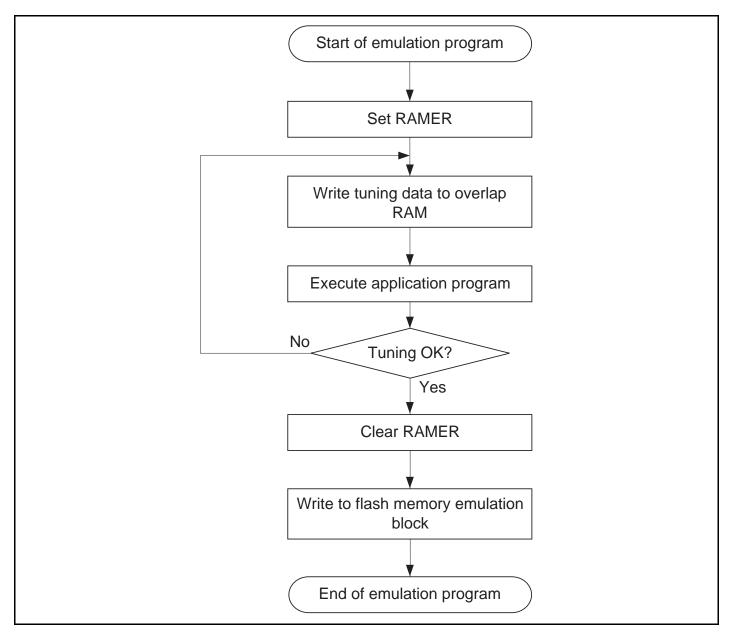


Figure 19.17 Flowchart for Flash Memory Emulation in RAM

19.9.2 RAM Overlap

An example in which flash memory block area EB1 is overlapped is shown below.

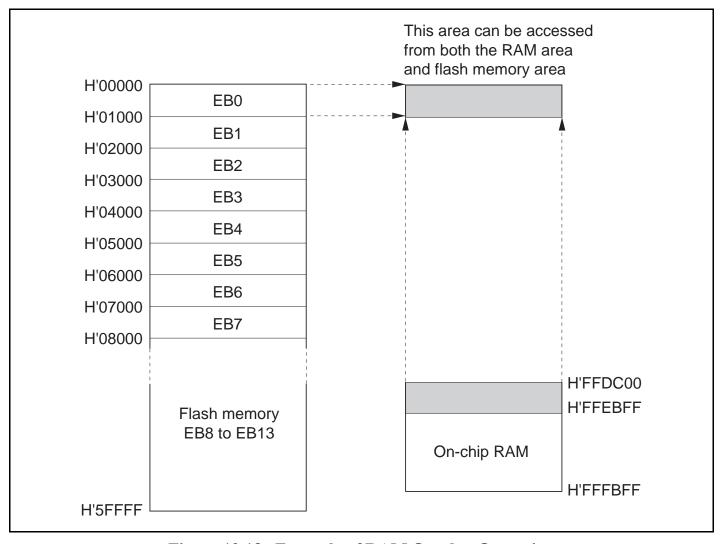


Figure 19.18 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB1 is Overlapped

- 1. Set bits RAMS, RAM2, RAM1, and RAM0 in RAMER to 1, 0, 0, 1, to overlap part of RAM onto the area (EB1) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB1).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2, RAM1, and RAM0 (emulation protection). In this state, setting the P or E bit in flash memory control register 1 (FLMCR1) will not cause

- a transition to program mode or erase mode. When actually programming a flash memory area, the RAMS bit should be cleared to 0.
- 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
- 3. Block area EB0 includes the vector table. When performing RAM emulation, the vector table is needed by the overlap RAM.

19.10 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including NMI input, are disabled when flash memory is being programmed or erased (when the P or E bit is set in FLMCR1), and while the boot program is executing in boot mode*1, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*2, possibly resulting in MCU runaway.
- 3. If an interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, in on-board programming mode alone there are conditions for disabling interrupts, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation. All interrupt requests, including NMI, must therefore be restricted inside and outside the MCU when programming or erasing flash memory. The NMI interrupt is also disabled in the error-protection state while the P or E bit remains set in FLMCR1.

- Notes: 1. Interrupt requests must be disabled inside and outside the MCU until the programming control program has completed programming.
 - 2. The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned).
 - If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly.

19.11 Flash Memory PROM Mode

19.11.1 PROM Mode Setting

Programs and data can be written and erased in PROM mode as well as in the on-board programming modes. In PROM mode, the on-chip ROM can be freely programmed using a PROM programmer that supports the Renesas microcomputer device type with 512-kbyte on-chip flash memory (FZTAT512V3A). Flash memory read mode, auto-program mode, auto-erase mode, and status read mode are supported with this device type. In auto-program mode, auto-erase mode, and status read mode, a status polling procedure is used, and in status read mode, detailed internal signals are output after execution of an auto-program or auto-erase operation.

Table 19.13 shows PROM mode pin settings.

Table 19.13 PROM Mode Pin Settings

Pin Names	Settings/External Circuit Connection
Mode pins: MD2, MD1, MD0	Low-level input
Mode setting pins: P66, P65, P64	High-level input to P66, low-level input to P65 and P64
STBY pin	High-level input (do not select hardware standby mode)
RES pin	Reset circuit
XTAL, EXTAL pins	Oscillator circuit
Other pins requiring setting: P32, P25	High-level input to P32, low-level input to P25

19.11.2 Socket Adapters and Memory Map

In PROM mode, a socket adapter is connected to the chip as shown in figure 19.20. Figure 19.19 shows the on-chip ROM memory map and figure 19.20 shows the socket adapter pin assignments.

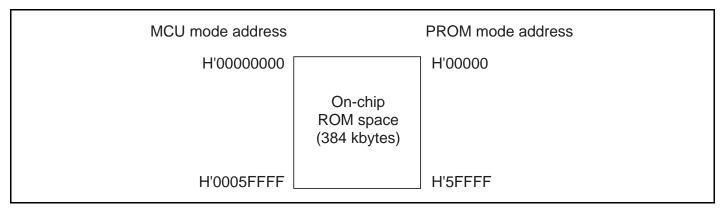


Figure 19.19 Memory Map in PROM Mode

RENESAS

H8S/2339 F-Z	TAT	Socket Adapter	HN27C4096	6HG (40 Pins)
FP-144	Pin Name	(40-Pin Conversion)	Pin No.	Pin Name
5	A_0		21	A ₀
6	A ₁		- 22	A ₁
7	A ₂		23	A ₂
8	A ₃		24	A ₃
10	A ₄		25	A ₄
11	A ₅		26	A ₅
12	A ₆		27	A ₆
13	A ₇		- 28	A ₇
14	A ₈		29	A ₈
15	A ₉		31	A ₉
16	A ₁₀		32	A ₁₀
17	A ₁₁		- 33	A ₁₁
19	A ₁₂		34	A ₁₂
20	A ₁₃		35	A ₁₃
21	A ₁₄		36	A ₁₄
22	A ₁₅		37	A ₁₅
23	A ₁₆		38	A ₁₆
24	A ₁₇		39	A ₁₇
25	A ₁₈		10	A ₁₈
52	D ₈		19	I/O ₀
53			18	I/O ₁
54	D ₁₀		17	I/O ₂
55	D ₁₁	1	16	I/O ₃
57	D ₁₂		15	I/O ₄
58	D ₁₃		14	I/O ₅
59	D ₁₄		13	I/O ₆
60	D ₁₅		12	I/O ₇
83	CE		2	CE
84	ŌĒ		20	ŌĒ
82	WE		3	WE
97	EMLE*3		4	FWE
			1, 40	V _{CC}
3, 36, 39, 61, 64, 89, 90, 91, 96, 113, 114	V _{CC}		11, 30	V _{SS}
30, 31, 30, 113, 114			5, 6, 7	NC
9, 18, 27, 37, 38, 47,			8	A ₂₀
56, 71, 81, 94, 123,	V_{SS}		9	A ₁₉
124, 135, 136, 137			Legend:	. 10
88	DEC	Power-on-reset *1	EMLE: En	nulation enab
	RES	circuit	I/O ₇ to I/O ₀ : Da	
92	XTAL	Oscillation circuit *2		dress input ip enable
93	EXTAL			ip enable itput enable
Other pins	NC (OPEN)			ite enable

- 1. A reset oscillation stabilization time (t_{osc1}) of at least 10 ms is required.
- 2. A 12-MHz crystal resonator should be used.
- 3. As the FWE pin becomes VCC in the H8S/2339 F-ZTAT, the EMLE pin is ignored in PROM mode.

Figure 19.20 H8S/2339 F-ZTAT Socket Adapter Pin Assignments

19.11.3 PROM Mode Operation

Table 19.14 shows how the different operating modes are set when using PROM mode, and table 19.15 lists the commands used in PROM mode. Details of each mode are given below.

Memory Read Mode: Memory read mode supports byte reads.

Auto-Program Mode: Auto-program mode supports programming of 128 bytes at a time. Status polling is used to confirm the end of auto-programming.

Auto-Erase Mode: Auto-erase mode supports automatic erasing of the entire flash memory. Status polling is used to confirm the end of auto-erasing.

Status Read Mode: Status polling is used for auto-programming and auto-erasing, and normal termination can be confirmed by reading the I/O_6 signal. In status read mode, error information is output if an error occurs.

Table 19.14 Settings for Each Operating Mode in PROM Mode

Mode	CE	ŌĒ	WE	I/O ₇ to I/O ₀	A ₁₈ to A ₀
Read	L	L	Н	Data output	Ain
Output disable	L	Н	Н	Hi-Z	X
Command write	L	Н	L	Data input	Ain*2
Chip disable*1	Н	Х	Х	Hi-Z	Х

RENESAS

Legend:

H: High level

L: Low level

Hi-Z: High impedance

X: Don't care

Notes: 1. Chip disable is not a standby state; internally, it is an operation state.

2. Ain indicates that there is also address input in auto-program mode.

Table 19.15 PROM Mode Commands

	Number		1st Cycle			2nd Cycle	•
Command Name	of Cycles	Mode	Address	Data	Mode	Address	Data
Memory read mode	1 + n	Write	Х	H'00	Read	RA	Dout
Auto-program mode	129	Write	Х	H'40	Write	PA	Din
Auto-erase mode	2	Write	Χ	H'20	Write	X	H'20
Status read mode	2	Write	Х	H'71	Write	Х	H'71

Legend:

RA: Read address
PA: Program address

Notes: 1. In auto-program mode, 129 cycles are required for command writing by a simultaneous 128-byte write.

2. In memory read mode, the number of cycles depends on the number of address write cycles (n).

19.11.4 Memory Read Mode

- After the end of an auto-program, auto-erase, or status read operation, the command wait state
 is entered. To read memory contents, a transition must be made to memory read mode by
 means of a command write before the read is executed.
- Command writes can be performed in memory read mode, just as in the command wait state.
- Once memory read mode has been entered, consecutive reads can be performed.
- After power-on, memory read mode is entered.

Table 19.16 AC Characteristics in Memory Read Mode

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f		30	ns	

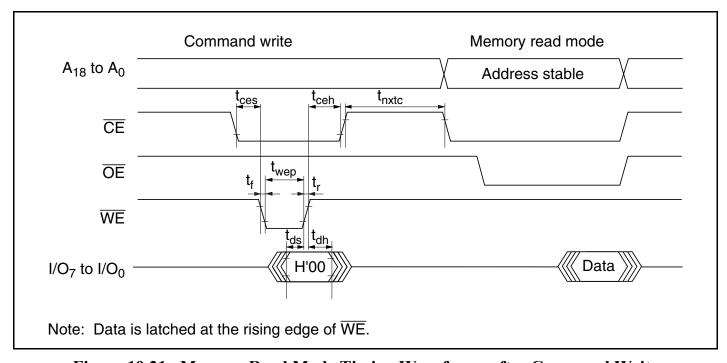


Figure 19.21 Memory Read Mode Timing Waveforms after Command Write

Table 19.17 AC Characteristics when Entering Another Mode from Memory Read Mode

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f		30	ns	

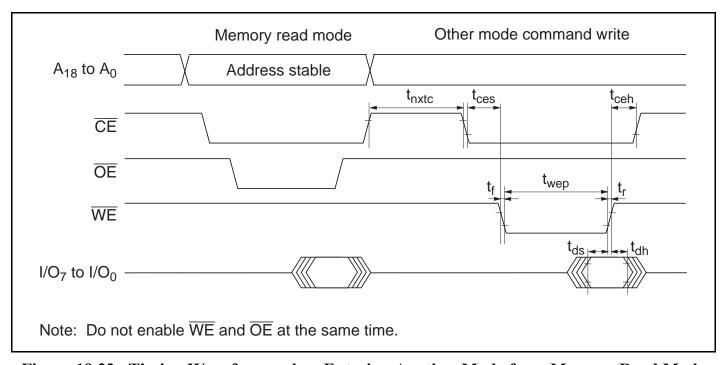


Figure 19.22 Timing Waveforms when Entering Another Mode from Memory Read Mode

Table 19.18 AC Characteristics in Memory Read Mode

Item	Symbol	Min	Max	Unit
Access time	t _{acc}	_	20	μs
CE output delay time	t _{ce}	_	150	ns
OE output delay time	t _{oe}	_	150	ns
Output disable delay time	t _{df}	_	100	ns
Data output hold time	t _{oh}	5	_	ns

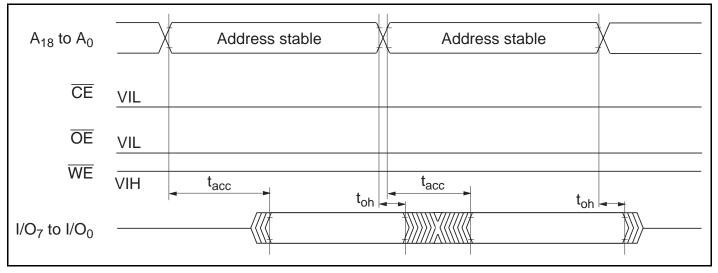


Figure 19.23 Timing Waveforms for CE/OE Enable State Read

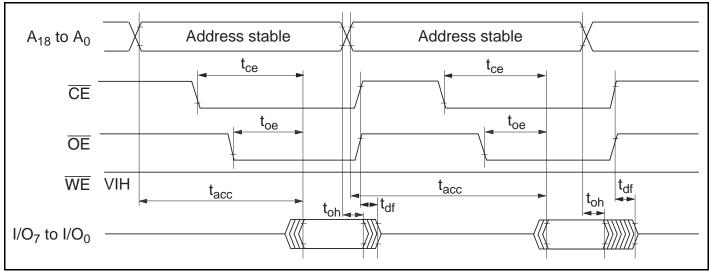


Figure 19.24 Timing Waveforms for CE/OE Clocked Read

19.11.5 Auto-Program Mode

- In auto-program mode, 128 bytes are programmed simultaneously. For this purpose, 128 consecutive byte data transfers should be performed.
- A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.
- The lower 7 bits of the transfer address must be held low. If an invalid address is input, memory programming will be started but a programming error will occur.
- Memory address transfer is executed in the second cycle (figure 19.25). Do not perform transfer later than the second cycle.
- Do not perform a command write during a programming operation.
- Perform one auto-programming operation for a 128-byte block for each address. One or more additional programming operations cannot be carried out on address blocks that have already been programmed.
- Confirm normal end of auto-programming by checking I/O₆. Alternatively, status read mode can also be used for this purpose (the I/O₇ status polling pin is used to identify the end of an auto-program operation).
- Status polling I/O₆ and I/O₇ information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling \overline{CE} and \overline{OE} .

AC Characteristics

Table 19.19 AC Characteristics in Auto-Program Mode

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
Status polling start time	t _{wsts}	1	_	ms	
Status polling access time	t _{spa}		150	ns	
Address setup time	t _{as}	0	_	ns	
Address hold time	t _{ah}	60	_	ns	
Memory write time	t _{write}	1	3000	ms	
WE rise time	t _r		30	ns	
WE fall time	t _f		30	ns	

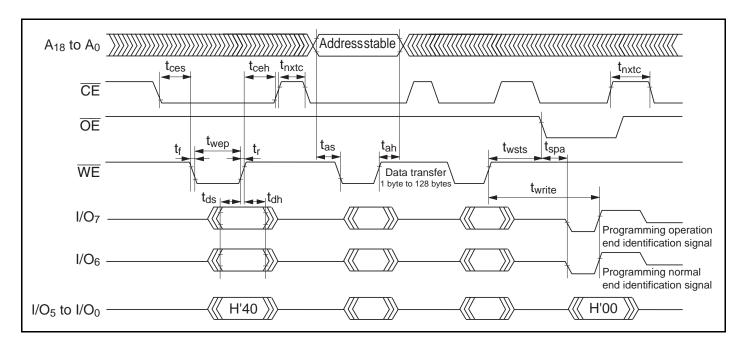


Figure 19.25 Auto-Program Mode Timing Waveforms

19.11.6 Auto-Erase Mode

- Auto-erase mode supports only total memory erasing.
- Do not perform a command write during auto-erasing.
- Confirm normal end of auto-erasing by checking I/O₆. Alternatively, status read mode can also be used for this purpose (the I/O₇ status polling pin is used to identify the end of an auto-erase operation).
- Status polling I/O₆ and I/O₇ pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling \overline{CE} and \overline{OE} .

AC Characteristics

Table 19.20 AC Characteristics in Auto-Erase Mode

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t_{wep}	70	_	ns	
Status polling start time	t _{ests}	1	_	ms	
Status polling access time	t _{spa}	_	150	ns	
Memory erase time	t _{erase}	100	40000	ms	
WE rise time	t _r	_	30	ns	
WE fall time	t _f	_	30	ns	

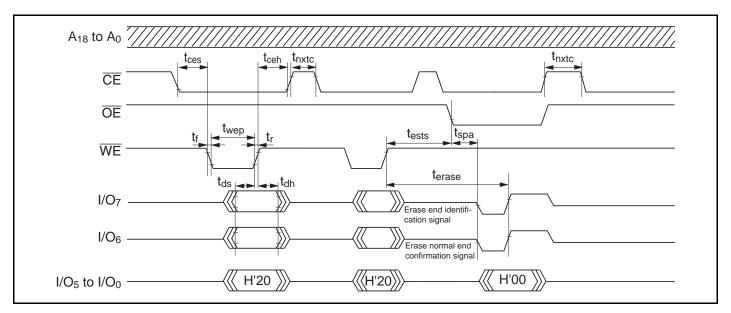


Figure 19.26 Auto-Erase Mode Timing Waveforms

19.11.7 Status Read Mode

- Status read mode is used to identify what type of abnormal end has occurred. Use this mode when an abnormal end occurs in auto-program mode or auto-erase mode.
- The return code is retained until a command write for other than status read mode is performed.

Table 19.21 AC Characteristics in Status Read Mode

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0		ns	
CE setup time	t _{ces}	0		ns	
Data hold time	t _{dh}	50		ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70		ns	
OE output delay time	t _{oe}	_	150	ns	
Disable delay time	t _{df}	_	100	ns	
CE output delay time	t _{ce}	_	150	ns	
WE rise time	tr	_	30	ns	
WE fall time	t _f	_	30	ns	

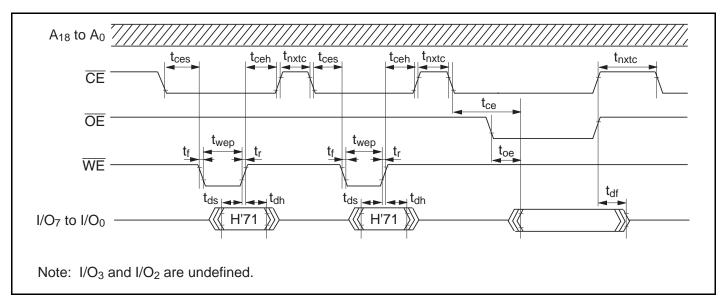


Figure 19.27 Status Read Mode Timing Waveforms

Table 19.22 Status Read Mode Return Commands

Pin Name	I/O ₇	I/O ₆	I/O ₅	I/O ₄	I/O ₃	I/O ₂	I/O ₁	I/O ₀
Attribute	Normal end identification	Command error	Program- ming error	Erase error	_	_	Program- ming or erase count exceeded	Effective address error
Initial value	0	0	0	0	0	0	0	0
Indications	Normal end: 0	Command error: 1	Program- ming	Erase error: 1	_		Count exceeded: 1	Effective address
	Abnormal end: 1	Otherwise: 0	error: 1 Otherwise: 0	Otherwise: 0			Otherwise: 0	error: 1 Otherwise: 0

Note: I/O_3 and I/O_2 are undefined.

19.11.8 Status Polling

- The I/O_7 status polling flag indicates the operating status in auto-program or auto-erase mode.
- The I/O₆ status polling flag indicates a normal or abnormal end in auto-program or auto-erase mode.

Table 19.23 Status Polling Output Truth Table

Pin Names	Internal Operation in Progress	Abnormal End	_	Normal End
I/O ₇	0	1	0	1
I/O ₆	0	0	1	1
I/O ₀ to I/O ₅	0	0	0	0

19.11.9 PROM Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the PROM mode setup period. After the PROM mode setup time, a transition is made to memory read mode.

Table 19.24 Command Wait State Transition Time Specifications

Item	Symbol	Min	Max	Unit
Standby release (oscillation stabilization time)	t _{osc1}	30	_	ms
PROM mode setup time	t _{bmv}	10		ms
V _{CC} hold time	t _{dwn}	0		ms

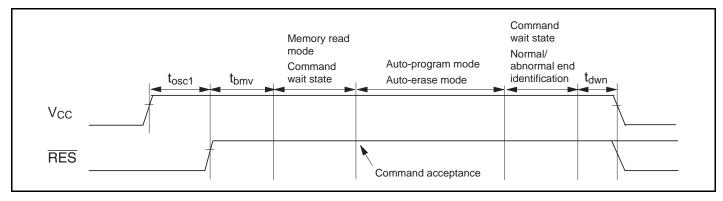


Figure 19.28 Oscillation Stabilization Time, PROM Mode Setup Time, and Power Supply Fall Sequence

19.11.10 Notes on Memory Programming

- When programming addresses which have previously been programmed, carry out autoerasing before auto-programming.
- When performing programming using PROM mode on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- Notes: 1. The flash memory is initially in the erased state when the device is shipped by Renesas Technology. For other chips for which the erasure history is unknown, it is recommended that auto-erasing be executed to check and supplement the initialization (erase) level.
 - 2. Auto-programming should be performed once only on the same address block. Additional programming cannot be carried out on address blocks that have already been programmed.

19.12 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and PROM mode are summarized below.

Use the specified voltages and timing for programming and erasing: Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas microcomputer device type with 512-kbyte on-chip flash memory (FZTAT512V3A).

Do not select the HN27C4096 setting for the PROM programmer, and only use the specified socket adapter. Failure to observe these points may result in damage to the device.

Powering on and off: When applying or disconnecting V_{CC} power, fix the \overline{RES} pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

Use the recommended algorithm when programming and erasing flash memory: The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

Do not set or clear the SWE bit during execution of a program in flash memory: Wait for at least 100 µs after clearing the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten, but when SWE = 1, flash memory can only be read in program-verify or erase-verify mode. Access flash memory only for verify operations (verification during programming/erasing). Also, do not clear the SWE bit during programming, erasing, or verifying.

Similarly, when using the RAM emulation function the SWE bit must be cleared before executing a program or reading data in flash memory.

However, the RAM area overlapping flash memory space can be read and written to regardless of whether the SWE bit is set or cleared.

Do not use interrupts while flash memory is being programmed or erased: When flash memory is programmed or erased, all interrupt requests, including NMI, should be disabled to give priority to program/erase operations.

Do not perform additional programming. Erase the memory before reprogramming: In onboard programming, perform only one programming operation on a 128-byte programming unit block. In PROM mode, too, perform only one programming operation on a 128-byte programming unit block. Programming should be carried out with the entire programming unit block erased.

Before programming, check that the chip is correctly mounted in the PROM programmer: Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.

Do not touch the socket adapter or chip during programming: Touching either of these can cause contact faults and write errors.

REJ09B0245-0400

Rev.4.00 Sep. 07, 2007 Page 788 of 1210

19.13 Overview of Flash Memory (H8S/2338 F-ZTAT)

19.13.1 Features

The H8S/2338 F-ZTAT has 256 kbytes of on-chip flash memory. The features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 128 bytes at a time. Erasing is performed by block erase (in single-block units). To erase the entire flash memory, the individual blocks must be erased sequentially. Block erasing can be performed as required on 4-kbyte, 32-kbyte, and 64-kbyte blocks.

• Programming/erase times

The flash memory programming time is 10.0 ms (typ.) for simultaneous 128-byte programming, equivalent to 78 µs (typ.) per byte, and the erase time is 50 ms (typ.).

Reprogramming capability

The flash memory can be reprogrammed min. 100 times.

On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

With data transfer in boot mode, the bit rate of the chip can be automatically adjusted to match the transfer bit rate of the host.

• Flash memory emulation by RAM

Part of the RAM area can be overlapped onto flash memory, to emulate flash memory updates in real time.

Protect modes

There are three protect modes, hardware, software, and error protect, which allow protected status to be designated for flash memory program/erase/verify operations.

PROM mode

Flash memory can be programmed/erased in PROM mode, using a PROM programmer, as well as in on-board programming mode.

19.13.2 Overview

Block Diagram

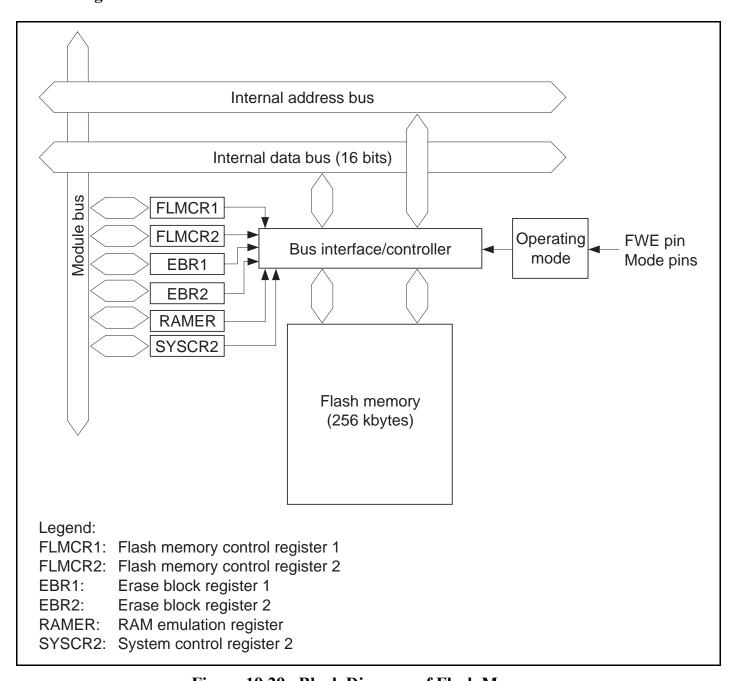
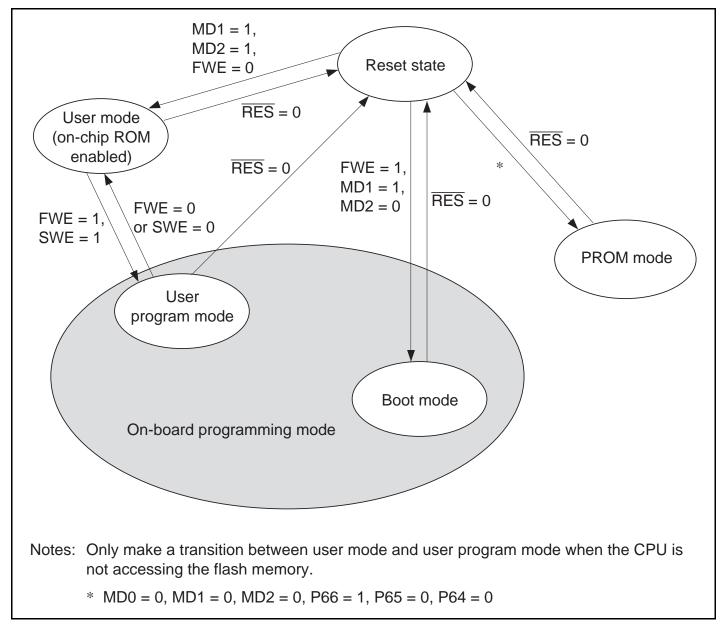


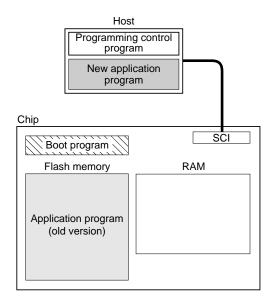
Figure 19.29 Block Diagram of Flash Memory

19.13.3 Flash Memory Operating Modes

Mode Transitions: When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, the chip enters one of the operating modes shown in figure 19.30. In user mode, flash memory can be read but not programmed or erased.

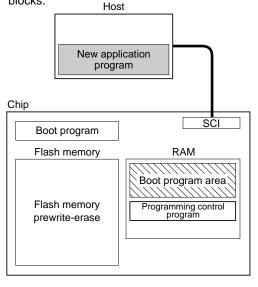
Flash memory can be programmed and erased in boot mode, user program mode, and PROM mode.



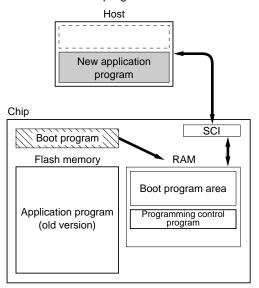

Figure 19.30 Flash Memory Mode Transitions

19.13.4 On-Board Programming Modes

Boot mode


1. Initial state

The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host.

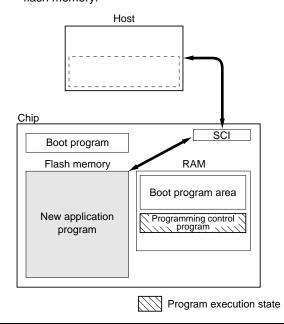
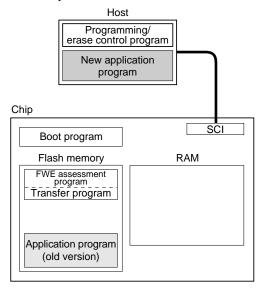


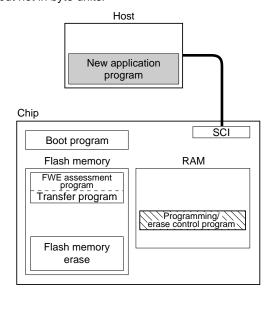
3. Flash memory initialization

The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, entire flash memory erasure is performed, without regard to blocks.

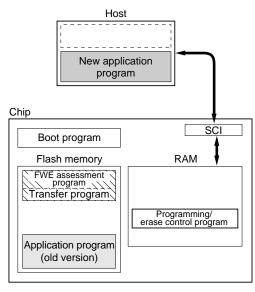
2. Programming control program transfer When boot mode is entered, the boot program in the chip (originally incorporated in the chip) is started and the programming control program in the host is transferred to RAM via SCI communication. The boot program required for flash memory erasing is automatically transferred to the RAM boot program area.

4. Writing new application program
The programming control program transferred
from the host to RAM is executed, and the new
application program in the host is written into the
flash memory.


Figure 19.31 Boot Mode

User program mode


- 1. Initial state
 - (1) The FWE assessment program that confirms that the FWE pin has been driven high, and (2) the program that will transfer the programming/ erase control program to on-chip RAM should be written into the flash memory by the user beforehand. (3) The programming/erase control program should be prepared in the host or in the flash memory.

3. Flash memory initialization
The programming/erase program in RAM is
executed, and the flash memory is initialized (to
H'FF). Erasing can be performed in block units,
but not in byte units.

 Programming/erase control program transfer When the FWE pin is driven high, user software confirms this fact, executes the transfer program in the flash memory, and transfers the programming/erase control program to RAM.

4. Writing new application program

Next, the new application program in the host is
written into the erased flash memory blocks. Do
not write to unerased blocks.

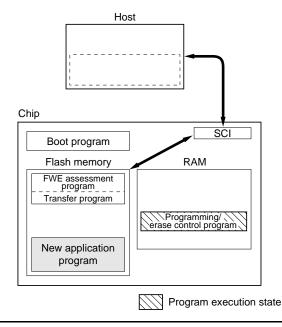


Figure 19.32 User Program Mode (Example)

19.13.5 Flash Memory Emulation in RAM

Reading Overlap RAM Data in User Mode and User Program Mode: Emulation should be performed in user mode or user program mode. When the emulation block set in RAMER is accessed while the emulation function is being executed, data written in the overlap RAM is read.

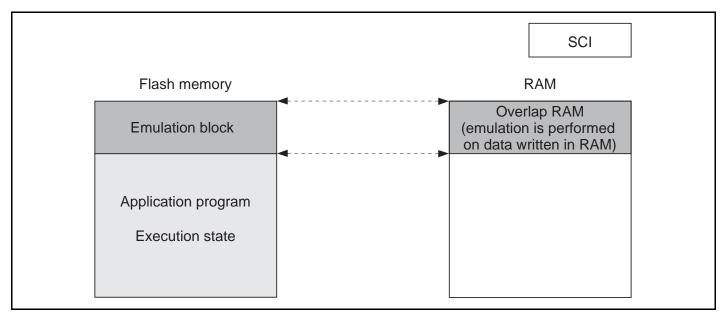


Figure 19.33 Reading Overlap RAM Data in User Mode and User Program Mode

RENESAS

Writing Overlap RAM Data in User Program Mode: When overlap RAM data is confirmed, the RAMS bit is cleared, RAM overlap is released, and writes should actually be performed to the flash memory.

When the programming control program is transferred to RAM, ensure that the transfer destination and the overlap RAM do not overlap, as this will cause data in the overlap RAM to be rewritten.

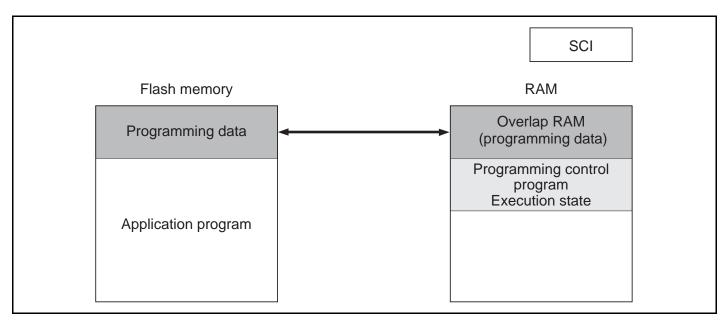


Figure 19.34 Writing Overlap RAM Data in User Program Mode

19.13.6 Differences between Boot Mode and User Program Mode

Table 19.25 Differnces between Boot Mode and User Program Mode

	Boot Mode	User Program Mode	
Entire memory erase	Yes	Yes	
Block erase	No	Yes	
Programming control program*	Program/program-verify	Erase/erase-verify/program/ program-verify/emulation	

Note: * To be provided by the user, in accordance with the recommended algorithm.

19.13.7 Block Configuration

On-chip 256-kbyte flash memory is divided into three 64-kbyte blocks, one 32-kbyte block, and eight 4-kbyte blocks.

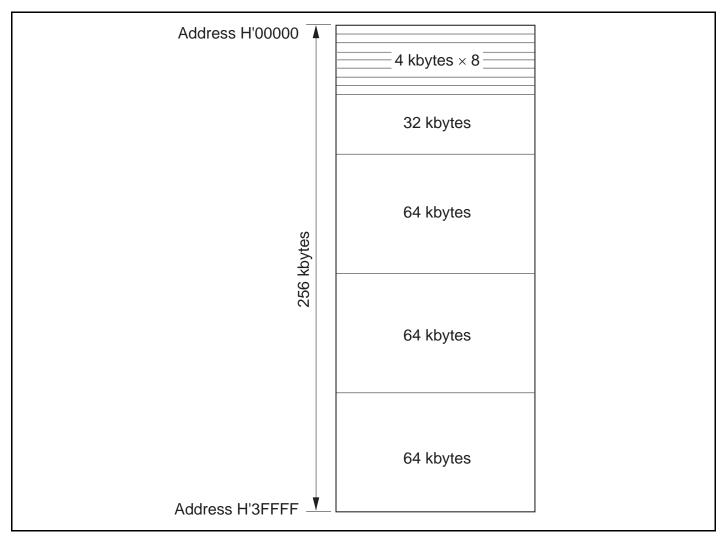


Figure 19.35 Flash Memory Block Configuration

19.13.8 Pin Configuration

The flash memory is controlled by means of the pins shown in tables 19.26.

Table 19.26 Flash Memory Pins

Pin Name	Abbreviation	I/O	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash program/erase protection by hardware
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port 64	P64	Input	Sets MCU operating mode in PROM mode
Port 65	P65	Input	Sets MCU operating mode in PROM mode
Port 66	P66	Input	Sets MCU operating mode in PROM mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

19.13.9 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 19.27. In order to access the FLMCR1, FLMCR2, EBR1, and EBR2 registers, the FLSHE bit must be set to 1 in SYSCR2 (except RAMER).

Table 19.27 Flash Memory Registers

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*6	R/W*3	H'00/H'80*4	H'FFC8*2
Flash memory control register 2	FLMCR2*6	R/W*3	H'00	H'FFC9*2
Erase block register 1	EBR1*6	R/W*3	H'00 ^{*5}	H'FFCA*2
Erase block register 2	EBR2*6	R/W*3	H'00 ^{*5}	H'FFCB*2
System control register 2	SYSCR2*7	R/W	H'00	H'FF42
RAM emulation register	RAMER	R/W	H'00	H'FEDB

Notes: 1. Lower 16 bits of the address.

- 2. Flash memory. Registers selection is performed by the FLSHE bit in system control register 2 (SYSCR2).
- 3. In modes in which the on-chip flash memory is disabled, a read will return H'00, and writes are invalid. Writes are also disabled when the FWE bit is cleared to 0 in FLMCR1.
- 4. When a high level is input to the FWE pin, the initial value is H'80.
- 5. When a low level is input to the FWE pin, or if a high level is input and the SWE bit in FLMCR1 is not set, these registers are initialized to H'00.
- 6. FLMCR1, FLMCR2, EBR1, and EBR2 are 8-bit registers. Only byte accesses are valid for these registers, the access requiring 2 states.
- 7. The SYSCR2 register can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be modified.

RENESAS

19.14 Register Descriptions

19.14.1 Flash Memory Control Register 1 (FLMCR1)

Bit	:	7	6	5	4	3	2	1	0
		FWE	SWE	ESU	PSU	EV	PV	Е	Р
Initial va	alue :	1/0	0	0	0	0	0	0	0
R/W	:	R	R/W						

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode is entered by setting SWE to 1 when FWE = 1, then setting the EV or PV bit. Program mode is entered by setting SWE to 1 when FWE = 1, then setting the PSU bit, and finally setting the P bit. Erase mode is entered by setting SWE to 1 when FWE = 1, then setting the ESU bit, and finally setting the E bit. FLMCR1 is initialized by a reset, and in hardware standby mode and software standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes to the SWE bit in FLMCR1 are enabled only when FWE = 1; writes to bits ESU, PSU, EV, and PV only when FWE = 1 and SWE = 1; writes to the E bit only when FWE = 1, SWE = 1, and ESU = 1; and writes to the P bit only when FWE = 1, SWE = 1, and PSU = 1.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing.

Bit 7 FWE	Description
0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

Bit 6—Software Write Enable Bit (SWE): Enables or disables flash memory programming and erasing. This bit should be set when setting FLMCR1 bits 5 to 0, EBR1 bits 7 to 0, and EBR2 bits 3 to 0.

When SWE = 1, the flash memory can only be read in program-verify or erase-verify mode.

Bit 6 SWE	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	
	[Setting condition]	
	When FWE = 1	

Bit 5—Erase Setup Bit (ESU): Prepares for a transition to erase mode. Do not set the SWE, PSU, EV, PV, E, or P bit at the same time.

ESU	Description	
0	Erase setup cleared	(Initial value)
1	Erase setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 4—Program Setup Bit (PSU): Prepares for a transition to program mode. Do not set the SWE, ESU, EV, PV, E, or P bit at the same time.

Bit 4 PSU	Description	
0	Program setup cleared	(Initial value)
1	Program setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 3—Erase-Verify (EV): Selects erase-verify mode transition or clearing. Do not set the SWE, ESU, PSU, PV, E, or P bit at the same time.

Bit 3 EV	Description	
0	Erase-verify mode cleared	(Initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 2—Program-Verify (PV): Selects program-verify mode transition or clearing. Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.

PV	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 1—Erase (E): Selects erase mode transition or clearing. Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.

Bit 1

E	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and ESU = 1	

Bit 0—Program (P): Selects program mode transition or clearing. Do not set the SWE, PSU, ESU, EV, PV, or E bit at the same time.

Bit 0

Р	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and PSU = 1	

19.14.2 Flash Memory Control Register 2 (FLMCR2)

Bit	:	7	6	5	4	3	2	1	0	
		FLER		_	_	_		_	_	Ī
Initial val	ue :	0	0	0	0	0	0	0	0	_
R/W	:	R	_	_	_	_	_	_	_	

FLMCR2 is an 8-bit register that controls the flash memory operating modes. FLMCR2 is initialized to H'00 by a reset, and in hardware standby mode and software standby mode.

When on-chip flash memory is disabled, a read will return H'00 and writes are invalid.

Bit 7—Flash Memory Error (FLER): Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

Bit 7 FLER	Description	
0	Flash memory is operating normally	(Initial value)
	Flash memory program/erase protection (error protection) is disabled	
	[Clearing condition]	
	Reset or hardware standby mode	
1	An error has occurred during flash memory programming/erasing	
	Flash memory program/erase protection (error protection) is enabled	
	[Setting condition]	
	See section 19.17.3, Error Protection	

Bits 6 to 0—Reserved: These bits cannot be modified and are always read as 0.

19.14.3 Erase Block Register 1 (EBR1)

Bit	:	7	6	5	4	3	2	1	0
EBR1		EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value) : ·	0	0	0	0	0	0	0	0
R/W	:	R/W							

EBR1 is an 8-bit register that specifies the flash memory erase area block by block. EBR1 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin and the SWE bit in FLMCR1 is not set. When a bit in EBR1 is set, the corresponding block can be erased. Other blocks are erase-protected. Set only one bit in EBR1 and EBR2 together (setting more than one bit will automatically clear all EBR1 and EBR2 bits to 0). When on-chip flash memory is disabled, a read will return H'00 and writes are invalid.

The flash memory block configuration is shown in table 19.28.

19.14.4 Erase Block Registers 2 (EBR2)

Bit	:	7	6	5	4	3	2	1	0
EBR2		_		_		EB11	EB10	EB9	EB8
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

EBR2 is an 8-bit register that specifies the flash memory erase area block by block. EBR2 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin and the SWE bit in FLMCR1 is not set. When a bit in EBR2 is set, the corresponding block can be erased. Other blocks are erase-protected. Set only one bit in EBR2 and EBR1 together (setting more than one bit will automatically clear all EBR1 and EBR2 bits to 0). Bits 7 to 4 are reserved; they are always read as 0 and cannot be modified. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 19.28.

Table 19.28 Flash Memory Erase Blocks

Block (Size)	Address
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF
EB11 (64 kbytes)	H'030000 to H'03FFFF

19.14.5 System Control Register 2 (SYSCR2)

Bit :	:	7	6	5	4	3	2	1	0
		_	_	_		FLSHE	_	_	
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	_	_	_

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset and in hardware standby mode.

SYSCR2 can only be used in the F-ZTAT versions. In the mask ROM versions this register will return an undefined value if read, and cannot be modified.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). Writing 1 to the FLSHE bit enables the flash memory control registers to be read and written to. Clearing FLSHE to 0 designates these registers as unselected (the register contents are retained).

Bit 3 FLSHE	Description
0	Flash control registers are not selected for addresses H'FFFFC8 to H'FFFCB (Initial value)
1	Flash control registers are selected for addresses H'FFFFC8 to H'FFFFCB

Bits 2 to 0—Reserved: These bits cannot be modified and are always read as 0.

19.14.6 RAM Emulation Register (RAMER)

Bit	:	7	6	5	4	3	2	1	0
		_		_		RAMS	RAM2	RAM1	RAM0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 19.29. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory blocks are program/erase-protected.

Bit 3 RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection (RAM2 to RAM0): These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM. (See table 19.29.)

Table 19.29 Flash Memory Area Divisions

RAM Area	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFDC00 to H'FFEBFF	RAM area, 4 kbytes	0	*	*	*
H'000000 to H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000 to H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000 to H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000 to H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000 to H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000 to H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1

RENESAS

*: Don't care

19.15 On-Board Programming Modes

When pins are set to on-board programming mode, program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 19.30. For a diagram of the transitions to the various flash memory modes, see figure 19.30.

Table 19.30 Setting On-Board Programming Modes

	Mode	Pins				
MCU Mode	CPU Operating Mode	FWE	MD2	MD1	MD0	
Boot mode	Advanced expanded mode with on-chip ROM enabled	1	0	1	0	
	Advanced single-chip mode	_			1	
User program mode*	Advanced expanded mode with on-chip ROM enabled	1	1	1	0	
	Advanced single-chip mode	_			1	

Note: * Normally, user mode should be used. Set the FWE pin to 1 to make a transition to user program mode before performing a program/erase/verify operation.

19.15.1 **Boot Mode**

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The channel 1 SCI to be used is set to asynchronous mode.

When a reset-start is executed after the H8S/2338 F-ZTAT chip's pins have been set to boot mode, the boot program built into the chip is started and the programming control program prepared in the host is serially transmitted to the chip via the SCI. In the chip, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 19.36, and the boot program mode execution procedure in figure 19.37.

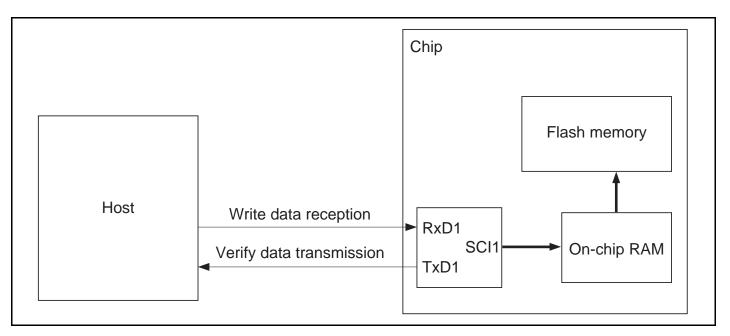
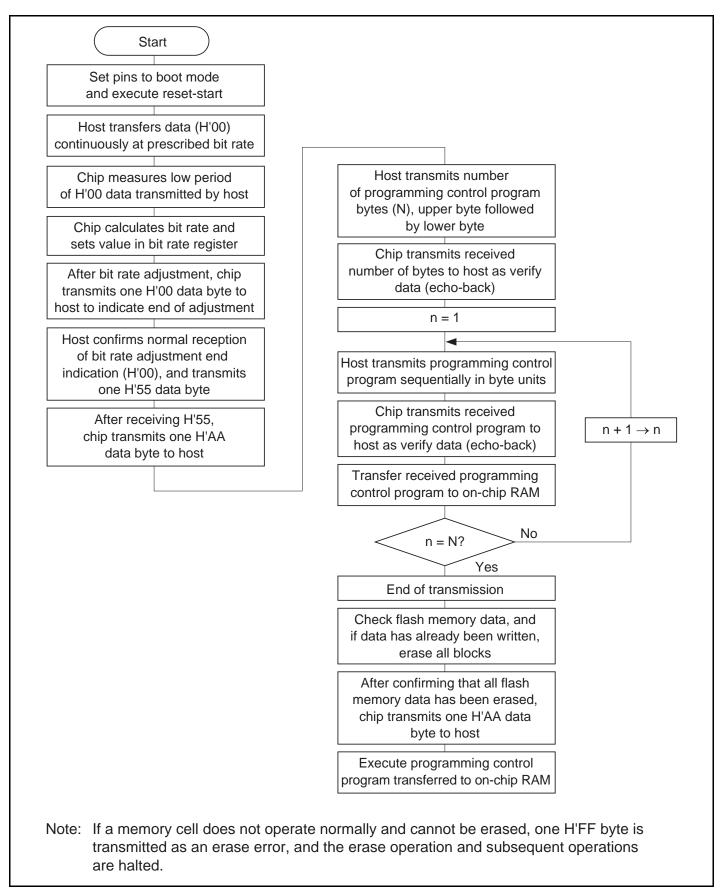



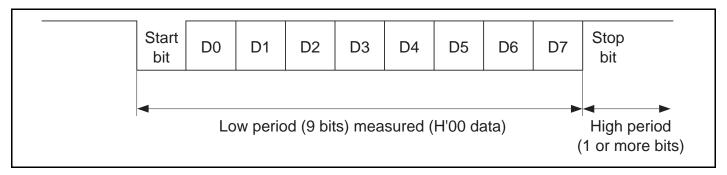
Figure 19.36 System Configuration in Boot Mode

RENESAS

Figure 19.37 Boot Mode Execution Procedure

Automatic SCI Bit Rate Adjustment: When boot mode is initiated, the H8S/2338 F-ZTAT chip measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The chip calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the chip's system clock frequency, there will be a discrepancy between the bit rates of the host and the chip. To ensure correct SCI operation, the host's transfer bit rate should be set to 9,600 or 19,200 bps.

Table 19.31 shows typical host transfer bit rates and system clock frequencies for which automatic adjustment of the MCU's bit rate is possible. The boot program should be executed within this system clock range.



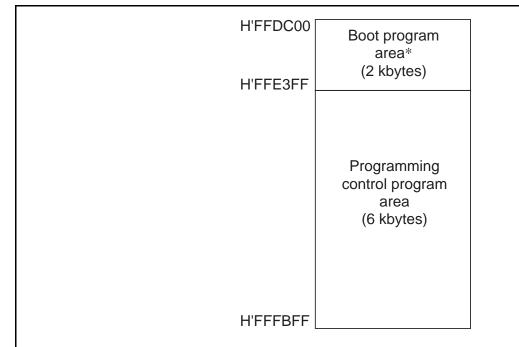

Figure 19.38 Automatic SCI Bit Rate Adjustment

Table 19.31 System Clock Frequencies for which Automatic Adjustment of H8S/2338 F-ZTAT Bit Rate is Possible

Host Bit Rate	System Clock Frequencies for which Automatic Adjustment of H8S/2338 F-ZTAT Bit Rate is Possible				
19,200 bps	16 MHz to 25 MHz				
9,600 bps	8 MHz to 25 MHz				

RENESAS

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the 2-kbyte area from H'FFDC00 to H'FFE3FF is reserved for use by the boot program, as shown in figure 19.39. The area to which the programming control program is transferred is H'FFE400 to H'FFFBFF. The boot program area can be used when the programming control program transferred into RAM enters the execution state. A stack area should be set up as required.

Note: * The boot program area cannot be used until a transition is made to the execution state for the programming control program transferred to RAM. Note that the boot program remains stored in this area after a branch is made to the programming control program.

Figure 19.39 RAM Areas in Boot Mode

Notes on Use of Boot Mode

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes approximately 100 states before the chip is ready to measure the low-level period of the RxD1 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all flash memory blocks are erased. Boot mode is for use when user program mode is unavailable, such as the first time on-board programming is performed, or if the program activated in user program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.

- Before branching to the programming control program (RAM area H'FFE400 to H'FFFBFF), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P31DDR = 1, P31DR = 1). The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

 Initial settings must also be made for the other on-chip registers.
- Boot mode can be entered by making the pin settings shown in table 19.30 and executing a reset-start.
 - Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the FWE pin and mode pins, and executing reset release*1. Boot mode can also be cleared by a WDT overflow reset.
 - Do not change the mode pin input levels in boot mode, and do not drive the FWE pin low while the boot program is being executed or while flash memory is being programmed or erased*2.
- If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, HWR) will change according to the change in the microcomputer's operating mode*3.

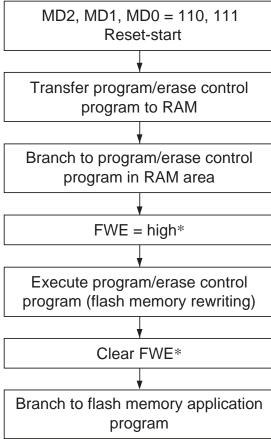
 Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.
- Notes: 1. Mode pins and FWE pin input must satisfy the mode programming setup time (t_{MDS} = 200 ns) with respect to the reset release timing, as shown in figures 19.56 to 19.58.
 - 2. For further information on FWE application and disconnection, see section 19.21, Flash Memory Programming and Erasing Precautions.

RENESAS

3. See section 9, I/O Ports.

19.15.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means of FWE control and supply of programming data, and storing a program/erase control program in part of the program area as necessary.


To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

The flash memory itself cannot be read while the SWE bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory. When the program is located in external memory, an instruction for programming the flash memory and the following instruction should be located in on-chip RAM.

Figure 19.40 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

Write the FWE assessment program and transfer program (and the program/erase control program if necessary) beforehand

Notes: Do not apply a constant high level to the FWE pin. Apply a high level to the FWE pin only when the flash memory is programmed or erased. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

* For further information on FWE application and disconnection, see section 19.21, Flash Memory Programming and Erasing Precautions.

Figure 19.40 User Program Mode Execution Procedure

RENESAS

19.16 Programming/Erasing Flash Memory

In the on-board programming modes, flash memory programming and erasing is performed by software, using the CPU. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transition to these modes can be made for the on-chip ROM area by setting the PSU, ESU, P, E, PV, and EV bits in FLMCR1.

The flash memory cannot be read while being programmed or erased. Therefore, the program that controls flash memory programming/erasing (the programming control program) should be located and executed in on-chip RAM or external memory. When the program is located in external memory, an instruction for programming the flash memory and the following instruction should be located in on-chip RAM. The DMAC or DTC should not be activated before or after the instruction for programming the flash memory is executed.

- Notes: 1. Operation is not guaranteed if setting/resetting of the SWE, ESU, PSU, EV, PV, E, and P bits in FLMCR1 is executed by a program in flash memory.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Perform programming in the erased state. Do not perform additional programming on previously programmed addresses.

19.16.1 Program Mode

Follow the procedure shown in the program/program-verify flowchart in figure 19.41 to write data or programs to flash memory. Performing program operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

For the wait times $(x, y, z1, z2, z3, \alpha, \beta, \gamma, \epsilon, \eta, \theta)$ after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N), see section 22.2.6, Flash Memory Characteristics.

Following the elapse of (x) µs or more after the SWE bit is set to 1 in flash memory control register 1 (FLMCR1), 128-byte program data is stored in the program data area and reprogram data area, and the 128-byte data in the reprogram data area is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 or H'80. 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer is set to prevent overprogramming in the event of program runaway, etc. Set a value greater than $(y + z2 + \alpha + \beta)$ µs as the WDT overflow period. After this, preparation for program mode (program setup) is carried out by setting the PSU bit in FLMCR1, and after the elapse of (y) µs or more, the operating mode is switched to program mode by setting the P bit in FLMCR1. The time during which the P bit is set is the flash memory programming time. Set the programming time according to the table in the programming flowchart.

19.16.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of a given programming time, the programming mode is exited (the P bit in FLMCR1 is cleared to 0, then the PSU bit is cleared to 0 at least (α) μ s later). Next, the watchdog timer is cleared after the elapse of (β) μ s or more, and the operating mode is switched to programverify mode by setting the PV bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (γ) μ s or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (ϵ) μ s after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogram data is computed (see figure 19.41) and transferred to the reprogram data area. After 128 bytes of data have been verified, exit program-verify mode, wait for at least (η) μ s, then clear the SWE bit in FLMCR1 to 0, and wait again for at least (θ) μ s. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence as before. However, ensure that the program/program-verify sequence is not repeated more than (N) times on the same bits.

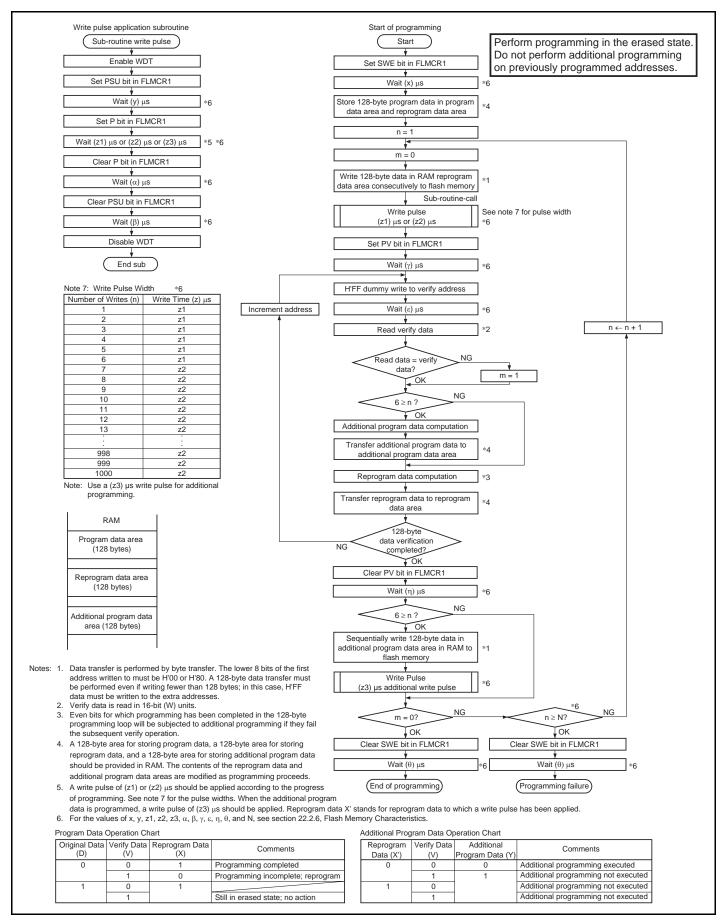


Figure 19.41 Program/Program-Verify Flowchart

19.16.3 Erase Mode

Flash memory erasing should be performed block by block following the procedure shown in the erase/erase-verify flowchart (single-block erase) shown in figure 19.42.

For the wait times $(x, y, z, \alpha, \beta, \gamma, \varepsilon, \eta, \theta)$ after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N), see section 22.2.6, Flash Memory Characteristics.

To perform data or program erasure, make a 1 bit setting for the flash memory area to be erased in erase block register 1 or 2 (EBR1 or EBR2) at least (x) μ s after setting the SWE bit to 1 in flash memory control register 1 (FLMCR1). Next, the watchdog timer is set to prevent overerasing in the event of program runaway, etc. Set a value greater than $(y + z + \alpha + \beta)$ ms as the WDT overflow period. After this, preparation for erase mode (erase setup) is carried out by setting the ESU bit in FLMCR1, and after the elapse of (y) μ s or more, the operating mode is switched to erase mode by setting the E bit in FLMCR1. The time during which the E bit is set is the flash memory erase time. Ensure that the erase time does not exceed (z) ms.

Note: With flash memory erasing, prewriting (setting all data in the memory to be erased to 0) is not necessary before starting the erase procedure.

19.16.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the erase time, erase mode is exited (the E bit in FLMCR1 is cleared to 0, then the ESU bit in FLMCR1 is cleared to 0 at least (α) μ s later), the watchdog timer is cleared after the elapse of (β) μ s or more, and the operating mode is switched to erase-verify mode by setting the EV bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (γ) μ s or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (ϵ) μ s after the dummy write before performing this read operation. If the read data has been erased (all 1), a dummy write is performed to the next address, and erase-verify is performed. If the read data has not been erased, set erase mode again, and repeat the erase/erase-verify sequence in the same way. However, ensure that the erase/erase-verify sequence is not repeated more than (N) times. When verification is completed, exit erase-verify mode, and wait for at least (η) μ s. If erasure has been completed on all the erase blocks, clear the SWE bit in FLMCR1 to 0 and wait for at least (θ) μ s. If there are any unerased blocks, make a 1 bit setting for the flash memory area to be erased, and repeat the erase/erase-verify sequence in the same way.

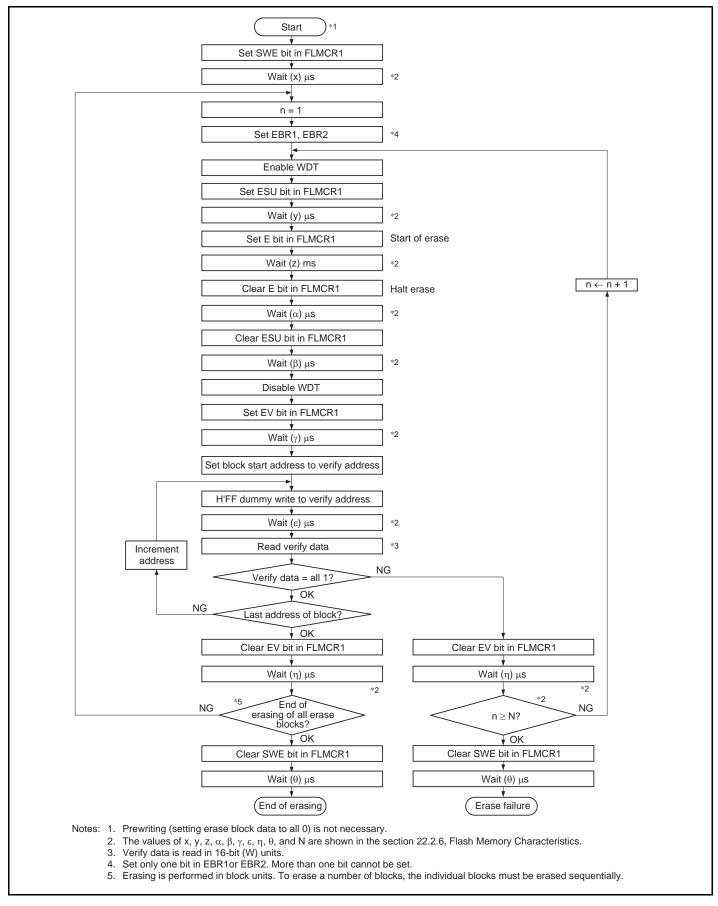


Figure 19.42 Erase/Erase-Verify Flowchart

19.17 Flash Memory Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

19.17.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Settings in flash memory control registers 1 and 2 (FLMCR1, FLMCR2) and erase block registers 1 and 2 (EBR1, EBR2) are reset. (See table 19.32.)

Table 19.32 Hardware Protection

		Functions		
Item	Description	Program	Erase	
FWE pin protection	When a low level is input to the FWE pin, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered.	Yes	Yes	
Reset/standby protection	 In a reset (including a WDT overflow reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in section 22.2.3, AC Characteristics. 	Yes	Yes	

19.17.2 Software Protection

Software protection can be implemented by setting the SWE bit in flash memory control register 1 (FLMCR1), erase block registers 1 and 2 (EBR1, EBR2), and the RAMS bit in the RAM emulation register (RAMER). When software protection is in effect, setting the P or E bit in FLMCR1 does not cause a transition to program mode or erase mode. (See table 19.33.)

Table 19.33 Software Protection

		Functions		
Item	Description	Program	Erase	
SWE bit protection	Clearing the SWE bit to 0 in FLMCR1 sets the program/erase-protected state for all blocks	Yes	Yes	
	• (Execute in on-chip RAM or external memory.)			
Block specification protection	 Erase protection can be set for individual blocks by settings in erase block registers 1 and 2 (EBR1, EBR2). 	_	Yes	
	 Setting EBR1 and EBR2 to H'00 places all blocks in the erase-protected state. 			
Emulation protection	Setting the RAMS bit to 1 in the RAM emulation register (RAMER) places all blocks in the program/erase-protected state.	Yes	Yes	

19.17.3 Error Protection

In error protection, an error is detected when MCU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the MCU malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode.

FLER bit setting conditions are as follows:

- When flash memory is read during programming/erasing (including a vector read or instruction fetch)
- Immediately after exception handling (excluding a reset) during programming/erasing
- When a SLEEP instruction (including software standby) is executed during programming/erasing
- When a bus master other than the CPU (the DMAC or DTC) has control of the bus during programming/erasing

Error protection is released only by a reset and in hardware standby mode.

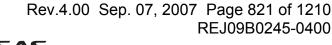
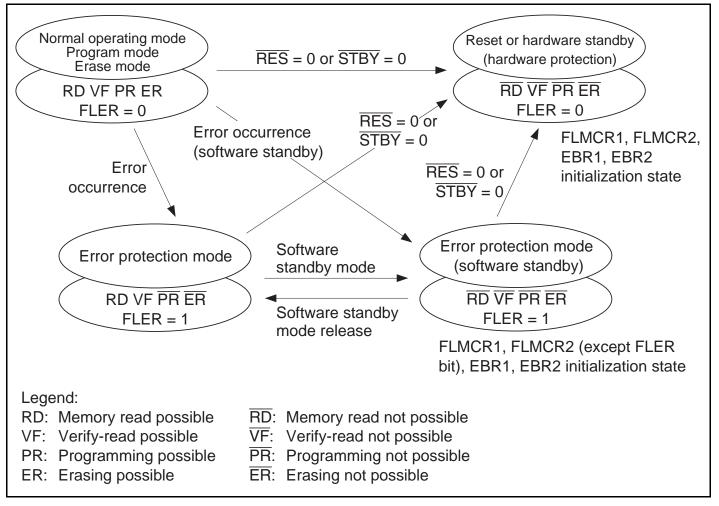



Figure 19.43 shows the flash memory state transition diagram.

Figure 19.43 Flash Memory State Transitions

19.18 Flash Memory Emulation in RAM

19.18.1 **Emulation in RAM**

Making a setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. After the RAMER setting has been made, accesses can be made from the flash memory area or the RAM area overlapping flash memory. Emulation can be performed in user mode and user program mode. Figure 19.44 shows an example of emulation of real-time flash memory programming.

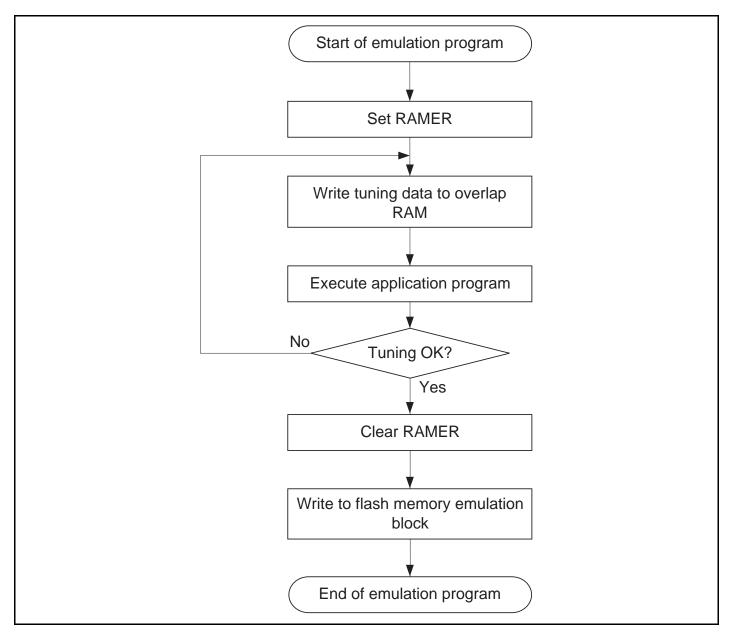


Figure 19.44 Flowchart for Flash Memory Emulation in RAM

19.18.2 RAM Overlap

An example in which flash memory block area EB1 is overlapped is shown below.

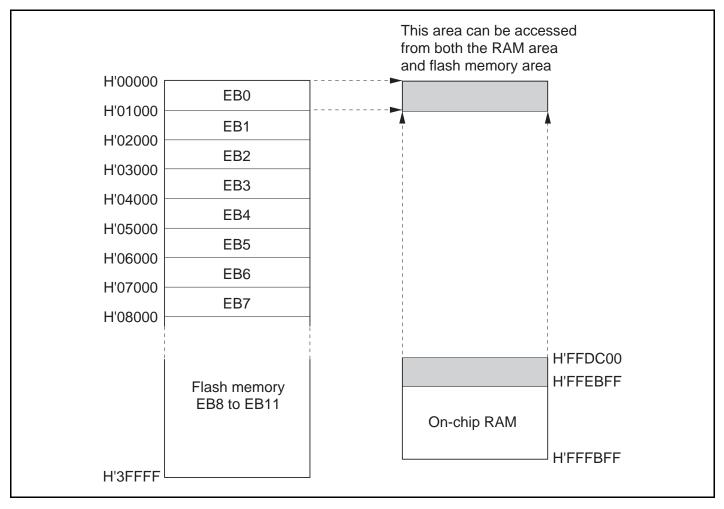


Figure 19.45 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB1 is Overlapped

- 1. Set bits RAMS, RAM2, RAM1, and RAM0 in RAMER to 1, 0, 0, 1, to overlap part of RAM onto the area (EB1) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB1).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2, RAM1, and RAM0 (emulation protection). In this state, setting the P or E bit in flash memory control register 1 (FLMCR1) will not cause a transition to program mode or erase mode. When actually programming a flash memory area, the RAMS bit should be cleared to 0.

- 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
- 3. Block area EB0 includes the vector table. When performing RAM emulation, the vector table is needed by the overlap RAM.

19.19 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including NMI input, are disabled when flash memory is being programmed or erased (when the P or E bit is set in FLMCR1), and while the boot program is executing in boot mode*1, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*2, possibly resulting in MCU runaway.
- 3. If an interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, in on-board programming mode alone there are conditions for disabling interrupts, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation. All interrupt requests, including NMI, must therefore be restricted inside and outside the MCU when programming or erasing flash memory. The NMI interrupt is also disabled in the error-protection state while the P or E bit remains set in FLMCR1.

- Notes: 1. Interrupt requests must be disabled inside and outside the MCU until the programming control program has completed programming.
 - 2. The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned).
 - If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly.

19.20 Flash Memory PROM Mode

19.20.1 PROM Mode Setting

Programs and data can be written and erased in PROM mode as well as in the on-board programming modes. In PROM mode, the on-chip ROM can be freely programmed using a PROM programmer that supports the Renesas microcomputer device type with 256-kbyte on-chip flash memory (FZTAT256V3A). Flash memory read mode, auto-program mode, auto-erase mode, and status read mode are supported with this device type. In auto-program mode, auto-erase mode, and status read mode, a status polling procedure is used, and in status read mode, detailed internal signals are output after execution of an auto-program or auto-erase operation.

Table 19.34 shows PROM mode pin settings.

Table 19.34 PROM Mode Pin Settings

Pin Names	Settings/External Circuit Connection
Mode pins: MD2, MD1, MD0	Low-level input
Mode setting pins: P66, P65, P64	High-level input to P66, low-level input to P65 and P64
FWE pin	High-level input (in auto-program and auto-erase modes)
STBY pin	High-level input (do not select hardware standby mode)
RES pin	Reset circuit
XTAL, EXTAL pins	Oscillator circuit
Other pins requiring setting: P32, P25	High-level input to P32, low-level input to P25

19.20.2 Socket Adapters and Memory Map

In PROM mode, a socket adapter is connected to the chip as shown in figure 19.47. Figure 19.46 shows the on-chip ROM memory map and figure 19.47 shows the socket adapter pin assignments.

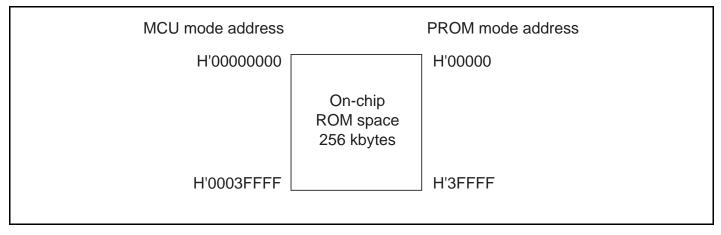


Figure 19.46 Memory Map in PROM Mode

Rev.4.00 Sep. 07, 2007 Page 827 of 1210

H8S/2338 F-2	(40-Pin Conversion)		HN27C4096HG (40 Pins)		
FP-144	Pin Name		Pin No.	Pin Name	
5	A_0	1 1	21	A ₀	
6	A ₁		22	A ₁	
7	A ₂	1	23	A ₂	
8	A ₃		24	A ₃	
10	A ₄		25	A ₄	
11	A ₅		26	A ₅	
12	A ₆		27	A ₆	
13	A ₇	1 1	28	A ₇	
14	A ₈		29	A ₈	
15	A ₉		31	A ₉	
16	A ₁₀		32	A ₁₀	
17	A ₁₁		- 33	A ₁₁	
19	A ₁₂	1	34	A ₁₂	
20	A ₁₃		35	A ₁₃	
21	A ₁₄	1	36	A ₁₄	
22	A ₁₅		37	A ₁₅	
23	A ₁₆	1 1	38	A ₁₆	
24	A ₁₇		39	A ₁₇	
25	A ₁₈	1	10	A ₁₈	
52	D ₈	1	19	I/O ₀	
53	D ₉		18	I/O ₁	
54	D ₁₀	1 1	17	I/O ₂	
55	D ₁₁	1	16	I/O ₃	
57	D ₁₂		15	I/O ₄	
58	D ₁₃		14	I/O ₅	
59	D ₁₄		13	I/O ₆	
60	D ₁₅	1	12	I/O ₇	
83	CE		2	<u>CE</u>	
84	ŌĒ	1	20	ŌĒ	
82	WE		3	WE	
97	FWE		4	FWE	
			1, 40	V _{CC}	
3, 36, 39, 61, 64, 89, 90, 91, 96, 113, 114	V _{CC}	1	11, 30	V _{SS}	
33, 31, 33, 110, 114			5, 6, 7	NC	
9, 18, 27, 37, 38, 47,			8	A ₂₀	
56, 71, 81, 94, 123,	V _{SS}		9	A ₁₉	
124, 135, 136, 137			Legend:	. 10	
00		*1	FWE: Fla	sh write enable	
88	RES	Reset circuit	I/O ₇ to I/O ₀ : Da		
92	XTAL	Oscillation circuit *2		dress input	
93	EXTAL			ip enable tout enable	
Other pins	NC (OPEN)		OE: Output enable WE: Write enable		

Figure 19.47 H8S/2338 F-ZTAT Socket Adapter Pin Assignments

19.20.3 PROM Mode Operation

Table 19.35 shows how the different operating modes are set when using PROM mode, and table 19.36 lists the commands used in PROM mode. Details of each mode are given below.

Memory Read Mode: Memory read mode supports byte reads.

Auto-Program Mode: Auto-program mode supports programming of 128 bytes at a time. Status polling is used to confirm the end of auto-programming.

Auto-Erase Mode: Auto-erase mode supports automatic erasing of the entire flash memory. Status polling is used to confirm the end of auto-erasing.

Status Read Mode: Status polling is used for auto-programming and auto-erasing, and normal termination can be confirmed by reading the I/O_6 signal. In status read mode, error information is output if an error occurs.

Table 19.35 Settings for Each Operating Mode in PROM Mode

	Pin Names						
Mode	FWE	CE	ŌĒ	WE	I/O ₇ to I/O ₀	A ₁₈ to A ₀	
Read	H or L	L	L	Н	Data output	Ain	
Output disable	H or L	L	Н	Н	Hi-Z	X	
Command write	H or L*3	L	Н	L	Data input	Ain*2	
Chip disable*1	H or L	Н	Х	Х	Hi-Z	Х	

Legend:

H: High level

L: Low level

Hi-Z: High impedance

X: Don't care

Notes: 1. Chip disable is not a standby state; internally, it is an operation state.

- 2. Ain indicates that there is also address input in auto-program mode.
- 3. For command writes when making a transition to auto-program or auto-erase mode, input a high level to the FWE pin.

Table 19.36 PROM Mode Commands

Number		1st Cycle				2nd Cycle		
Command Name	of Cycles	Mode	Address	Data	Mode	Address	Data	
Memory read mode	1 + n	Write	Х	H'00	Read	RA	Dout	
Auto-program mode	129	Write	Х	H'40	Write	PA	Din	
Auto-erase mode	2	Write	Х	H'20	Write	Χ	H'20	
Status read mode	2	Write	Х	H'71	Write	Х	H'71	

Legend:

RA: Read address
PA: Program address

Notes: 1. In auto-program mode, 129 cycles are required for command writing by a simultaneous 128-byte write.

2. In memory read mode, the number of cycles depends on the number of address write cycles (n).

19.20.4 Memory Read Mode

- After the end of an auto-program, auto-erase, or status read operation, the command wait state is entered. To read memory contents, a transition must be made to memory read mode by means of a command write before the read is executed.
- Command writes can be performed in memory read mode, just as in the command wait state.
- Once memory read mode has been entered, consecutive reads can be performed.
- After power-on, memory read mode is entered.

Table 19.37 AC Characteristics in Memory Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f	_	30	ns	

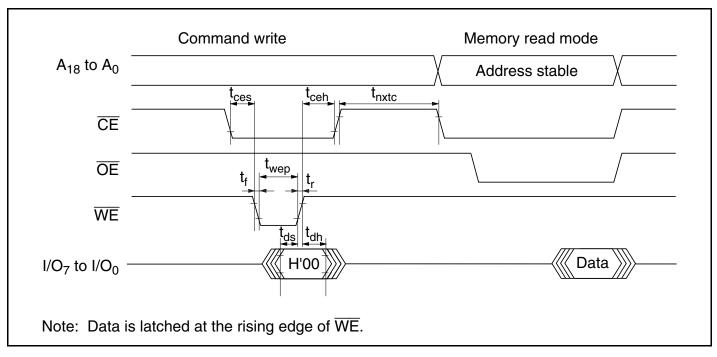


Figure 19.48 Memory Read Mode Timing Waveforms after Command Write

Rev.4.00 Sep. 07, 2007 Page 831 of 1210

Table 19.38 AC Characteristics when Entering Another Mode from Memory Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f	_	30	ns	

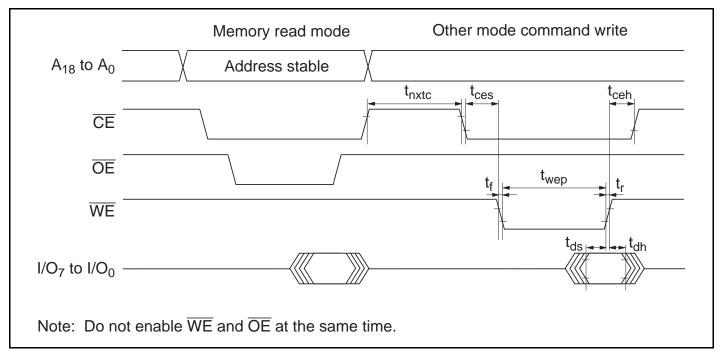


Figure 19.49 Timing Waveforms when Entering Another Mode from Memory Read Mode

Table 19.39 AC Characteristics in Memory Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	
Access time	t _{acc}	_	20	μs	
CE output delay time	t _{ce}	_	150	ns	
OE output delay time	t _{oe}	_	150	ns	
Output disable delay time	t _{df}	_	100	ns	
Data output hold time	t _{oh}	5	_	ns	

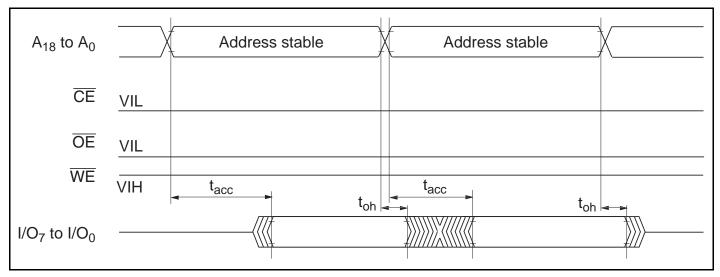


Figure 19.50 Timing Waveforms for CE/OE Enable State Read

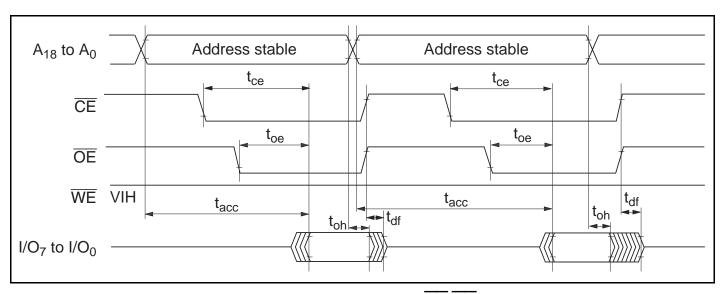


Figure 19.51 Timing Waveforms for $\overline{\text{CE}}/\overline{\text{OE}}$ Clocked Read

19.20.5 Auto-Program Mode

- In auto-program mode, 128 bytes are programmed simultaneously. For this purpose, 128 consecutive byte data transfers should be performed.
- A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.
- The lower 7 bits of the transfer address must be held low. If an invalid address is input, memory programming will be started but a programming error will occur.
- Memory address transfer is executed in the second cycle (figure 19.52). Do not perform transfer later than the second cycle.
- Do not perform a command write during a programming operation.
- Perform one auto-programming operation for a 128-byte block for each address. One or more additional programming operations cannot be carried out on address blocks that have already been programmed.
- Confirm normal end of auto-programming by checking I/O₆. Alternatively, status read mode can also be used for this purpose (the I/O₇ status polling pin is used to identify the end of an auto-program operation).
- Status polling I/O₆ and I/O₇ information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling \overline{CE} and \overline{OE} .

AC Characteristics

Table 19.40 AC Characteristics in Auto-Program Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20		μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70		ns	
Status polling start time	t _{wsts}	1	_	ms	
Status polling access time	t _{spa}	_	150	ns	
Address setup time	t _{as}	0		ns	
Address hold time	t _{ah}	60		ns	
Memory write time	t _{write}	1	3000	ms	
WE rise time	t _r	_	30	ns	
WE fall time	t f	_	30	ns	
Write setup time	t _{pns}	100	_	ns	
Write end setup time	t _{pnh}	100	_	ns	

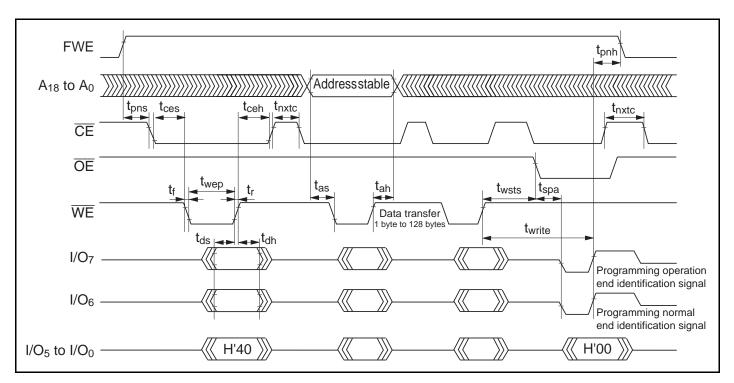


Figure 19.52 Auto-Program Mode Timing Waveforms

19.20.6 Auto-Erase Mode

- Auto-erase mode supports only total memory erasing.
- Do not perform a command write during auto-erasing.
- Confirm normal end of auto-erasing by checking I/O₆. Alternatively, status read mode can also be used for this purpose (the I/O₇ status polling pin is used to identify the end of an auto-erase operation).
- Status polling I/O₆ and I/O₇ pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling \overline{CE} and \overline{OE} .

RENESAS

AC Characteristics

Table 19.41 AC Characteristics in Auto-Erase Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
Status polling start time	t _{ests}	1	_	ms	
Status polling access time	t _{spa}		150	ns	
Memory erase time	t _{erase}	100	40000	ms	
WE rise time	t _r	_	30	ns	
WE fall time	t _f		30	ns	
Erase setup time	t _{ens}	100	_	ns	
Erase end setup time	t _{enh}	100	-	ns	

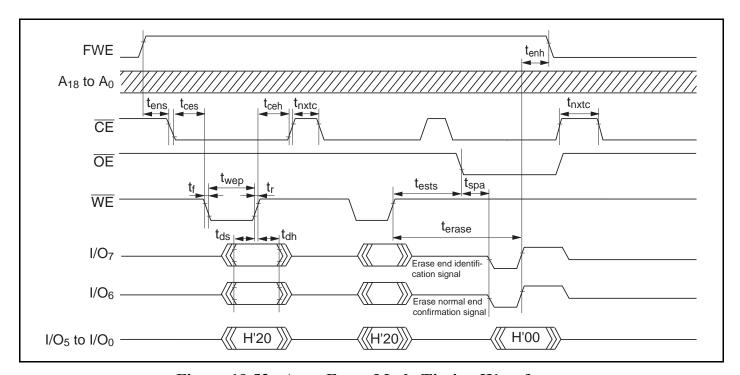


Figure 19.53 Auto-Erase Mode Timing Waveforms

19.20.7 Status Read Mode

- Status read mode is used to identify what type of abnormal end has occurred. Use this mode when an abnormal end occurs in auto-program mode or auto-erase mode.
- The return code is retained until a command write for other than status read mode is performed.

Table 19.42 AC Characteristics in Status Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
OE output delay time	t_oe	_	150	ns	
Disable delay time	t_{df}	_	100	ns	
CE output delay time	t _{ce}	_	150	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f		30	ns	

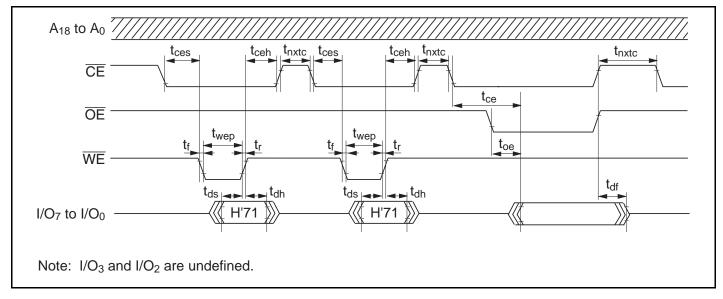


Figure 19.54 Status Read Mode Timing Waveforms

Table 19.43 Status Read Mode Return Commands

Pin Name	I/O ₇	I/O ₆	I/O ₅	I/O ₄	I/O ₃	I/O ₂	I/O ₁	I/O ₀
Attribute	Normal end identification	Command error	Program- ming error	Erase error	_	_	Program- ming or erase count exceeded	Effective address error
Initial value	0	0	0	0	0	0	0	0
Indications	Normal end: 0	Command error: 1	Program- ming	Erase error: 1		_	Count exceeded: 1	Effective address
	Abnormal end: 1	Otherwise: 0	error: 1 Otherwise: 0	Otherwise: 0			Otherwise: 0	error: 1 Otherwise: 0

Note: I/O_3 and I/O_2 are undefined.

19.20.8 Status Polling

- The I/O_7 status polling flag indicates the operating status in auto-program or auto-erase mode.
- The I/O₆ status polling flag indicates a normal or abnormal end in auto-program or auto-erase mode.

Table 19.44 Status Polling Output Truth Table

Pin Names	Internal Operation in Progress	Abnormal End	_	Normal End
I/O ₇	0	1	0	1
I/O ₆	0	0	1	1
I/O ₀ to I/O ₅	0	0	0	0

19.20.9 PROM Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the PROM mode setup period. After the PROM mode setup time, a transition is made to memory read mode.

Table 19.45 Command Wait State Transition Time Specifications

Item	Symbol	Min	Max	Unit
Standby release (oscillation stabilization time)	t _{osc1}	30	_	ms
PROM mode setup time	t _{bmv}	10	_	ms
V _{CC} hold time	t _{dwn}	0	_	ms

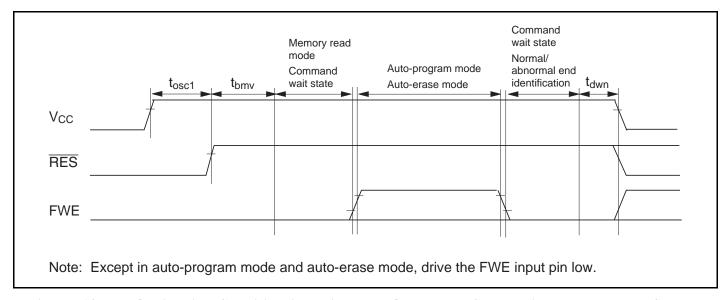


Figure 19.55 Oscillation Stabilization Time, PROM Mode Setup Time, and Power Supply Fall Sequence

19.20.10 Notes on Memory Programming

- When programming addresses which have previously been programmed, carry out autoerasing before auto-programming.
- When performing programming using PROM mode on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- Notes: 1. The flash memory is initially in the erased state when the device is shipped by Renesas Technology. For other chips for which the erasure history is unknown, it is recommended that auto-erasing be executed to check and supplement the initialization (erase) level.
 - 2. Auto-programming should be performed once only on the same address block. Additional programming cannot be carried out on address blocks that have already been programmed.

19.21 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and PROM mode are summarized below.

Use the specified voltages and timing for programming and erasing: Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas microcomputer device type with 256-kbyte on-chip flash memory (FZTAT256V3A).

Do not select the HN27C4096 setting for the PROM programmer, and only use the specified socket adapter. Failure to observe these points may result in damage to the device.

Powering on and off (see figures 19.56 to 19.58): Do not apply a high level to the FWE pin until V_{CC} has stabilized. Also, drive the FWE pin low before turning off V_{CC} .

When applying or disconnecting V_{CC} power, fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

FWE application/disconnection (see figures 19.56 to 19.58): FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range.
- Apply FWE when oscillation has stabilized (after the elapse of the oscillation stabilization time).
- In boot mode, apply and disconnect FWE during a reset.
- In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during execution of a program in flash memory.
- Do not apply FWE if program runaway has occurred.
- Disconnect FWE only when the SWE, ESU, PSU, EV, PV, P, and E bits in FLMCR1 are cleared.

Make sure that the SWE, ESU, PSU, EV, PV, P, and E bits are not set by mistake when applying or disconnecting FWE.

Do not apply a constant high level to the FWE pin: Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

Use the recommended algorithm when programming and erasing flash memory: The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

Do not set or clear the SWE bit during execution of a program in flash memory: Wait for at least 100 µs after clearing the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten, but when SWE = 1, flash memory can only be read in program-verify or erase-verify mode. Access flash memory only for verify operations (verification during programming/erasing). Also, do not clear the SWE bit during programming, erasing, or verifying.

Similarly, when using the RAM emulation function while a high level is being input to the FWE pin, the SWE bit must be cleared before executing a program or reading data in flash memory.

However, the RAM area overlapping flash memory space can be read and written to regardless of whether the SWE bit is set or cleared.

Do not use interrupts while flash memory is being programmed or erased: All interrupt requests, including NMI, should be disabled during FWE application to give priority to program/erase operations.

Do not perform additional programming. Erase the memory before reprogramming: In onboard programming, perform only one programming operation on a 128-byte programming unit block. In PROM mode, too, perform only one programming operation on a 128-byte programming unit block. Programming should be carried out with the entire programming unit block erased.

Before programming, check that the chip is correctly mounted in the PROM programmer: Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.

Do not touch the socket adapter or chip during programming: Touching either of these can cause contact faults and write errors.

Rev.4.00 Sep. 07, 2007 Page 843 of 1210

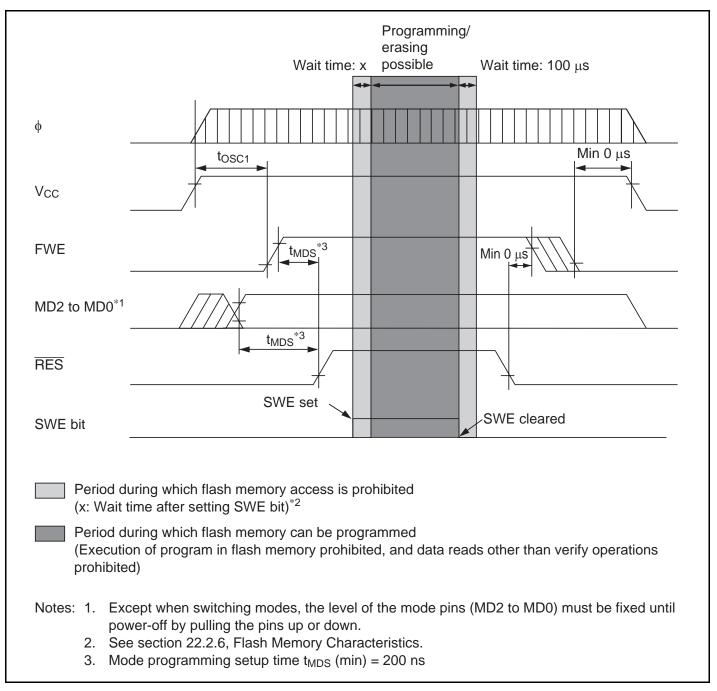


Figure 19.56 Power-On/Off Timing (Boot Mode)

RENESAS

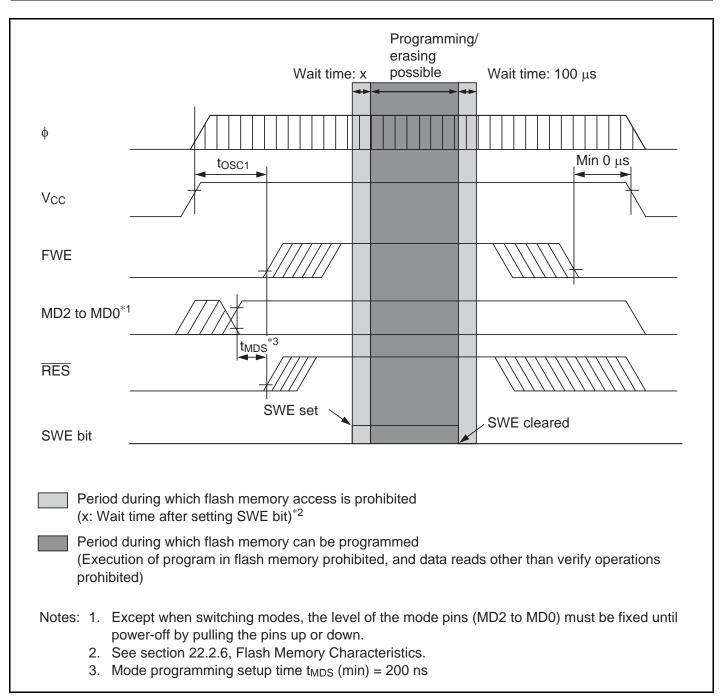


Figure 19.57 Power-On/Off Timing (User Program Mode)

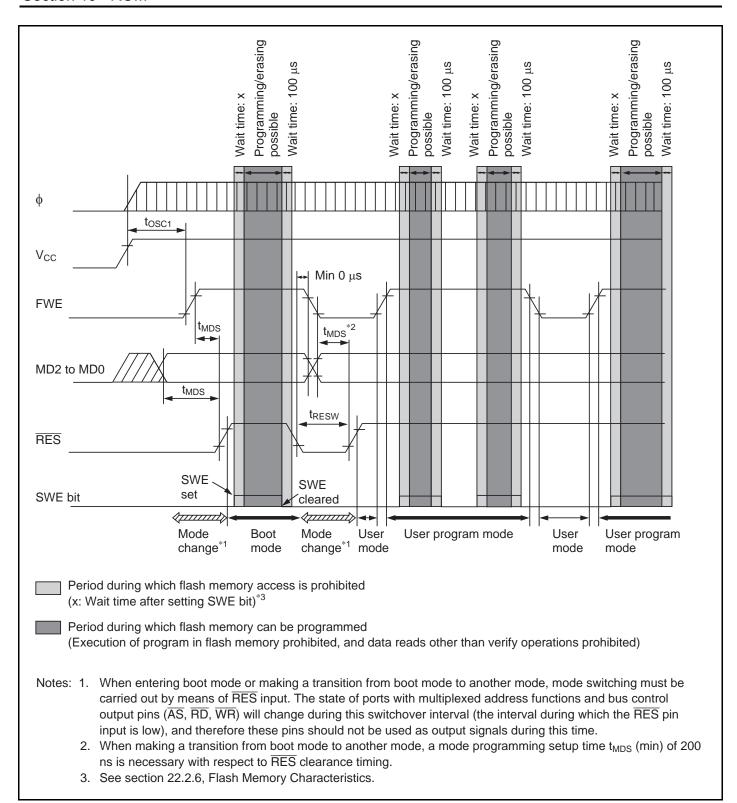


Figure 19.58 Mode Transition Timing (Example: Boot Mode → User Mode ↔ User Program Mode)

RENESAS

Section 20 Clock Pulse Generator

20.1 Overview

The chip has an on-chip clock pulse generator (CPG) that generates the system clock (ϕ), the bus master clock, and internal clocks.

The clock pulse generator consists of an oscillator circuit, a duty adjustment circuit, a mediumspeed clock divider, and a bus master clock selection circuit.

In the chip, the CPG has a medium-speed mode in which the bus master runs on a medium-speed clock and the other supporting modules run on the high-speed clock, and a function that allows the medium-speed mode to be disabled and the clock division ratio to be changed for the entire chip. A clock from $\phi/2$ to $\phi/32$ can be selected.

20.1.1 Block Diagram

Figure 20.1 shows a block diagram of the clock pulse generator.

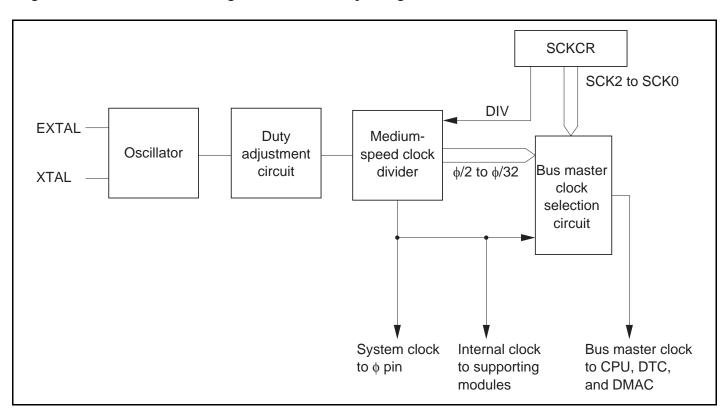


Figure 20.1 Block Diagram of Clock Pulse Generator

20.1.2 Register Configuration

The clock pulse generator is controlled by SCKCR. Table 20.1 shows the register configuration.

Table 20.1 Clock Pulse Generator Register

Name	Abbreviation	R/W	Initial Value	Address*
System clock control register	SCKCR	R/W	H'00	H'FF3A

Note: * Lower 16 bits of the address.

20.2 Register Descriptions

20.2.1 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0
		PSTOP		DIV	_		SCK2	SCK1	SCK0
Initial value	e :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	_	_	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that controls ϕ clock output, the medium-speed mode in which the bus master runs on a medium-speed clock and the other supporting modules run on the high-speed clock, and a function that allows the medium-speed mode to be disabled and the clock division ratio to be changed for the entire chip.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—♦ Clock Output Disable (PSTOP): Controls ♦ output.

	Description							
Bit 7 PSTOP	Normal Operation	Sleep Mode	Software Standby Mode	Hardware Standby Mode				
0	φ output (Initial value)	φ output	Fixed high	High impedance				
1	Fixed high	Fixed high	Fixed high	High impedance				

Bit 6—Reserved: This bit can be read or written to, but only 0 should be written.

Bit 5—Division Ratio Select (DIV): When the DIV bit is set to 1, the medium-speed mode is disabled and a clock obtained using the division ratio set with bits SCK2 to SCK0 is supplied to the entire chip. In this way, the current dissipation within the chip is reduced in proportion to the division ratio. As the frequency of ϕ changes, the following points must be noted.

- The division ratio set with bits SCK2 to SCK0 should be selected so as to fall within the guaranteed operation range of clock cycle time tcyc given in the AC timing table in the Electrical Characteristics section. Ensure that ϕ min = 2 MHz, and the condition ϕ < 2 MHz does not arise.
- All internal modules basically operate on φ. Note, therefore, that time processing involving the timers, the SCI, etc., will change when the division ratio changes. The wait time when software standby is cleared will also change in line with a change in the division ratio.
- The division ratio can be changed while the chip is operating. The clock output from the ϕ pin will also change when the division ratio is changed. The frequency of the clock output from the ϕ pin in this case will be as follows:

$$\phi = EXTAL \times n$$

Where: EXTAL: Crystal resonator or external clock frequency n: Division ratio $(n = \phi/2, \phi/4, \text{ or } \phi/8)$

• Do not set the DIV bit and bits SCK2 to SCK0 simultaneously. First set the DIV bit, then bits SCK2 to SCK0.

Bit 5 DIV	Description
0	When bits SCK2 to SCK0 are set to other than high-speed mode, medium-speed mode is set (Initial value)
1	When bits SCK2 to SCK0 are set to other than high-speed mode, a divided clock is supplied to the entire chip

Bits 4 and 3—Reserved: These bits cannot be modified and are always read as 0.

Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): When the DIV bit is cleared to 0, these bits select the medium-speed mode; when the DIV bit is set to 1, they select the division ratio of the clock supplied to the entire chip.

Bit 2	Bit 1	Bit 0	Description					
SCK2 SCK1		SCK0	DIV = 0	DIV = 1				
0	0	0	Bus master is in high-speed mode (Initial value)	Bus master is in high-speed mode (Initial value)				
		1	Medium-speed clock is φ/2	Clock supplied to entire chip is φ/2				
	1	0	Medium-speed clock is φ/4	Clock supplied to entire chip is φ/4				
		1	Medium-speed clock is φ/8	Clock supplied to entire chip is φ/8				
1	0	0	Medium-speed clock is φ/16	_				
1		1	Medium-speed clock is φ/32	_				
	1		_	_				

20.3 Oscillator

Clock pulses can be supplied by connecting a crystal resonator, or by input of an external clock.

20.3.1 Connecting a Crystal Resonator

Circuit Configuration: A crystal resonator can be connected as shown in the example in figure 20.2. Select the damping resistance R_d according to table 20.2. An AT-cut parallel-resonance crystal should be used.

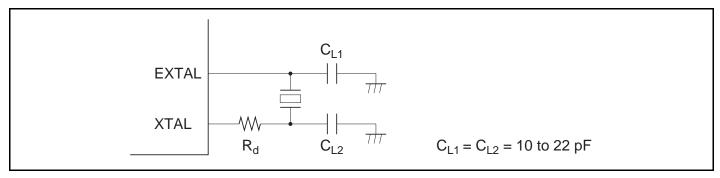


Figure 20.2 Connection of Crystal Resonator (Example)

Table 20.2 Damping Resistance Value

Frequency (MHz)	2	4	8	12	16	20	25
R _d (Ω)	6.8 k	500	200	0	0	0	0

Crystal Resonator: Figure 20.3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 20.3 and the same resonance frequency as the system clock (ϕ) .

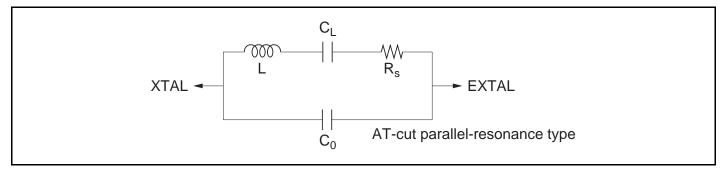


Figure 20.3 Crystal Resonator Equivalent Circuit

Table 20.3 Crystal Resonator Characteristics

Frequency (MHz)	2	4	8	12	16	20	25
R _S max (Ω)	500	120	80	60	50	40	40
C ₀ max (pF)	7	7	7	7	7	7	7

Notes on Board Design: When a crystal resonator is connected, the following points should be noted:

Other signal lines should be routed away from the oscillator circuit to prevent induction from interfering with correct oscillation. See figure 20.4.

When designing the board, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins.

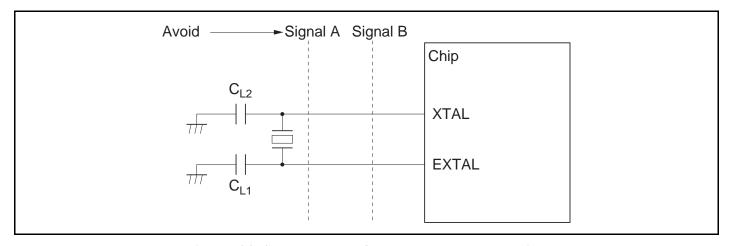


Figure 20.4 Example of Incorrect Board Design

20.3.2 External Clock Input

Circuit Configuration: An external clock signal can be input as shown in the examples in figure 20.5. If the XTAL pin is left open, make sure that stray capacitance is no more than 10 pF.

In example (b), make sure that the external clock is held high in standby mode.

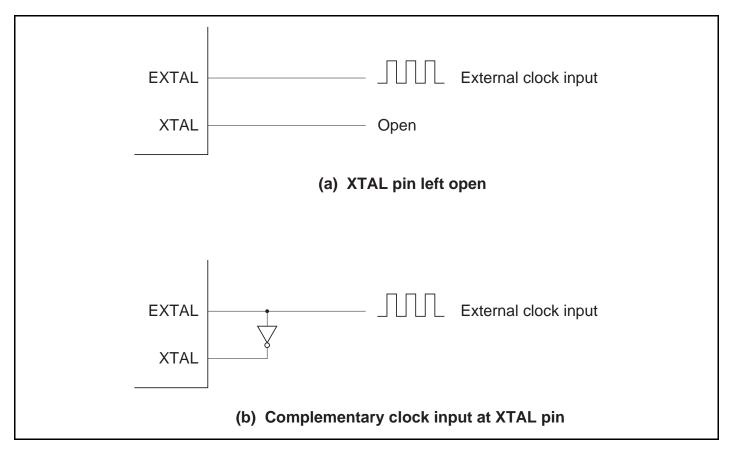


Figure 20.5 External Clock Input (Examples)

External Clock: The external clock signal should have the same frequency as the system clock (ϕ) .

Table 20.4 and figure 20.6 show the input conditions for the external clock.

Table 20.4 External Clock Input Conditions

		$\begin{array}{c} V_{CC} = 2.7 \text{ V} \\ \text{to } 3.6 \text{ V} \\ \hline \text{Min Max} \end{array} \begin{array}{c} V_{CC} = 3 \\ \text{to } 3.6 \text{ V} \\ \hline \text{Min Max} \end{array}$					Test	
Item	Symbol			Max	Unit	Conditions		
External clock input low pulse width	t _{EXL}	20	_	10	_	ns	Figure 20.6	
External clock input high pulse width	t _{EXH}	20	_	10	_	ns		
External clock rise time	t _{EXr}	_	5	_	5	ns		
External clock fall time	t _{EXf}	_	5	_	5	ns		
Clock low pulse width	t _{CL}	0.4	0.6	0.4	0.6	t _{cyc}	φ≥5 MHz	Figure 22.2
level		80	_	80	_	ns	φ < 5 MHz	
Clock high pulse width	t _{CH}	0.4	0.6	0.4	0.6	t _{cyc}	φ≥5 MHz	
level		80	_	80	_	ns	φ < 5 MHz	

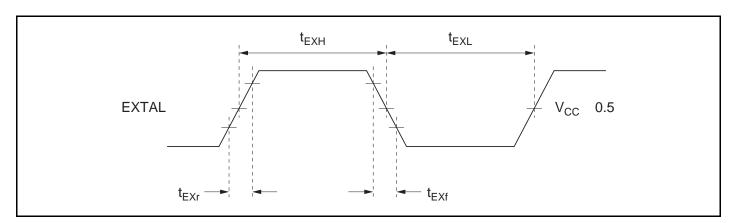


Figure 20.6 External Clock Input Timing

20.4 Duty Adjustment Circuit

When the oscillator frequency is 5 MHz or higher, the duty adjustment circuit adjusts the duty cycle of the clock signal from the oscillator to generate the system clock (ϕ).

20.5 Medium-Speed Clock Divider

The medium-speed clock divider divides the system clock to generate $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, and $\phi/32$.

20.6 Bus Master Clock Selection Circuit

The bus master clock selection circuit selects the system clock (ϕ) or one of the medium-speed clocks (ϕ /2, ϕ /4, ϕ /8, ϕ /16, or ϕ /32) to be supplied to the bus master, according to the settings of the SCK2 to SCK0 bits in SCKCR.

Section 21 Power-Down Modes

21.1 Overview

In addition to the normal program execution state, the chip has five power-down modes in which operation of the CPU and oscillator is halted and power dissipation is reduced. Low-power operation can be achieved by individually controlling the CPU, on-chip supporting modules, and so on.

The chip operating modes are as follows:

- 1. High-speed mode
- 2. Medium-speed mode
- 3. Sleep mode
- 4. Module stop mode
- 5. Software standby mode
- 6. Hardware standby mode

Of these, 2 to 6 are power-down modes. Sleep mode is a CPU mode, medium-speed mode is a CPU and bus master mode, and module stop mode is an on-chip supporting module mode (including bus masters other than the CPU). A combination of these modes can be set.

After a reset, the chip is in high-speed mode.

Table 21.1 shows the conditions for transition to the various modes, the status of the CPU, on-chip supporting modules, etc., and the method of clearing each mode.

Table 21.1 Operating Modes

Operating	Transition	Clearing			CPU		odules	
Mode	Condition	Condition	Oscillator		Registers		Registers	I/O Ports
High speed mode	Control register		Functions	High speed	Function	High speed	Function	High speed
Medium- speed mode	Control register		Functions	Medium speed	Function	High/ medium speed *1	Function	High speed
Sleep mode	Instruction	Interrupt	Functions	Halted	Retained	High speed	Function	High speed
Module stop mode	Control register		Functions	High/ medium speed	Function	Halted	Retained/ reset *2	Retained
Software standby mode	Instruction	External interrupt	Halted	Halted	Retained	Halted	Retained/ reset *2	Retained
Hardware standby mode	Pin		Halted	Halted	Undefined	Halted	Reset	High impedance

Notes: 1. The bus master operates on the medium-speed clock, and other on-chip supporting modules on the high-speed clock.

2. Some SCI registers and the A/D converter are reset, and other on-chip supporting modules retain their states.

21.1.1 Register Configuration

Power-down modes are controlled by the SBYCR, SCKCR, and MSTPCR registers. Table 21.2 summarizes these registers.

Table 21.2 Power-Down Mode Registers

Name	Abbreviation	R/W	Initial Value	Address*
Standby control register	SBYCR	R/W	H'08	H'FF38
System clock control register	SCKCR	R/W	H'00	H'FF3A
Module stop control register H	MSTPCRH	R/W	H'3F	H'FF3C
Module stop control register L	MSTPCRL	R/W	H'FF	H'FF3D

Note: * Lower 16 bits of the address.

21.2 Register Descriptions

21.2.1 Standby Control Register (SBYCR)

Bit	:	7	6	5	4	3	2	1	0
		SSBY	STS2	STS1	STS0	OPE	_	_	IRQ37S
Initial value	:	0	0	0	0	1	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	_	_	R/W

SBYCR is an 8-bit readable/writable register that performs software standby mode control.

SBYCR is initialized to H'08 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): Specifies a transition to software standby mode. Remains set to 1 when software standby mode is released by an external interrupt, and a transition is made to normal operation. The SSBY bit should be cleared by writing 0 to it.

Bit 7 SSBY	Description	
0	Transition to sleep mode after execution of SLEEP instruction	(Initial value)
1	Transition to software standby mode after execution of SLEEP instruction	1

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the time the MCU waits for the clock to stabilize when software standby mode is cleared by an external interrupt. With crystal oscillation, refer to table 21.4 and make a selection according to the operating frequency so that the standby time is at least 8 ms (the oscillation stabilization time). With an external clock, any selection can be made*.

Note: * Except in the F-ZTAT versions.

Bit 6 STS2	Bit 5 STS1	Bit 4 STS0	Description	
0	0	0	Standby time = 8192 states	(Initial value)
		1	Standby time = 16384 states	
	1	0	Standby time = 32768 states	
		1	Standby time = 65536 states	
1	0	0	Standby time = 131072 states	
		1	Standby time = 262144 states	
	1	0	Reserved	
		1	Standby time = 16 states*	

Note: * Not available in the F-ZTAT versions.

Bit 3—Output Port Enable (OPE): Specifies whether the output of the address bus and bus control signals (\overline{CSO} to $\overline{CS7}$, \overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{CAS}) is retained or set to the high-impedance state in software standby mode.

Bit 3 OPE	Description
0	In software standby mode, address bus and bus control signals are high-impedance
1	In software standby mode, address bus and bus control signals retain output state (Initial value)

Bits 2 and 1—Reserved: These bits cannot be modified and are always read as 0.

Bit 0—IRQ37 Software Standby Clear Select (IRQ37S): Specifies whether inputs $\overline{IRQ3}$ to $\overline{IRQ7}$ can be used as software standby mode clearing sources in addition to the usual sources, NMI and $\overline{IRQ0}$ to $\overline{IRQ2}$ inputs.

Bit 0 IRQ37S	Description
0	Inputs $\overline{\text{IRQ3}}$ to $\overline{\text{IRQ7}}$ cannot be used as software standby mode clearing sources (Initial value)
1	Inputs IRQ3 to IRQ7 can be used as software standby mode clearing sources

21.2.2 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0	
		PSTOP		DIV	_	_	SCK2	SCK1	SCK0	
Initial val	lue :	0	0	0	0	0	0	0	0	
R/W	:	R/W	R/W	R/W	_	_	R/W	R/W	R/W	

SCKCR is an 8-bit readable/writable register that controls ϕ clock output, the medium-speed mode in which the bus master runs on a medium-speed clock and the other supporting modules run on the high-speed clock, and a function that allows the medium-speed mode to be disabled and the clock division ratio to be changed for the entire chip.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—\$\phi\$ Clock Output Disable (PSTOP): Controls \$\phi\$ output.

	Description								
Bit 7 PSTOP	Normal Operating Mode	Sleep Mode	Software Standby Mode	Hardware Standby Mode					
0	φ output (Initial value)	φ output	Fixed high	High impedance					
1	Fixed high	Fixed high	Fixed high	High impedance					

Bit 6—Reserved: This bit can be read or written to, but only 0 should be written.

Bit 5—Division Ratio Select (DIV): When the DIV bit is set to 1, the medium-speed mode is disabled and a clock obtained using the division ratio set with bits SCK2 to SCK0 is supplied to the entire chip. In this way, the current dissipation within the chip is reduced in proportion to the division ratio. As the frequency of ϕ changes, the following points must be noted.

- The division ratio set with bits SCK2 to SCK0 should be selected so as to fall within the guaranteed operation range of clock cycle time tcyc given in the AC timing table in the Electrical Characteristics section. Ensure that ϕ min = 2 MHz, and the condition ϕ < 2 MHz does not arise.
- All internal modules basically operate on φ. Note, therefore, that time processing involving the timers, the SCI, etc., will change when the division ratio changes. The wait time when software standby is cleared will also change in line with a change in the division ratio.

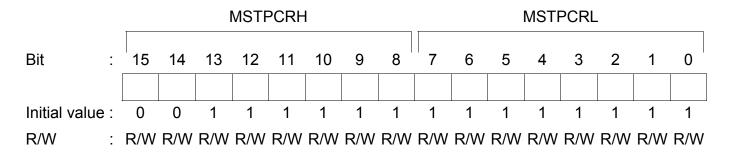
• The division ratio can be changed while the chip is operating. The clock output from the ϕ pin will also change when the division ratio is changed. The frequency of the clock output from the ϕ pin in this case will be as follows:

$$\phi = EXTAL \times n$$

Where: EXTAL: Crystal resonator or external clock frequency

n: Division ratio (n = $\phi/2$, $\phi/4$, or $\phi/8$)

 Do not set the DIV bit and bits SCK2 to SCK0 simultaneously. First set the DIV bit, then bits SCK2 to SCK0.


Bit 5 DIV	Description
0	When bits SCK2 to SCK0 are set to other than high-speed mode, medium-speed mode is set (Initial value)
1	When bits SCK2 to SCK0 are set to other than high-speed mode, a divided clock is supplied to the entire chip

Bits 4 and 3—Reserved: These bits cannot be modified and are always read as 0.

Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): When the DIV bit is cleared to 0, these bits select the bus master clock; when the DIV bit is set to 1, they select the division ratio of the clock supplied to the entire chip.

Bit 2 SCK2	Bit 1 SCK1	Bit 0 SCK0	Description					
			DIV = 0	DIV = 1				
			Bus master is in high-speed mode (Initial value)	Bus master is in high-speed mode (Initial value)				
		1	Medium-speed clock is φ/2	Clock supplied to entire chip is φ/2				
	1	0	Medium-speed clock is φ/4	Clock supplied to entire chip is φ/4				
		1	Medium-speed clock is φ/8	Clock supplied to entire chip is φ/8				
1	0	0	Medium-speed clock is φ/16	_				
		1	Medium-speed clock is φ/32	_				
	1		_	_				

21.2.3 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 15 to 0—Module Stop (MSTP15 to MSTP0): These bits specify module stop mode. See table 21.3 for the method of selecting on-chip supporting modules.

Bits 15 to 0 MSTP15 to MSTP0	Description
0	Module stop mode cleared
1	Module stop mode set

21.3 Medium-Speed Mode

When the SCK2 to SCK0 bits in SCKCR are set to 1, the operating mode changes to medium-speed mode as soon as the current bus cycle ends. In medium-speed mode, the CPU operates on the operating clock ($\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, or $\phi/32$) specified by the SCK2 to SCK0 bits. The bus masters other than the CPU (the DMAC and DTC) also operate in medium-speed mode. On-chip supporting modules other than the bus masters always operate on the high-speed clock (ϕ).

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\phi/4$ is selected as the operating clock, on-chip memory is accessed in 4 states, and internal I/O registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0, a transition is made to sleep mode. When sleep mode is cleared by an interrupt, medium-speed mode is restored.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1, a transition is made to software standby mode. When software standby mode is cleared by an external interrupt, medium-speed mode is restored.

When the \overline{RES} pin is driven low, a transition is made to the reset state, and medium-speed mode is cleared. The same applies in the case of a reset caused by overflow of the watchdog timer.

When the STBY pin is driven low, a transition is made to hardware standby mode.

Figure 21.1 shows the timing for transition to and clearance of medium-speed mode.

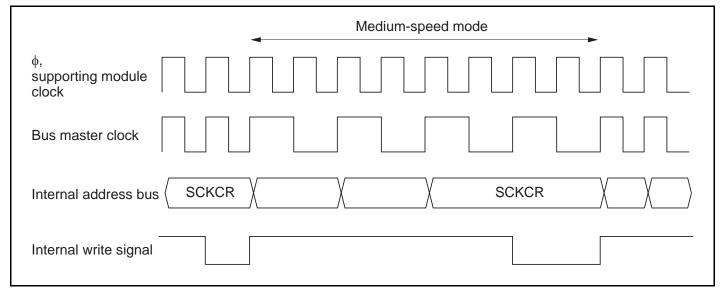


Figure 21.1 Medium-Speed Mode Transition and Clearance Timing

21.4 Sleep Mode

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0, the CPU enters sleep mode. In sleep mode, CPU operation stops but the contents of the CPU's internal registers are retained. Other supporting modules do not stop.

Sleep mode is cleared by a reset or any interrupt, and the CPU returns to the normal program execution state via the exception handling state. Sleep mode is not cleared if interrupts are disabled, or if interrupts other than NMI are masked by the CPU.

When the STBY pin is driven low, a transition is made to hardware standby mode.

21.5 Module Stop Mode

21.5.1 Module Stop Mode

Module stop mode can be set for individual on-chip supporting modules.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently.

Table 21.3 shows MSTP bits and the corresponding on-chip supporting modules.

When the corresponding MSTP bit is cleared to 0, module stop mode is cleared and the module starts operating at the end of the bus cycle. In module stop mode, the internal states of modules other than the SCI and A/D converter are retained.

After reset clearance, all modules other than DMAC and DTC are in module stop mode.

When an on-chip supporting module is in module stop mode, read/write access to its registers is disabled.

Do not make a transition to sleep mode with MSTPCR set to H'FFFF or H'EFFF, as this will halt operation of the bus controller.

Table 21.3 MSTP Bits and Corresponding On-Chip Supporting Modules

Register	Bit	Module
MSTPCRH	MSTP15	DMA controller (DMAC)
	MSTP14	Data transfer controller (DTC)
	MSTP13	16-bit timer-pulse unit (TPU)
	MSTP12	8-bit timer module
	MSTP11	Programmable pulse generator (PPG)
	MSTP10	D/A converter (channels 0 and 1)
	MSTP9	A/D converter
	MSTP8	
MSTPCRL	MSTP7	Serial communication interface (SCI) channel 2
	MSTP6	Serial communication interface (SCI) channel 1
	MSTP5	Serial communication interface (SCI) channel 0
	MSTP4	_
	MSTP3	_
	MSTP2	
	MSTP1	
	MSTP0	

Note: Bits 8 and 4 to 0 can be read or written to, but do not affect operation.

21.5.2 Usage Notes

DMAC/DTC Module Stop: Depending on the operating status of the DMAC or DTC, the MSTP15 and MSTP14 bits may not be set to 1. Setting of the DMAC or DTC module stop mode should be carried out only when the respective module is not activated.

For details, refer to section 7, DMA Controller, and section 8, Data Transfer Controller.

On-Chip Supporting Module Interrupts: Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DMAC or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Writing to MSTPCR: MSTPCR should only be written to by the CPU.

21.6 Software Standby Mode

21.6.1 Software Standby Mode

If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1, software standby mode is entered. In this mode, the CPU, on-chip supporting modules, and oscillator all stop. However, the contents of the CPU's internal registers, RAM data, and the states of on-chip supporting modules other than the SCI and A/D converter, and I/O ports, are retained. Whether the address bus and bus control signals are placed in the high-impedance state or retain the output state can be specified by the OPE bit in SBYCR. See appendix D, Pin States, for details.

In this mode the oscillator stops, and therefore power dissipation is significantly reduced.

21.6.2 Clearing Software Standby Mode

Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{IRQ0}$ to $\overline{IRQ7}^*$), or by means of the \overline{RES} pin or \overline{STBY} pin.

Clearing with an Interrupt: When an NMI or IRQ0 to IRQ7* interrupt request signal is input, clock oscillation starts, and after the elapse of the time set in bits STS2 to STS0 in SYSCR, stable clocks are supplied to the entire chip, software standby mode is cleared, and interrupt exception handling is started.

When clearing software standby mode with an IRQ0 to IRQ7* interrupt, set the corresponding enable bit to 1 and ensure that no interrupt with a higher priority than interrupts IRQ0 to IRQ7* is generated. Software standby mode cannot be cleared if the interrupt has been masked on the CPU side or has been designated as a DTC activation source.

Note: * Setting the IRQ37S bit to 1 enables $\overline{IRQ3}$ to $\overline{IRQ7}$ to be used as software standby mode clearing sources.

Clearing with the \overline{RES} Pin: When the \overline{RES} pin is driven low, clock oscillation is started. At the same time as clock oscillation starts, clocks are supplied to the entire chip. Note that the \overline{RES} pin must be held low until clock oscillation stabilizes. When the \overline{RES} pin goes high, the CPU begins reset exception handling.

Clearing with the STBY Pin: When the STBY pin is driven low, a transition is made to hardware standby mode.

21.6.3 Setting Oscillation Stabilization Time after Clearing Software Standby Mode

Bits STS2 to STS0 in SBYCR should be set as described below.

Using a Crystal Oscillator: Set bits STS2 to STS0 so that the standby time is at least 8 ms (the oscillation stabilization time).

Table 21.4 shows the standby times for different operating frequencies and settings of bits STS2 to STS0.

Table 21.4 Oscillation Stabilization Time Settings

STS2	STS1	STS0	Standby Time	25 MHz	20 MHz	16 MHz	12 MHz	10 MHz	8 MHz	6 MHz	4 MHz	2 MHz	Unit
0	0	0	8192 states	0.32	0.41	0.51	0.68	8.0	1.0	1.3	2.0	4.1	ms
		1	16384 states	0.65	0.82	1.0	1.3	1.6	2.0	2.7	4.1	8.2	
	1	0	32768 states	1.3	1.6	2.0	2.7	3.3	4.1	5.5	8.2	16.4	
		1	65536 states	2.6	3.3	4.1	5.5	6.6	8.2	10.9	16.4	32.8	_
1	0	0	131072 states	5.2	6.6	8.2	10.9	13.1	16.4	21.8	32.8	65.5	_
		1	262144 states	10.4	13.1	16.4	21.8	26.2	32.8	43.6	65.6	131.2	
	1	0	Reserved		_			_					
		1	16 states	0.6	8.0	1.0	1.3	1.6	2.0	2.7	4.0	8.0	μs

: Recommended time setting

Using an External Clock: Any value can be set. Normally, use of the minimum time is recommended.*

Note: * The 16-state standby time cannot be used in the F-ZTAT versions; a standby time of 8192 states or longer should be used.

21.6.4 Software Standby Mode Application Example

Figure 21.2 shows an example in which a transition is made to software standby mode at the falling edge on the NMI pin, and software standby mode is cleared at the rising edge on the NMI pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1, and a SLEEP instruction is executed, causing a transition to software standby mode.

Oscillator

NMI

NMIEG

NMI exception A handling NMIEG=1

NMIEG=1

NMI exception A (power-down mode) Oscillation stabilization

Software standby mode is then cleared at the rising edge on the NMI pin.

Figure 21.2 Software Standby Mode Application Example

21.6.5 Usage Notes

SSBY=1

SLEEP instruction

I/O Port Status: In software standby mode, I/O port states are retained. If the OPE bit is set to 1, the address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation during Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

Write Data Buffer Function: The write data buffer function and software standby mode cannot be used at the same time. When the write data buffer function is used, the WDBE bit in BCRL should be cleared to 0 to cancel the write data buffer function before entering software standby mode. Also check that external writes have finished, by reading external addresses, etc., before executing a SLEEP instruction to enter software standby mode. See section 6.9, Write Data Buffer Function, for details of the write data buffer function.

time t_{OSC2}

21.7 Hardware Standby Mode

21.7.1 Hardware Standby Mode

When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode from any mode.

In hardware standby mode, all functions enter the reset state and stop operation, resulting in a significant reduction in power dissipation. As long as the prescribed voltage is supplied, on-chip RAM data is retained. I/O ports are set to the high-impedance state.

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the STBY pin low.

Do not change the state of the mode pins (MD2 to MD0) while the chip is in hardware standby mode.

Hardware standby mode is cleared by means of the \overline{STBY} pin and the \overline{RES} pin. When the \overline{STBY} pin is driven high while the \overline{RES} pin is low, the reset state is set and clock oscillation is started. Ensure that the \overline{RES} pin is held low until the clock oscillator stabilizes (at least 8 ms—the oscillation stabilization time—when using a crystal oscillator). When the \overline{RES} pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state.

21.7.2 Hardware Standby Mode Timing

Figure 21.3 shows an example of hardware standby mode timing.

When the \overline{STBY} pin is driven low after the \overline{RES} pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is cleared by driving the \overline{STBY} pin high, waiting for the oscillation stabilization time, then changing the \overline{RES} pin from low to high.

RENESAS

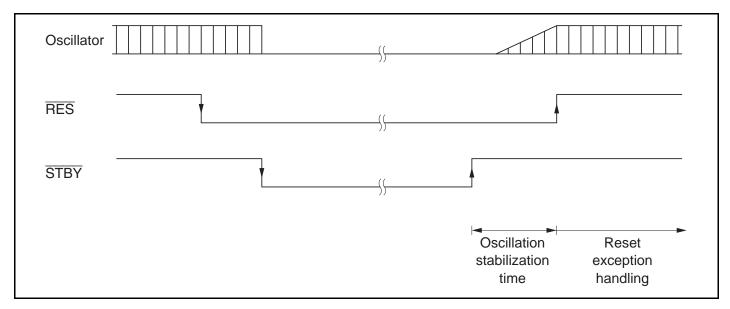


Figure 21.3 Hardware Standby Mode Timing

21.8 • Clock Output Disabling Function

Output of the ϕ clock can be controlled by means of the PSTOP bit in SCKCR, and DDR for the corresponding port. When the PSTOP bit is set to 1, the ϕ clock stops at the end of the bus cycle, and ϕ output goes high. ϕ clock output is enabled when the PSTOP bit is cleared to 0. When DDR for the corresponding port is cleared to 0, ϕ clock output is disabled and input port mode is set. Table 21.5 shows the state of the ϕ pin in each processing state.

Table 21.5 ♦ Pin State in Each Processing State

DDR	0	1	1
PSTOP	_	0	1
Hardware standby mode	High impedance	High impedance	High impedance
Software standby mode	High impedance	Fixed high	Fixed high
Sleep mode	High impedance	φ output	Fixed high
Normal operating state	High impedance	φ output	Fixed high

Section 22 Electrical Characteristics

22.1 Electrical Characteristics of Mask ROM Version (H8S/2338, H8S/2337) and ROMless Version (H8S/2332)

22.1.1 Absolute Maximum Ratings

Table 22.1 lists the absolute maximum ratings.

Table 22.1 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	V _{CC}	-0.3 to +4.6	V
Input voltage (except port 4, P5 ₄ to P5 ₇)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (port 4, P5 ₄ to P5 ₇)	V _{in}	-0.3 to AV _{CC} +0.3	V
Reference power supply voltage	V_{ref}	-0.3 to AV _{CC} +0.3	V
Analog power supply voltage	AV_{CC}	-0.3 to +4.6	V
Analog input voltage	V_{AN}	-0.3 to AV _{CC} +0.3	V
Operating temperature	T _{opr}	Regular specifications: –20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

22.1.2 DC Characteristics

Table 22.2 DC Characteristics

Conditions: V_{CC} = 2.7 V to 3.6 V, AV_{CC} = 2.7 V to 3.6 V, V_{ref} = 2.7 V to AV_{CC} , V_{SS} = AV_{SS} =

0 V*1, $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-

range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	Ports 1, 2, 7, 9,	VT ⁻	$V_{\text{CC}} \times 0.2$	_	_	V	
trigger input voltage	P5 ₀ to P5 ₃ , P6 ₄ to P6 ₇ ,	VT ⁺	_	_	$V_{\text{CC}} \times 0.7$	V	
voitage	PA_4 to PA_7	$VT^+ - VT^-$	$V_{\text{CC}} \times 0.07$	_	_	V	_
Input high voltage	$\overline{\text{RES}}$, $\overline{\text{STBY}}$, NMI, MD ₂ to MD ₀	V _{IH}	$V_{\text{CC}} \times 0.9$	_	V _{CC} + 0.3	V	
	EXTAL	_	$V_{CC} \times 0.7$	_	V _{CC} + 0.3	V	
	Ports 3, 8, B to G, P5 ₄ to P5 ₇ , P6 ₀ to P6 ₃ , PA ₀ to PA ₃	_	2.2	_	V _{CC} + 0.3	V	_
	Port 4	_	2.2	_	AV _{CC} + 0.3	V	
Input low voltage	RES, STBY, MD ₂ to MD ₀	V _{IL}	-0.3	_	$V_{CC} \times 0.1$	V	
	NMI, EXTAL, ports 3, 4, 8, B to G, P5 ₄ to P5 ₇ , P6 ₀ to P6 ₃ , PA ₀ to PA ₃	_	-0.3	_	V _{CC} × 0.2	V	
Output high	All output pins	V_{OH}	$V_{CC} - 0.5$	_	_	V	I _{OH} = -200 μA
voltage			V _{CC} – 1.0	_	_	V	I _{OH} = -1 mA
Output low voltage	All output pins	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
Input leakage	RES	I _{in}	_	_	10	μΑ	$V_{in} = 0.5 \text{ to} $ $V_{CC} - 0.5 \text{ V}$
current	STBY, NMI, MD ₂ to MD ₀	_	_	_	1	μΑ	_
	Port 4, P5 ₄ to P5 ₇	_	_	_	1	μΑ	$V_{in} = 0.5 \text{ to} $ $AV_{CC} - 0.5 \text{ V}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Three-state leakage current (off state)	Ports 1 to 3, 5 to 9, A to G	I _{TSI}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ to} $ $V_{CC} - 0.5 \text{ V}$
Input pull-up MOS current		-I _p	10	_	300	μА	V _{in} = 0V
Input	Input RES capacitance NMI			_	30	pF	V _{in} = 0 V,
capacitance				_	30	pF	⁻f = 1 MHz, _T _a = 25°C
	All input pins except RES and NMI	_	_	_	15	pF	– 1a – 2 3 O
Current	Normal operation	I _{CC} *4	_	43 (3.0 V)	84	mA	f = 20 MHz
dissipation*2				58 (3.3 V)	105	mA	f = 25 MHz
	Sleep mode	_		34 (3.0 V)	66	mA	f = 20 MHz
				4.6 (3.3 V)	82	mA	f = 25 MHz
	Standby mode*3	_		0.01	10	μΑ	$T_a \le 50^{\circ}C$
					80		50°C < T _a
Analog power	During A/D and D/A conversion	Al _{CC}	_	0.2 (3.0 V)	2.0	mA	
supply voltage	Idle	_	_	0.01	5.0	μΑ	
Reference power	During A/D and D/A conversion	Al _{CC}	_	2.4 (3.0 V)	6.0	mA	
oupply	Idle		_	0.01	5.0	μΑ	_
RAM standby	voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref} , and AV_{SS} pins open. Connect the AV_{CC} and V_{ref} pins to V_{CC} , and the AV_{SS} pin to V_{SS} .

- 2. Current dissipation values are for $V_{IH\ min} = V_{CC} 0.5\ V$ and $V_{IL\ max} = 0.5\ V$ with all output pins unloaded and all MOS input pull-ups in the off state.
- 3. The values are for $V_{RAM} \le V_{CC} < 2.7$ V, V_{IH} min = $V_{CC} \times 0.9$, and V_{IL} max = 0.3 V.
- 4. I_{CC} depends on V_{CC} and f as follows:

 I_{CC} max = 1.0 (mA) + 1.15 (mA/(MHz × V)) × V_{CC} × f (normal operation)

 I_{CC} max = 1.0 (mA) + 0.90 (mA/(MHz × V)) × V_{CC} × f (sleep mode)

Table 22.3 Permissible Output Currents

Conditions: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	All output pins	I _{OL}	_	_	2.0	mA
Permissible output low current (total)	Total of all output pins	ΣI_{OL}	_	_	80	mA
Permissible output high current (per pin)	All output pins	−l _{OH}		_	2.0	mA
Permissible output high current (total)	Total of all output pins	Σ–I _{OH}	<u>—</u>	_	40	mA

Note: To protect chip reliability, do not exceed the output current values in table 22.3.

22.1.3 AC Characteristics

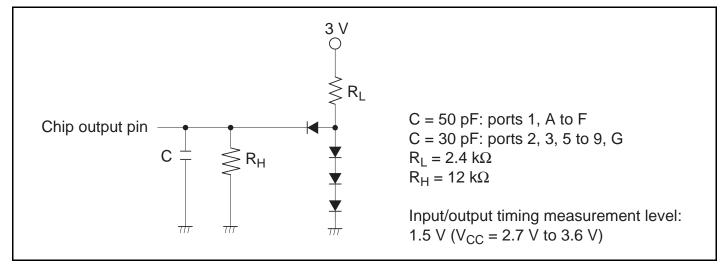


Figure 22.1 Output Load Circuit

(1) Clock Timing

Table 22.4 Clock Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Con	dition A	Con	dition B		Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
Clock cycle time	t _{cyc}	50	500	40	500	ns	Figure 22.2
Clock pulse high width	t _{CH}	20		15		ns	
Clock pulse low width	t _{CL}	20		15		ns	
Clock rise time	t _{Cr}	_	5	_	5	ns	
Clock fall time	t _{Cf}	_	5	_	5	ns	
Reset oscillation stabilization time (crystal)	t _{OSC1}	10		10	_	ms	Figure 22.3
Software standby oscillation stabilization time (crystal)	t _{OSC2}	10		10	_	ms	
External clock output stabilization delay time	t _{DEXT}	500		500	_	μS	Figure 22.3

Rev.4.00 Sep. 07, 2007 Page 875 of 1210

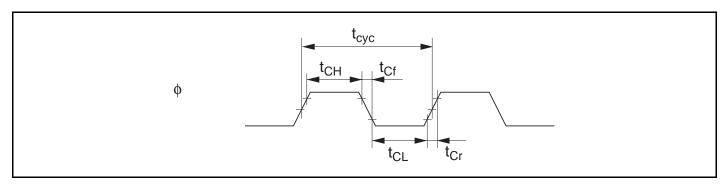


Figure 22.2 System Clock Timing

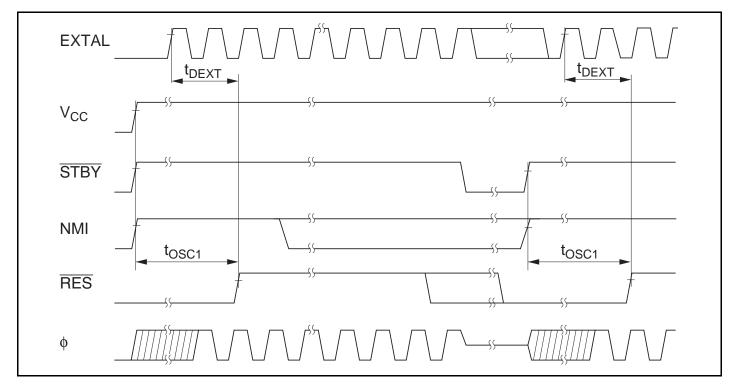


Figure 22.3 Oscillation Stabilization Timing

(2) Control Signal Timing

Table 22.5 Control Signal Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Con	dition A	Con	dition B		Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{RESS}	200	_	200	_	ns	Figure 22.4
RES pulse width	t _{RESW}	20	_	20		t _{cyc}	
NMI setup time	t _{NMIS}	150		150		ns	Figure 22.5
NMI hold time	t _{NMIH}	10	_	10		_	
NMI pulse width (in recovery from software standby mode)	t _{NMIW}	200	_	200	_		
IRQ setup time	t _{IRQS}	150	_	150	_	ns	
IRQ hold time	t _{IRQH}	10	_	10	_	_	
IRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200	_	200	_		

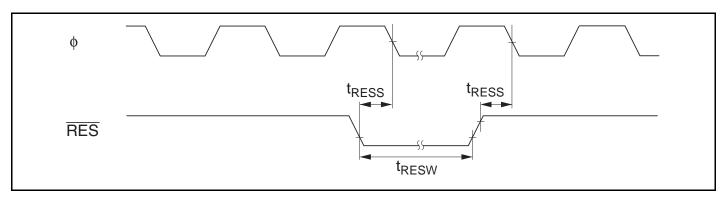


Figure 22.4 Reset Input Timing

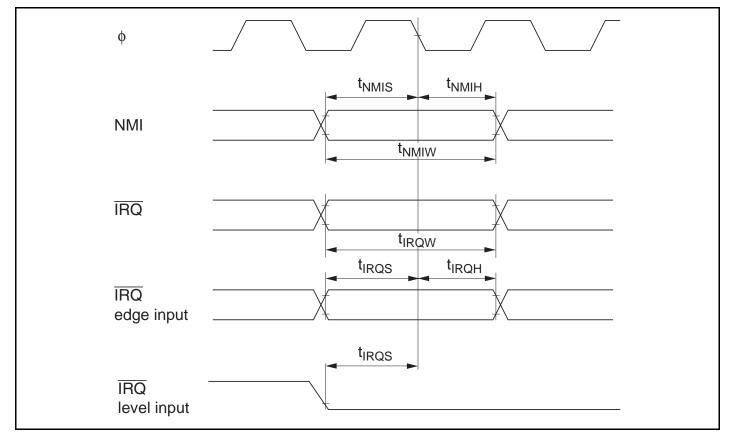


Figure 22.5 Interrupt Input Timing

(3) Bus Timing

Table 22.6 Bus Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Con	dition A	Con	dition B		
Item	Symbol	Min	Max	Min	Max	 Unit	Test Conditions
Address delay time	t _{AD}	_	20	_	20	ns	Figures 22.6 to 22.13
Address setup time	t _{AS}	$\begin{array}{c} 0.5 \times \\ t_{cyc} - 15 \end{array}$	_	$\begin{array}{c} 0.5 \times \\ t_{cyc} - 15 \end{array}$	_	ns	_
Address hold time	t _{AH}	$\begin{array}{c} 0.5 \times \\ t_{\text{cyc}} - 10 \end{array}$	_	$\begin{array}{c} 0.5 \times \\ t_{\text{cyc}} - 8 \end{array}$	_	ns	
Precharge time	t _{PCH}	1.5 × t _{cyc} – 20	_	1.5 × t _{cyc} – 15	_	ns	
CS delay time 1	t _{CSD1}		20		15	ns	_
CS delay time 2	t _{CSD2}		20		15	ns	
CS delay time 3	t _{CSD3}	_	25	_	20	ns	
AS delay time	t _{ASD}	_	20	_	15	ns	
RD delay time 1	t _{RSD1}	_	20	_	15	ns	
RD delay time 2	t _{RSD2}	_	20	_	15	ns	
CAS delay time	t _{CASD}	_	20	_	15	ns	
Read data setup time	t _{RDS}	15	_	15	_	ns	
Read data hold time	t _{RDH}	0	_	0	_	ns	
Read data access time 1	t _{ACC1}	_	$\begin{array}{c} 1.0 \times \\ t_{cyc} - 25 \end{array}$	_	$\begin{array}{c} 1.0 \times \\ t_{cyc} - 20 \end{array}$	ns	
Read data access time 2	t _{ACC2}	_	$\begin{array}{c} 1.5 \times \\ t_{cyc} - 25 \end{array}$	_	$\begin{array}{c} 1.5 \times \\ t_{cyc} - 20 \end{array}$	ns	
Read data access time 3	t _{ACC3}	_	$\begin{array}{c} 2.0 \times \\ t_{cyc} - 25 \end{array}$	_	$\begin{array}{c} 2.0 \times \\ t_{cyc} - 20 \end{array}$	ns	_
Read data access time 4	t _{ACC4}	_	$\begin{array}{l} 2.5 \times \\ t_{cyc} - 25 \end{array}$	_	$\begin{array}{c} 2.5 \times \\ t_{cyc} - 20 \end{array}$	ns	_
Read data access time 5	t _{ACC5}	_	$\begin{array}{c} 3.0 \times \\ t_{cyc} - 25 \end{array}$	_	$\begin{array}{c} 3.0 \times \\ t_{cyc} - 20 \end{array}$	ns	

		Con	dition A	Con	Condition B			
Item	Symbol	Min	Max	Min	Max	_ Unit	Test Conditions	
Read data access time 6	t _{ACC6}	_	$\begin{array}{c} 1.0 \times \\ t_{\text{cyc}} - 25 \end{array}$	_	$\begin{array}{c} 1.0 \times \\ t_{cyc} - 20 \end{array}$	ns	Figures 22.6 to 22.13	
WR delay time 1	t _{WRD1}	_	20	_	15	ns		
WR delay time 2	t _{WRD2}	_	20	_	15	ns		
WR pulse width 1	t _{wsw1}	$\begin{array}{c} 1.0 \times \\ t_{cyc} - 20 \end{array}$	_	$\begin{array}{c} 1.0 \times \\ t_{cyc} - 15 \end{array}$	_	ns		
WR pulse width 2	t _{WSW2}	$\begin{array}{c} 1.5 \times \\ t_{cyc} - 20 \end{array}$	_	1.5 × t _{cyc} – 15	_	ns		
Write data delay time	t_{WDD}	_	30	_	20	ns		
Write data setup time	t _{wds}	$\begin{array}{c} 0.5 \times \\ t_{cyc} - 20 \end{array}$	_	$\begin{array}{c} 0.5 \times \\ t_{cyc} - 15 \end{array}$	_	ns		
Write data hold time	t _{WDH}	$\begin{array}{c} 0.5 \times \\ t_{\text{cyc}} - 10 \end{array}$	_	$0.5 \times t_{cyc} - 8$	_	ns		
WR setup time	t _{wcs}	$0.5 \times t_{cyc} - 10$	_	$0.5 \times t_{cyc} - 10$	_	ns		
WR hold time	t _{wch}	$0.5 \times t_{cyc} - 10$	_	$0.5 \times t_{cyc} - 10$	_	ns		
CAS setup time	t _{CSR}	$0.5 \times t_{cyc} - 10$	_	$0.5 \times t_{cyc} - 8$	_	ns	Figure 22.10	
WAIT setup time	t _{WTS}	30	_	25	_	ns	Figure 22.8	
WAIT hold time	t _{WTH}	5	_	5	_	ns		
BREQ setup time	t _{BRQS}	30	_	30	_	ns	Figure 22.14	
BACK delay time	t _{BACD}	_	15	_	15	ns		
Bus floating time	t _{BZD}	_	50	_	40	ns		
BREQO delay time	t _{BRQOD}	_	30	_	25	ns	Figure 22.15	

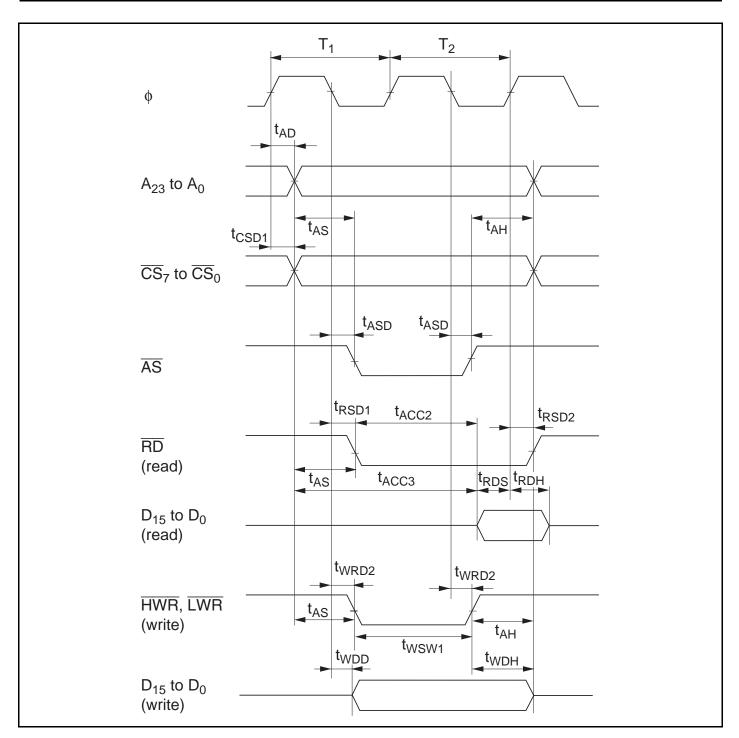


Figure 22.6 Basic Bus Timing (2-State Access)

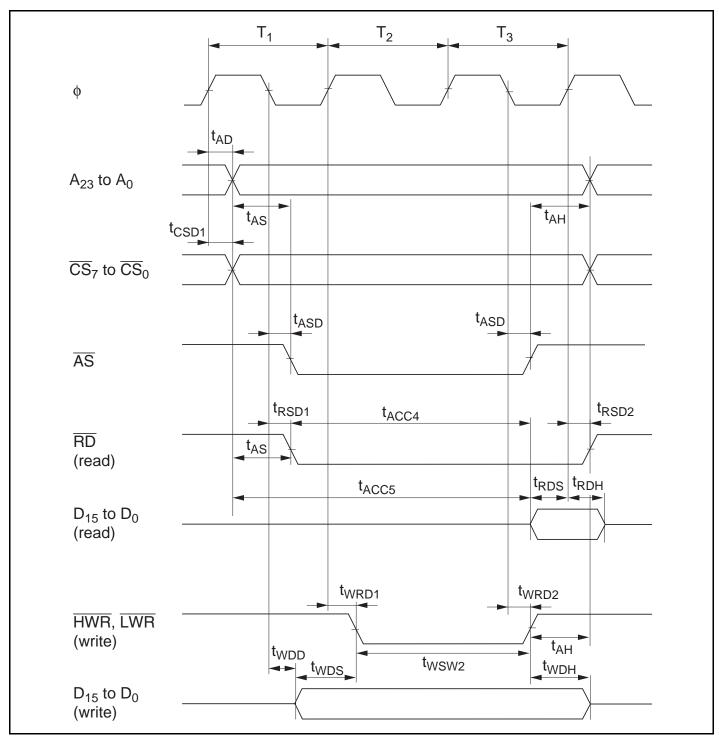


Figure 22.7 Basic Bus Timing (3-State Access)

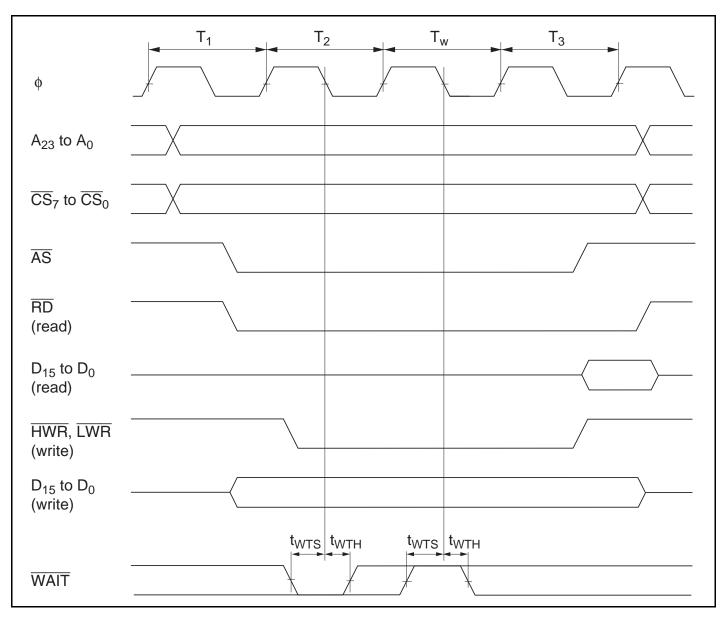


Figure 22.8 Basic Bus Timing (3-State Access, 1 Wait)

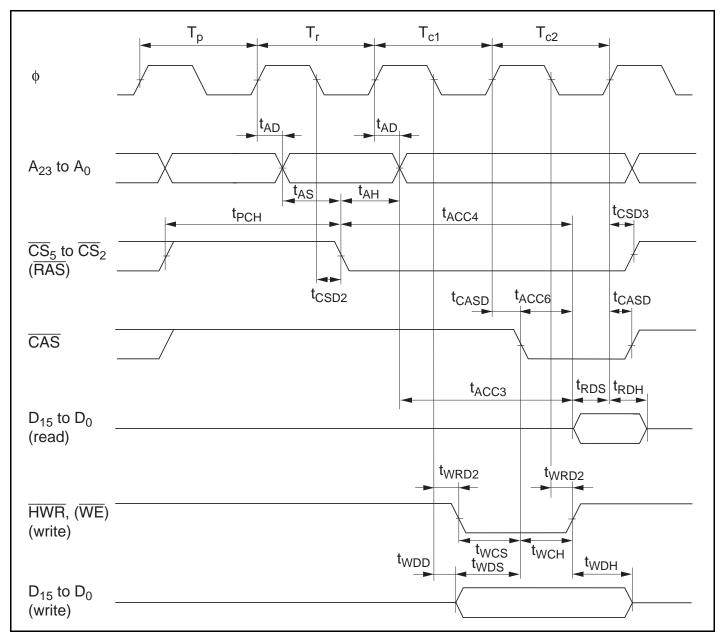


Figure 22.9 DRAM Bus Timing

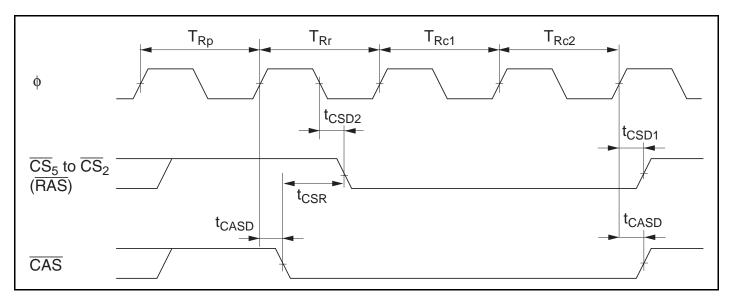


Figure 22.10 CAS-Before-RAS Refresh Timing

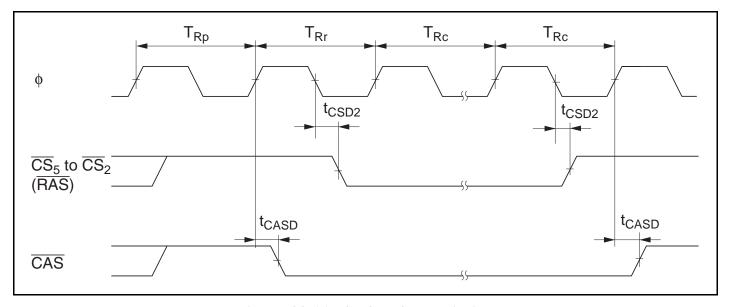


Figure 22.11 Self-Refresh Timing

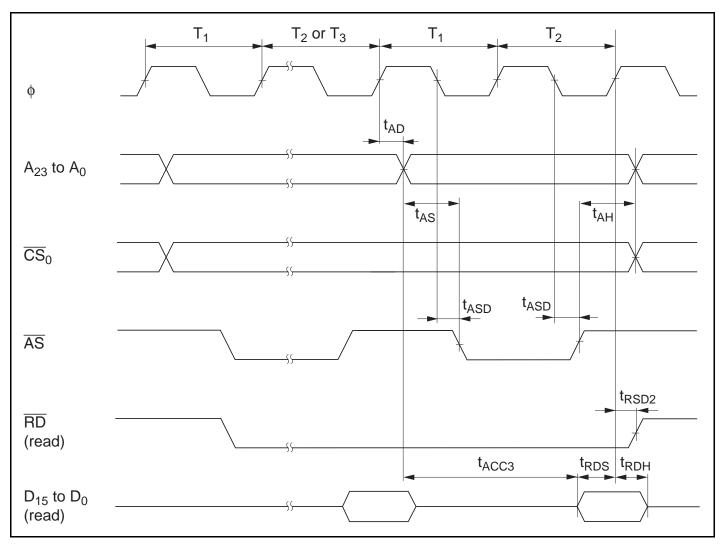


Figure 22.12 Burst ROM Access Timing (2-State Access)

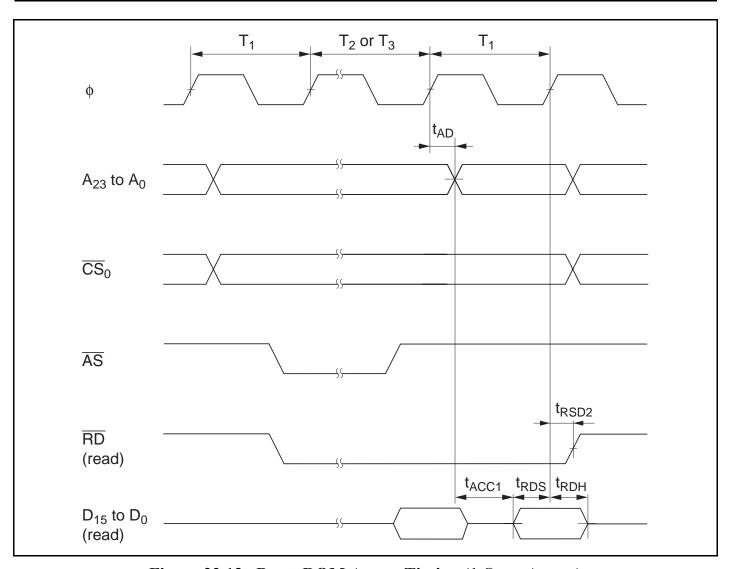


Figure 22.13 Burst ROM Access Timing (1-State Access)

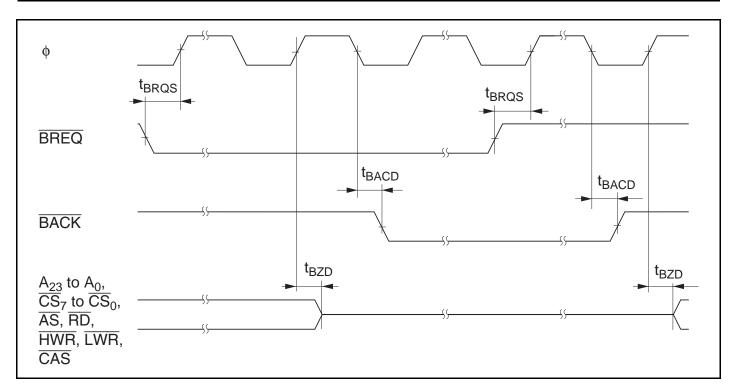


Figure 22.14 External Bus Release Timing

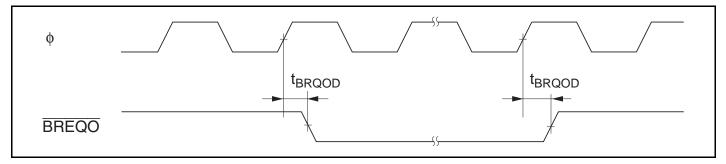


Figure 22.15 External Bus Request Output Timing

(4) DMAC Timing

Table 22.7 DMAC Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Condition A		Condition B			Test	
Item	Symbol	Min	Max	Min	Max	Unit	Conditions	
DREQ setup time	t _{DRQS}	30	_	25	_	ns	Figure 22.19	
DREQ hold time	t _{DRQH}	10		10	_	_		
TEND delay time	t _{TED}	_	20	_	18	_	Figure 22.18	
DACK delay time 1	t _{DACD1}	_	20	_	18	ns	Figures 22.16	
DACK delay time 2	t _{DACD2}	_	20	_	18	_	and 22.17	

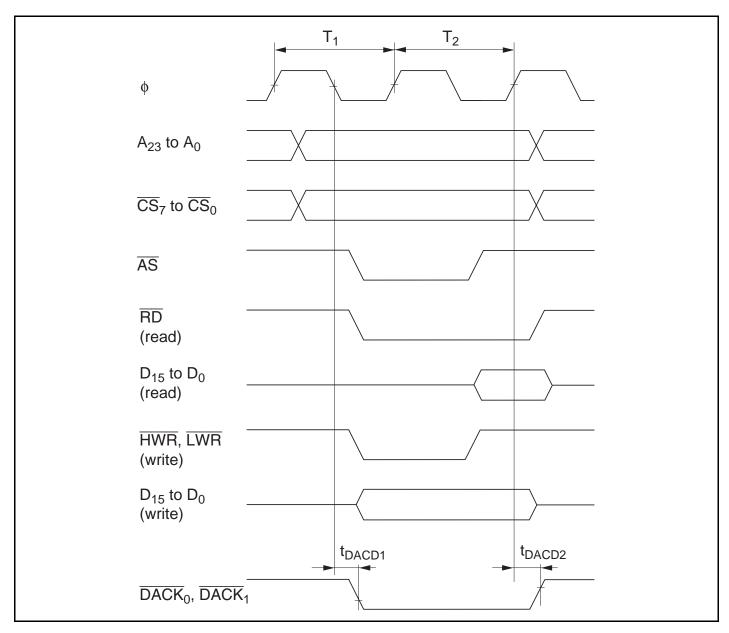


Figure 22.16 DMAC Single Address Transfer Timing (2-State Access)

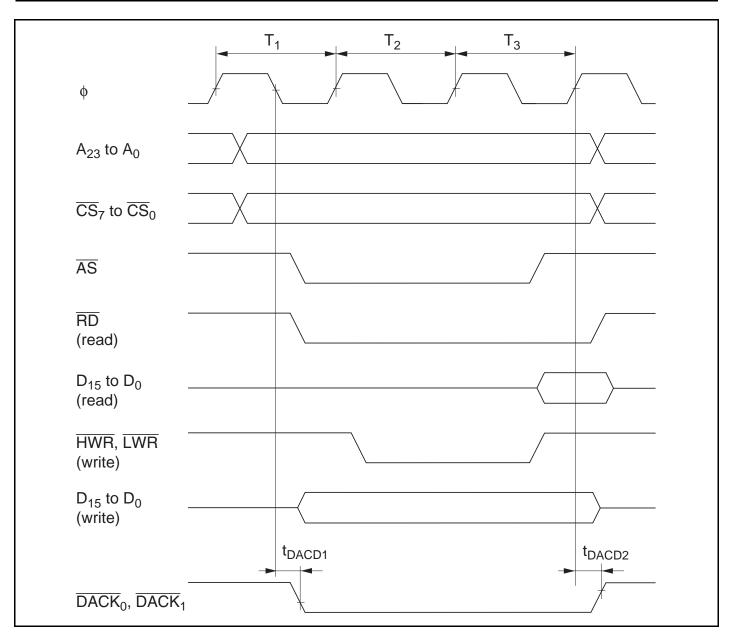


Figure 22.17 DMAC Single Address Transfer Timing (3-State Access)

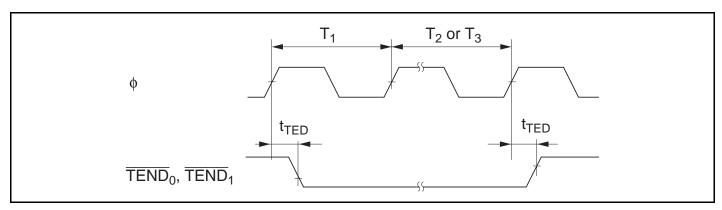


Figure 22.18 DMAC TEND Output Timing

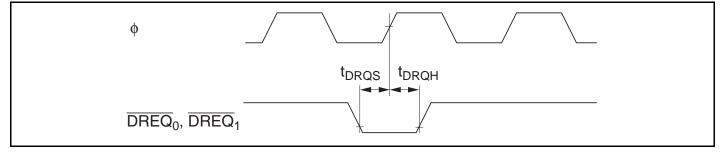


Figure 22.19 DMAC DREQ Input Timing

(5) Timing of On-Chip Supporting Modules

Table 22.8 Timing of On-Chip Supporting Modules

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

				Con	dition A	Con	dition B		Test
Item			Symbol	Min	Max	Min	Max	Unit	Conditions
I/O ports	Output data o	lelay time	t _{PWD}	_	50	_	40	ns	Figure
	Input data se	tup time	t _{PRS}	30	_	25	_	_	22.20
	Input data ho	ld time	t _{PRH}	30	_	25	_	_	
PPG	Pulse output delay time		t _{POD}	_	50	_	40	ns	Figure 22.21
TPU	Timer output	delay time	t _{TOCD}	_	50	_	40	ns	Figure
	Timer input s	etup time	t _{TICS}	30	_	25	_	_	22.22
	Timer clock in	nput setup time	t _{TCKS}	30	_	25	_	ns	Figure
		Single-edge specification	t _{TCKWH}	1.5	_	1.5	_	$t_{\rm cyc}$	22.23
		Both-edge specification	t _{TCKWL}	2.5	_	2.5	_	_	
8-bit timer	Timer output	delay time	t _{TMOD}	_	50	_	40	ns	Figure 22.24
	Timer reset in	nput setup time	t _{TMRS}	30	_	25	_	ns	Figure 22.26
	Timer clock in	nput setup time	t _{TMCS}	30	_	25	_	ns	Figure
	Timer clock pulse width	Single-edge specification	t _{TMCWH}	1.5	_	1.5	_	t _{cyc}	22.25
		Both-edge specification	t _{TMCWL}	2.5	_	2.5	_	_	
WDT	Overflow outp	out delay time	t _{WOVD}	_	50	_	40	ns	Figure 22.27

				Con	dition A	Con	dition B		Test
Item			Symbol	Min	Max	Min	Max	Unit	Conditions
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	4	_	t _{cyc}	Figure
	cycle	Synchronous		6	_	6	_	_	22.28
	Input clock p	ulse width	t _{SCKW}	0.4	0.6	0.4	0.6	t _{Scyc}	_
	Input clock ris	se time	t _{SCKr}	_	1.5	_	1.5	t _{cyc}	_
	Input clock fa	ıll time	t _{SCKf}	_	1.5	_	1.5	_	
	Transmit data	a delay time	t _{TXD}	_	50	_	40	ns	Figure
	Receive data setup time (synchronous)		t _{RXS}	50	_	40	_	ns	_ 22.29
	Receive data (synchronous		t _{RXH}	50	_	40	_	ns	_
A/D converter	Trigger input	setup time	t _{TRGS}	30	_	30	_	ns	Figure 22.30

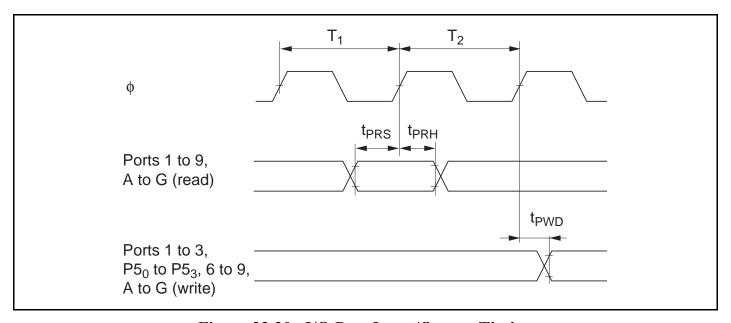


Figure 22.20 I/O Port Input/Output Timing

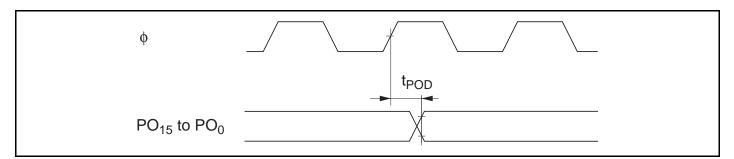


Figure 22.21 PPG Output Timing

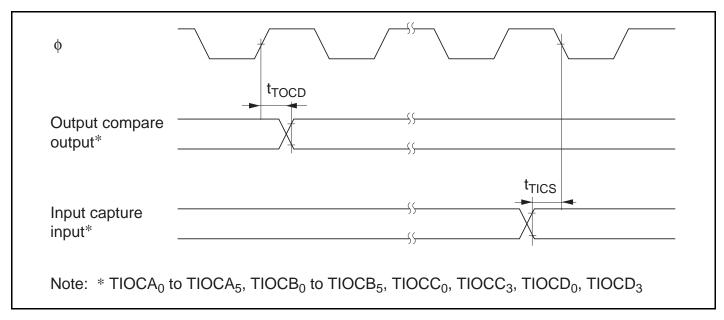


Figure 22.22 TPU Input/Output Timing

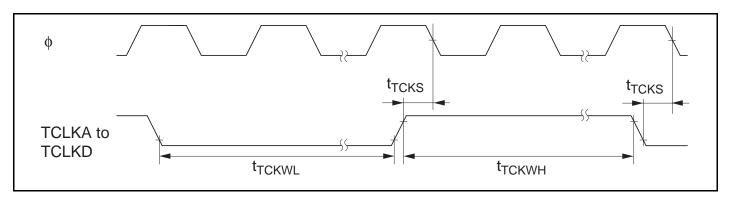


Figure 22.23 TPU Clock Input Timing

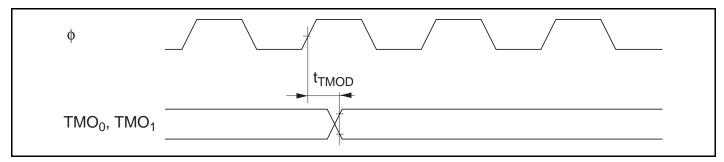


Figure 22.24 8-Bit Timer Output Timing

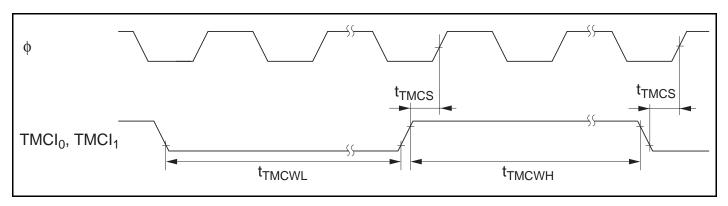


Figure 22.25 8-Bit Timer Clock Input Timing

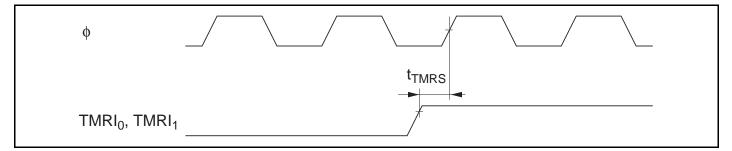


Figure 22.26 8-Bit Timer Reset Input Timing

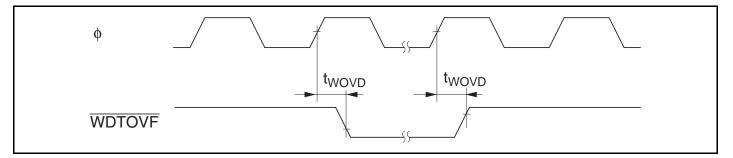


Figure 22.27 WDT Output Timing

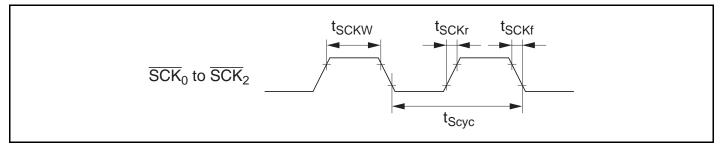


Figure 22.28 SCK Clock Input Timing

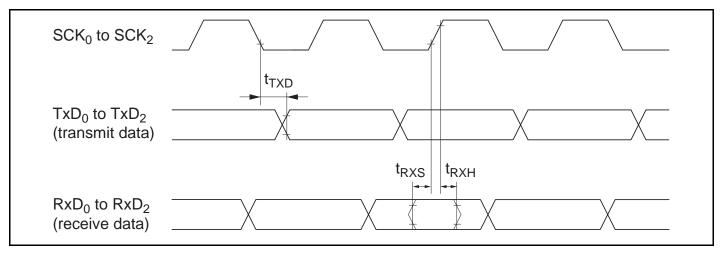


Figure 22.29 SCI Input/Output Timing (Synchronous Mode)

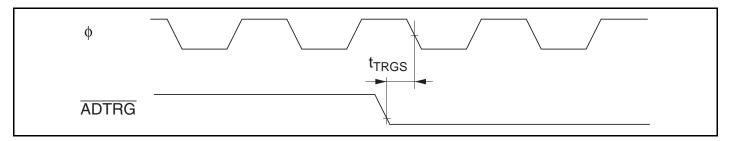


Figure 22.30 A/D Converter External Trigger Input Timing

22.1.4 A/D Conversion Characteristics

Table 22.9 A/D Conversion Characteristics

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Conditio	ondition A Condition B		Condition B			
Item	Min	Тур	Max	Min	Тур	Max	Unit	
Resolution	10	10	10	10	10	10	Bits	
Conversion time	6.7	_	_	10.6	_	_	μS	
Analog input capacitance	_	_	20	_	_	20	pF	
Permissible signal source impedance	_	_	5	_	_	5	kΩ	
Nonlinearity error	_	_	±5.5	_	_	±5.5	LSB	
Offset error			±5.5	_		±5.5	LSB	
Full-scale error	_	_	±5.5	_	_	±5.5	LSB	
Quantization error	_	±0.5	_	_	±0.5	_	LSB	
Absolute accuracy	_	_	±6.0	_	_	±6.0	LSB	

22.1.5 D/A Conversion Characteristics

Table 22.10 D/A Conversion Characteristics

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

	Condition A			Condition B				Test
Item	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Resolution	8	8	8	8	8	8	Bits	
Conversion time	_	_	10	_	_	10	μS	20 pF-capacitive load
Absolute accuracy	_	±2.0	±3.0	_	±2.0	±3.0	LSB	2 M Ω resistive load
	_	_	±2.0	_	_	±2.0	LSB	4 M Ω resistive load

22.2 Electrical Characteristics of F-ZTAT Version (H8S/2339, H8S/2339E, H8S/2338)

22.2.1 Absolute Maximum Ratings

Table 22.11 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	V _{CC}	-0.3 to +4.3	V
Input voltage (FWE*2, EMLE*3)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (except port 4, P5 ₄ to P5 ₇)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (port 4, P5 ₄ to P5 ₇)	V _{in}	-0.3 to AV _{CC} +0.3	V
Reference power supply voltage	V _{ref}	-0.3 to AV _{CC} +0.3	V
Analog power supply voltage	AV _{CC}	-0.3 to +4.3	V
Analog input voltage	V _{AN}	-0.3 to AV _{CC} +0.3	V
Operating temperature	T _{opr}	Regular specifications: –20 to +75*1	°C
		Wide-range specifications: -40 to +85*1	°C
Storage temperature	T _{stg}	–55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

Notes: 1. The operating temperature ranges for flash memory programming/erasing are as follows:

 $T_a = 0$ °C to +75°C (regular specifications), $T_a = 0$ °C to +85°C (wide-range specifications).

- 2. The FWE pin applies to the H8S/2338 F-ZTAT.
- 3. The EMLE pin applies to the H8S/2339 F-ZTAT.

22.2.2 DC Characteristics

Table 22.12 DC Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 3.0 \text{ V}$

0 V*1, $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-

range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	Ports 1, 2, 7, 9, P5 ₀ to P5 ₃ , P6 ₄ to P6 ₇ ,	VT ⁻	$V_{\text{CC}} \times 0.2$	_	_	V	
trigger input voltage		VT ⁺	_	_	$V_{\text{CC}} \times 0.7$	V	_
voitage	PA_4 to PA_7	$VT^+ - VT^-$	$V_{\text{CC}} \times 0.07$	_	_	V	_
Input high voltage	RES, STBY, NMI, MD ₂ to MD ₀ , FWE ^{*2} , EMLE ^{*3}	V _{IH}	V _{CC} × 0.9	_	V _{CC} + 0.3	V	
	EXTAL	_	$V_{CC} \times 0.7$	_	V _{CC} + 0.3	V	_
	Ports 3, 8, B to G, P6 ₀ to P6 ₃ , PA ₀ to PA ₃	_	2.2	_	V _{CC} + 0.3	V	_
	Port 4, P5 ₄ to P5 ₇	_	2.2	_	AV _{CC} + 0.3	V	_
Input low voltage	RES, STBY, MD ₂ to MD ₀ , FWE ^{*2} , EMLE ^{*3}	V _{IL}	-0.3	_	V _{CC} × 0.1	V	
	NMI, EXTAL, ports 3, 4, 8, B to G, P5 ₄ to P5 ₇ , P6 ₀ to P6 ₃ , PA ₀ to PA ₃	_	-0.3		V _{CC} × 0.2	V	
Output high	All output pins	V _{OH}	$V_{CC} - 0.5$	_	_	V	I _{OH} = -200 μA
voltage			V _{CC} – 1.0	_	_	V	$I_{OH} = -1 \text{ mA}$
Output low voltage	All output pins	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
Input	RES	I _{in}	_	_	10.0	μΑ	V _{in} = 0.5 to
leakage current	STBY, NMI, MD ₂ to MD ₀ , FWE ^{*2} , EMLE ^{*3}	_	_	_	1.0	μΑ	[−] V _{CC} – 0.5 V
	Port 4, P5 ₄ to P5 ₇	_	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ to}$ $AV_{CC} - 0.5 \text{ V}$

Rev.4.00 Sep. 07, 2007 Page 901 of 1210

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Three-state leakage current (off state)	Ports 1 to 3, 5 to 9, A to G	I _{TSI}		_	1.0	μΑ	$V_{in} = 0.5 \text{ to} $ $V_{CC} - 0.5 \text{ V}$
Input pull-up MOS current	Ports A to E	-I _p	10	_	300	μΑ	$V_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{in} = 0 \text{ V}$
Input	RES	C_{in}	_	_	30	pF	$V_{in} = 0 V$,
capacitance	NMI	_	_	_	30	pF	f = 1 MHz, - T _a = 25°C
	All input pins except RES and NMI	-	_	_	15	pF	- 1a - 2 3 O
Current	Normal operation	I _{CC} *6		58 (3.3 V)	105	mA	f = 25 MHz
dissipation*4	Sleep mode	_		46 (3.3 V)	82	mA	f = 25 MHz
	Standby mode*5		_	0.01	10	μΑ	$T_a \le 50^{\circ}C$
			_	_	80	_	50°C < T _a
Analog power	During A/D and D/A conversion	Al _{CC}	_	0.2 (3.0 V)	2.0	mA	
supply voltage	Idle	_	_	0.01	5.0	μΑ	_
Reference power supply voltage	During A/D and D/A conversion	Alcc	_	2.4 (3.0 V)	6.0	mA	
	Idle		_	0.01	5.0	μΑ	
RAM standby	y voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC} , V_{ref} , and AV_{SS} pins open. Connect the AV_{CC} and V_{ref} pins to V_{CC} , and the AV_{SS} pin to V_{SS} .

- 2. The FWE pin applies to the H8S/2338 F-ZTAT.
- 3. The EMLE pin applies to the H8S/2339 F-ZTAT.
- 4. Current dissipation values are for $V_{IH\ min} = V_{CC} 0.5\ V$ and $V_{IL\ max} = 0.5\ V$ with all output pins unloaded and all MOS input pull-ups in the off state.
- 5. The values are for $V_{RAM} \le V_{CC} < 3.0 \text{ V}$, V_{IH} min = $V_{CC} \times 0.9$, and V_{IL} max = 0.3 V.

RENESAS

6. I_{CC} depends on V_{CC} and f as follows: I_{CC} max = 1.0 (mA) + 1.15 (mA/(MHz × V)) × V_{CC} × f (normal operation) I_{CC} max = 1.0 (mA) + 0.90 (mA/(MHz × V)) × V_{CC} × f (sleep mode)

Table 22.13 Permissible Output Currents

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0$ V, $T_a = -20$ to +75°C (regular specifications), $T_a = -40$ to +85°C

(wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	All output pins	I _{OL}	_	_	2.0	mA
Permissible output low current (total)	Total of all output pins	\sum I _{OL}	_		80	mA
Permissible output high current (per pin)	All output pins	−l _{OH}	_	_	2.0	mA
Permissible output high current (total)	Total of all output pins	∑ –l _{OH}	_	_	40	mA

Note: To protect chip reliability, do not exceed the output current values in table 22.13.

22.2.3 AC Characteristics

(1) Clock Timing

Table 22.14 Clock Timing

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $\phi = 2$ MHz to 25 MHz, $T_a = -20$ °C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item	Symbol	Min	Max	Unit	Test Conditions
Clock cycle time	t _{cyc}	40	500	ns	Figure 22.2
Clock pulse high width	t _{CH}	15	_	ns	
Clock pulse low width	t _{CL}	15		ns	
Clock rise time	t _{Cr}		5	ns	
Clock fall time	t _{Cf}	_	5	ns	
Reset oscillation stabilization time (crystal)	t _{OSC1}	10	_	ms	Figure 22.3
Software standby oscillation stabilization time (crystal)	t _{OSC2}	10	_	ms	
External clock output stabilization delay time	t _{DEXT}	500	_	μ\$	Figure 22.3

(2) Control Signal Timing

Table 22.15 Control Signal Timing

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $\phi = 2$ MHz to 25 MHz, $T_a = -20$ °C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item	Symbol	Min	Max	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 22.4
RES pulse width	t _{RESW}	20		t _{cyc}	
NMI setup time	t _{NMIS}	150	_	ns	Figure 22.5
NMI hold time	t _{NMIH}	10			
NMI pulse width (in recovery from software standby mode)	t _{NMIW}	200	_		
IRQ setup time	t _{IRQS}	150		ns	
IRQ hold time	t _{IRQH}	10	_		
IRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200	_		

(3) Bus Timing

Table 22.16 Bus Timing

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $\phi = 2$ MHz to 25 MHz, $T_a = -20$ °C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item	Symbol	Min	Max	Unit	Test Conditions
Address delay time	t _{AD}	_	20	ns	Figures 22.6 to
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 15$		ns	22.13
Address hold time	t _{AH}	$0.5 imes t_{cyc} - 8$		ns	
Precharge time	t _{PCH}	$1.5 \times t_{cyc}$ – 15	_	ns	
CS delay time 1	t _{CSD1}	_	15	ns	
CS delay time 2	t _{CSD2}	_	15	ns	
CS delay time 3	t _{CSD3}	_	20	ns	
AS delay time	t _{ASD}	_	15	ns	
RD delay time 1	t _{RSD1}	_	15	ns	
RD delay time 2	t _{RSD2}	_	15	ns	
CAS delay time	t _{CASD}	_	15	ns	
Read data setup time	t _{RDS}	15	_	ns	
Read data hold time	t _{RDH}	0	_	ns	
Read data access time 1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 20$	ns	
Read data access time 2	t _{ACC2}	_	$1.5 \times t_{\text{cyc}} - 20$	ns	
Read data access time 3	t _{ACC3}	_	$2.0 \times t_{\text{cyc}} - 20$	ns	
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{\text{cyc}} - 20$	ns	
Read data access time 5	t _{ACC5}	_	$3.0 \times t_{\text{cyc}} - 20$	ns	
Read data access time 6	t _{ACC6}	_	$1.0 \times t_{\text{cyc}} - 20$	ns	
WR delay time 1	t _{WRD1}	_	15	ns	
WR delay time 2	t _{WRD2}	_	15	ns	
WR pulse width 1	t _{wsw1}	$1.0 \times t_{cyc} - 15$	_	ns	
WR pulse width 2	t _{WSW2}	$1.5 \times t_{\text{cyc}} - 15$	_	ns	
Write data delay time	t _{WDD}	_	20	ns	
Write data setup time	t _{WDS}	$0.5 \times t_{cyc} - 15$	_	ns	
Write data hold time	t_{WDH}	$0.5 \times t_{\text{cyc}} - 8$	_	ns	
WR setup time	t _{wcs}	$0.5 imes t_{cyc} - 10$	_	ns	-
WR hold time	t _{wch}	$0.5 imes t_{cyc} - 10$	<u> </u>	ns	
CAS setup time	t _{CSR}	$0.5 \times t_{cyc} - 8$		ns	Figure 22.10
WAIT setup time	t _{WTS}	25		ns	Figure 22.8
WAIT hold time	t _{WTH}	5	_	ns	

Item	Symbol	Min	Max	Unit	Test Conditions
BREQ setup time	t _{BRQS}	30	_	ns	Figure 22.14
BACK delay time	t _{BACD}	-	15	ns	
Bus floating time	t _{BZD}	_	40	ns	
BREQO delay time	t _{BRQOD}	_	25	ns	Figure 22.15

(4) DMAC Timing

Table 22.17 DMAC Timing

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, ϕ = 2 MHz to 25 MHz, T_a = -20°C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item	Symbol	Min	Max	Unit	Test Conditions
DREQ setup time	t _{DRQS}	25	_	ns	Figure 22.19
DREQ hold time	t _{DRQH}	10	_		
TEND delay time	t _{TED}		18		Figure 22.18
DACK delay time 1	t _{DACD1}	_	18	ns	Figures 22.16 and
DACK delay time 2	t _{DACD2}	_	18		22.17

(5) Timing of On-Chip Supporting Modules

Table 22.18 Timing of On-Chip Supporting Modules

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $\phi = 2$ MHz to 25 MHz, $T_a = -20$ °C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item			Symbol	Min	Max	Unit	Test Conditions
I/O ports	Output data d	lelay time	t _{PWD}	_	40	ns	Figure 22.20
	Input data set	tup time	t _{PRS}	25	_		
	Input data ho	ld time	t _{PRH}	25	_		
PPG	Pulse output	delay time	t _{POD}	_	40	ns	Figure 22.21
TPU	Timer output	delay time	t _{TOCD}	_	40	ns	Figure 22.22
	Timer input so	etup time	t _{TICS}	25	_		
	Timer clock in	nput setup time	t _{TCKS}	25	_	ns	Figure 22.23
	Timer clock	Single-edge specification	t _{TCKWH}	1.5	_	t _{cyc}	
	pulse width	Both-edge specification	t _{TCKWL}	2.5	_		
8-bit timer	Timer output	delay time	t _{TMOD}	_	40	ns	Figure 22.24
	Timer reset in	put setup time	t _{TMRS}	25	_	ns	Figure 22.26
	Timer clock in	nput setup time	t _{TMCS}	25	_	ns	Figure 22.25
	Timer clock	Single-edge specification	t _{TMCWH}	1.5	_	t _{cyc}	
	pulse width	Both-edge specification	t _{TMCWL}	2.5	_		
WDT	Overflow outp	out delay time	t _{WOVD}	_	40	ns	Figure 22.27
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	t_{cyc}	Figure 22.28
	cycle	Synchronous	-	6	_		
	Input clock pu	ulse width	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock ris	se time	t _{SCKr}	_	1.5	t_{cyc}	
	Input clock fa	II time	t _{SCKf}	_	1.5		
	Transmit data	delay time	t _{TXD}	_	40	ns	Figure 22.29
	Receive data	setup time (synchronous)	t _{RXS}	40	_	ns	
	Receive data	hold time (synchronous)	t _{RXH}	40	_	ns	
A/D converter	Trigger input	setup time	t _{TRGS}	30	_	ns	Figure 22.30

22.2.4 A/D Conversion Characteristics

Table 22.19 A/D Conversion Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $\phi = 2$ MHz to 25 MHz, $T_a = -20$ °C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item	Min	Тур	Max	Unit
Resolution	10	10	10	Bits
Conversion time	10.6	_	_	μS
Analog input capacitance			20	pF
Permissible signal source impedance			5	kΩ
Nonlinearity error			±5.5	LSB
Offset error	_	_	±5.5	LSB
Full-scale error			±5.5	LSB
Quantization error		_	±0.5	LSB
Absolute accuracy	_	_	±6.0	LSB

22.2.5 D/A Conversion Characteristics

Table 22.20 D/A Conversion Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $\phi = 2$ MHz to 25 MHz, $T_a = -20$ °C to 75°C (regular specifications),

 $T_a = -40$ °C to 85°C (wide-range specifications)

Item	Min	Тур	Max	Unit	Test Conditions
Resolution	8	8	8	Bits	
Conversion time	_	_	10	μS	20 pF-capacitive load
Absolute accuracy	_	±2.0	±3.0	LSB	2 M Ω resistive load
	_		±2.0	LSB	4 M Ω resistive load

22.2.6 Flash Memory Characteristics

Table 22.21 Flash Memory Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $T_a = 0$ °C to + 75°C (program/erase operating temperature range: regular

specifications), $T_a = 0$ °C to + 85°C (program/erase operating temperature range:

wide-range specifications)

Item		Sy	mbol	Min	Тур	Max	Unit	Test Conditions
Programming	time ^{*1*2*4}	t _P		_	10	200	ms/ 128 bytes	3
Erase time*1*3	3*6	t _E		_	50	1000	ms/block	
Reprogrammir	ng count	N _W	EC	100 ^{*7}	10000*8	_	Times	
Data retention	time ^{*9}	t _{DRF}	D	10	_	_	Years	
Programming	Wait time after SWE bit setting*1	Х		1	_	_	μS	
	Wait time after PSU bit setting*1	у		50	_	_	μS	
	Wait time after P bit setting*1*4	Z	(z1)	_	_	30	μS	$1 \le n \le 6$
			(z2)	_	_	200	μS	$7 \leq n \leq 1000$
			(z3)	_	_	10	μS	Wait for additional writing
	Wait time after P bit clearing*1	α		5	_	_	μS	
	Wait time after PSU bit clearing*1	β		5	_	_	μS	
	Wait time after PV bit setting*1	γ		4	_	_	μS	
	Wait time after H'FF dummy write*1	3		2	_	_	μS	
	Wait time after PV bit clearing*1	η		2	_	_	μS	
	Wait time after SWE bit clearing*1	θ		100	_	_	μS	
	Maximum number of writes*1*4	Ν		_	_	1000*5	Times	
Erasing	Wait time after SWE bit setting*1	Х		1	_	_	μS	
	Wait time after ESU bit setting*1	у		100	_	_	μS	
	Wait time after E bit setting*1*6	Z		_		10	ms	Wait for erasing time
	Wait time after E bit clearing*1	α		10	_	_	μS	
	Wait time after ESU bit clearing*1	β		10	_	_	μS	
	Wait time after EV bit setting*1	γ		20	_	_	μS	
	Wait time after H'FF dummy write*1	3		2	_	_	μS	
	Wait time after EV bit clearing*1	η		4	_	_	μS	
	Wait time after SWE bit clearing*1	θ		100	_	_	μS	
	Maximum number of erases*1*6	N		_	_	100	Times	

Notes: 1. Follow the program/erase algorithms when making the time settings.

- 2. Programming time per 128 bytes. (Indicates the total time during which the P bit is set in flash memory control register 1 (FLMCR1). Does not include the program-verify time.)
- 3. Time to erase one block. (Indicates the time during which the E bit is set in FLMCR1. Does not include the erase-verify time.)
- 4. Maximum programming time

$$t_P(max) = \sum_{i=1}^{N} wait time after P bit setting (z)$$

5. The maximum number of writes (N) should be set as shown below according to the actual set value of z so as not to exceed the maximum programming time (t_P(max)). The wait time after P bit setting (z) should be changed as follows according to the number of writes (n).

Number of writes (n)

$$1 \le n \le 6$$
 $z = 30 \ \mu s$
 $7 \le n \le 1000$ $z = 200 \ \mu s$
 $1 \le n \le 6$ $z = 10 \ \mu s$: For additional writing

6. For the maximum erase time ($t_E(max)$), the following relationship applies between the wait time after E bit setting (z) and the maximum number of erases (N):

 t_E (max) = Wait time after E bit setting (z) × maximum number of erases (N)

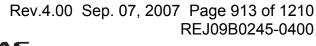
- 7. Minimum number of times for which all characteristics are guaranteed after rewriting (Guarantee range is 1 to minimum value).
- 8. Reference value for 25°C (as a guideline, rewriting should normally function up to this value).
- 9. Data retention characteristic when rewriting is performed within the specification range, including the minimum value.

22.3 Usage Note

Although both the F-ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

If the F-ZTAT version is used to carry out system evaluation and testing, therefore, when switching to the mask ROM version the same evaluation and testing procedures should also be conducted on this version.

Appendix A Instruction Set


A.1 Instruction List

Operand Notation

General register (destination)*1
General register (source)*1
General register*1
General register (32-bit register)
Multiply-and-accumulate register (32-bit register)*2
Destination operand
Source operand
Extended control register
Condition-code register
N (negative) flag in CCR
Z (zero) flag in CCR
V (overflow) flag in CCR
C (carry) flag in CCR
Program counter
Stack pointer
Immediate data
Displacement
Add
Subtract
Multiply
Divide
Logical AND
Logical OR
Logical exclusive OR
Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
Logical NOT (logical complement)
Contents of operand
8-, 16-, 24-, or 32-bit length

Notes: 1. General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

2. The MAC register cannot be used in the chip.

Condition Code Notation

Symbol

_	Changes according to the result of the instruction
*	Undetermined (no guaranteed value)
0	Always cleared to 0
1	Always set to 1
_	Not affected by execution of the instruction

RENESAS

Table A.1 Instruction Set

			Inst	Addressing Mode/ struction Length (Bytes)	dres tion	Sin	Addressing Mode/ ruction Length (By	de/ (By	res)								
		erand Size		Вп	(nA3,t	ERn/@ERn+	9	(Daʻr	888			Con	ditio	yn C	Condition Code		No. of States*1
	Mnemonic		XX#	שנ שנ			® 3		(a) (a)	_	Operation	-	Z	7	>	ပ	Advanced
MOV	MOV.B #xx:8,Rd	В	7							XX#	#xx:8→Rd8		\leftrightarrow	\leftrightarrow	- 0		1
	MOV.B Rs,Rd	В	- 1	7						Rs	Rs8→Rd8		\leftrightarrow	\leftrightarrow	0	I	_
	MOV.B @ERs,Rd	В		- 1	2					@ E	@ERs→Rd8		\leftrightarrow	\leftrightarrow	- 0	I	2
	MOV.B @(d:16,ERs),Rd	В			4					(a)	@(d:16,ERs)→Rd8		\leftrightarrow	\leftrightarrow	0		3
	MOV.B @(d:32,ERs),Rd	В			8					(0)	@(d:32,ERs)→Rd8		\leftrightarrow	\leftrightarrow	- 0	I	2
	MOV.B @ERs+,Rd	В				7				@ E	®ERs→Rd8,ERs32+1→ERs32		\leftrightarrow	\leftrightarrow	0		3
	MOV.B @aa:8,Rd	В					2			@	@aa:8→Rd8		\leftrightarrow	\leftrightarrow	- 0		2
	MOV.B @aa:16,Rd	В					4			@	@aa:16→Rd8		\leftrightarrow	\leftrightarrow	- 0		3
	MOV.B @aa:32,Rd	В					9			@	@aa:32→Rd8		\leftrightarrow	\leftrightarrow	0		4
	MOV.B Rs,@ERd	В		7	0:					Rs	Rs8→@ERd		\leftrightarrow	\leftrightarrow	0	I	2
	MOV.B Rs, @ (d:16, ERd)	В			4					Rs	Rs8→@(d:16,ERd)		\leftrightarrow	\leftrightarrow	0		8
	MOV.B Rs, @ (d:32,ERd)	В			8					Rs	Rs8→@(d:32,ERd)		\leftrightarrow	\leftrightarrow	0		5
	MOV.B Rs,@-ERd	В				7				ER	ERd32-1→ERd32,Rs8→@ERd		\leftrightarrow	\leftrightarrow	0		3
	MOV.B Rs,@aa:8	В					2			Rs	Rs8→@aa:8		\leftrightarrow	\leftrightarrow	0		2
	MOV.B Rs,@aa:16	В					4			Rs	Rs8→@aa:16		\leftrightarrow	\leftrightarrow	0		3
	MOV.B Rs,@aa:32	В					9			Rs	Rs8→@aa:32		\leftrightarrow	\leftrightarrow	0		4
	MOV.W #xx:16,Rd	N	4							XX#	#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0		2
	MOV.W Rs,Rd	>	- 1	2						Rs	Rs16→Rd16		\leftrightarrow	\leftrightarrow	0		1
	MOV.W @ERs,Rd	>			7					@ E	@ERs→Rd16		\leftrightarrow	\leftrightarrow	0	1	2

(1) Data Transfer Instructions

			Inst	Ade	Addressing Mode/ ruction Length (By	sing	J Mo	Addressing Mode/ struction Length (Bytes)	es)						
		erand Size	,	Вп	(nЯ∃,t	+uA∃@/uA∃) aa			Con	ditio	Condition Code		No. of States*1
	Mnemonic		XX#	©E ©E		- @	60a		_	Operation	-	Z	Z V	ပ	Advanced
MOV	MOV.W @(d:16,ERs),Rd	Μ			4					@(d:16,ERs)→Rd16		\leftrightarrow	0		3
	MOV.W @(d:32,ERs),Rd	Μ			8					@(d:32,ERs)→Rd16		\leftrightarrow	0		5
	MOV.W @ERs+,Rd	Μ				2				@ERs→Rd16,ERs32+2→ERs32		\leftrightarrow	0		3
	MOV.W @aa:16,Rd	Λ					4			@aa:16→Rd16		\leftrightarrow	0		3
	MOV.W @aa:32,Rd	Λ					9			@aa:32→Rd16		\leftrightarrow	0		4
	MOV.W Rs,@ERd	M		2						Rs16→@ERd		\leftrightarrow	0		2
	MOV.W Rs, @ (d:16,ERd)	>			4					Rs16→@(d:16,ERd)	<u> </u> 	\leftrightarrow	0→	Ι	3
	MOV.W Rs, @ (d:32,ERd)	>			∞					Rs16→@(d:32,ERd)	1	\leftrightarrow	o ↔		5
	MOV.W Rs,@-ERd	>				7				ERd32-2→ERd32,Rs16→@ERd -		\leftrightarrow	0↔	I	3
	MOV.W Rs,@aa:16	8					4			Rs16→@aa:16		\leftrightarrow	0		3
	MOV.W Rs,@aa:32	8					9			Rs16→@aa:32		\leftrightarrow	0		4
	MOV.L #xx:32,ERd		9							#xx:32→ERd32		\leftrightarrow	0 ↔		3
	MOV.L ERS,ERd	_	• •	7						ERs32→ERd32		\leftrightarrow	0↔		1
	MOV.L @ERs,ERd	_		4						@ERs→ERd32		\leftrightarrow	0↔		4
	MOV.L @(d:16,ERs),ERd	_			9					@(d:16,ERs)→ERd32	1	\leftrightarrow	0↔		5
	MOV.L @(d:32,ERs),ERd	_			10					@(d:32,ERs)→ERd32	1	\leftrightarrow	0↔		7
	MOV.L @ERs+,ERd					4				@ERs→ERd32,ERs32+4→@ERs32	1	\leftrightarrow	0↔		5
	MOV.L @aa:16,ERd						9			@aa:16→ERd32		\leftrightarrow	○→		5
	MOV.L @aa:32,ERd		_	\dashv	\dashv		8	_		@aa:32→ERd32	$\frac{\parallel}{\parallel}$	\leftrightarrow	○↔		9

		lns	Ac	dre	Addressing Mode/ Instruction Length (Bytes)	g Ma	ode/ (By	rtes								
		erand Size	- 4	Rn (Rn	ERn/@ERn+		(Ja'r	999			Ö	ndit	Condition Code	S	<u>ə</u>	No. of States*1
	Mnemonic	XX#	Вn			@ 9		n (a) (d	Operation		_	I	N	>	ပ	Advanced
MOV	MOV.L ERs,@ERd	_	Ť	4					ERs32→@ERd		†	\leftrightarrow	\leftrightarrow	0		4
	MOV.L ERs, @(d:16,ERd)	_		9					ERs32→@(d:16,ERd)			\leftrightarrow	\leftrightarrow	0	I	5
	MOV.L ERs, @(d:32,ERd)	_		10					ERs32→@(d:32,ERd)			\leftrightarrow	\leftrightarrow	0	I	7
	MOV.L ERs, @-ERd	_			4				ERd32-4→ERd32,ERs32→@ERd	¢@ERd		\leftrightarrow	\leftrightarrow	0	I	5
	MOV.L ERs,@aa:16					9			ERs32→@aa:16			↔	\leftrightarrow	0		5
	MOV.L ERs,@aa:32					8			ERs32→@aa:32			\leftrightarrow	\leftrightarrow	0		9
POP	POP.W Rn	>						7	@SP→Rn16,SP+2→SP			\leftrightarrow	\leftrightarrow	0		က
	POP.L ERn							4	@SP→ERn32,SP+4→SP			\leftrightarrow	\leftrightarrow	0		5
PUSH	PUSH.W Rn	>						2	SP-2→SP,Rn16→@SP			\leftrightarrow	\leftrightarrow	0		3
	PUSH.L ERn							4	SP-4→SP,ERn32→@SP			\leftrightarrow	\leftrightarrow	0		5
LDM	LDM @SP+,(ERm-ERn)	_						4	(@SP→ERn32,SP+4→SP)	(c					l	7/9/11 [1]
									Repeated for each register restored	stored						
STM	STM (ERm-ERn), @-SP	_						4	(SP-4→SP,ERn32→@SP)	(1	1		I	7/9/11 [1]
									Repeated for each register saved	r saved						
MOVFPE	MOVFPE @aa:16,Rd	Canno	t be	nse	ot be used in the chip	the c	diń									[2]
MOVTPE	MOVTPE Rs,@aa:16	Canno	t be	nse	ot be used in the chip	the c	qiń									[2]

(2) Arithmetic Instructions

		_=) nstri	Addr uctic	Addressing Mode/ ruction Length (By	ng l	Mod ih (E	Addressing Mode/ nstruction Length (Bytes)							
	,	eziS bnare			a,ERn)	g EKn/@EKn+	(Ja'r	999		ပိ	Condition Code	ion	ဝိ	ā	No. of States*1
	Mnemonic	odO xx#	Вn	® E		@99			Operation	_	I	N	>	ပ	Advanced
ADD	ADD.B #xx:8,Rd	B 2							Rd8+#xx:8→Rd8		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	ADD.B Rs,Rd	В	7						Rd8+Rs8→Rd8		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	ADD.W #xx:16,Rd								Rd16+#xx:16→Rd16	Ī	⇔ [3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	2
	ADD.W Rs,Rd	>	7						Rd16+Rs16→Rd16	Ī	(3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	ADD.L #xx:32,ERd	9 7							ERd32+#xx:32→ERd32		<u>4</u>	\leftrightarrow	\leftrightarrow	\leftrightarrow	8
	ADD.L ERS,ERd	_	7						ERd32+ERs32→ERd32	I	<u>₹</u>	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
ADDX	ADDX #xx:8,Rd	B 2							Rd8+#xx:8+C→Rd8		\leftrightarrow	[2]	↔	\leftrightarrow	1
	ADDX Rs,Rd	В	2						Rd8+Rs8+C→Rd8		\leftrightarrow	[2]	↔	\leftrightarrow	1
ADDS	ADDS #1,ERd	_	2						ERd32+1→ERd32		<u> </u>				1
	ADDS #2,ERd	_	2						ERd32+2→ERd32		<u> </u>				1
	ADDS #4,ERd		2						ERd32+4→ERd32					I	_
INC	INC.B Rd	В	2						Rd8+1→Rd8		↔ 	\leftrightarrow	\leftrightarrow		1
	INC.W #1,Rd	N	2						Rd16+1→Rd16		↔ -	\leftrightarrow	\leftrightarrow		1
	INC.W #2,Rd	X	2						Rd16+2→Rd16		<u>↔</u>	\leftrightarrow	\leftrightarrow		1
	INC.L #1,ERd	_	2						ERd32+1→ERd32		\leftrightarrow	\leftrightarrow	\leftrightarrow		1
	INC.L #2,ERd	_	7						ERd32+2→ERd32		<>>	\leftrightarrow	\leftrightarrow		1
DAA	DAA Rd	В	7						Rd8 decimal adjust→Rd8		*	\leftrightarrow	*	\leftrightarrow	1
SUB	SUB.B Rs,Rd	В	7						Rd8-Rs8→Rd8		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SUB.W #xx:16,Rd				-	_			Rd16-#xx:16→Rd16		⊕ [3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	2

			lns	Ac struc	ldre Xior	Addressing Mode/ Instruction Length (Bytes)	g Μα ngth	de/ (By	tes)								
		erand Size			kn 1,ERn)	ERN/@ERn+		() Ja'i	88		ပ ိ	puc	Condition Code	S	o o o		No. of States*1
	Mnemonic	odO	XX#	Вn	שני שני שE		@ g		— n 🕾	Operation	_	I	z	7	<u>د</u>		Advanced
SUB	SUB.W Rs,Rd	≥		7						Rd16-Rs16→Rd16		3	\leftrightarrow	\leftrightarrow	\leftrightarrow		-
	SUB.L #xx:32,ERd	_	9							ERd32-#xx:32→ERd32		4	\leftrightarrow	\leftrightarrow	\leftrightarrow		3
	SUB.L ERs, ERd	_		7						ERd32-ERs32→ERd32		4	\leftrightarrow	\leftrightarrow	\leftrightarrow		_
SUBX	SUBX #xx:8,Rd	В	7							Rd8-#xx:8-C→Rd8		\leftrightarrow	<u>}</u>	[2]	\leftrightarrow		_
	SUBX Rs,Rd	В		2						Rd8-Rs8-C→Rd8		\leftrightarrow	†] †	<u>[2]</u>	\leftrightarrow		1
SUBS	SUBS #1,ERd	_		2						ERd32-1→ERd32		İ				ı	_
	SUBS #2,ERd			2						ERd32-2→ERd32				<u> </u>		ı	1
	SUBS #4,ERd	٦		2						ERd32-4→ERd32		Ī				I	1
DEC	DEC.B Rd	В		2						Rd8-1→Rd8			\leftrightarrow	\leftrightarrow		I	1
	DEC.W #1,Rd	>		2						Rd16-1→Rd16			\leftrightarrow	\leftrightarrow		I	1
	DEC.W #2,Rd	>		7						Rd16-2→Rd16			\leftrightarrow	\leftrightarrow		I	1
	DEC.L #1,ERd	٦		2						ERd32-1→ERd32			\leftrightarrow	\leftrightarrow		I	1
	DEC.L #2,ERd	٦		7						ERd32-2→ERd32			\leftrightarrow	\leftrightarrow	1		1
DAS	DAS Rd	В		2						Rd8 decimal adjust→Rd8		*	\leftrightarrow	* *	*		1
MULXU	MULXU.B Rs,Rd	В		2						Rd8×Rs8→Rd16 (unsigned multiplication)						I	12
	MULXU.W Rs,ERd	>		2						Rd16×Rs16→ERd32				l I	<u> </u> 	ı	20
										(unsigned multiplication)							
MULXS	MULXS.B Rs,Rd	В		4						Rd8×Rs8→Rd16 (signed multiplication)	I		\leftrightarrow	\leftrightarrow			13
	MULXS.W Rs,ERd	>		4						Rd16×Rs16→ERd32			\leftrightarrow	\leftrightarrow	<u> </u> 		21
			\dashv	\dashv	\dashv	=		\dashv	\dashv	(signed multiplication)	=		\dashv				

			Instr	Add 'ucti	ressi on L	Addressing Mode/ struction Length (Bytes)	lode h (B)	/ /tes)						
		erand Size	,	นษา	hERn)	g EKn/@EKn+	(Ja'r	ee		ပိ	yndit	Condition Code		No. of States *1
	Mnemonic		ww.			_@ _@	@ (0	 	Operation	_	z	ZVC		Advanced
DIVXU	DIVXU.B Rs,Rd	Ф	7						Rd16÷Rs8→Rd16 (RdH: remainder,		<u> </u>	[6] [7] —		12
									RdL: quotient) (unsigned division)					
	DIVXU.W Rs,ERd	>	7						ERd32÷Rs16→ERd32 (Ed: remainder,		[9] —	- [2]	1	20
									Rd: quotient) (unsigned division)					
DIVXS	DIVXS.B Rs,Rd	Δ	4						Rd16÷Rs8→Rd16 (RdH: remainder,		<u>[8</u>]	.] [7] — –		13
									RdL: quotient) (signed division)					
	DIVXS.W Rs,ERd	>	4						ERd32÷Rs16→ERd32 (Ed: remainder,		[8]	.] [7] — –	1	21
									Rd: quotient) (signed division)					
CMP	CMP.B #xx:8,Rd	B 2	6:						Rd8-#xx:8		\leftrightarrow	\leftrightarrow \leftrightarrow \leftrightarrow		_
	CMP.B Rs,Rd	Ф	7						Rd8-Rs8		\leftrightarrow	\leftrightarrow \leftrightarrow \leftrightarrow		_
	CMP.W #xx:16,Rd		_						Rd16-#xx:16	Ī	♦ [E]	\leftrightarrow \leftrightarrow \leftrightarrow		2
	CMP.W Rs,Rd	>	2						Rd16-Rs16	Ī	(3)	\leftrightarrow \leftrightarrow \leftrightarrow		_
	CMP.L #xx:32,ERd	9 T	<u></u>						ERd32-#xx:32	Ī	[4]	\leftrightarrow \leftrightarrow \leftrightarrow		3
	CMP.L ERS,ERd		2						ERd32-ERs32	Ī	[4]	↔ ↔ ↔ ↔		_
NEG	NEG.B Rd	В	2						0-Rd8→Rd8		\leftrightarrow			1
	NEG.W Rd	>	2						0-Rd16→Rd16		\leftrightarrow			1
	NEG.L ERd		2						0-ERd32→ERd32		\leftrightarrow	† † †		1
EXTU	EXTU.W Rd	>	2						$0\rightarrow$ (sbits 15 to 8> of Rd16)		0	0 \$	1	1
	EXTU.L ERd		7		\dashv	-			0→(<bits 16="" 31="" to=""> of ERd32)</bits>		0	0 ↔		_

			Inst	Ade	dres	sing	Addressing Mode/ nstruction Length (Bytes)	de/ Byt	(se			
		erand Size		uЯ	u,ERn)	ERn/@ERn+		ў ээ q 'ьС)			Condition Code	No. of States*1
	Mnemonic		XX#	©E Bu		-@	60a			Operation	I H N Z V C	Advanced
EXTS	EXTS.W Rd	>	- 1	2						(<bit 7=""> of Rd16)→</bit>	 0 ↔ 	1
										(bits 15 to 8> of Rd16)		
	EXTS.L ERd	_	. 1	7						(bit 15> of ERd32)→	 0 ↔ 	_
										(bits 31 to 16> of ERd32)		
TAS	TAS @ERd*3	В		4						@ERd-0→CCR set, (1)→		4
										(<bit 7=""> of @ERd)</bit>		
MAC	MAC @ERn+, @ERm+	Car	not	pe (rsed	in	Cannot be used in the chip	di				[2]
CLRMAC	CLRMAC	ı										
LDMAC	LDMAC ERS,MACH											
	LDMAC ERS,MACL											
STMAC	STMAC MACH,ERd											
	STMAC MACL,ERd											

(3) Logical Instructions

			lns	Ad	dre	ssin I Lei	Addressing Mode/ ruction Length (By	ode (B)	Addressing Mode/ Instruction Length (Bytes)							
		erand Size		~a	Rn (Rn	ERn/@ERn+		()a'r	99		ပိ	ndit	Condition Code	Cod	Φ	No. of States*1
	Mnemonic		XX#	wE Ru			@ 9		0 0	Operation	_	Z	N	>	ပ	Advanced
AND	AND.B #xx:8,Rd	В	2							Rd8∧#xx:8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	AND.B Rs,Rd	В		2						Rd8∧Rs8→Rd8		\leftrightarrow	\leftrightarrow	0		_
	AND.W #xx:16,Rd	>	4							Rd16∧#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0		2
	AND.W Rs,Rd	>		2						Rd16∧Rs16→Rd16		\leftrightarrow	\leftrightarrow	0		_
	AND.L #xx:32,ERd	_	9							ERd32∧#xx:32→ERd32		\leftrightarrow	\leftrightarrow	0		3
	AND.L ERs,ERd	_	-	4						ERd32∧ERs32→ERd32		\leftrightarrow	\leftrightarrow	0		2
OR	OR.B #xx:8,Rd	В	2							Rd8∨#xx:8→Rd8		↔	\leftrightarrow	0		1
	OR.B Rs,Rd	В		2						Rd8∨Rs8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	OR.W #xx:16,Rd	>	4							Rd16∨#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0		2
	OR.W Rs,Rd	>	,	2						Rd16∨Rs16→Rd16		\leftrightarrow	\leftrightarrow	0		_
	OR.L #xx:32,ERd	_	9							ERd32∨#xx:32→ERd32		\leftrightarrow	\leftrightarrow	0		3
	OR.L ERs,ERd	_		4						ERd32∨ERs32→ERd32		→	\leftrightarrow	0		2
XOR	XOR.B #xx:8,Rd	В	2							Rd8⊕#xx:8→Rd8		\leftrightarrow	\leftrightarrow	0	1	1
	XOR.B Rs,Rd	В	-	2						Rd8⊕Rs8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	XOR.W #xx:16,Rd	>	4							Rd16⊕#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0		2
	XOR.W Rs,Rd	>	-	2						Rd16⊕Rs16→Rd16	<u> </u>	$\overset{\longleftrightarrow}{}$	\leftrightarrow	0		1
	XOR.L #xx:32,ERd	_	9							ERd32⊕#xx:32→ERd32		\leftrightarrow	\leftrightarrow	0		3
	XOR.L ERs,ERd	_	-	4						ERd32⊕ERs32→ERd32		\leftrightarrow	\leftrightarrow	0	-	2
NOT	NOT.B Rd	В	,	2						¬ Rd8→Rd8		\leftrightarrow	\leftrightarrow	0	1	1
	NOT.W Rd	≥	-	7						¬ Rd16→Rd16		\leftrightarrow	\leftrightarrow	0		_
	NOT.L ERd	_		7						¬ ERd32→ERd32	<u> </u>	$\overset{\longleftrightarrow}{}$	\leftrightarrow	0		1

			Inst	Ade	dres	Sin	g M ngth	Addressing Mode/ ruction Length (By	Addressing Mode/ Instruction Length (Bytes)								
		erand Size		uЯ	ny=th	+nA3@\nA3	9	(Ja'r	99			Con	diti	ř	Condition Code		No. of States*1
	Mnemonic		#XX	@E			@ 9		 D	Operation	ation	-	Z	7	>	ပ	Advanced
SHAL	SHAL.B Rd	В	'	2									\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.B #2,Rd	В	- 1	7									\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	SHAL.W Rd	>	- 1	2						•	0-		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	SHAL.W #2,Rd	>	.,	7						C MSB A	LSB		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	SHAL.L ERd	Г	- 1	2									\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.L #2,ERd	7	- 1	2									\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
SHAR	SHAR.B Rd	В	· v	2									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.B #2,Rd	В	- 1	2									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.W Rd	8	N	2									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.W #2,Rd	>	· · ·	2						MSB	LSB C		\leftrightarrow	\leftrightarrow	0	\leftrightarrow	_
	SHAR.L ERd		.,	2									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.L #2,ERd	_	· · ·	7									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
SHLL	SHLL.B Rd	В	(1	7									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	_
	SHLL.B #2,Rd	В	(1	7									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	_
	SHLL.W Rd	>	11	7						<u> </u>	0	1	\leftrightarrow	\leftrightarrow	0	\leftrightarrow	_
	SHLL.W #2,Rd	>	(1	7						C MSB A	—— LSB		\leftrightarrow	\leftrightarrow	0	\leftrightarrow	_
	SHLL.L ERd		.,	7								1	\leftrightarrow	\leftrightarrow	0	\leftrightarrow	_
	SHLL.L #2,ERd	_	- 1	7	_							<u> </u> 	\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1

(4) Shift Instructions

			Inst	Addressing Mode/ struction Length (Bytes)	lres ion	Addressing Mode/ ruction Length (By	gth g	de/ By	tes)				
	Sinconori	Size Size	uչ xx _i	0 ERn	(nЯ∃,b)@	#uŊ∃@/uŊ∃_@		ற	nn a a	Oneration	Condition Code	No. of States *1	tates *1
SHLR	SHLR.B Rd			_	_		_		-		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	SHLR.B #2,Rd	В	2	01								←	
	SHLR.W Rd	>	7	01						10		4	
	SHLR.W #2,Rd	>	2	01						MSB LSB C		1	
	SHLR.L ERd	_	2	<u></u>								1	
	SHLR.L #2,ERd	_	2	<u></u>								1	
ROTXL	ROTXL.B Rd	В	2	01								1	
	ROTXL.B #2,Rd	В	2	<u> </u>								1	
	ROTXL.W Rd	>	2	<u></u>								1	
	ROTXL.W #2,Rd	8	2							C MSB • C MSB		1	
	ROTXL.L ERd	L	2	<u> </u>						1		4	
	ROTXL.L #2,ERd	L	2	<u></u>								4	
ROTXR	ROTXR.B Rd	В	2	<u> </u>								1	
	ROTXR.B #2,Rd	В	2									1	
	ROTXR.W Rd	>	7	<u></u>							↔ 0 ↔ ← ⊢ ⊢ ⊢	4	
	ROTXR.W #2,Rd	≥	7	<u></u>						MSB — LSB C	↔ 0 ↔ ← ⊢ ⊢ ⊢	4	
	ROTXR.L ERd	_	7	01						,	↔ 0 ↔ ← ⊢ ⊢ ⊢	4	
	ROTXR.L #2,ERd	_	7	_			\dashv					1	

			/ Instr	Addı	essi on L	Addressing Mode/ ruction Length (By	Node h (B	Addressing Mode/ struction Length (Bytes)								
		erand Size	,	иЯ	d,ERn)	a ERn/@ERn+	(Ja'p	999			Cor	diti	ou C	Condition Code		No. of States*1
	Mnemonic		KX#	@ E		-@		00	Operation		Ξ-	z	Z	C		Advanced
ROTL	ROTL.B Rd	В	2									\leftrightarrow	\leftrightarrow	♦ 0		1
	ROTL.B #2,Rd	В	7									\leftrightarrow	\leftrightarrow	♦ 0		1
	ROTL.W Rd	>	7						•	•		\leftrightarrow	\leftrightarrow	⇔ 0		1
	ROTL.W #2,Rd	>	7						C MSB	RSI —		\leftrightarrow	\leftrightarrow	↔ 0		_
	ROTL.L ERd	7	2									\leftrightarrow	\leftrightarrow	↔ 0		_
	ROTL.L #2,ERd	٦	2									\leftrightarrow	\leftrightarrow	↔ 0		_
ROTR	ROTR.B Rd	В	7									\leftrightarrow	\leftrightarrow	 		_
	ROTR.B #2,Rd	ω	7									\leftrightarrow	\leftrightarrow	 		_
	ROTR.W Rd	>	7									\leftrightarrow	\leftrightarrow	 	<i>(</i>)	_
	ROTR.W #2,Rd	8	7						MSB —	C C		\leftrightarrow	\leftrightarrow	 		1
	ROTR.L ERd	_	7									\leftrightarrow	\leftrightarrow	↔ 0		1
	ROTR.L #2,ERd		2									\leftrightarrow	\leftrightarrow	↔		_

(5) Bit-Manipulation Instructions

		-							_					-	
			Insti	Add	Addressing Mode/ ruction Length (By	ing eng	Mod th (E	Addressing Mode/ Instruction Length (Bytes)							
		erand Size	<u> </u>	Вп	(nA3;k	ERn/@ERn+	,PC)	999			ပိ	nd <u>iti</u>	Condition Code		No. of States*1
	Mnemonic		#XX			-@ @8			Operation	uc	_	z	7 Z	ပ	Advanced
BSET	BSET #xx:3,Rd	В	2						(#xx:3 of Rd8)←1						1
	BSET #xx:3, @ERd	В		4					(#xx:3 of @ERd)←1	_					4
	BSET #xx:3, @aa:8	В				4			(#xx:3 of @aa:8)←1	1					4
	BSET #xx:3, @aa:16	В				9			(#xx:3 of @aa:16)←1	-1					5
	BSET #xx:3, @aa:32	В				8			(#xx:3 of @aa:32)←1	-1		<u> </u> -			9
	BSET Rn,Rd	В	2						(Rn8 of Rd8)←1						_
	BSET Rn, @ERd	В		4					(Rn8 of @ERd)←1						4
	BSET Rn, @aa:8	В				4			(Rn8 of @aa:8)←1						4
	BSET Rn,@aa:16	В				9			(Rn8 of @aa:16)←1	1					2
	BSET Rn,@aa:32	В				8			(Rn8 of @aa:32)←1	1			 		9
BCLR	BCLR #xx:3,Rd	В	2						(#xx:3 of Rd8)←0				 		1
	BCLR #xx:3,@ERd	В		4					(#xx:3 of @ERd)←0	(4
	BCLR #xx:3,@aa:8	В				4			(#xx:3 of @aa:8)←0	(4
	BCLR #xx:3,@aa:16	В				9			(#xx:3 of @aa:16)←0	0-					5
	BCLR #xx:3,@aa:32	В				∞			(#xx:3 of @aa:32)←0	0-		+		1	9
	BCLR Rn,Rd	В	2						(Rn8 of Rd8)←0						1
	BCLR Rn,@ERd	В		4					(Rn8 of @ERd)←0						4
	BCLR Rn,@aa:8	М				4			(Rn8 of @aa:8)←0			_		1	4
	BCLR Rn,@aa:16	В	\dashv			9			(Rn8 of @aa:16)←0	0		\dashv	 		5

		İ												l			
			lus	Ac	dre	Addressing Mode/ ruction Length (By	g M ngth	ode	Addressing Mode/ struction Length (Bytes)								
		erand Size	7	0.	д'ЕВи) :Ви	ERn/@ERn+		() 4	999			ပိ	Condition Code	tion	သိ	de	No. of States*1
	Mnemonic		XX#	Вn			@ 9		0 0		Operation	_	I	Z	> Z	C	Advanced
BCLR	BCLR Rn,@aa:32	В					8			(Rn8 of	of @aa:32)←0	İ					9
BNOT	BNOT #xx:3,Rd	В	- 1	2						3::xx#)	(#xx:3 of Rd8)←[¬ (#xx:3 of Rd8)]	İ		ı	I		1
	BNOT #xx:3,@ERd	В		7	4					(#xx:3 of	3 of @ERd)←	İ	<u> </u>	<u> </u>	l I		4
										×#) []	[- (#xx:3 of @ERd)]						
	BNOT #xx:3,@aa:8	В					4			(#xx:	(#xx:3 of @aa:8)←	İ		l	l I		4
										×#) []	[¬ (#xx:3 of @aa:8)]						
	BNOT #xx:3,@aa:16	В					9			S::XX#)	(#xx:3 of @aa:16)←	İ	<u> </u>				5
										×#) []	[- (#xx:3 of @aa:16)]						
	BNOT #xx:3,@aa:32	Δ					∞);:xx#)	(#xx:3 of @aa:32)←	İ		l	I		9
										×#) []	[¬ (#xx:3 of @aa:32)]						
	BNOT Rn,Rd	В		2						(Rn8	(Rn8 of Rd8)←[¬ (Rn8 of Rd8)]	İ		 	I		1
	BNOT Rn, @ERd	В		7	4					(Rn8 of	of @ERd)←[¬ (Rn8 of @ERd)]	İ		 	I		4
	BNOT Rn,@aa:8	В					4			(Rn8 c	(Rn8 of @aa:8)←[¬ (Rn8 of @aa:8)]	İ	<u> </u>	<u> </u>	<u> </u> 		4
	BNOT Rn,@aa:16	Δ					9			(Rn8	(Rn8 of @aa:16)←	İ			<u> </u>		5
										[7 (Rr	[¬ (Rn8 of @aa:16)]						
	BNOT Rn,@aa:32	Δ					∞			(Rn8	(Rn8 of @aa:32)←	İ	<u> </u>		<u> </u>		9
										[¬ (Rr	[¬ (Rn8 of @aa:32)]						
BTST	BTST #xx:3,Rd	Ф	- 1	7						(X#) r	¬ (#xx:3 of Rd8)→Z	İ	+				_
	BTST #xx:3,@ERd	Ω		7	4					(X#) r	¬ (#xx:3 of @ERd)→Z	İ	+		\leftrightarrow		က
	BTST #xx:3,@aa:8	ω					4			(X#) r	¬ (#xx:3 of @aa:8)→Z	İ	+		\leftrightarrow		က
	BTST #xx:3,@aa:16	Δ					9			(Х#) г	¬ (#xx:3 of @aa:16)→Z	İ	<u> </u>	$\frac{1}{1}$	\leftrightarrow		4

		<u> </u>	Insti	Ado ruct	lress ion l	Addressing Mode/ ruction Length (By	Moc jth (Addressing Mode/ struction Length (Bytes)	(\$				
		erand Size		EBn	(d,ERn)	-ERn/@ERn+	аа (d, PС)	@33			Cond	on Cod	No. of States*1
 	Mnemonic		x# 1Я	_	_	_				Operation	=) > N 4	Advanced
BTST	BTST #xx:3,@aa:32	m				-	ω			ר (#xx:3 ot @aa:32)→2	1	 → ·	2
	BTST Rn,Rd	Δ	7	0.						¬ (Rn8 of Rd8)→Z		 	_
	BTST Rn,@ERd	Ф		4						¬ (Rn8 of @ERd)→Z		 	ဗ
	BTST Rn,@aa:8	В				1	4		•	¬ (Rn8 of @aa:8)→Z		 	3
	BTST Rn,@aa:16	Ф					9		•	¬ (Rn8 of @aa:16)→Z		 ↔	4
	BTST Rn,@aa:32	В					∞		•	¬ (Rn8 of @aa:32)→Z		 ↔	5
BLD	BLD #xx:3,Rd	В	7	-						(#xx:3 of Rd8)→C		<>	1
	BLD #xx:3,@ERd	В		4						(#xx:3 of @ERd)→C		<>	ဗ
	BLD #xx:3,@aa:8	В				7	4			(#xx:3 of @aa:8)→C		<>	3
	BLD #xx:3,@aa:16	В					9			(#xx:3 of @aa:16)→C		←	4
	BLD #xx:3,@aa:32	В					8			(#xx:3 of @aa:32)→C			5
BILD	BILD #xx:3,Rd	В	2	0.1					•	¬ (#xx:3 of Rd8)→C		<>	1
	BILD #xx:3, @ERd	В		4					•	¬ (#xx:3 of @ERd)→C		<>	3
	BILD #xx:3, @aa:8	В				7	4		•	¬ (#xx:3 of @aa:8)→C		<>	3
	BILD #xx:3, @aa:16	В					9		•	¬ (#xx:3 of @aa:16)→C		<>	4
	BILD #xx:3, @aa:32	В					∞		•	ר (#xx:3 of @aa:32)→C		<>	5
BST	BST #xx:3,Rd	В	7	61					_	C→(#xx:3 of Rd8)		 	_
	BST #xx:3,@ERd	В		4					_	C→(#xx:3 of @ERd)		 	4
	BST #xx:3,@aa:8	В		\dashv		1	4			C→(#xx:3 of @aa:8)		 	4

		ᄱ	Addressing Mode/ Instruction Length (Bytes)	ddre	Addressing Mode/ ruction Length (By	ר Ingt	lode h (B	ytes	<u> </u>						
		erand Size			teRn)@ERn+		(Ja'r	999			Cond	<u>it</u> ion	Condition Code	No. of States*1	tes*1
	Mnemonic	odO xx#	Вn	7® ∃®		@ 99	p)@	D O	_	Operation	エ	Z	2 V C	Advanced	ed
BST	BST #xx:3,@aa:16	В				9			C→ C	C→(#xx:3 of @aa:16)				- 5	
	BST #xx:3,@aa:32	В				8			C→(C)	C→(#xx:3 of @aa:32)				9 -	
BIST	BIST #xx:3,Rd	В	7						J C	C→(#xx:3 of Rd8)				1	
	BIST #xx:3, @ERd	В		4					J C	C→(#xx:3 of @ERd)				4	
	BIST #xx:3, @aa:8	В				4			J C	C→(#xx:3 of @aa:8)				4	
	BIST #xx:3, @aa:16	В				9			л C_	¬ C→(#xx:3 of @aa:16)				- 5	
	BIST #xx:3,@aa:32	В				8			J C	¬ C→(#xx:3 of @aa:32)				9 -	
BAND	BAND #xx:3,Rd	В	2						C>(#	C∧(#xx:3 of Rd8)→C					
	BAND #xx:3,@ERd	В		4					C>(#	C∧(#xx:3 of @ERd)→C	<u> </u>		<	3	
	BAND #xx:3,@aa:8	В				4			C>(#	C∧(#xx:3 of @aa:8)→C			↔ - -	3	
	BAND #xx:3,@aa:16	В				9			C∨(#	C∧(#xx:3 of @aa:16)→C			↔ - -	4	
	BAND #xx:3,@aa:32	В				8			C>(#	C∧(#xx:3 of @aa:32)→C	<u> </u>			2	
BIAND	BIAND #xx:3,Rd	В	2						C^[¬	C∧[¬ (#xx:3 of Rd8)]→C	<u> </u>			1	
	BIAND #xx:3,@ERd	В		4					C>[-	C∧[¬ (#xx:3 of @ERd)]→C				3	
	BIAND #xx:3,@aa:8	В				4			C √	C∧[¬ (#xx:3 of @aa:8)]→C	<u> </u>			3	
	BIAND #xx:3,@aa:16	В				9			C L	C∧[¬ (#xx:3 of @aa:16)]→C	 	<u> </u>	<> 	4	
	BIAND #xx:3,@aa:32	В				∞			S L	C∧[¬ (#xx:3 of @aa:32)]→C			<> 	2	
BOR	BOR #xx:3,Rd	В	7						#) C<	C√(#xx:3 of Rd8)→C				_	
	BOR #xx:3,@ERd	В		4					C<(#	C√(#xx:3 of @ERd)→C			→	3	

			Inst	Ado	Addressing Mode/ struction Length (Bytes)	ing l eng	Mod th (E	e/ 3ytes								
		perand Size	u; xx	n A ∃ @	(d,ERn)	ังลล ∂−ERn/@ERn+	(a,PC)	66.0	_			Con		Condition Code		No. of States *1
BOR	BOR #xx:3,@aa:8		_	_	_	_		_	ပ် -	C∨(#xx:3 of @aa:8)→C		- <u> </u> -	+ :	>) ↔	3
	BOR #xx:3,@aa:16	В				9			ပ်	C√(#xx:3 of @aa:16)→C					\leftrightarrow	4
	BOR #xx:3,@aa:32	В				00			(ပ်	C√(#xx:3 of @aa:32)→C					\leftrightarrow	2
BIOR	BIOR #xx:3,Rd	В	2	<u> </u>					ပ်	C√[¬ (#xx:3 of Rd8)]→C					\leftrightarrow	_
	BIOR #xx:3,@ERd	В		4					ပ်	C√[¬ (#xx:3 of @ERd)]→C					\leftrightarrow	3
	BIOR #xx:3,@aa:8	В				4			ပ်	C√[¬ (#xx:3 of @aa:8)]→C					\leftrightarrow	3
	BIOR #xx:3,@aa:16	В				9			ပ်	C√[¬ (#xx:3 of @aa:16)]→C					\leftrightarrow	4
	BIOR #xx:3,@aa:32	В				8			ပ်	C√[¬ (#xx:3 of @aa:32)]→C					\leftrightarrow	5
BXOR	BXOR #xx:3,Rd	В	2	<u> </u>					ŭ	C⊕(#xx:3 of Rd8)→C					\leftrightarrow	_
	BXOR #xx:3,@ERd	В		4					ŏ	C⊕(#xx:3 of @ERd)→C					\leftrightarrow	3
	BXOR #xx:3,@aa:8	В				4			ŏ	C⊕(#xx:3 of @aa:8)→C					\leftrightarrow	8
	BXOR #xx:3,@aa:16	В				9			ŏ	C⊕(#xx:3 of @aa:16)→C					\leftrightarrow	4
	BXOR #xx:3,@aa:32	В				8			ŏ	C⊕(#xx:3 of @aa:32)→C					\leftrightarrow	2
BIXOR	BIXOR #xx:3,Rd	В	2						č	C⊕[¬ (#xx:3 of Rd8)]→C					\leftrightarrow	1
	BIXOR #xx:3, @ERd	В		4					ŏ	C⊕[¬ (#xx:3 of @ERd)]→C		1			\leftrightarrow	3
	BIXOR #xx:3, @aa:8	В				4			ŏ	C⊕[¬ (#xx:3 of @aa:8)]→C					\leftrightarrow	3
	BIXOR #xx:3, @aa:16	В				9			ŏ	C⊕[¬ (#xx:3 of @aa:16)]→C	0	1			\leftrightarrow	4
	BIXOR #xx:3, @aa:32	В							ŏ	C⊕[¬ (#xx:3 of @aa:32)]→C					\leftrightarrow	2

No. of States*1 Advanced ပ **Condition Code** > Z I Branching Condition Always C~Z=0 CVZ=1Never C=0 Z=0 **0=**∕ <u>C</u>=1 Z=1 if condition is true then Operation PC←PC+d else next; Instruction Length (Bytes) @ @ 99 Addressing Mode/ (39,b)® @99 @-ERn/@ERn+ @(d,ERn) @EKn Вn XX# **Operand Size** BCC d:16(BHS d:16) BCS d:16(BLO d:16) BRA d:16(BT d:16) BRN d:16(BF d:16) BCC d:B(BHS d:8) BCS d:8(BLO d:8) BRN d:8(BF d:8) BRA d:8(BT d:8) Mnemonic BEQ d:16 BNE d:16 BVC d:16 BLS d:16 BHI d:16 BNE d:8 BEQ d:8 BVC d:8 BLS d:8 BHI d:8 Bcc

(6) Branch Instructions

		_	nstr	Add	ress ion I	Addressing Mode/ Instruction Length (Bytes)	Moc tth (de/ Byte	(Se							
		əzi& bu		·	(u)	+uЯ∃@/u	(O			Operation		Cor	ditio	Condition Code		No. of States*1
	Mnemonic		HXX	@ERn	∃'p)@		@ggg @(q,P	@ @ gs	_		Branching Condition		Z	> 2	ပ	Advanced
Bcc	BVS d:8						2	_			V=1			İ	Τ	2
	BVS d:16						4							İ		က
	BPL d:8						7				0=N			İ		2
	BPL d:16						4							<u> </u>		3
	BMI d:8						2				N=1			<u> </u>		2
	BMI d:16						4							İ		က
	BGE d:8						2				N⊕V=0			<u> </u>		2
	BGE d:16						4							<u> </u>		3
	BLT d:8						2				N⊕V=1			<u> </u>		2
	BLT d:16						4							<u> </u> 		3
	BGT d:8						2				Z~(N⊕V)=0			<u> </u> 		2
	BGT d:16						4							<u> </u> 		3
	BLE d:8						7				Z~(N⊕V)=1					2
	BLE d:16						4							İ		3

		<u>ü</u>	A	ddre	Addressing Mode/ nstruction Length (Bytes)	g Mc ngth	de/ (By	tes)			
		perand Size xx		EBu)	(d,ERn) (d,ERn)	99	(a,PC)		•	Aition Cod	No. of States*1
	Mnemonic	_	В	-	@ @	®	@ 	_ ബ	Operation	I H N Z V C	Advanced
JMP	JMP @ERn			7					PC←ERn	 	2
	JMP @aa:24					4			PC←aa:24	 	3
	JMP @@aa:8						. •	2	PC←@aa:8		5
BSR	BSR d:8						7		PC→@-SP,PC←PC+d:8		4
	BSR d:16						4		PC→@-SP,PC←PC+d:16	 	5
JSR	JSR @ERn			7					PC→@-SP,PC←ERn		4
	JSR @aa:24					4			PC→@-SP,PC←aa:24	 	5
	JSR @@aa:8						. •	7	PC→@-SP,PC←@aa:8		9
RTS	RTS							(1	2 PC←@SP+	 	5

actions
ol Instru
Contro
ystem
S S

			lns	itru.	ddre	ssi n Le	ng ľ	Addressing Mode/ Instruction Length (Bytes)	e/ 3yte	(\$;								
		erand Size				A,ERn)		(Daʻr	999			<u> </u>	Condition Code	litio	5	po		No. of States*1
	Mnemonic	odO	XX#	uЯ	-7⊌ ∃@		@ 99 @ -			_	Operation	_	I	Z	7	>	ပ	Advanced
TRAPA	TRAPA #xx:2	1									PC→@-SP,CCR→@-SP,	_			İ	i		[6] 8
											EXR→@-SP, <vector>→PC</vector>							
RTE	RTE	I									EXR←@SP+,CCR←@SP+,	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	[6] 9
											PC←@SP+							
SLEEP	SLEEP										Transition to power-down state				İ			2
TDC	LDC #xx:8,CCR	В	2								#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	LDC #xx:8,EXR	В	4								#xx:8→EXR				Ť	Ī		2
	LDC Rs,CCR	В		2							Rs8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	LDC Rs,EXR	Ω		7							Rs8→EXR				Ī	Ī		1
	LDC @ERs,CCR	>		-	4						@ERs→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	3
	LDC @ERs,EXR	>		-	4						@ERS→EXR				Ī			3
	LDC @(d:16,ERs),CCR	8)	9					@ (d:16,ERs)→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @(d:16,ERs),EXR	>				9					@ (d:16,ERs)→EXR				Ī	Ī		4
	LDC @(d:32,ERs),CCR	M			1	10					@ (d:32,ERs)→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	9
	LDC @(d:32,ERs),EXR	>			_	10					@ (d:32,ERs)→EXR				İ	Ī	1	9
	LDC @ERs+,CCR	8				4					@ERs→CCR,ERs32+2→ERs32	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @ERs+,EXR	>				4					@ERS→EXR,ERS32+2→ERS32				Ī		1	4
	LDC @aa:16,CCR	≥					9				@aa:16→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @aa:16,EXR	≥					9				@aa:16→EXR		Ι		Ť	Ť	П	4
	LDC @aa:32,CCR	≥					∞				@aa:32→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	2
	LDC @aa:32,EXR	≥		\dashv	\dashv	\dashv]		@aa:32→EXR				Ħ	Ħ	\dashv	2

				¥	dre	SSi	Addressing Mode/	Nod	/e									
			lus	tru	ctio	l L	ang l	th (I	struction Length (Bytes)	(Si								
		erand Size	,		Rn Rn	1,ERn)	ERn/@ERn+	(Ja,k	999				Condition Code	diti	on	င်ဝ	<u>o</u>	No. of States*1
	Mnemonic		XX#	uЯ			@9 @9			_	Operation	_	エ	Z	7	>	ပ	Advanced
STC	STC CCR,Rd	В		7							CCR→Rd8			<u> </u>				_
	STC EXR,Rd	В		2							EXR→Rd8	I						1
	STC CCR,@ERd	>			4						CCR→@ERd	ı						3
	STC EXR, @ERd	>			4					_	EXR→@ERd	I						3
	STC CCR,@(d:16,ERd)	>				9					CCR→@(d:16,ERd)							4
	STC EXR, @(d:16, ERd)	≥				9				_	EXR→@(d:16,ERd)	I				1		4
	STC CCR, @(d:32,ERd)	>				10					CCR→@(d:32,ERd)	I						9
	STC EXR, @(d:32, ERd)	>				10				_	EXR→@(d:32,ERd)	I						9
	STC CCR,@-ERd	≥				7	4			_	ERd32-2→ERd32,CCR→@ERd	ا و						4
	STC EXR,@-ERd	≥				7	4			_	ERd32-2→ERd32,EXR→@ERd	Р				1		4
	STC CCR,@aa:16	>					9				CCR→@aa:16	I	<u> </u>					4
	STC EXR,@aa:16	>					9			_	EXR→@aa:16	I						4
	STC CCR, @aa:32	≥					∞				CCR→@aa:32	I				1		5
	STC EXR,@aa:32	≥					00			_	EXR→@aa:32	1						5
ANDC	ANDC #xx:8,CCR	В	2								CCR∧#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	ANDC #xx:8,EXR	В	4							_	EXR∧#xx:8→EXR	<u> </u>	<u> </u>					2
ORC	ORC #xx:8,CCR	В	2								CCR∨#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	ORC #xx:8,EXR	В	4								EXR∨#xx:8→EXR	-						2
XORC	XORC #xx:8,CCR	В	7								CCR⊕#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	XORC #xx:8,EXR	Ф	4								EXR⊕#xx:8→EXR	1	1					2
NOP	NOP	Ι	-	-	\dashv	-	\dashv			2	PC←PC+2				<u> </u>			1

(8) Block Transfer Instructions

			A Instru	Addr uctic	Addressing Mode/ struction Length (Bytes)	ng № ∍ngtl	lode h (B	ytes						
		erand Size	,	uЯ	a,ERn) ERn/@ERn+		(Ja'r	999			Cor	Condition Code		No. of States*1
	Mnemonic		#XX	∃@	-@ >)@	@9 @9	(c)		Operation		-	N Z N	ပ	Advanced
EEPMOV	EEPMOV.B								4 if R4L≠0 Repeat @ER5→@ER6 ER5+1→ER5 ER6+1→ER6 R4L-1→R4L Until R4L=0 else next;	Ze Ze Ze Ze Ze Ze Ze Ze Ze Ze Ze Ze Ze Z				4+2n *2
	EEPMOV.W								4 if R4≠0 Repeat @ER5→@ER6 ER5+1→ER5 ER6+1→ER6 R4-1→R4 Until R4=0 else next;					4+2n *2

The number of states is the number of states required for execution when the instruction and its operands are located in on-chip memory. n is the initial value of R4L or R4. Notes:

- Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
- Seven states for saving or restoring two registers, nine states for three registers, or eleven states for four registers. Cannot be used in the chip.
- Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
- Retains its previous value when the result is zero; otherwise cleared to 0. Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 - Set to 1 when the divisor is negative; otherwise cleared to 0.
 - Set to 1 when the divisor is zero; otherwise cleared to 0.
- Set to 1 when the quotient is negative; otherwise cleared to 0.
- One additional state is required for execution when EXR is valid.

A.2 Instruction Codes

Table A.2 shows the instruction codes.

Table A.2 Instruction Codes

Instruc-	Mpemonic							Instruction	Instruction Format				
tion		Size	1st byte	yte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ADD	ADD.B #xx:8,Rd	В	80	5	IMM								
	ADD.B Rs,Rd	В	0	80	rs rd								
	ADD.W #xx:16,Rd	≥	7	6	1 rd	IMMI	Σ						
	ADD.W Rs,Rd	>	0	6	rs rd								
	ADD.L #xx:32,ERd	_	7	⋖	1 0 erd		MMI	5					
	ADD.L ERS,ERd	_	0	⋖	1 ers 0 erd								
ADDS	ADDS #1,ERd	٦	0	В	0 0 erd								
	ADDS #2,ERd	Г	0	В	8 0 erd								
	ADDS #4,ERd	Г	0	В	9 0 erd								
ADDX	ADDX #xx:8,Rd	В	6	rd	IMM								
	ADDX Rs,Rd	В	0	Е	rs rd								
AND	AND.B #xx:8,Rd	В	Ш	rd	IMM								
	AND.B Rs,Rd	В	_	9	rs rd								
	AND.W #xx:16,Rd	M	7	6	e rd	MI	IMM						
	AND.W Rs,Rd	M	9	9	rs rd								
	AND.L #xx:32,ERd	Г	7	А	6 0 erd		MMI	N					
	AND.L ERS,ERd	Г	0	1	F 0	9 9	0 ers 0 erd						
ANDC	ANDC #xx:8,CCR	В	0	9	IMM								
	ANDC #xx:8,EXR	В	0	1	4 1	9 0	IMM						
BAND	BAND #xx:3,Rd	В	7	9	0 IMM rd								
	BAND #xx:3,@ERd	В	7	ပ	0 erd 0	9 /	0 MMI 0						
	BAND #xx:3,@aa:8	В	7	В	abs	7 6	0 IMM 0						
	BAND #xx:3,@aa:16	В	9	⋖	1 0	abs	So	9 /	0 MMI 0				
	BAND #xx:3,@aa:32	В	9	Α	3 0		abs	S		9 /	0 IMM 0		
Bcc	BRA d:8 (BT d:8)		4	0	disp								
	BRA d:16 (BT d:16)		2	∞	0 0	disp	ds						
	BRN d:8 (BF d:8)		4	1	disp								
	BRN d:16 (BF d:16)		5	8	1 0	disp	ds						

Rev.4.00 Sep. 07, 2007 Page 938 of 1210 REJ09B0245-0400

Instruc-								Instructio	Instruction Format				
tion	Minemonic	Size		1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
Всс	BHI d:8	Ι	4	2	dsib								
	BHI d:16	I	2	8	2 0	dsib	d						
	BLS d:8	I	4	3	dsib								
	BLS d:16	I	2	8	3 0	dsib	dt						
	BCC d:8 (BHS d:8)	I	4	4	dsip								
	BCC d:16 (BHS d:16)		2	8	4 0	dsib	ds						
	BCS d:8 (BLO d:8)	I	4	2	dsip								
	BCS d:16 (BLO d:16)	I	2	8	0 9	dsib	d						
	BNE d:8	I	4	9	dsip								
	BNE d:16	I	2	8	0 9	dsib	d						
	BEQ d:8	I	4	7	dsip								
	BEQ d:16	I	2	8	0 2	dsib	ds						
	BVC d:8	I	4	80	dsip								
	BVC d:16		2	8	0 8	die	disp						
	BVS d:8	I	4	6	dsip								
	BVS d:16		2	8	0 6	dsib	dt						
	BPL d:8	I	4	Α	dsip								
	BPL d:16		2	8	A 0	dsib	dí						
	BMI d:8	Ι	4	В	disp								
	BMI d:16	Ι	2	8	B 0	dsip	dí						
	BGE d:8	I	4	ပ	disp								
	BGE d:16		2	8	C 0	dsip	dí						
	BLT d:8		4	D	disp								
	BLT d:16		2	8	D 0	dsib	dí						
	BGT d:8	I	4	ш	disp								
	BGT d:16	I	2	8	О	dsip	dí						
	BLE d:8	I	4	ш	disp								
	BLE d:16		2	∞	0	disp	βb						

Instruc-	Mnemonic	9						Instructi	Instruction Format				
tion		Size		1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BCLR	BCLR #xx:3,Rd	В	7	2	0 IMM rd								
	BCLR #xx:3,@ERd	В	7	۵	0 erd 0	7 2	0 MMI 0						
	BCLR #xx:3,@aa:8	В	7	Ь	abs	7 2	0 IMM 0						
	BCLR #xx:3,@aa:16	В	9	∢	- 8		abs	7 2	0 IMM 0				
	BCLR #xx:3,@aa:32	В	9	A	3		, a	abs		7 2	0 MMI 0		
	BCLR Rn,Rd	В	9	2	rn rd								
	BCLR Rn,@ERd	В	7	۵	0 erd 0	6	0						
	BCLR Rn,@aa:8	В	7	ш	abs	6 2	0						
	BCLR Rn,@aa:16	В	9	4	8		abs	6 2	n 0				
	BCLR Rn,@aa:32	В	9	⋖	8		מ	abs		6	0		
BIAND	BIAND #xx:3,Rd	В	2	9	1 IMM rd								
	BIAND #xx:3,@ERd	В	7	O	0 erd 0	9 /	1 IMM 0						
	BIAND #xx:3,@aa:8	В	2	ш	abs	9 /	1 IMM 0						
	BIAND #xx:3,@aa:16	В	9	A	1 0		abs	9 /	1 IMM 0				
	BIAND #xx:3,@aa:32	В	9	А	3 0		a	abs		9 /	1 IMM 0		
BILD	BILD #xx:3,Rd	В	2	7	1 IMM rd								
	BILD #xx:3,@ERd	В	2	C	0 erd 0	7 7	1 IMM 0						
	BILD #xx:3,@aa:8	В	7	Е	abs	7 7	1 IMM 0						
	BILD #xx:3,@aa:16	В	9	А	1 0	3	abs	2 2	1 IMM 0				
	BILD #xx:3,@aa:32	В	9	А	3 0		В	abs		7 7	1 IMM 0		
BIOR	BIOR #xx:3,Rd	В	2	4	1 IMM rd								
	BIOR #xx:3,@ERd	В	7	ပ	0 erd 0	7 4	1 IMM 0						
	BIOR #xx:3,@aa:8	В	7	ш	abs	7 4	1 IMM 0						
	BIOR #xx:3,@aa:16	В	9	4	1 0		abs	7 4	1 IMM 0				
	BIOR #xx:3,@aa:32	В	9	А	3 0		В	abs		7 4	1 IMM 0		

Instruc-	Momoria	ë						Instruction	Instruction Format				
tion		Size	1st byte	2nd b	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BIST	BIST #xx:3,Rd	В	2 9	1 IMM	rd								
	BIST #xx:3, @ERd	М	7 D	0 erd	0	6 7	1 IMM 0						
	BIST #xx:3, @aa:8	М	7 F	abs		6 7	1 IMM 0						
	BIST #xx:3, @aa:16	В	6 A	_	8	ak	abs	6 7	1 IMM 0				
	BIST #xx:3, @aa:32	В	6 A	3	8		ä	abs		6 7	1 IMM 0		
BIXOR	BIXOR #xx:3,Rd	В	7 5	1 IMM	p.								
	BIXOR #xx:3,@ERd	В	7 C	0 erd	0	7 5	1 IMM 0						
	BIXOR #xx:3,@aa:8	В	7 E	abs		7 5	1 IMM 0						
	BIXOR #xx:3,@aa:16	В	9 9	-	0	ak	abs	7 5	1 IMM 0				
	BIXOR #xx:3,@aa:32	В	6 A	3	0		ัช	abs		7 5	1 IMM 0		
BLD	BLD #xx:3,Rd	В	7 7	0 IMM									
	BLD #xx:3,@ERd	В	7 C	0 erd	0	7 7	0 MMI 0						
	BLD #xx:3,@aa:8	В	7 E	abs		7 7	0 MMI 0						
	BLD #xx:3,@aa:16	В	9 Y		0	ak	abs	2 2	0 MMI 0				
	BLD #xx:3,@aa:32	В	9 Y	3	0		ä	abs		2 2	0 MMI 0		
BNOT	BNOT #xx:3,Rd	В	7 1	0 IMM	rg D								
	BNOT #xx:3,@ERd	В	7 D	0 erd	0	7 1	0 MMI 0						
	BNOT #xx:3,@aa:8	В	7 F	abs		7 1	0 IMM 0						
	BNOT #xx:3,@aa:16	В	9 9	_	8	ak	abs	7 1	0 IMM 0				
	BNOT #xx:3,@aa:32	В	9 y	3	8		ğ	abs		7 1	0 MMI 0		
	BNOT Rn,Rd	В	6 1	2	rd								
	BNOT Rn, @ERd	В	7 D	0 erd	0	6 1	0 uı						
	BNOT Rn,@aa:8	В	7 F	abs		6 1	rn 0						
	BNOT Rn,@aa:16	В	6 A	_	8	at	abs	6 1	rn 0				
	BNOT Rn,@aa:32	В	9 V	က	8		g	abs		6 1	m 0		

Instruc-	Mpemoric									=	nstructi	Instruction Format					
tion		Size		1st byte	2nd byte	oyte	3rd byte	/te	4th byte	5tl	5th byte	6th byte	7th byte		8th byte	9th byte	10th byte
BOR	BOR #xx:3,Rd	В	7	4	O IMM	ъ											
	BOR #xx:3, @ERd	В	7	C	0 erd	0	7	4 0	0 MMI 0								
	BOR #xx:3, @aa:8	В	7	Е	abs	Ñ	7	4 0	0 IMM 0								
	BOR #xx:3,@aa:16	В	9	А	1	0		abs		7	4	0 MMI 0					
	BOR #xx:3, @aa:32	В	9	А	3	0				abs				4 0 IMM	0 M		
BSET	BSET #xx:3,Rd	В	7	0	0 IMM	ā											
	BSET #xx:3, @ERd	В	7	D	0 erd	0	7	0 0	0 MMI 0								
	BSET #xx:3, @aa:8	ш	7	ш	abs	Ñ	7	0	0 IMM 0								
	BSET #xx:3, @aa:16	В	9	A	-	80		abs		7	0	0 MMI 0					
	BSET #xx:3, @aa:32	В	9	A	8	80				abs				0 0 IMM	0		
	BSET Rn,Rd	В	9	0	E	Þ											
	BSET Rn, @ERd	В	7	٥	0 erd	0	9	0	ш 0								
	BSET Rn, @aa:8	В	7	ш	abs	Ñ	9	0	0								
	BSET Rn,@aa:16	В	9	A	_	8		abs		9	0	rn 0					
	BSET Rn,@aa:32	В	9	А	3	8				abs			9	0 rn	0		
BSR	BSR d:8		9	2	dsib	ď											
	BSR d:16	I	5	С	0	0		disp									
BST	BST #xx:3,Rd	В	9	7	о імм	rd											
	BST #xx:3,@ERd	В	2	D	0 erd	0	9	7 0	0 MMI 0								
	BST #xx:3,@aa:8	В	7	ь	abs	Ñ	9	7 0	0 IMM 0								
	BST #xx:3,@aa:16	В	9	Α	_	8		abs		9	7	0 IMM 0					
	BST #xx:3,@aa:32	В	9	Α	3	8				abs			9	7 0 IMM	0		
BTST	BTST #xx:3,Rd	В	2	3	оимм	ъ											
	BTST #xx:3,@ERd	Ф	7	ပ	0 erd	0	7	3	0 IMM 0								
	BTST #xx:3,@aa:8	В	7	ш	abs	õ	7	3	0 IMM 0								
	BTST #xx:3,@aa:16	В	9	Α	_	0		abs		7	က	0 IMM 0					
	BTST #xx:3,@aa:32	В	9	А	က	0				abs			7	3 0 IMM	0		
	BTST Rn,Rd	Ф	9	3	٤	Б											
	BTST Rn,@ERd	В	7	O	0 erd	0	9	е	0								

Instruc-	Monitor								Instructi	Instruction Format				
tion		Size		1st byte	2nd byte	/te	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BTST	BTST Rn,@aa:8	В	7	Ш	abs		6 3	rn 0						
	BTST Rn,@aa:16	В	9	٨	7	0	a	abs	6 3	rn 0				
	BTST Rn,@aa:32	В	9	Α	3	0			abs		6 3	rn 0		
BXOR	BXOR #xx:3,Rd	В	7	5	0 IMM	rd								
	BXOR #xx:3, @ERd	В	7	၁	0 erd	0	2 2	0 IMMI 0						
	BXOR #xx:3, @aa:8	В	7	В	abs		2 2	0 IMMI 0						
	BXOR #xx:3, @aa:16	В	9	Α	-	0	а	abs	7 5	0 IMM 0				
	BXOR #xx:3, @aa:32	В	9	Α	3	0			abs		7 5	0 IMM 0		
CLRMAC	CLRMAC CLRMAC	Ī	Can	not be	Cannot be used in the	the chip								
CMP	CMP.B #xx:8,Rd	В	А	rd	MMI									
	CMP.B Rs,Rd	В	_	၁	rs	rd								
	CMP.W #xx:16,Rd	M	7	6	2	rd	N N	IMM						
	CMP.W Rs,Rd	×	-	٥	rs	rd								
	CMP.L #xx:32,ERd	Τ	7	A	2 0	erd			IMM					
	CMP.L ERS,ERd	L	1	ч	1 ers 0	erd								
DAA	DAA Rd	В	0	ш	0	rd								
DAS	DAS Rd	В	-	ш	0	rd								
DEC	DEC.B Rd	В	-	Α	0	rd								
	DEC.W #1,Rd	8	_	В	2	rd L								
	DEC.W #2,Rd	>	_	В	۵	þ								
	DEC.L #1,ERd	_	_	В	7 0	erd								
	DEC.L #2,ERd	L	1	В	Ь 0	0 erd								
DIVXS	DIVXS.B Rs,Rd	В	0	1	٥	0	5 1	rs rd						
	DIVXS.W Rs,ERd	8	0	1	Ω	0	5 3	rs 0 erd	þ					
DIVXU	DIVXU.B Rs,Rd	В	2	1	rs	rd								
	DIVXU.W Rs,ERd	×	2	3	rs 0	erd								
EEPMOV	EEPMOV EEPMOV.B	I	7	В	2	၁	5 9	8 F						
	EEPMOV.W		7	В		4	5	8						

Instruc-										<u>트</u>	structio	Instruction Format				
tion	Mnemonic	Size	1st byte	oyte	2nd byte	yte	3rd byte		4th byte	5th	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
EXTS	EXTS.W Rd	8	1	7	Δ	rd										
	EXTS.L ERd	Г	1	7	P F	0 erd										
EXTU	EXTU.W Rd	M	1	7	2	rd										
	EXTU.L ERd	Г	1	7	2 0	0 erd										
INC	INC.B Rd	В	0	A	0	p										
	INC.W #1,Rd	8	0	В	2	rd										
	INC.W #2,Rd	×	0	В	۵	rd										
	INC.L #1,ERd	_	0	В	2 0) erd										
	INC.L #2,ERd	٦	0	В	Ь.	erd (
JMP	JMP @ERn		2	6	0 ern	0										
	JMP @aa:24		2	A			abs									
	JMP @@aa:8		2	В	abs											
JSR	JSR @ERn	I	2	O	0 ern	0										
	JSR @aa:24	I	2	ш			aps									
	JSR @@aa:8	Ι	2	ц	abs											
LDC	LDC #xx:8,CCR	В	0	7	IMMI											
	LDC #xx:8,EXR	В	0	_	4	_	0 7		IMM							
	LDC Rs,CCR	В	0	3	0	LS										
	LDC Rs,EXR	В	0	3	–	LS										
	LDC @ERs,CCR	>	0	_	4	0	6 9	0	ers 0							
	LDC @ERs,EXR	>	0	_	4	_	6 9	0	ers 0							
	LDC @(d:16,ERs),CCR	>	0	_	4	0	9 	0	ers 0		ë	disp				
	LDC @(d:16,ERs),EXR	>	0	_	4	_	9 	0	ers 0		ë	disp				
	LDC @(d:32,ERs),CCR	>	0	_	4	0	7 8	0	ers 0	9	В	2 0		di	disp	
	LDC @(d:32,ERs),EXR	8	0	1	4	_	7 8	0	ers 0	9	В	2 0		di	disp	
	LDC @ERs+,CCR	8	0	1	4	0	9 9	0	ers 0							
	LDC @ERs+,EXR	>	0	_	4	_	9	0	ers 0							
	LDC @aa:16,CCR	>	0	_	4	0	9 9	0	0		ak	abs				
	LDC @aa:16,EXR	≥	0	-	4	-	9 9	0	0		al	abs				

Rev.4.00 Sep. 07, 2007 Page 944 of 1210 REJ09B0245-0400

Instruc-										Instruction	Instruction Format				
tion	Mnemonic	Size		1st byte	2nd byte	yte	3rd byte		4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
LDC	LDC @aa:32,CCR	≥	0	-	4	0	9 9		2 0		abs	Š			
	LDC @aa:32,EXR	>	0	1	4	1	6 B		2 0		abs	Š			
LDM	LDM.L @SP+, (ERn-ERn+1)	_	0	-	_	0	9		7 0 em+1	1+					
	LDM.L @SP+, (ERn-ERn+2)	_	0	_	2	0	9 9		7 0 em+2	+2					
	LDM.L @SP+, (ERn-ERn+3)	٦	0	_	3	0	9 9		7 0 em+3	+3					
LDMAC	LDMAC ERS,MACH	_	Car	not be	Cannot be used in t	the chip	0								
	LDMAC ERS,MACL	_													
MAC	MAC @ERn+,@ERm+	ı													
MOV	MOV.B #xx:8,Rd	В	ш	rd	IMM	M									
	MOV.B Rs,Rd	В	0	ပ	rs	rd									
	MOV.B @ERs,Rd	В	9	8	0 ers	rd									
	MOV.B @(d:16,ERs),Rd	В	9	ш	0 ers	ā		disp							
	MOV.B @(d:32,ERs),Rd	В	7	∞	0 ers	0	9 9		2 rd		dsib	d.			
	MOV.B @ERs+,Rd	В	9	C	0 ers	rd									
	MOV.B @aa:8,Rd	В	2	rd	abs	S									
	MOV.B @aa:16,Rd	Ф	9	⋖	0	Б		aps							
	MOV.B @aa:32,Rd	В	9	⋖	2	rd				abs					
	MOV.B Rs,@ERd	В	9	8	1 erd	LS									
	MOV.B Rs,@(d:16,ERd)	В	9	ш	1 erd	rs		disp							
	MOV.B Rs,@(d:32,ERd)	В	7	8	0 erd	0	6 A		A rs		dsip	d.			
	MOV.B Rs,@-ERd	В	9	C	1 erd	rs									
	MOV.B Rs,@aa:8	В	3	rs	abs	S									
	MOV.B Rs,@aa :16	В	9	4	8	rs		abs							
	MOV.B Rs,@aa:32	Ф	9	⋖	4	LS				abs					
	MOV.W #xx:16,Rd	>	7	6	0	rd		IMM							
	MOV.W Rs,Rd	≷	0	۵	Sī	гд									
	MOV.W @ERs,Rd	≷	9	6	0 ers	Þ									
	MOV.W @(d:16,ERs),Rd	≯	9	ш	0 ers	ъ		disp							
	MOV.W @(d:32,ERs),Rd	≥	_	ω	0 ers	0	9 9	\dashv	2 rd		disp	q			

Instruc-	Magazin	[Instruction Format	tion Fc	rmat				
tion		Size		1st byte	2nd byte	byte	3rd byte	ıte	4th byte		5th byte		6th byte	7th byte	8th byte	9th byte	10th byte
MOV	MOV.W @ERs+,Rd	≯	9	٥	0 ers	<u>r</u>											
	MOV.W @aa:16,Rd	8	9	В	0	rd		abs									
	MOV.W @aa:32,Rd	>	9	В	2	ō				abs							
	MOV.W Rs,@ERd	≥	9	6	1 erd	ร											
	MOV.W Rs,@(d:16,ERd)	×	9	ш	1 erd	rs		dsib	_								
	MOV.W Rs, @(d:32, ERd)	≥	7	∞	0 erd	0	9	В	⋖	S S			dsip	d.			
	MOV.W Rs,@-ERd	>	9	D	1 erd	rs											
	MOV.W Rs,@aa:16	>	9	В	8	rs		abs									
	MOV.W Rs, @aa:32	≥	9	В	⋖	ร				aps							
	MOV.L #xx:32,Rd	_	7	4	0	0 erd				IMM							
	MOV.L ERS,ERd	_	0	ш	1 ers 0	0 erd											
	MOV.L @ERs,ERd	_	0	_	0	0	9	0	ers	0 erd							
	MOV.L @(d:16,ERs),ERd	_	0	-	0	0	9	О Н	ers	0 erd		disp					
	MOV.L @(d:32,ERs),ERd	٦	0	1	0	0	7	8 0	ers	0	6 B	2	0 erd		di	dsib	
	MOV.L @ERs+,ERd	_	0	1	0	0	9	0 0	ers	0 erd							
	MOV.L @aa:16 ,ERd	Г	0	1	0	0	9	В	0	0 erd		abs					
	MOV.L @aa:32 ,ERd	Г	0	1	0	0	9	В	2 C	0 erd			abs	S			
	MOV.L ERs, @ERd	Г	0	1	0	0	9	9 1	erd 0	ers (
	MOV.L ERs, @(d:16,ERd)	_	0	_	0	0	9	Т_	erd 0 ers	ers (disp					
	MOV.L ERs, @ (d:32, ERd)*1	_	0	1	0	0	7	8	erd	0	9 9	4	0 ers		Б	disp	
	MOV.L ERs, @-ERd	_	0	_	0	0	9	_	erd	0 ers							
	MOV.L ERs, @aa:16	_	0	_	0	0	9	В	8	0 ers		aps					
	MOV.L ERs, @aa:32	Г	0	1	0	0	9	В	Α	0 ers			abs	S			
MOVFPE	MOVFPE MOVFPE @aa:16,Rd	В	Can	not be	Cannot be used in th	the chip	۵										
MOVTPE	MOVTPE MOVTPE Rs, @aa:16	В															
MULXS	MULXS.B Rs,Rd	В	0	_	ပ	0	2	0	ß	rd							
	MULXS.W Rs,ERd	≥	0	_	ပ	0	2	7	ည	0 erd							
MULXU	MULXU.B Rs,Rd	В	2	0	গ্ৰ	Ð											
	MULXU.W Rs,ERd	≯	5	2	ß	0 erd											

Instruc-	oi a como M							Instruction Format	n Format				
tion		Size	1st byte	2nd by	byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
NEG	NEG.B Rd	В	1 7	∞	Þ								
	NEG.W Rd	>	1 7	6	Þ								
	NEG.L ERd	_	1 7	В	0 erd								
NOP	NOP	Ι	0 0	0	0								
NOT	NOT.B Rd	В	1 7	0	p								
	NOT.W Rd	M	1 7	1	p								
	NOT.L ERd	_	1 7	3	0 erd								
OR	OR.B #xx:8,Rd	В	C rd	Ä	IMM								
	OR.B Rs,Rd	В	1	ß	Þ								
	OR.W #xx:16,Rd	>	7 9	4	p	IMM	M						
	OR.W Rs,Rd	>	6 4	ß	p								
	OR.L #xx:32,ERd	Г	7 A	4	0 erd		IMMI	M					
	OR.L ERS,ERd	Γ	0 1	Ь	0	6 4	0 ers 0 erd						
ORC	ORC #xx:8,CCR	В	0 4	Ž	IMM								
	ORC #xx:8,EXR	В	0 1	4	1	0 4	IMM						
POP	POP.W Rn	Ν	O 9	7	E								
	POP.L ERn	_	0 1	0	0	6 D	7 0 ern						
PUSH	PUSH.W Rn	>	O 9	ш	٤								
	PUSH.L ERn	_	0 1	0	0	6 D	F 0 ern						
ROTL	ROTL.B Rd	В	1 2	8	Þ								
	ROTL.B #2, Rd	В	1 2	၁	Þ								
	ROTL.W Rd	>	1 2	6	Б								
	ROTL.W #2, Rd	>	1 2	Ω	Þ								
	ROTL.L ERd	_	1 2	В	0 erd								
	ROTL.L #2, ERd	_	1 2	ш	0 erd								

Instruc-	N. S. S. S. S. S. S. S. S. S. S. S. S. S.							Instruction Format	n Format				
tion		Size	1st byte		2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ROTR	ROTR.B Rd	В	- 3	80	<u>5</u>								
	ROTR.B #2, Rd	В	1 3	ပ	rd								
	ROTR.W Rd	8	1 3	6	<u>r</u>								
	ROTR.W #2, Rd	M	1 3		Þ								
	ROTR.L ERd	_	1 3	Ф	0 erd								
	ROTR.L #2, ERd	Г	1 3	ш	0 erd								
ROTXL	ROTXL.B Rd	В	1 2	0	rd								
	ROTXL.B #2, Rd	В	1 2	4	<u>r</u>								
	ROTXL.W Rd	X	1 2		rd								
	ROTXL.W #2, Rd	8	1 2	2	Ð								
	ROTXL.L ERd	_	1 2	က	0 erd								
	ROTXL.L #2, ERd	Γ	1 2	7	0 erd								
ROTXR	ROTXR.B Rd	В	1 3	0	Þ								
	ROTXR.B #2, Rd	В	1 3	4	rd								
	ROTXR.W Rd	8	1 3	_	rd								
	ROTXR.W #2, Rd	8	1 3	2	rd								
	ROTXR.L ERd	_	1 3	3	0 erd								
	ROTXR.L #2, ERd	_	1	7	0 erd								
RTE	RTE		5 6	7	0								
RTS	RTS	Ι	5 4	7	0								
SHAL	SHAL.B Rd	В	1	∞	Б								
	SHAL.B #2, Rd	В	1 0	O	ъ								
	SHAL.W Rd	>	1 0	6	Ð								
	SHAL.W #2, Rd	>	1 0	Ω	Б								
	SHAL.L ERd	_	1	В	0 erd								
	SHAL.L #2, ERd	_	1	Щ	0 erd								

Instriic-	:								=	nstruction	Instruction Format				
tion	Mnemonic	Size		1st byte	2nd byte	yte	3rd byte	4th byte	2	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
SHAR	SHAR.B Rd	В	-	-	8	ъ									
	SHAR.B #2, Rd	В	_	_	၁	ъ									
	SHAR.W Rd	8	-	1	6	р									
	SHAR.W #2, Rd	>	_	1	Ω	ъ									
	SHAR.L ERd	_	_	_	В	0 erd									
	SHAR.L #2, ERd	Г	1	1	э.	0 erd									
SHLL	SHLL.B Rd	В	1	0	0	rd									
	SHLL.B #2, Rd	В	_	0	4	ъ									
	SHLL.W Rd	8	_	0	1	rd									
	SHLL.W #2, Rd	>	_	0	2	ъ									
	SHLL.L ERd	_	_	0	3	0 erd									
	SHLL.L #2, ERd	٦	1	0	2	0 erd									
SHLR	SHLR.B Rd	В	_	1	0	p									
	SHLR.B #2, Rd	В	1	1	4	ъ									
	SHLR.W Rd	M	1	1	1	rd									
	SHLR.W #2, Rd	>	_	-	2	ъ									
	SHLR.L ERd	_	_	_	3	0 erd									
	SHLR.L #2, ERd	_	_	_	7	0 erd									
SLEEP	SLEEP		0	1	8	0									
STC	STC.B CCR,Rd	В	0	2	0	ъ									
	STC.B EXR,Rd	В	0	7	_	ъ									
	STC.W CCR,@ERd	≥	0	-	4	0	6 9	1 erd (0						
	STC.W EXR,@ERd	≥	0	_	4	_	6 9	1 erd (0						
	STC.W CCR, @(d:16,ERd)	≥	0	_	4	0	ь Э	1 erd (0	disp	d				
	STC.W EXR, @ (d:16, ERd)	≥	0	-	4	_	9 	1 erd (0	disp	d				
	STC.W CCR, @(d:32,ERd)	≥	0	_	4	0	7 8	0 erd (9 0	В	0 V		disp	ds	
	STC.W EXR, @ (d:32, ERd)	>	0	_	4	_	7 8	0 erd (9 0	В	0 A		dsip	ds	
	STC.W CCR,@-ERd	≥	0	_	4	0	O 9	1 erd (0						
	STC.W EXR,@-ERd	≥	0	_	4	-	О 9	1 erd (0						

Instruc-	Mamonic	,									Instruction Format	nat				
tion		Size	1st byte	byte	2nd by	byte	3rd byte	yte	4th byte	yte	5th byte 6th	6th byte	7th byte	8th byte	9th byte	10th byte
STC	STC.W CCR,@aa:16	>	0	1	4	0	9	В	∞	0	abs					
	STC.W EXR,@aa:16	>	0	-	4	-	9	В	8	0	abs					
	STC.W CCR,@aa:32	>	0	1	4	0	9	В	A	0		abs				
	STC.W EXR,@aa:32	8	0	_	4	_	9	В	Α	0		abs				
STM	STM.L(ERn-ERn+1), @-SP	_	0	_	1	0	9	۵	<u>.о.</u> ш	0 ern						
	STM.L (ERn-ERn+2), @-SP	_	0	-	2	0	9	۵	<u></u> ш	0 ern						
	STM.L (ERn-ERn+3), @-SP	Г	0	1	3	0	9	O	Ь.	0 ern						
STMAC	STMAC MACH,ERd	_	Canr	Cannot be used in the	used in	the chip	۵									
	STMAC MACL, ERd	٦														
SUB	SUB.B Rs,Rd	В	1	8	SJ	rd										
	SUB.W #xx:16,Rd	>	7	6	8	rd		IMM	1							
	SUB.W Rs,Rd	N	1	6	S.J	rd										
	SUB.L #xx:32,ERd	_	7	A	3	0 erd				IMM						
	SUB.L ERS,ERd	Г	1	А	1 ers 0	0 erd										
SUBS	SUBS #1,ERd	_	_	В	0	0 erd										
	SUBS #2,ERd	_	_	В	8	0 erd										
	SUBS #4,ERd	_	_	В	6	0 erd										
SUBX	SUBX #xx:8,Rd	Ф	В	rd	MMI	Σ										
	SUBX Rs,Rd	В	_	ш	เร	Б										
TAS	TAS @ERd* ²	В	0	_	Ш	0		B 0	0 erd	ပ						
TRAPA	TRAPA #x:2	Ι	2	7	00 IMM	0										
XOR	XOR.B #xx:8,Rd	В	D	rd	MMI	MI										
	XOR.B Rs,Rd	В	_	2	rs	Б										
	XOR.W #xx:16,Rd	≥	7	6	2	Б		IMM	_							
	XOR.W Rs,Rd	>	9	2	rs	Б										
	XOR.L #xx:32,ERd	_	7	٨	2	0 erd				IMM						
	XOR.L ERS,ERd	_	0	_	Ш	0	9	2	ers	0 erd						

Instruc-	Mnemonic						Instruction Format	n Format				
tion		Size		1st byte 2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
XORC	XORC XORC #xx:8,CCR	В	0 5	MMI								
	XORC #xx:8,EXR	В	0 1	4	0 5	IMM						

Notes: 1. Bit 7 of the 4th byte of the MOV.L ERs, @(d:32,ERd) instruction can be either 1 or 0.

2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Legend:

mmediate data (2, 3, 8, 16, or 32 bits) .. MM

Absolute address (8, 16, 24, or 32 bits)

Displacement (8, 16, or 32 bits) dsip: abs:

Register field (4 bits specifying an 8-bit or 16-bit register. The symbols rs, rd, and rn correspond to operand symbols Rs, Rd, and Rn.) Register field (3 bits specifying an address register or 32-bit register. The symbols ers, erd, ern, and erm correspond to operand ers, erd, ern, erm: rs, rd, rn:

symbols ERs, ERd, ERn, and ERm.)

The register fields specify general registers as follows.

Address Regist 32-Bit Register	Address Register 32-Bit Register	16-Bit	16-Bit Register	8-Bit	8-Bit Register
Register Field	General Register	Register Field	General Register	Register Field	General Register
000	ERO	0000	RO	0000	ROH
001	ER1	0001	R1	0001	R1H
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
111	ER7	0111	R7	0111	R7H
		1000	E0	1000	ROL
		1001	E1	1001	R1L
		•	•	•	•
		•	•	•	•
		•	•	•	•
		1111	E7	1111	R7L

A.3 Operation Code Map

Table A.3 shows the operation code map.

Table A.3 Operation Code Map (1)

n code 1st byte 2nd byte AL BH BL Instruction when most significant bit of BH is 0.	0 1 2 3 4 5 6 7 8 9 A B	NOP Table STC * LDC * ORC XORC ANDC LDC ADD Table Table Table A.3(2) A.3(2) A.3(2)	Table A.3(2) OR XOR AND Table A.3(2) SUB Table A.3(2)		MOV.B	BRA BRN BHI BLS BCC BCS BNE BEQ BVC BVS BPL BMI	DIVXU MULXU DIVXU RTS BSR RTE	OR XOR AND	MOV Table A.3(2)	ADD	ADDX	CMP	SUBX	OR	XOR	AND	NOM	Note: * Cannot be used in the chip.
Instruction code	0 AL 0	NOP				BRA	MULXU	H L C										: * Cannot be
Instru	¥	0		7	က	4	2	9	7	∞	6	∢	В	O	О	Ш	ш	Note

Table A.3 Operation Code Map (2)

	3 e				_	~	ب	~	S		()					
ш	Table A.3(3)		NC NC		SHAL	SHAR	ROTL	ROTR	EXTS		DEC		BLE			
ш	TAS												BGT			
٥	Table A.3(3)		INC						EXTS		DEC		BLT			
O	Table A.3(3)	۵		20	SHAL	SHAR	ROTL	ROTR		_ 			BGE	MOVTPE*		
Ф		ADD		MOV					NEG	SUB		CMP	BMI			
A	CLRMAC*									-			BPL	MOV		
6			SC		AL	٩R	2	꼰	O		3S		BVS			
8	SLEEP		ADDS		SHAL	SHAR	ROTL	ROTR	NEG		SUBS		BVC	MOV		
7			NC		SHLL	SHLR	ROTXL	ROTXR	EXTU		DEC		BEQ			
9	MAC*												BNE		AND	AND
2			NC INC						EXTU		DEC		BCS		XOR	XOR
4	LDC				SHLL	SHLR	ROTXL	ROTXR					BCC	MOVFPE*	OR	OR
3	STM								TON				BLS	Table A.3(4)	SUB	SUB
2													BHI	MOV	CMP	CMP
_	LDM				SHLL	SHLR	ROTXL	ROTXR	NOT				BRN	Table A.3(4)	ADD	ADD
0	MOV	NC	ADDS	DAA	HS HS	SH	RO.	RO	N	DEC	SUBS	DAS	BRA	MOV	MOV	MOV
AH AL	01	0A	0B	90F	10	1	12	13	17	1A	1B	4	58	6A	62	7.A

Note: * Cannot be used in the chip.

2nd byte

1st byte

В

 ${\sf AL}$

Table A.3 Operation Code Map (3)

Instruction when most significant bit of DH is 0. Instruction when most significant bit of DH is 1.

Ы

 $^{\mathsf{C}}$

S

В

 ${\sf A}{\sf L}$

4th byte

3rd byte

2nd byte

1st byte

Instruction code

u	5 IVI	ap (<i>3)</i>										
	Н												
	Ш												
	D												
	C												
	В												
	Α												
	6												
	8												
	7					BLD	(i)			BLD	BST BIST		
	9			AND		AND				3AND BIANI			
	5			XOR		3XOR BIX				3XOR BIXO			
	4			OR		BOR				BOR			
	က		SX/IQ		BTST	BTST			BTST	BTST			
	2	MULXS					BCLR	BCLR			BCLR	BCLR	tion field.
	1		SX/IQ				BNOT	BNOT			BNOT	BNOT	specifica
	0	MULXS					BSET	BSET			BSET	BSET	ne register
	CL AHAL BH BLCH	01C05	01D05	01F06	7Cr06 *1	7Cr07 *1	7Dr06 *1	7Dr07 *1	7Eaa6 *2	7Eaa7 *2	7Faa6 *2	7Faa7 *2	Notes: 1. r is the register specification field.

aa is the absolute address specification.

Rev.4.00 Sep. 07, 2007 Page 954 of 1210 REJ09B0245-0400

Table A.3 Operation Code Map (4)

	-	_· ·					
		of FH is 0 of FH is 1	ш				
		ficant bit o	Ш				
		most signi most signi	D				
		Instruction when most significant bit of FH is 0. Instruction when most significant bit of FH is 1.	S				
		— Instruct — Instruct	В				
			A				
6th byte	FL		6				
	FH		8				
5th byte	E					BIST	
5th	ЕН		7		AND BLD BILD BILD	BST	
byte	DL		9		BAND BIAND		
4th byte	DH		5		BOR BXOR BAND BLD BIOR BIXOR BIXOR		
3rd byte	CL		4		BIOR		
3rd	CH						
e	BL		3	- C	0		
2nd byte	BH		2			2	S C L
1st byte	AL		_			FONG	
1st	АН		0			TUO	
Instruction code			EL AHALBHBLCHCLDHDLEH	6A10aaaa6*	6A10aaaa7*	6A18aaaa6*	6A18aaaa7*

		Instruction when most significant bit of HH is 0. Instruction when most significant bit of HH is 1.
yte	로	an most sig
8th byte	壬	tion whe
7th byte	GL	– Instruc – Instruc
7th	В	
oyte	FL	
6th byte	H	
5th byte	EL	
5th	ЕН	
4th byte	DF	
4th	DH	
3rd byte	TO	
3rd	CH	
2nd byte	BL	
2nd	ВН	
1st byte	AL	
1st	AH	
Instruction code		

AHALBHBL FHFLGH	0	_	2	3	4	2	9	7	8	6	4	В	0	Q	ш	ш
6A30aaaaaaaa6*																
6A30aaaaaaaa7*				0	BOR I	3XOR [SAND E	3LD BILD								
6A38aaaaaaaa6*	F	HONG HONG	2		BST		1	3ST BIST								
6A38aaaaaaaa7*	- DO		N DOC													

Note: * aa is the absolute address specification.

A.4 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction execution by the CPU. Table A.5 indicates the number of instruction fetch, data read/write, and other cycles occurring in each instruction. Table A.4 indicates the number of states required for each cycle. The number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states =
$$I \times S_I + J \times S_J + K \times S_K + L \times S_L + M \times S_M + N \times S_N$$

Examples: Advanced mode, program code and stack located in external memory, on-chip supporting modules accessed in two states with 8-bit bus width, external devices accessed in three states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFC7:8

From table A.5:

$$I = L = 2$$
, $J = K = M = N = 0$

From table A.4:

$$S_{I} = 4$$
, $S_{L} = 2$

Number of states required for execution = $2 \times 4 + 2 \times 2 = 12$

2. JSR @@30

From table A.5:

$$I = J = K = 2$$
, $L = M = N = 0$

From table A.4:

$$S_I = S_J = S_K = 4$$

Number of states required for execution = $2 \times 4 + 2 \times 4 + 2 \times 4 = 24$

RENESAS

Table A.4 Number of States per Cycle

Access Conditions

			On-Chi	p Supporting		Externa	al Device	
			Module	•	8-Bi	t Bus	16-B	it Bus
Cycle		On-Chip Memory	8-Bit Bus	16-Bit Bus		3-State Access		
Instruction fetch	Sı	1	4	2	4	6 + 2m	2	3 + m
Branch address read	S_J	_						
Stack operation	S _K	_ ,						
Byte data access	S _L	_	2		2	3 + m	-	
Word data access	S_{M}	_	4		4	6 + 2m	_	
Internal operation	S_N	1	1	1	1	1	1	1

Legend:

m: Number of wait states inserted into external device access

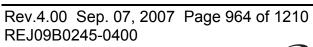
Table A.5 Number of Cycles in Instruction Execution

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
ADD	ADD.B #xx:8,Rd	1					
	ADD.B Rs,Rd	1					
	ADD.W #xx:16,Rd	2					
	ADD.W Rs,Rd	1					
	ADD.L #xx:32,ERd	3					
	ADD.L ERs,ERd	1					
ADDS	ADDS #1/2/4,ERd	1					
ADDX	ADDX #xx:8,Rd	1					
	ADDX Rs,Rd	1					
AND	AND.B #xx:8,Rd	1					
	AND.B Rs,Rd	1					
	AND.W #xx:16,Rd	2					
	AND.W Rs,Rd	1					
	AND.L #xx:32,ERd	3					
	AND.L ERs,ERd	2					
ANDC	ANDC #xx:8,CCR	1					
	ANDC #xx:8,EXR	2					
BAND	BAND #xx:3,Rd	1					
	BAND #xx:3,@ERd	2			1		
	BAND #xx:3,@aa:8	2			1		
	BAND #xx:3,@aa:16	3			1		
	BAND #xx:3,@aa:32	4			1		
Всс	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
Всс	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
	BRA d:16 (BT d:16)	2					1
	BRN d:16 (BF d:16)	2					1
	BHI d:16	2					1
	BLS d:16	2					1
	BCC d:16 (BHS d:16)	2					1
	BCS d:16 (BLO d:16)	2					1
	BNE d:16	2					1
	BEQ d:16	2					1
	BVC d:16	2					1
	BVS d:16	2					1
	BPL d:16	2					1
	BMI d:16	2					1
	BGE d:16	2					1
	BLT d:16	2					1
	BGT d:16	2					1
	BLE d:16	2					1
BCLR	BCLR #xx:3,Rd	1					
	BCLR #xx:3,@ERd	2			2		
	BCLR #xx:3,@aa:8	2			2		
	BCLR #xx:3,@aa:16	3			2		
	BCLR #xx:3,@aa:32	4			2		
	BCLR Rn,Rd	1					
	BCLR Rn,@ERd	2			2		
	BCLR Rn,@aa:8	2			2		
	BCLR Rn,@aa:16	3			2		
	BCLR Rn,@aa:32	4			2		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BIAND	BIAND #xx:3,Rd	1					
	BIAND #xx:3,@ERd	2			1		
	BIAND #xx:3,@aa:8	2			1		
	BIAND #xx:3,@aa:16	3			1		
	BIAND #xx:3,@aa:32	4			1		
BILD	BILD #xx:3,Rd	1					
	BILD #xx:3,@ERd	2			1		
	BILD #xx:3,@aa:8	2			1		
	BILD #xx:3,@aa:16	3			1		
	BILD #xx:3,@aa:32	4			1		
BIOR	BIOR #xx:8,Rd	1					
	BIOR #xx:8,@ERd	2			1		
	BIOR #xx:8,@aa:8	2			1		
	BIOR #xx:8,@aa:16	3			1		
	BIOR #xx:8,@aa:32	4			1		
BIST	BIST #xx:3,Rd	1					
	BIST #xx:3,@ERd	2			2		
	BIST #xx:3,@aa:8	2			2		
	BIST #xx:3,@aa:16	3			2		
	BIST #xx:3,@aa:32	4			2		
BIXOR	BIXOR #xx:3,Rd	1					
	BIXOR #xx:3,@ERd	2			1		
	BIXOR #xx:3,@aa:8	2			1		
	BIXOR #xx:3,@aa:16	3			1		
	BIXOR #xx:3,@aa:32	4			1		
BLD	BLD #xx:3,Rd	1					
	BLD #xx:3,@ERd	2			1		
	BLD #xx:3,@aa:8	2			1		
	BLD #xx:3,@aa:16	3			1		
	BLD #xx:3,@aa:32	4			1		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BNOT	BNOT #xx:3,Rd	1					
	BNOT #xx:3,@ERd	2			2		
	BNOT #xx:3,@aa:8	2			2		
	BNOT #xx:3,@aa:16	3			2		
	BNOT #xx:3,@aa:32	4			2		
	BNOT Rn,Rd	1					
	BNOT Rn,@ERd	2			2		
	BNOT Rn,@aa:8	2			2		
	BNOT Rn,@aa:16	3			2		
	BNOT Rn,@aa:32	4			2		
BOR	BOR #xx:3,Rd	1					
	BOR #xx:3,@ERd	2			1		
	BOR #xx:3,@aa:8	2			1		
	BOR #xx:3,@aa:16	3			1		
	BOR #xx:3,@aa:32	4			1		
BSET	BSET #xx:3,Rd	1					
	BSET #xx:3,@ERd	2			2		
	BSET #xx:3,@aa:8	2			2		
	BSET #xx:3,@aa:16	3			2		
	BSET #xx:3,@aa:32	4			2		
	BSET Rn,Rd	1					
	BSET Rn,@ERd	2			2		
	BSET Rn,@aa:8	2			2		
	BSET Rn,@aa:16	3			2		
	BSET Rn,@aa:32	4			2		
BSR	BSR d:8 Advance	ed 2		2			
	BSR d:16 Advance	ed 2		2			1
BST	BST #xx:3,Rd	1					
	BST #xx:3,@ERd	2			2		
	BST #xx:3,@aa:8	2			2		
	BST #xx:3,@aa:16	3			2		
	BST #xx:3,@aa:32	4			2		



		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BTST	BTST #xx:3,Rd	1					
	BTST #xx:3,@ERd	2			1		
	BTST #xx:3,@aa:8	2			1		
	BTST #xx:3,@aa:16	3			1		
	BTST #xx:3,@aa:32	4			1		
	BTST Rn,Rd	1					
	BTST Rn,@ERd	2			1		
	BTST Rn,@aa:8	2			1		
	BTST Rn,@aa:16	3			1		
	BTST Rn,@aa:32	4			1		
BXOR	BXOR #xx:3,Rd	1					
	BXOR #xx:3,@ERd	2			1		
	BXOR #xx:3,@aa:8	2			1		
	BXOR #xx:3,@aa:16	3			1		
	BXOR #xx:3,@aa:32	4			1		
CLRMAC	CLRMAC	Cannot be u	sed in the c	hip			
CMP	CMP.B #xx:8,Rd	1					
	CMP.B Rs,Rd	1					
	CMP.W #xx:16,Rd	2					
	CMP.W Rs,Rd	1					
	CMP.L #xx:32,ERd	3					
	CMP.L ERs,ERd	1					
DAA	DAA Rd	1					
DAS	DAS Rd	1					
DEC	DEC.B Rd	1					
	DEC.W #1/2,Rd	1					
	DEC.L #1/2,ERd	1					
DIVXS	DIVXS.B Rs,Rd	2					11
	DIVXS.W Rs,ERd	2					19
DIVXU	DIVXU.B Rs,Rd	1					11
	DIVXU.W Rs,ERd	1					19

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
EEPMOV	EEPMOV.B	2			2n+2 ^{*2}		
	EEPMOV.W	2			2n+2 ^{*2}		
EXTS	EXTS.W Rd	1					
	EXTS.L ERd	1					
EXTU	EXTU.W Rd	1					
	EXTU.L ERd	1					
INC	INC.B Rd	1					
	INC.W #1/2,Rd	1					
	INC.L #1/2,ERd	1					
JMP	JMP @ERn	2					
	JMP @aa:24	2					1
	JMP @@aa:8 Advanced	2	2				1
JSR	JSR @ERn Advanced	2		2			
	JSR @aa:24 Advanced	2		2			1
	JSR @@aa:8 Advanced	2	2	2			
LDC	LDC #xx:8,CCR	1					
	LDC #xx:8,EXR	2					
	LDC Rs,CCR	1					
	LDC Rs,EXR	1					
	LDC @ERs,CCR	2				1	
	LDC @ERs,EXR	2				1	
	LDC @(d:16,ERs),CCR	3				1	
	LDC @(d:16,ERs),EXR	3				1	
	LDC @(d:32,ERs),CCR	5				1	
	LDC @(d:32,ERs),EXR	5				1	
	LDC @ERs+,CCR	2				1	1
	LDC @ERs+,EXR	2				1	1
	LDC @aa:16,CCR	3				1	
	LDC @aa:16,EXR	3				1	
	LDC @aa:32,CCR	4				1	
	LDC @aa:32,EXR	4				1	

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
LDM	LDM.L @SP+, (ERn-ERn+1)	2		4			1
	LDM.L @SP+, (ERn-ERn+2)	2		6			1
	LDM.L @SP+, (ERn-ERn+3)	2		8			1
LDMAC	LDMAC ERs,MACH	Cannot be u	sed in the c	hip			
	LDMAC ERs,MACL						
MAC	MAC @ERn+,@ERm+	Cannot be u	sed in the c	hip			
MOV	MOV.B #xx:8,Rd	1					
	MOV.B Rs,Rd	1					
	MOV.B @ERs,Rd	1			1		
	MOV.B @(d:16,ERs),Rd	2			1		
	MOV.B @(d:32,ERs),Rd	4			1		
	MOV.B @ERs+,Rd	1			1		1
	MOV.B @aa:8,Rd	1			1		
	MOV.B @aa:16,Rd	2			1		
	MOV.B @aa:32,Rd	3			1		
	MOV.B Rs,@ERd	1			1		
	MOV.B Rs,@(d:16,ERd)	2			1		
	MOV.B Rs,@(d:32,ERd)	4			1		
	MOV.B Rs,@-ERd	1			1		1
	MOV.B Rs,@aa:8	1			1		
	MOV.B Rs,@aa:16	2			1		
	MOV.B Rs,@aa:32	3			1		
	MOV.W #xx:16,Rd	2					
	MOV.W Rs,Rd	1					
	MOV.W @ERs,Rd	1				1	
	MOV.W @(d:16,ERs),Rd	2				1	
	MOV.W @(d:32,ERs),Rd	4				1	
	MOV.W @ERs+,Rd	1				1	1
	MOV.W @aa:16,Rd	2				1	
	MOV.W @aa:32,Rd	3				1	
	MOV.W Rs,@ERd	1				1	

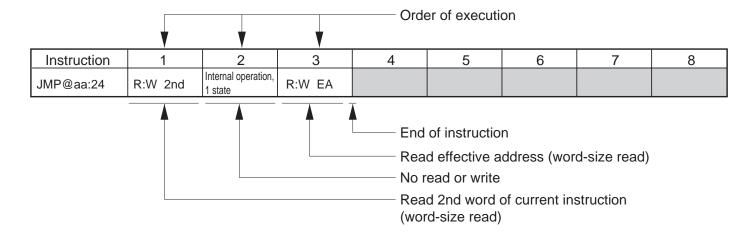
Instruction M	Inemonic		Read	Operation	Access	Access	Operation
		I	J	K	L	М	N
MOV M	10V.W Rs,@(d:16,ERd)	2				1	
М	10V.W Rs,@(d:32,ERd)	4				1	
М	IOV.W Rs,@-ERd	1				1	1
М	IOV.W Rs,@aa:16	2				1	
М	IOV.W Rs,@aa:32	3				1	
М	IOV.L #xx:32,ERd	3					
М	10V.L ERs,ERd	1					
М	10V.L @ERs,ERd	2				2	
М	10V.L @(d:16,ERs),ERd	3				2	
М	10V.L @(d:32,ERs),ERd	5				2	
М	10V.L @ERs+,ERd	2				2	1
М	IOV.L @aa:16,ERd	3				2	
М	IOV.L @aa:32,ERd	4				2	
М	IOV.L ERs,@ERd	2				2	
М	10V.L ERs,@(d:16,ERd)	3				2	
М	10V.L ERs,@(d:32,ERd)	5				2	
М	1OV.L ERs,@-ERd	2				2	1
М	1OV.L ERs,@aa:16	3				2	
М	1OV.L ERs,@aa:32	4				2	
MOVFPE M	10VFPE @:aa:16,Rd	Can not be u	sed in the	chip			
MOVTPE M	10VTPE Rs,@:aa:16						
MULXS M	IULXS.B Rs,Rd	2					11
M	IULXS.W Rs,ERd	2					19
MULXU M	IULXU.B Rs,Rd	1					11
M	IULXU.W Rs,ERd	1					19
NEG N	IEG.B Rd	1					
N	IEG.W Rd	1					
N	IEG.L ERd	1					
NOP N	IOP	1					
NOT N	IOT.B Rd	1					
N	IOT.W Rd	1					
N	IOT.L ERd	1					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	Ī	J	K	L	М	N
OR	OR.B #xx:8,Rd	1					
	OR.B Rs,Rd	1					
	OR.W #xx:16,Rd	2					
	OR.W Rs,Rd	1					
	OR.L #xx:32,ERd	3					
	OR.L ERs,ERd	2					
ORC	ORC #xx:8,CCR	1					
	ORC #xx:8,EXR	2					
POP	POP.W Rn	1				1	1
	POP.L ERn	2				2	1
PUSH	PUSH.W Rn	1				1	1
	PUSH.L ERn	2				2	1
ROTL	ROTL.B Rd	1					
	ROTL.B #2,Rd	1					
	ROTL.W Rd	1					
	ROTL.W #2,Rd	1					
	ROTL.L ERd	1					
	ROTL.L #2,ERd	1					
ROTR	ROTR.B Rd	1					
	ROTR.B #2,Rd	1					
	ROTR.W Rd	1					
	ROTR.W #2,Rd	1					
	ROTR.L ERd	1					
	ROTR.L #2,ERd	1					
ROTXL	ROTXL.B Rd	1					
	ROTXL.B #2,Rd	1					
	ROTXL.W Rd	1					
	ROTXL.W #2,Rd	1					
	ROTXL.L ERd	1					
	ROTXL.L #2,ERd	1					

			Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	K	L	М	N
ROTXR	ROTXR.B Rd		1					
	ROTXR.B #2,Rd		1					
	ROTXR.W Rd		1					
	ROTXR.W #2,Rd		1					
	ROTXR.L ERd		1					
	ROTXR.L #2,ERd		1					
RTE	RTE		2		2/3*1			1
RTS	RTS Adv	anced	2		2			1
SHAL	SHAL.B Rd		1					
	SHAL.B #2,Rd		1					
	SHAL.W Rd		1					
	SHAL.W #2,Rd		1					
	SHAL.L ERd		1					
	SHAL.L #2,ERd		1					
SHAR	SHAR.B Rd		1					
	SHAR.B #2,Rd		1					
	SHAR.W Rd		1					
	SHAR.W #2,Rd		1					
	SHAR.L ERd		1					
	SHAR.L #2,ERd		1					
SHLL	SHLL.B Rd		1					
	SHLL.B #2,Rd		1					
	SHLL.W Rd		1					
	SHLL.W #2,Rd		1					
	SHLL.L ERd		1					
	SHLL.L #2,ERd		1					
SHLR	SHLR.B Rd		1					
	SHLR.B #2,Rd		1					
	SHLR.W Rd		1					
	SHLR.W #2,Rd		1					
	SHLR.L ERd		1					
	SHLR.L #2,ERd		1					
SLEEP	SLEEP		1					1

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
STC	STC.B CCR,Rd	1					
	STC.B EXR,Rd	1					
	STC.W CCR,@ERd	2				1	
	STC.W EXR,@ERd	2				1	
	STC.W CCR,@(d:16,ERd)	3				1	
	STC.W EXR,@(d:16,ERd)	3				1	
	STC.W CCR,@(d:32,ERd)	5				1	
	STC.W EXR,@(d:32,ERd)	5				1	
	STC.W CCR,@-ERd	2				1	1
	STC.W EXR,@-ERd	2				1	1
	STC.W CCR,@aa:16	3				1	
	STC.W EXR,@aa:16	3				1	
	STC.W CCR,@aa:32	4				1	
	STC.W EXR,@aa:32	4				1	
STM	STM.L (ERn-ERn+1), @-SP	2		4			1
	STM.L (ERn-ERn+2), @-SP	2		6			1
	STM.L (ERn-ERn+3), @-SP	2		8			1
STMAC	STMAC MACH,ERd	Cannot be us	sed in the c	hip			
	STMAC MACL,ERd						
SUB	SUB.B Rs,Rd	1					
	SUB.W #xx:16,Rd	2					
	SUB.W Rs,Rd	1					
	SUB.L #xx:32,ERd	3					
	SUB.L ERs,ERd	1					
SUBS	SUBS #1/2/4,ERd	1					
SUBX	SUBX #xx:8,Rd	1					
	SUBX Rs,Rd	1					
TAS	TAS @ERd*3	2			2		
TRAPA	TRAPA #x:2 Advanced	2	2	2/3*1			2

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
XOR	XOR.B #xx:8,Rd	1					
	XOR.B Rs,Rd	1					
	XOR.W #xx:16,Rd	2					
	XOR.W Rs,Rd	1					
	XOR.L #xx:32,ERd	3					
	XOR.L ERs,ERd	2					
XORC	XORC #xx:8,CCR	1					
	XORC #xx:8,EXR	2					


Notes: 1. 2 when EXR is invalid, 3 when EXR is valid.

- 2. When n bytes of data are transferred.
- 3. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

A.5 Bus States during Instruction Execution

Table A.6 indicates the types of cycles that occur during instruction execution by the CPU. See table A.4 for the number of states per cycle.

How to Read the Table:

Legend

•	
R:B	Byte-size read
R:W	Word-size read
W:B	Byte-size write
W:W	Word-size write
:M	Transfer of the bus is not performed immediately after this cycle
2nd	Address of 2nd word (3rd and 4th bytes)
3rd	Address of 3rd word (5th and 6th bytes)
4th	Address of 4th word (7th and 8th bytes)
5th	Address of 5th word (9th and 10th bytes)
NEXT	Address of next instruction
EA	Effective address
VEC	Vector address

RENESAS

Figure A.1 shows timing waveforms for the address bus and the \overline{RD} , \overline{HWR} , and \overline{LWR} signals during execution of the above instruction with an 8-bit bus, using three-state access with no wait states.

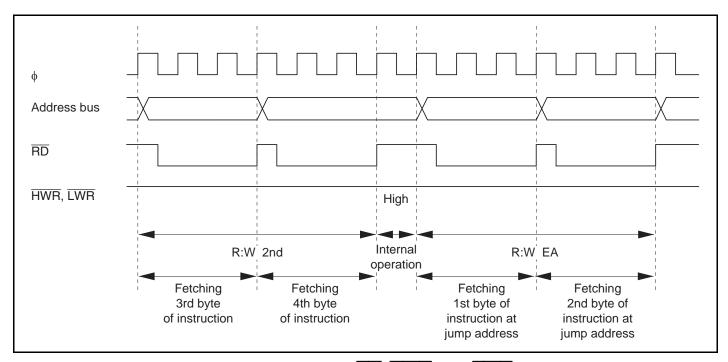


Figure A.1 Address Bus, RD, HWR, and LWR Timing (8-Bit Bus, Three-State Access, No Wait States)

Table A.6 Instruction Execution Cycles

6																																					
8																																					
7																																					
9																																					
2																						R:W:M NEXT															
4																					R:W:M NEXT	R:B EA															
3					R:W NEXT									R:W NEXT					R:W:M NEXT	R:W:M NEXT	R:B EA	R:W 4th															
2			R:W NEXT		R:W 3rd							R:W NEXT		R:W 3rd	R:W NEXT		R:W NEXT		R:B EA	R:B EA	R:W 3rd	R:W 3rd	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA	R:W EA
1	R:W NEXT	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT
Instruction	ADD.B #xx:8,Rd	ADD.B Rs,Rd	ADD.W #xx:16,Rd	ADD.W Rs,Rd	ADD.L #xx:32,ERd	ADD.L ERs,ERd	ADDS #1/2/4,ERd	ADDX #xx:8,Rd	ADDX Rs,Rd	AND.B #xx:8,Rd	AND.B Rs,Rd	AND.W #xx:16,Rd	AND.W Rs,Rd	AND.L #xx:32,ERd	AND.L ERS,ERd	ANDC #xx:8,CCR	ANDC #xx:8,EXR	BAND #xx:3,Rd	BAND #xx:3, @ERd	BAND #xx:3, @aa:8	BAND #xx:3, @aa:16	BAND #xx:3, @aa:32	BRA d:8 (BT d:8)	BRN d:8 (BF d:8)	BHI d:8	BLS d:8	BCC d:8 (BHS d:8)	BCS d:8 (BLO d:8)	BNE d:8	BEQ d:8	BVC d:8	BVS d:8	BPL d:8	BMI d:8	BGE d:8	BLT d:8	BGT d:8

Instruction	~	2	က	4	5	9	7	_∞	6
BLE d:8	R:W NEXT	R:W EA							
BRA d:16 (BT d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BRN d:16 (BF d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BHI d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLS d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BCC d:16 (BHS d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BCS d:16 (BLO d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BNE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BEQ d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BVC d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BVS d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BPL d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BMI d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BGE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLT d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BGT d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BCLR #xx:3,Rd	R:W NEXT								
BCLR #xx:3,@ERd	R:W 2nd	R:B:M EA		W:B EA					
BCLR #xx:3,@aa:8	R:W 2nd	R:B:M EA	×	_	L C				
DCLR #XX:3, @aa:10	K:vv zna	K:vv Srd	K.B.IMIEA	K:W:M	W:B EA				

Instruction	_	2	8	4	5	9	7	80	6
BCLR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BCLR Rn,Rd	R:W NEXT								
BCLR Rn, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn, @aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BCLR Rn, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BIAND #xx:3,Rd	R:W NEXT								
BIAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIAND #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIAND #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BILD #xx:3,Rd	R:W NEXT								
BILD #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BILD #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BILD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BILD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BIOR #xx:3,Rd	R:W NEXT								
BIOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIOR #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIOR #xx:3, @aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIOR #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BIST #xx:3,Rd	R:W NEXT								
BIST #xx:3, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BIST #xx:3, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BIST #xx:3, @aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BIST #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BIXOR #xx:3,Rd	R:W NEXT								
BIXOR #xx:3, @ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIXOR #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIXOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIXOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BLD #xx:3,Rd	R:W NEXT								
BLD #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BLD #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BLD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BLD #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BNOT #xx:3,Rd	R:W NEXT								

Instruction	~	2	3	4	5	9	7	8	6
BNOT #xx:3, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BNOT Rn,Rd	R:W NEXT								
BNOT Rn, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT Rn, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT Rn, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BOR #xx:3,Rd	R:W NEXT								
BOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BSET #xx:3,Rd	R:W NEXT								
BSET #xx:3, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BSET #xx:3, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BSET #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BSET #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BSET Rn,Rd	R:W NEXT								
BSET Rn, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BSET Rn, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BSET Rn, @aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BSET Rn, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BSR d:8 Advanced	R:W NEXT	R:W EA	W:W:M stack (H)						
BSR d:16 Advanced	R:W 2nd	Internal operation,	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)				
BST #xx:3 Bd	R-W NEXT								
BST #xx:3 @EBd	R-W 2nd	B.B.M.EA	B·W·M NEXT	W.B.E.A					
BST #xx:3, @aa:8	R:W 2nd	R:B:M EA	R.W.M NEXT	W:B EA					
BST #xx:3.@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BTST #xx:3,Rd	R:W NEXT								
BTST #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						

Instruction	_	2	3	4	2	9	7	8	6
BTST #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BTST #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BTST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BTST Rn,Rd	R:W NEXT								
BTST Rn, @ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BTST Rn,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BTST Rn,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BTST Rn, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BXOR #xx:3,Rd	R:W NEXT								
BXOR #xx:3, @ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BXOR #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BXOR #xx:3, @aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BXOR #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
CLRMAC	Cannot be used in the chip	ed in the chip							
CMP.B #xx:8,Rd	R:W NEXT								
CMP.B Rs,Rd	R:W NEXT								
CMP.W #xx:16,Rd	R:W 2nd	R:W NEXT							
CMP.W Rs,Rd	R:W NEXT								
CMP.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
CMP.L ERS,ERd	R:W NEXT								
DAA Rd	R:W NEXT								
DAS Rd	R:W NEXT								
DEC.B Rd	R:W NEXT								
DEC.W #1/2,Rd	R:W NEXT								
DEC.L #1/2,ERd	R:W NEXT								
DIVXS.B Rs,Rd	R:W 2nd	R:W NEXT	Internal operation,	ion, 11 states					
DIVXS.W Rs,ERd	R:W 2nd	R:W NEXT	Internal operation, 19	ion, 19 states					
DIVXU.B Rs,Rd	R:W NEXT	Internal opera	Internal operation, 11 states						
DIVXU.W Rs,ERd	R:W NEXT	Internal opera	Internal operation, 19 states						
EEPMOV.B	R:W 2nd	R:B EAs*1	R:B EAd*1	R:B EAs*2	W:B EAd*2	R:W NEXT			
EEPMOV.W	R:W 2nd	R:B EAs*1	R:B EAd*1	R:B EAs*2	W:B EAd*2	R:W NEXT			
EXTS.W Rd	R:W NEXT			\leftarrow Repeated	Repeated n times $^{*2} ightarrow$				
EXTS.L ERd	R:W NEXT								
EXTU.W Rd	R:W NEXT								
EXTU.L ERd	R:W NEXT								
INC.B Rd	R:W NEXT								

Instruction	1	2	3	4	5	9	7	8	6
INC.W #1/2,Rd	R:W NEXT								
INC.L #1/2,ERd	R:W NEXT								
JMP @ERn	R:W NEXT	R:W EA							
JMP @aa:24	R:W 2nd	Internal operation,	R:W EA						
JMP @@aa:8 Advanced	R:W NEXT	R:W:M aa:8	R:W aa:8	Internal operation,	R:W EA				
@ERn Advanced	R:W NEXT	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)					
JSR @aa:24 Advanced	R:W 2nd	Internal operation, 1 state	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)				
JSR @@aa:8 Advanced	R:W NEXT	R:W:M aa:8	R:W aa:8	W:W:M stack (H) W:W stack (L)	W:W stack (L)	R:W EA			
LDC #xx:8,CCR	R:W NEXT								
LDC #xx:8,EXR	R:W 2nd	R:W NEXT							
LDC Rs,CCR	R:W NEXT								
LDC Rs,EXR	R:W NEXT								
LDC @ERs,CCR	R:W 2nd	R:W NEXT	R:W EA						
LDC @ERs,EXR	R:W 2nd	R:W NEXT	R:W EA						
LDC @(d:16,ERs),CCR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @(d:16,ERs),EXR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @(d:32,ERs),CCR	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA			
LDC @(d:32,ERs),EXR	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA			
LDC @ERs+,CCR	R:W 2nd	R:W NEXT	Internal operation, 1 state	R:W EA					
@ERs+,EXR	R:W 2nd	R:W NEXT	Internal operation,	R:W EA					
			1 state						
LDC @aa:16,CCR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @aa:16,EXR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @aa:32,CCR	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA				
LDC @aa:32,EXR	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA				
LDM.L @SP+,	R:W 2nd	R:W:M NEXT	Internal operation,	Internal operation, $\left \text{R:W:M} \text{ stack (H)}^{*3} \right \text{R:W stack (L)}^{*3}$	R:W stack (L)*3				
(ERn–ERn+1)			1 state						

Instruction	_	2	8	4	5	9	7	80	6
LDM.L @SP+,(ERn-ERn+2)	R:W 2nd	R:W NEXT	Internal operation, 1 state	Internal operation, $\begin{tabular}{ll} ${\bf R}.{\bf W}.{\bf M}$ stack (H)$^{*3} & {\bf R}.{\bf W} $ stack (L)$^{*3} & 1 state \end{tabular}$	R:W stack (L)*3				
LDM.L @SP+,(ERn-ERn+3)	R:W 2nd	R:W NEXT	Internal operation, 1 state	Internal operation, R:W:M stack (H)*3 R:W stack (L)*3 1 state	R:W stack (L)*3				
LDMAC ERS,MACH	Cannot be used in the chip	d in the chip							
LDMAC ERS,MACL									
MAC @ERn+, @ERm+									
MOV.B #xx:8,Rd	R:W NEXT								
MOV.B Rs,Rd	R:W NEXT								
MOV.B @ERs,Rd	R:W NEXT	R:B EA							
MOV.B @(d:16,ERs),Rd	R:W 2nd	R:W NEXT	R:B EA						
MOV.B @(d:32,ERs),Rd	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:B EA				
MOV.B @ERs+,Rd	R:W NEXT	Internal operation,	R:B EA						
		1 state							
MOV.B @aa:8,Rd	R:W NEXT	R:B EA							
MOV.B @aa:16,Rd	R:W 2nd	R:W NEXT	R:B EA						
MOV.B @aa:32,Rd	R:W 2nd	R:W 3rd	R:W NEXT	R:B EA					
MOV.B Rs,@ERd	R:W NEXT	W:B EA							
MOV.B Rs, @ (d:16, ERd)	R:W 2nd	R:W NEXT	W:B EA						
MOV.B Rs, @ (d:32, ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:B EA				
MOV.B Rs, @-ERd	R:W NEXT	Internal operation,	W:B EA						
		1 state							
MOV.B Rs,@aa:8	R:W NEXT	W:B EA							
MOV.B Rs,@aa:16	R:W 2nd	R:W NEXT	W:B EA						
MOV.B Rs,@aa:32	R:W 2nd	R:W 3rd	R:W NEXT	W:B EA					
MOV.W #xx:16,Rd	R:W 2nd	R:W NEXT							
MOV.W Rs,Rd	R:W NEXT								
MOV.W @ERs,Rd	R:W NEXT	R:W EA							
MOV.W @(d:16,ERs),Rd	R:W 2nd	R:W NEXT	R:W EA						
MOV.W @(d:32,ERs),Rd	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA				
MOV.W @ERs+, Rd	R:W NEXT	Internal operation,	R:W EA						
		1 state							
MOV.W @aa:16,Rd	R:W 2nd	R:W NEXT	R:W EA						
MOV.W @aa:32,Rd	R:W 2nd	R:W 3rd	R:W NEXT	R:B EA					
MOV.W Rs,@ERd	R:W NEXT	W:W EA							

Instruction	_	2	8	4	2	9	7	8	0
MOV.W Rs,@(d:16,ERd)	R:W 2nd	R:W NEXT	W:W EA						
MOV.W Rs, @ (d:32, ERd)	R:W 2nd	R:W 3rd	R:E 4th	R:W NEXT	W:W EA				
MOV.W Rs,@-ERd	R:W NEXT	Internal operation, 1 state	W:W EA						
MOV.W Rs,@aa:16	R:W 2nd	R:W NEXT	W:W EA						
MOV.W Rs,@aa:32	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
MOV.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
MOV.L ERS,ERd	R:W NEXT								
MOV.L @ERS,ERd	R:W 2nd	R:W:M NEXT	R:W:M EA	R:W EA+2					
MOV.L @(d:16,ERs),ERd	R:W 2nd	R:W:M 3rd	R:W NEXT	R:W:M EA	R:W EA+2				
MOV.L @(d:32,ERs),ERd	R:W 2nd	R:W:M 3rd	R:W:M 4th	R:W 5th	R:W NEXT	R:W:M EA	R:W EA+2		
MOV.L @ERs+,ERd	R:W 2nd	R:W:M NEXT	Internal operation,	R:W:M EA	R:W EA+2				
			1 state						
MOV.L @aa:16,ERd	R:W 2nd	R:W:M 3rd	R:W NEXT	R:W:M EA	R:W EA+2				
MOV.L @aa:32,ERd	R:W 2nd	R:W:M 3rd	R:W 4th	R:W NEXT	R:W:M EA	R:W EA+2			
MOV.L ERs, @ERd	R:W 2nd	R:W:M NEXT	W:W:M EA	W:W EA+2					
MOV.L ERS, @ (d:16,ERd)	R:W 2nd	R:W:M 3rd	R:W NEXT	W:W:M EA	W:W EA+2				
MOV.L ERs, @ (d:32,ERd)	R:W 2nd	R:W:M 3rd	R:W:M 4th	R:W 5th	R:W NEXT	W:W:M EA	W:W EA+2		
MOV.L ERS, @-ERd	R:W 2nd	R:W:M NEXT	Internal operation, W:W:M EA	W:W:M EA	W:W EA+2				
			1 state						
MOV.L ERs, @aa:16	R:W 2nd	R:W:M 3rd	R:W NEXT	W:W:M EA	W:W EA+2				
MOV.L ERs, @aa:32	R:W 2nd	R:W:M 3rd	R:W 4th	R:W NEXT	W:W:M EA	W:W EA+2			
MOVFPE @aa:16,Rd	Cannot be used in the chip	d in the chip							
MOVTPE Rs,@aa:16									
MULXS.B Rs,Rd	R:W 2nd	R:W NEXT	Internal operation, 11 states	on, 11 states					
MULXS.W Rs, ERd	R:W 2nd	R:W NEXT	Internal operation, 19 states	on, 19 states					
MULXU.B Rs,Rd	R:W NEXT	Internal operation, 11 states	on, 11 states						
MULXU.W Rs,ERd	R:W NEXT	Internal operati	tion, 19 states						
NEG.B Rd	R:W NEXT								
NEG.W Rd	R:W NEXT								
NEG.L ERd	R:W NEXT								
NOP	R:W NEXT								
NOT.B Rd	R:W NEXT								
NOT.W Rd	R:W NEXT								
NOT.L ERd	R:W NEXT								
OR.B #xx:8,Rd	R:W NEXT								
OR.B Rs,Rd	R:W NEXT								

Instruction	_	2	ဇ	4	5	9	7	80	6
OR.W #xx:16,Rd	R:W 2nd	R:W NEXT							
OR.W Rs,Rd	R:W NEXT								
OR.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
OR.L ERS,ERd	R:W 2nd	R:W NEXT							
ORC #xx:8,CCR	R:W NEXT								
ORC #xx:8,EXR	R:W 2nd	R:W NEXT							
POP.W Rn	R:W NEXT	Internal operation,	R:W EA						
		1 state							
POP.L ERn	R:W 2nd	R:W:M NEXT	Internal operation, 1 state	R:W:M EA	R:W EA+2				
PUSH.W Rn	R:W NEXT	Internal operation, 1 state	W:W EA						
PUSH.L ERn	R:W 2nd	R:W:M NEXT	Internal operation, W:W:M EA	W:W:M EA	W:W EA+2				
ROTL.B Rd	R:W NEXT								
ROTL.B #2,Rd	R:W NEXT								
ROTL.W Rd	R:W NEXT								
ROTL.W #2,Rd	R:W NEXT								
ROTL.L ERd	R:W NEXT								
ROTL.L #2,ERd	R:W NEXT								
ROTR.B Rd	R:W NEXT								
ROTR.B #2,Rd	R:W NEXT								
ROTR.W Rd	R:W NEXT								
ROTR.W #2,Rd	R:W NEXT								
ROTR.L ERd	R:W NEXT								
ROTR.L #2,ERd	R:W NEXT								
ROTXL.B Rd	R:W NEXT								
ROTXL.B #2,Rd	R:W NEXT								
ROTXL.W Rd	R:W NEXT								
ROTXL.W #2,Rd	R:W NEXT								
ROTXL.L ERd	R:W NEXT								
ROTXL.L #2,ERd	R:W NEXT								
ROTXR.B Rd	R:W NEXT								
ROTXR.B #2,Rd	R:W NEXT								
ROTXR.W Rd	R:W NEXT								
ROTXR.W #2,Rd	R:W NEXT								
ROTXR.L ERd	R:W NEXT								

Instruction	_	2	3	4	5	9	7	80	6
ROTXR.L #2,ERd	R:W NEXT								
RTE	R:W NEXT	R:W stack (EXR)	R:W stack (H)	R:W stack (L)	peration,	R:W*4			
RTS Advanced	R:W NEXT	R:W:M stack (H)	R:W stack (L)	Internal operation,	R:W*4				
SHAL.B Rd	R:W NEXT								
SHAL.B #2,Rd	R:W NEXT								
SHAL.W Rd	R:W NEXT								
SHAL.W #2,Rd	R:W NEXT								
SHAL.L ERd	R:W NEXT								
SHAL.L #2,ERd	R:W NEXT								
SHAR.B Rd	R:W NEXT								
SHAR.B #2,Rd	R:W NEXT								
SHAR.W Rd	R:W NEXT								
SHAR.W #2,Rd	R:W NEXT								
SHAR.L ERd	R:W NEXT								
SHAR.L #2,ERd	R:W NEXT								
SHLL.B Rd	R:W NEXT								
SHLL.B #2,Rd	R:W NEXT								
SHLL.W Rd	R:W NEXT								
SHLL.W #2,Rd	R:W NEXT								
SHLL.L ERd	R:W NEXT								
SHLL.L #2,ERd	R:W NEXT								
SHLR.B Rd	R:W NEXT								
SHLR.B #2,Rd	R:W NEXT								
SHLR.W Rd	R:W NEXT								
SHLR.W #2,Rd	R:W NEXT								
SHLR.L ERd	R:W NEXT								
SHLR.L #2,ERd	R:W NEXT								
SLEEP	R:W NEXT	Internal operation:M							
STC CCR,Rd	R:W NEXT								
STC EXR,Rd	R:W NEXT								
STC CCR, @ERd	R:W 2nd	R:W NEXT	W:W EA						
STC EXR, @ ERd	R:W 2nd	R:W NEXT	W:W EA						
STC CCR, @(d:16,ERd)	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					

Instruction	_	2	3	4	5	9	7	8	6
STC EXR, @(d:16,ERd)	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC CCR, @(d:32,ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	W:W EA			
STC EXR, @ (d:32, ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	W:W EA			
STC CCR,@-ERd	R:W 2nd	R:W NEXT	Internal operation, 1 state	W:W EA					
STC EXR, @-ERd	R:W 2nd	R:W NEXT	Internal operation, W:W EA	W:W EA					
	-	-	1 state	L					
STC CCR, @aa:16	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC EXR,@aa:16	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC CCR, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:W EA				
STC EXR, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:W EA				
STM.L(ERn-ERn+1),@-SP	R:W 2nd	R:W:M NEXT	Internal operation,	$\left. \text{W:W:M stack (H)}^{*3} \right \text{W:W stack (L)}^{*3}$	W:W stack (L)*3				
			1 state						
STM.L(ERn-ERn+2),@-SP	R:W 2nd	R:W:M NEXT	Internal operation, 1 state	W:W:M stack (H) *3 W:W stack (L) *3	W:W stack (L)*3				
STM.L(ERn-ERn+3),@-SP	R:W 2nd	R:W:M NEXT	Internal operation, W:W:M stack (H)*3 W:W stack (L)*3 1 state	W:W:M stack (H)*3	W:W stack (L)*3				
STMAC MACH, ERd	Cannot be used in the chip	ed in the chip							
STMAC MACL, ERd									
SUB.B Rs,Rd	R:W NEXT								
SUB.W #xx:16,Rd	R:W 2nd	R:W NEXT							
SUB.W Rs,Rd	R:W NEXT								
SUB.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
SUB.L ERs,ERd	R:W NEXT								
SUBS #1/2/4,ERd	R:W NEXT								
SUBX #xx:8,Rd	R:W NEXT								
SUBX Rs,Rd	R:W NEXT								
TAS @ERd*8	R:W 2nd	R:W NEXT	R:B:M EA	W:B EA					
TRAPA #x:2 Advanced	R:W NEXT	Internal operation, 1 state	W:W stack (L)	W:W stack (H)	W:W stack (EXR) R:W:M VEC	R:W:M VEC	R:W VEC+2	Internal operation, 1 state	R:W*7
XOR.B #xx8,Rd	R:W NEXT								
XOR.B Rs,Rd	R:W NEXT								
XOR.W #xx:16,Rd	R:W 2nd	R:W NEXT							
XOR.W Rs,Rd	R:W NEXT								
XOR.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						

Instruction	u	1	2	3	4	2	9	2	8	6
XOR.L ERS,ERd	77	R:W 2nd	R:W NEXT							
XORC #xx:8,CCR	K.	R:W NEXT								
XORC #xx:8,EXR	R	R:W 2nd	R:W NEXT							
Reset exception Advanced R:W VEC	Advanced	R:W VEC	R:W VEC+2	Internal operation, R:W*5	R:W*5					
handling				1 state						
Interrupt exception Advanced R:W*6	Advanced	R:W*6	Internal operation,	W:W stack (L)	W:W stack (H)	W:W stack (EXR)	R:W:M VEC	R:W VEC+2	W:W stack (L) W:W stack (H) W:W stack (EXR) R:W:M VEC R:W VEC+2 Internal operation, R:W*7	R:W*7
handling			1 state						1 state	

EAs is the contents of ER5. EAd is the contents of ER6. Notes:

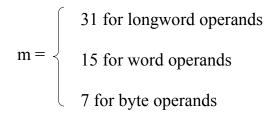
EAs is the contents of ER5. EAd is the contents of ER6. Both registers are incremented by 1 after execution of the instruction. n is the initial value of R4L or R4. If n = 0, these bus cycles are not executed

Repeated two times to save or restore two registers, three times for three registers, or four times for four registers.

Start address after return.

Start address of the program.

Prefetch address, equal to two plus the PC value pushed onto the stack. In recovery from sleep mode or software standby mode the read operation is replaced by an internal operation. ю 4. го о


Start address of the interrupt handling routine.

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

A.6 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used in the table is defined below.

RENESAS

- Si The i-th bit of the source operand
- Di The i-th bit of the destination operand
- Ri The i-th bit of the result
- Dn The specified bit in the destination operand
- Not affected
- \$\tag\$ Modified according to the result of the instruction (see definition)
- 0 Always cleared to 0
- 1 Always set to 1
- * Undetermined (no guaranteed value)
- Z' Z flag before instruction execution
- C' C flag before instruction execution

Table A.7 Condition Code Modification

Instruction	Н	N	Z	٧	С	Definition
ADD	‡	\^	\^	‡	‡	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot R0$
						$V = Sm \cdot Dm \cdot \overline{Rm} + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot \overline{Rm} + Sm \cdot \overline{Rm}$
ADDS	_	_	_	_	_	
ADDX	‡	‡	‡	‡	‡	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \dots \cdot \overline{R0}$
						$V = Sm \cdot Dm \cdot Rm + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot Rm + Sm \cdot \overline{Rm}$
AND	_	‡	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ANDC	\(\)	1	1	‡	‡	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
BAND	_		_		‡	C = C' · Dn
Всс	_	_	_	_		
BCLR	_	_	_	_		
BIAND	_		_	_	‡	$C = C' \cdot \overline{Dn}$
BILD	_	_	_	_	‡	C = Dn
BIOR	_	_	_	_	‡	$C = C' + \overline{Dn}$
BIST	_	_	_	_		
BIXOR	_	_	_	_	\$	$C = C' \cdot Dn + \overline{C'} \cdot \overline{Dn}$
BLD	_	_	_	_	‡	C = Dn
BNOT	_	_	_	_		
BOR					\$	C = C' + Dn
BSET	_	_	_	_		
BSR	_	_	_	_		
BST	_	_	_	_		
BTST	_	_	\(\)	_		Z = Dn
BXOR	_	_	_	_	\$	$C = C' \cdot \overline{Dn} + \overline{C'} \cdot Dn$

Instruction	н	N	Z	٧	С	Definition
CLRMAC						Cannot be used in the chip
CMP	1	‡	‡	1	‡	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
DAA	*	\$	‡	*	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C: decimal arithmetic carry
DAS	*	\$	‡	*	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C: decimal arithmetic borrow
DEC	_	‡	‡	1		N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						$V = Dm \cdot \overline{Rm}$
DIVXS	_	‡	‡	_		$N = Sm \cdot \overline{Dm} + \overline{Sm} \cdot Dm$
						$Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
DIVXU	_	1	‡	_	_	N = Sm
						$Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
EEPMOV			_			
EXTS	_	1	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
EXTU	_	0	‡	0	_	$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
INC	_	‡	‡	‡	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Dm} \cdot Rm$
JMP		_	_			
JSR	_	_	_			
LDC	\$	‡	‡	1	‡	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
LDM	_	_	_		_	
LDMAC						Cannot be used in the chip
MAC						

Instruction	Н	N	Z	٧	С	Definition
MOV	_	‡	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
MOVFPE						Cannot be used in the chip
MOVTPE						
MULXS	_	1	‡	_	_	N = R2m
						$Z = \overline{R2m} \cdot \overline{R2m-1} \cdot \dots \cdot \overline{R0}$
MULXU	_				_	
NEG	‡	1	\$	‡	\$	H = Dm-4 + Rm-4
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = Dm \cdot Rm$
						C = Dm + Rm
NOP	_					
NOT	_	‡	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
OR	_	1	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ORC	‡	‡	‡	‡	‡	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
POP	_	1	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
PUSH	_	‡	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ROTL	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTR	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or C = D1 (2-bit shift)

Instruction	Н	N	Z	٧	С	Definition
ROTXL	_	^		0		N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTXR	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
RTE	‡	\(\)	‡	‡	‡	Stores the corresponding bits of the result.
RTS	_	_	_	_	_	
SHAL	_	1	1	‡	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						$V = \overline{Dm \cdot Dm - 1 + \overline{Dm} \cdot \overline{Dm - 1}} $ (1-bit shift)
						$V = \overline{Dm \cdot Dm - 1 \cdot Dm - 2 \cdot \overline{Dm} \cdot \overline{Dm - 1} \cdot \overline{Dm - 2}} $ (2-bit shift)
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
SHAR	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C = D0 (1-bit shift) or C = D1 (2-bit shift)
SHLL	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
SHLR	_	0	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or C = D1 (2-bit shift)
SLEEP		_	_	_	_	
STC	_	_	_	_		
STM	_		_	_	_	
STMAC						Cannot be used in the chip

Instruction	Н	N	Z	٧	С	Definition
SUB	‡	‡	\$	\$	\^	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \cdots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
SUBS	_	_	_	_	_	
SUBX	‡	‡	‡	‡	‡	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
TAS	_	‡	‡	0	_	N = Dm
						$Z = \overline{Dm} \cdot \overline{Dm-1} \cdot \cdots \cdot \overline{D0}$
TRAPA	_	_	_	_	_	
XOR	_	‡	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
XORC	‡	‡	‡	‡	‡	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.

Appendix B Internal I/O Registers

B.1 List of Registers (Address Order)

	Register									Module	Data Bus
Address	-	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'F800	MRA	SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz	DTC	16/
to H'FBFF	SAR										32* ¹ bits
	MRB	CHNE	DISEL	CHNS	_	_	_	_	_	<u></u>	
	DAR										
										_	
	CRA									<u>—</u> .	
	CDD										
	CRB										
H'FE80	TCR3	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU3	16 bits
H'FE81	TMDR3	_	_	BFB	BFA	MD3	MD2	MD1	MD0	_	
H'FE82	TIOR3H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FE83	TIOR3L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0		
H'FE84	TIER3	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA		
H'FE85	TSR3	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA		
H'FE86	TCNT3									_	
H'FE87	_										
H'FE88	TGR3A									_	
H'FE89										<u> </u>	
H'FE8A	TGR3B									<u> </u>	
H'FE8B										<u></u>	
H'FE8C	TGR3C										
H'FE8D											
	TGR3D -										
H'FE8F											

	Register									Module	Data Bus
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FE90	TCR4	_	CCLR1	CCLR0	CKEG	CKEGO	TPSC2	TPSC1	TPSC0	TPU4	16 bits
H'FE91	TMDR4	_	_	_	_	MD3	MD2	MD1	MD0		
H'FE92	TIOR4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FE94	TIER4	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FE95	TSR4	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FE96	TCNT4									_	
H'FE97	_									_	
H'FE98	TGR4A									_	
H'FE99	_									_	
H'FE9A	TGR4B									_	
H'FE9B	_									_	
H'FEA0	TCR5	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU5	16 bits
H'FEA1	TMDR5	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FEA2	TIOR5	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FEA4	TIER5	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FEA5	TSR5	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FEA6	TCNT5									_	
H'FEA7	_									_	
H'FEA8	TGR5A									_	
H'FEA9	_									_	
H'FEAA	TGR5B									_	
H'FEAB	_									_	
H'FEB0	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	Ports	8 bits
H'FEB1	P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR	_	
H'FEB2	P3DDR	_	_	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	_	
H'FEB4	P5DDR	_	_	_	_	P53DDR	P52DDR	P51DDR	P50DDR	_	
H'FEB5	P6DDR	P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR	-	
H'FEB6	P7DDR	_	_	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR	-	
H'FEB7	P8DDR	_	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR	_	
H'FEB8	P9DDR	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	_	_	_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FEB9	PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR	Ports	8 bits
H'FEBA	PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	_	
H'FEBB	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR	_	
H'FEBC	PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	_	
H'FEBD	PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	_	
H'FEBE	PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	_	
H'FEBF	PGDDR	_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR	_	
H'FEC4	IPRA	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	Interrupt	8 bits
H'FEC5	IPRB	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	controller	
H'FEC6	IPRC	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FEC7	IPRD	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FEC8	IPRE	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FEC9	IPRF	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	=	
H'FECA	IPRG	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECB	IPRH	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECC	IPRI	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECD	IPRJ	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECE	IPRK	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	=	
H'FED0	ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bus	8 bits
H'FED1	ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	controller	
H'FED2	WCRH	W71	W70	W61	W60	W51	W50	W41	W40	_	
H'FED3	WCRL	W31	W30	W21	W20	W11	W10	W01	W00	=	
H'FED4	BCRH	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	RMTS2	RMTS1	RMTS0	_	
H'FED5	BCRL	BRLE	BREQOE	EAE	_	DDS	_	WDBE	WAITE	_	
H'FED6	MCR	TPC	BE	RCDM	_	MXC1	MXC0	RLW1	RLW0	_	
H'FED7	DRAMCR	RFSHE	RCW	RMODE	CMF	CMIE	CKS2	CKS1	CKS0	_	
H'FED8	RTCNT									_	
H'FED9	RTCOR									-	
H'FEDB	RAMER*2	_	_	_	_	RAMS	RAM2	RAM1	RAM0	Flash memory	16 bits

	Register									Module	Data Bus
Address	_	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FEE0	MAR0AH	_	_	_	_	_	_	_	_	DMAC	16 bits
H'FEE1	=										
H'FEE2	MAR0AL										
H'FEE3	_										
H'FEE4	IOR0A										
H'FEE5	_										
H'FEE6	ETCR0A										
H'FEE7	_										
H'FEE8	MAR0BH	_	_	_	_	_	_	_	_		
H'FEE9	_										
H'FEEA	MAR0BL										
H'FEEB	_										
H'FEEC	IOR0B										
H'FEED	_										
H'FEEE	ETCR0B										
H'FEEF	_										
H'FEF0	MAR1AH	_	_	_	_	_	_	_	_		
H'FEF1	_										
H'FEF2	MAR1AL										
H'FEF3											
H'FEF4	IOAR1A										
H'FEF5											
H'FEF6	ETCR1A										
H'FEF7											
H'FEF8	MAR1BH	_	_	_	_	_	_	_	_	<u></u>	
H'FEF9											
H'FEFA	MAR1BL										
H'FEFB											
H'FEFC	IOAR1B										
H'FEFD	_										
H'FEFE	ETCR1B										
H'FEFF	=										

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF00	DMAWER	_	_	_	_	WE1B	WE1A	WE0B	WE0A	DMAC	8 bits
H'FF01	DMATCR	_	_	TEE1	TEE0	_	_	_	_	<u> </u>	
H'FF02	DMACR0A	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	16 bits
		DTSZ	SAID	SAIDE	BLKDIR	BLKE	_	_	_	Full address mode	
H'FF03	DMACR0B	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	_
		_	DAID	DAIDE	_	DTF3	DTF2	DTF1	DTF0	Full address mode	_
H'FF04	DMACR1A	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	_
		DTSZ	SAID	SAIDE	BLKDIR	BLKE	_	_	_	Full address mode	_
H'FF05	DMACR1B	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	_
		_	DAID	DAIDE	_	DTF3	DTF2	DTF1	DTF0	Full address mode	_
H'FF06	DMABCRH	FAE1	FAE0	SAE1	SAE0	DTA1B	DTA1A	DTA0B	DTA0A	Short address mode	_
		FAE1	FAE0	_	_	DTA1	_	DTA0	_	Full address mode	_
H'FF07	DMABCRL	DTE1B	DTE1A	DTE0B	DTE0A	DTIE1B	DTIE1A	DTIE0B	DTIE0A	Short address mode	_
		DTME1	DTE1	DTME0	DTE0	DTIE1B	DTIE1A	DTIE0B	DTIE0A	Full address mode	_

Address N	Register									Module	Data Bus
	_	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FF2C I	SCRH	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	Interrupt	8 bits
H'FF2D I	SCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	controller	
H'FF2E II	ER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E		
H'FF2F I	SR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F		
H'FF30 E to H'FF35	DTCER	DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0	DTC	8 bits
H'FF37	OTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0		
H'FF38 S	SBYCR	SSBY	STS2	STS1	STS0	OPE	_	_	IRQ37S	Power- down mode	8 bits
H'FF39	SYSCR	_	_	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME	MCU	8 bits
H'FF3A S	SCKCR	PSTOP	_	DIV	_	_	SCK2	SCK1	SCK0	Clock pulse generator	8 bits
H'FF3B N	MDCR	_	_	_	_	_	MDS2	MDS1	MDS0	MCU	8 bits
H'FF3C N	MSTPCRH	MSTP15	MSTP14	MSTP13	MSTP12	MSTP11	MSTP10	MSTP9	MSTP8	Power-	8 bits
H'FF3D N	MSTPCRL	MSTP7	MSTP6	MSTP5	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0	down mode	
H'FF42 S	SYSCR*2	_	_	_	_	FLSHE	_	_	_	MCU	8 bits
H'FF44 F	Reserved	_	_	_	_	_	_	_	_	Reserved	_
H'FF45 F	PFCR1	_	_	_	_	A23E	A22E	A21E	A20E	Port	8 bits
H'FF46 F	PCR	G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0	PPG	8 bits
H'FF47 F	PMR	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV		
H'FF48 N	NDERH	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8		
H'FF49	NDERL	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0		
H'FF4A F	PODRH	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8		
H'FF4B F	PODRL	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0		
H'FF4C*3 N	NDRH	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8		
H'FF4D*3 N	NDRL	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0		
H'FF4E*3 N	NDRH	_	_	_	_	NDR11	NDR10	NDR9	NDR8		
H'FF4F*3 N	NDRL	_	_	_	_	NDR3	NDR2	NDR1	NDR0		

	Register									Module	Data Bus
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FF50	PORT1	P17	P16	P15	P14	P13	P12	P11	P10	Ports	8 bits
H'FF51	PORT2	P27	P26	P25	P24	P23	P22	P21	P20		
H'FF52	PORT3	_	_	P35	P34	P33	P32	P31	P30	-	
H'FF53	PORT4	P47	P46	P45	P44	P43	P42	P41	P40	-	
H'FF54	PORT5	P57	P56	P55	P54	P53	P52	P51	P50	-	
H'FF55	PORT6	P67	P66	P65	P64	P63	P62	P61	P60	-	
H'FF56	PORT7	_	_	P75	P74	P73	P72	P71	P70	-	
H'FF57	PORT8	_	P86	P85	P84	P83	P82	P81	P80	-	
H'FF58	PORT9	P97	P96	P95	P94	P93	P92	_	_	-	
H'FF59	PORTA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	-	
H'FF5A	PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	-	
H'FF5B	PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	-	
H'FF5C	PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	-	
H'FF5D	PORTE	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	-	
H'FF5E	PORTF	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	-	
H'FF5F	PORTG	_	_	_	PG4	PG3	PG2	PG1	PG0	-	
H'FF60	P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	-	
H'FF61	P2DR	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR	-	
H'FF62	P3DR	_	_	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	-	
H'FF64	P5DR	_	_	_	_	P53DR	P52DR	P51DR	P50DR	-	
H'FF65	P6DR	P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR	-	
H'FF66	P7DR	_	_	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR	-	
H'FF67	P8DR	_	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR	=	
H'FF68	P9DR	P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	_	_	-	
H'FF69	PADR	PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR	=	
H'FF6A	PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	-	
H'FF6B	PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	-	
H'FF6C	PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	-	
H'FF6D	PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	-	
H'FF6E	PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	=	
H'FF6F	PGDR	_	_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	=	
H'FF70	PAPCR	PA7PCR	PA6PCR	PA5PCR	PA4PCR	PA3PCR	PA2PCR	PA1PCR	PA0PCR	-	

	Register									Module	Data Bus
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FF71	PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	Ports	8 bits
H'FF72	PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR	_	
H'FF73	PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	_	
H'FF74	PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	_	
H'FF76	P3ODR	_	_	P35ODR	P34ODR	P33ODR	P32ODR	P310DR	P30ODR		
H'FF77	PAODR	PA7ODR	PA6ODR	PA5ODR	PA4ODR	PA3ODR	PA2ODR	PA10DR	PA0ODR	_	
H'FF78	SMR0	C/Ā/ GM* ⁴	CHR/ BLK* ⁵	PE	O/Ē	STOP/ BCP1*6	MP/ BCP0* ⁷	CKS1	CKS0	SCI0, smart	8 bits
H'FF79	BRR0									⁻card ₋interface 0	
H'FF7A	SCR0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF7B	TDR0										
H'FF7C	SSR0	TDRE	RDRF	ORER	FER/ ERS*8	PER	TEND	MPB	MPBT		
H'FF7D	RDR0										
H'FF7E	SCMR0	_	_	_	_	SDIR	SINV	_	SMIF	_	
H'FF80	SMR1	C/Ā/ GM* ⁴	CHR/ BLK* ⁵	PE	O/Ē	STOP/ BCP1*6	MP/ BCP0* ⁷	CKS1	CKS0	SCI1, smart	8 bits
H'FF81	BRR1									⁻card ₋interface 1	
H'FF82	SCR1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF83	TDR1									_	
H'FF84	SSR1	TDRE	RDRF	ORER	FER/ ERS*8	PER	TEND	MPB	MPBT		
H'FF85	RDR1									_	
H'FF86	SCMR1	_	_	_	_	SDIR	SINV	_	SMIF	_	
H'FF88	SMR2	C/Ā/ GM* ⁴	CHR/ BLK* ⁵	PE	O/Ē	STOP/ BCP1*6	MP/ BCP0* ⁷	CKS1	CKS0	SCI2, smart	8 bits
H'FF89	BRR2									¯card _interface 2	
H'FF8A	SCR2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	- IIIICIIacc 2	
H'FF8B	TDR2									-	
H'FF8C	SSR2	TDRE	RDRF	ORER	FER/ ERS*8	PER	TEND	MPB	MPBT	_	
H'FF8D	RDR2									=	
H'FF8E	SCMR2	_	_	_		SDIR	SINV	_	SMIF	=	

	Register									Module	Data Bus
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FE90	ADDRAH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D	8 bits
H'FE91	ADDRAL	AD1	AD0	_	_	_	_	_	_	converter	
H'FE92	ADDRBH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	=	
H'FE93	ADDRBL	AD1	AD0	_	_	_	_	_	_	_	
H'FE94	ADDRCH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	=	
H'FE95	ADDRCL	AD1	AD0	_	_	_	_	_	_	=	
H'FE96	ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	=	
H'FE97	ADDRDL	AD1	AD0	_	_	_	_	_	_	=	
H'FE98	ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0	=	
H'FE99	ADCR	TRGS1	TRGS0	_	_	CKS1	CH3	_	_	=	
H'FFA4	DADR0									D/A	8 bits
H'FFA5	DADR1									converter	
H'FFA6	DACR01	DAOE1	DAOE0	DAE	_	_	_	_	_	=	
H'FFA8	DADR2									=	
H'FFA9	DADR3									=	
H'FFAA	DACR23	DAOE1	DAOE0	DAE	_	_	_	_	_	=	
H'FFAC	PFCR2	WAITPS	BREQOPS	CS167E	CS25E	ASOD	_	_	_	Ports	8 bits
H'FFB0	TCR0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	8-bit timer	16 bits
H'FFB1	TCR1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	channel 0,	
H'FFB2	TCSR0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	_1	
H'FFB3	TCSR1	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	_	
H'FFB4	TCORA0									_	
H'FFB5	TCORA1									_	
H'FFB6	TCORB0									_	
H'FFB7	TCORB1									_	
H'FFB8	TCNT0									_	
H'FFB9	TCNT1									_	
H'FFBC	TCSR	OVF	WT/ĪT	TME	_	_	CKS2	CKS1	CKS0	WDT	16 bits
(Read)										_	
H'FFBD (Read)	TCNT										
H'FFBF	RSTCSR	WOVF	RSTE	_	_	_	_	_	_	_	
(Read)											

Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FFC0	TSTR	_		CST5	CST4	CST3	CST2	CST1	CST0	TPU	16 bits
H'FFC1	TSYR	_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	_	10 5110
	FLMCR1	FWE	SWE	ESU	PSU	EV	PV	E	Р	Flash	8 bits
H'FFC9*10	FLMCR2	FLER	_	_	_	_	_	_	_	memory	
H'FFCA*10	EBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	(H8S/2338 F-ZTAT)	
H'FFCB*10	EBR2	_	_	_	_	EB11	EB10	EB9	EB8		
H'FFC8* ⁹	FLMCR1	FWE	SWE	ESU	PSU	EV	PV	E	Р	Flash	8 bits
H'FFC9*5	FLMCR2	FLER	_	_	_	_	_	_	_	memory	
H'FFCA*5	BBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	(H8S/2339 F-ZTAT)	
H'FFCB*	EBR2	_	_	EB13	EB12	EB11	EB10	EB9	EB8		
H'FFD0	TCR0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU0	16 bits
H'FFD1	TMDR0	_	_	BFB	BFA	MD3	MD2	MD1	MD0		
H'FFD2	TIOR0H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FFD3	TIOR0L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0		
H'FFD4	TIER0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA		
H'FFD5	TSR0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	_	
H'FFD6	TCNT0									_	
H'FFD7	-										
H'FFD8	TGR0A										
H'FFD9	_										
H'FFDA	TGR0B										
H'FFDB	_										
H'FFDC	TGR0C										
H'FFDD	_										
H'FFDE	TGR0D										
H'FFDF											
H'FFE0	TCR1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU1	16 bits
H'FFE1	TMDR1	_	_	_	_	MD3	MD2	MD1	MD0		
H'FFE2	TIOR1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FFE4	TIER1	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	<u> </u>	
H'FFE5	TSR1	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA		
H'FFE6	TCNT1										
H'FFE7											

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FFE8	TGR1A									TPU1	16 bits
H'FFE9	_										
H'FFEA	TGR1B										
H'FFEB	_										
H'FFF0	TCR2	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU2	16 bits
H'FFF1	TMDR2	_	_	_	_	MD3	MD2	MD1	MD0		
H'FFF2	TIOR2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FFF4	TIER2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA		
H'FFF5	TSR2	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA		
H'FFF6	TCNT2										
H'FFF7	_										
H'FFF8	TGR2A										
H'FFF9	_										
H'FFFA	TGR2B									<u> </u>	
H'FFFB	_										

Notes: 1. Located in on-chip RAM. The bus width is 32 bits when the DTC accesses this area as register information, and 16 bits otherwise.

- 2. Valid only in F-ZTAT version.
- 3. If the pulse output group 2 and pulse output group 3 output triggers are the same according to the PCR setting, the NDRH address will be H'FF4C, and if different, the address of NDRH for group 2 will be H'FF4E, and that for group 3 will be H'FF4C. Similarly, if the pulse output group 0 and pulse output group 1 output triggers are the same according to the PCR setting, the NDRL address will be H'FF4D, and if different, the address of NDRL for group 0 will be H'FF4F, and that for group 1 will be H'FF4D.
- 4. Functions as C/\overline{A} for SCI use, and as GM for smart card interface use.
- 5. Functions as CHR for SCI use, and as BLK for smart card interface use.
- 6. Functions as STOP for SCI use, and as BCP1 for smart card interface use.
- 7. Functions as MP for SCI use, and as BCP0 for smart card interface use.
- 8. Functions as FER for SCI use, and as ERS for smart card interface use.
- 9. Valid only in H8S/2339 F-ZTAT.
- 10. Valid only in H8S/2338 F-ZTAT.

B.2 List of Registers (By Module)

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Interrupt	System control register	SYSCR	R/W	H'01	H'FF39
controller	IRQ sense control register H	ISCRH	R/W	H'00	H'FF2C
	IRQ sense control register L	ISCRL	R/W	H'00	H'FF2D
	IRQ enable register	IER	R/W	H'00	H'FF2E
	IRQ status register	ISR	R/(W)*2	H'00	H'FF2F
	Interrupt priority register A	IPRA	R/W	H'77	H'FEC4
	Interrupt priority register B	IPRB	R/W	H'77	H'FEC5
	Interrupt priority register C	IPRC	R/W	H'77	H'FEC6
	Interrupt priority register D	IPRD	R/W	H'77	H'FEC7
	Interrupt priority register E	IPRE	R/W	H'77	H'FEC8
	Interrupt priority register F	IPRF	R/W	H'77	H'FEC9
	Interrupt priority register G	IPRG	R/W	H'77	H'FECA
	Interrupt priority register H	IPRH	R/W	H'77	H'FECB
	Interrupt priority register I	IPRI	R/W	H'77	H'FECC
	Interrupt priority register J	IPRJ	R/W	H'77	H'FECD
	Interrupt priority register K	IPRK	R/W	H'77	H'FECE
Bus	Bus width control register	ABWCR	R/W	H'FF/H'00*5	H'FED0
controller	Access state control register	ASTCR	R/W	H'FF	H'FED1
	Wait control register H	WCRH	R/W	H'FF	H'FED2
	Wait control register L	WCRL	R/W	H'FF	H'FED3
	Bus control register H	BCRH	R/W	H'D0	H'FED4
	Bus control register L	BCRL	R/W	H'3C	H'FED5
	Memory control register	MCR	R/W	H'00	H'FED6
	DRAM control register	DRAMCR	R/W	H'00	H'FED7
	Refresh timer counter	RTCNT	R/W	H'00	H'FED8
	Refresh time constant register	RTCOR	R/W	H'FF	H'FED9

Module	Register	Abbreviation	R/W	Initial Value	Address*1
DTC	DTC mode register A	MRA	*3	Undefined	*4
	DTC mode register B	MRB	*3	Undefined	*4
	DTC source address register	SAR	*3	Undefined	*4
	DTC destination address register	DAR	*3	Undefined	*4
	DTC transfer count register A	CRA	*3	Undefined	*4
	DTC transfer count register B	CRB	*3	Undefined	*4
	DTC enable register	DTCER	R/W	H'00	H'FF30 to H'FF35
	DTC vector register	DTVECR	R/W	H'00	H'FF37
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
DMAC0	Memory address register 0A	MAR0A	R/W	Undefined	H'FEE0
	I/O address register 0A	IOAR0A	R/W	Undefined	H'FEE4
	Transfer count register 0A	ETCR0A	R/W	Undefined	H'FEE6
	Memory address register 0B	MAR0B	R/W	Undefined	H'FEE8
	I/O address register 0B	IOAR0B	R/W	Undefined	H'FEEC
	Transfer count register 0B	ETCR0B	R/W	Undefined	H'FEEE
DMAC1	Memory address register 1A	MAR1A	R/W	Undefined	H'FEF0
	I/O address register 1A	IOAR1A	R/W	Undefined	H'FEF4
	Transfer count register 1A	ETCR1A	R/W	Undefined	H'FEF6
	Memory address register 1B	MAR1B	R/W	Undefined	H'FEF8
	I/O address register 1B	IOAR1B	R/W	Undefined	H'FEFC
	Transfer count register 1B	ETCR1B	R/W	Undefined	H'FEFE
	DMA write enable register	DMAWER	R/W	H'00	H'FF00
channels	DMA terminal control register	DMATCR	R/W	H'00	H'FF01
	DMA control register 0A	DMACR0A	R/W	H'00	H'FF02
	DMA control register 0B	DMACR0B	R/W	H'00	H'FF03
	DMA control register 1A	DMACR1A	R/W	H'00	H'FF04
	DMA control register 1B	DMACR1B	R/W	H'00	H'FF05
	DMA band control register	DMABCR	R/W	H'0000	H'FF06
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Module	Register	Abbreviation	R/W	Initial Value	Address*1
TPU0	Timer control register 0	TCR0	R/W	H'00	H'FFD0
	Timer mode register 0	TMDR0	R/W	H'C0	H'FFD1
	Timer I/O control register 0H	TIOR0H	R/W	H'00	H'FFD2
	Timer I/O control register 0L	TIOR0L	R/W	H'00	H'FFD3
	Timer interrupt enable register 0	TIER0	R/W	H'40	H'FFD4
	Timer status register 0	TSR0	R/(W)*2	H'C0	H'FFD5
	Timer counter 0	TCNT0	R/W	H'0000	H'FFD6
	Timer general register 0A	TGR0A	R/W	H'FFFF	H'FFD8
	Timer general register 0B	TGR0B	R/W	H'FFFF	H'FFDA
	Timer general register 0C	TGR0C	R/W	H'FFFF	H'FFDC
	Timer general register 0D	TGR0D	R/W	H'FFFF	H'FFDE
TPU1	Timer control register 1	TCR1	R/W	H'00	H'FFE0
	Timer mode register 1	TMDR1	R/W	H'C0	H'FFE1
	Timer I/O control register 1	TIOR1	R/W	H'00	H'FFE2
	Timer interrupt enable register 1	TIER1	R/W	H'40	H'FFE4
	Timer status register 1	TSR1	R/(W)*2	H'C0	H'FFE5
	Timer counter 1	TCNT1	R/W	H'0000	H'FFE6
	Timer general register 1A	TGR1A	R/W	H'FFFF	H'FFE8
	Timer general register 1B	TGR1B	R/W	H'FFFF	H'FFEA
TPU2	Timer control register 2	TCR2	R/W	H'00	H'FFF0
	Timer mode register 2	TMDR2	R/W	H'C0	H'FFF1
	Timer I/O control register 2	TIOR2	R/W	H'00	H'FFF2
	Timer interrupt enable register 2	TIER2	R/W	H'40	H'FFF4
	Timer status register 2	TSR2	R/(W)*2	H'C0	H'FFF5
	Timer counter 2	TCNT2	R/W	H'0000	H'FFF6
	Timer general register 2A	TGR2A	R/W	H'FFFF	H'FFF8
	Timer general register 2B	TGR2B	R/W	H'FFFF	H'FFFA

Module	Register	Abbreviation	R/W	Initial Value	Address*1	
TPU3	Timer control register 3	TCR3	R/W	H'00	H'FE80	
	Timer mode register 3	TMDR3	R/W	H'C0	H'FE81	
	Timer I/O control register 3H	TIOR3H	R/W	H'00	H'FE82	
	Timer I/O control register 3L	TIOR3L	R/W	H'00	H'FE83	
	Timer interrupt enable register 3	TIER3	R/W	H'40	H'FE84	
	Timer status register 3	TSR3	R/(W)*2	H'C0	H'FE85	
	Timer counter 3	TCNT3	R/W	H'0000	H'FE86	
	Timer general register 3A	TGR3A	R/W	H'FFFF	H'FE88	
	Timer general register 3B	TGR3B	R/W	H'FFFF	H'FE8A	
	Timer general register 3C	TGR3C	R/W	H'FFFF	H'FE8C	
	Timer general register 3D	TGR3D	R/W	H'FFFF	H'FE8E	
TPU4	Timer control register 4	TCR4	R/W	H'00	H'FE90	
	Timer mode register 4	TMDR4	R/W	H'C0	H'FE91	
	Timer I/O control register 4	TIOR4	R/W	H'00	H'FE92	
	Timer interrupt enable register 4	TIER4	R/W	H'40	H'FE94	
	Timer status register 4	TSR4	R/(W)*2	H'C0	H'FE95	
	Timer counter 4	TCNT4	R/W	H'0000	H'FE96	
	Timer general register 4A	TGR4A	R/W	H'FFFF	H'FE98	
	Timer general register 4B	TGR4B	R/W	H'FFFF	H'FE9A	
TPU5	Timer control register 5	TCR5	R/W	H'00	H'FEA0	
	Timer mode register 5	TMDR5	R/W	H'C0	H'FEA1	
	Timer I/O control register 5	TIOR5	R/W	H'00	H'FEA2	
	Timer interrupt enable register 5	TIER5	R/W	H'40	H'FEA4	
	Timer status register 5	TSR5	R/(W)*2	H'C0	H'FEA5	
	Timer counter 5	TCNT5	R/W	H'0000	H'FEA6	
	Timer general register 5A	TGR5A	R/W	H'FFFF	H'FEA8	
	Timer general register 5B	TGR5B	R/W	H'FFFF	H'FEAA	
ALL TPU	Timer start register	TSTR	R/W	H'00	H'FFC0	
channels	Timer syncro register	TSYR	R/W	H'00	H'FFC1	
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C	

Module	Register	Abbreviation	R/W	Initial Value	Address*1	
PPG	PPG output control register	PCR	R/W	H'FF	H'FF46	
	PPG output mode register	PMR	R/W	H'F0	H'FF47	
	Next data enable register H	NDERH	R/W	H'00	H'FF48	
	Next data enable register L	NDERL	R/W	H'00	H'FF49	
	Output data register H	PODRH	R/(W)*6	H'00	H'FF4A	
	Output data register L	PODRL	R/(W)*6	H'00	H'FF4B	
	Next data register H	NDRH	R/W	H'00	H'FF4C*7	
					H'FF4E	
	Next data register L	NDRL	R/W	H'00	H'FF4D*7	
					H'FF4F	
	Port 1 data direction register	P1DDR	W	H'00	H'FEB0	
	Port 2 data direction register	P2DDR	W	H'00	H'FEB1	
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C	
8-bit	Timer control register 0	TCR0	R/W	H'00	H'FFB0	
timer 0	Timer control/status register 0	TCSR0	R/(W)*8	H'00	H'FFB2	
	Timer constant register A0	TCORA0	R/W	H'FF	H'FFB4	
	Timer constant register B0	TCORB0	R/W	H'FF	H'FFB6	
	Timer counter 0	TCNT0	R/W	H'00	H'FFB8	
8-bit	Timer control register 1	TCR1	R/W	H'00	H'FFB1	
timer 1	Timer control/status register 1	TCSR1	R/(W)*8	H'10	H'FFB3	
	Timer constant register A1	TCORA1	R/W	H'FF	H'FFB5	
	Timer constant register B1	TCORB1	R/W	H'FF	H'FFB7	
	Timer counter 1	TCNT1	R/W	H'00	H'FFB9	
Both 8-bit timer channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C	

Module	Register	Abbreviation	R/W	Initial Value	Address*1
WDT	Timer control/status register	TCSR	R/(W)*10	H'18	H'FFBC: Write ^{*9}
					H'FFBC: Read
	Timer counter	TCNT	R/W	H'00	H'FFBC: Write*9
					H'FFBD: Read
	Reset control/status register	RSTCSR	R/(W)*10	H'1F	H'FFBE: Write ^{*9}
					H'FFBF: Read
SCI0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
SCI1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
SCI2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All SCI channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Module	Register	Abbreviation	R/W	Initial Value	Address*1		
SMCI0	Serial mode register 0	SMR0	R/W	H'00	H'FF78		
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79		
	Serial control register 0	SCR0	R/W	H'00	H'FF7A		
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B		
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C		
	Receive data register 0	RDR0	R	H'00	H'FF7D		
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E		
SMCI1	Serial mode register 1	SMR1	R/W	H'00	H'FF80		
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81		
	Serial control register 1	SCR1	R/W	H'00	H'FF82		
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83		
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84		
	Receive data register 1	RDR1	R	H'00	H'FF85		
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86		
SMCI2	Serial mode register 2	SMR2	R/W	H'00	H'FF88		
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89		
	Serial control register 2	SCR2	R/W	H'00	H'FF8A		
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B		
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C		
	Receive data register 2	RDR2	R	H'00	H'FF8D		
	Smart card mode register 2	SCMR2	R/W	H'00	H'FF8E		
All SMCI channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C		
ADC	A/D data register AH	ADDRAH	R	H'00	H'FF90		
	A/D data register AL	ADDRAL	R	H'00	H'FF91		
	A/D data register BH	ADDRBH	R	H'00	H'FF92		
	A/D data register BL	ADDRBL	R	H'00	H'FF93		
	A/D data register CH	ADDRCH	R	H'00	H'FF94		
	A/D data register CL	ADDRCL	R	H'00	H'FF95		
	A/D data register DH	ADDRDH	R	H'00	H'FF96		
	A/D data register DL	ADDRDL	R	H'00	H'FF97		
	A/D control/status register	ADCSR	R/(W)*10) H'00	H'FF98		
	A/D control register	ADCR	R/W	H'3F	H'FF99		
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C		

DACO, 1 D/A data register 0 DADRO R/W H'00 H'FFA4 D/A data register 1 D/A control register 01 DADR1 R/W H'00 H'FFA5 DAC2, 3 D/A data register 2 D/A data register 2 D/A data register 3 D/A data register 3 D/A data register 3 D/A data register 2 D/A data register 3 D/A data register 2 D/A data register 2 D/A data register 2 D/A data register 2 D/A data register 3 D/A data register 3 D/A data register 3 D/A data register 3 D/A data register 3 D/A data register 4 D/A data register 4 D/A data register 5 D/A data register 6 D/A data register 7 D/A double stop control register 8 D/A data register 8 D/A data register 9 D/A data direction register 9 D/A data direction register 9 D/A data 9 D/A data direction regist	Module	Register	Abbreviation	R/W	Initial Value	Address*1	
Diagram	DAC0, 1	D/A data register 0	DADR0	R/W	H'00	H'FFA4	
DAC2, 3		D/A data register 1	DADR1	R/W	H'00	H'FFA5	
D/A data register 3		D/A control register 01	DACR01	R/W	H'1F	H'FFA6	
D/A control register 23	DAC2, 3	D/A data register 2	DADR2	R/W	H'00	H'FDA8	
All DAC channels		D/A data register 3	DADR3	R/W	H'00	H'FDA9	
Channels On-chip RAM System control register SYSCR R/W H'01 H'FF39 Flash memory Flash memory control register 1 FLMCR1*15 R/W*12 H'00/H'80*13 H'FFC8*11 Flash memory control register 2 FLMCR2*15 R/W*12 H'00 H'FFC8*11 Flash memory control register 2 EBR1*15 R/W*12 H'00*14 H'FFC8*11 Erase block register 2 EBR2*15 R/W*12 H'00*14 H'FFC8*11 Flash memory control register 2 EBR2*15 R/W*12 H'00*14 H'FFC8*11 Erase block register 2 EBR2*15 R/W*12 H'00*14 H'FFC8*11 RAM emulation register 2 SYSCR2*16 R/W H'00 H'FEDB System control register 2 SYSCR2*16 R/W H'00 H'FF3A Clock pulse 3 System clock control register 3 SCKCR R/W H'00 H'FF3A System clock control register 4 MSTPCRL R/W H'00 H'FF3A Module stop control register 4 MSTPCRL <t< td=""><td></td><td>D/A control register 23</td><td>DACR23</td><td>R/W</td><td>H'1F</td><td>H'FDAA</td></t<>		D/A control register 23	DACR23	R/W	H'1F	H'FDAA	
Flash memory control register 1 FLMCR1*15 R/W*12 H'00/H'80*13 H'FFC8*11		Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C	
memory Flash memory control register 2 FLMCR2*15 R/W*12 H'00 H'FFC9*11 Erase block register 1 EBR1*15 R/W*12 H'00*14 H'FFCA*11 Erase block register 2 EBR2*15 R/W*12 H'00*14 H'FFCB*11 RAM emulation register 2 EBR2*15 R/W H'00 H'FEDB System control register 2 SYSCR2*16 R/W H'00 H'FF42 Clock pulse 3 System clock control register 3 SCKCR R/W H'00 H'FF3A Power-down mode 4 Standby control register 5 SCKCR R/W H'00 H'FF3A System clock control register 5 SCKCR R/W H'00 H'FF3A Module stop control register 5 SCKCR R/W H'00 H'FF3A Module stop control register 6 MSTPCRL R/W H'3F H'FF3D Port 1 data direction register 7 P1DDR W H'00 H'FE8D Port 2 data register 7 P2DR W H'00 H'FE81 Port 2 data register 8	•	System control register	SYSCR	R/W	H'01	H'FF39	
Erase block register 1	Flash	Flash memory control register 1	FLMCR1*15	R/W*12	H'00/H'80*13	H'FFC8*11	
Erase block register 2 EBR2*15 R/W*12 H'00*14 H'FFCB*11 RAM emulation register RAMER*21 R/W H'00 H'FEDB System control register 2 SYSCR2*16 R/W H'00 H'FF42 Clock pulse generator System clock control register SCKCR R/W H'00 H'FF3A Power-down mode Standby control register SBYCR R/W H'00 H'FF3A System clock control register SCKCR R/W H'00 H'FF3A Module stop control register PSCKCR R/W H'00 H'FF3A Module stop control register L MSTPCRH R/W H'3F H'FF3C Port 1 Port 1 data direction register P1DDR W H'00 H'FEB0 Port 1 data register P1DR R/W H'00 H'FF60 Port 2 data direction register P0RT1 R Undefined H'FF50 Port 2 register P2DR R/W H'00 H'FF61 Port 3 data register P3DR R/W H'00 H'FF62 <td>memory</td> <td>Flash memory control register 2</td> <td>FLMCR2*15</td> <td>R/W*12</td> <td>H'00</td> <td>H'FFC9*11</td>	memory	Flash memory control register 2	FLMCR2*15	R/W*12	H'00	H'FFC9*11	
RAM emulation register RAMER*21 R/W H'00 H'FEDB		Erase block register 1	EBR1*15	R/W*12	H'00*14	H'FFCA*11	
System control register 2 SYSCR2*16 R/W H'00 H'FF42		Erase block register 2	EBR2*15	R/W*12	H'00*14	H'FFCB*11	
Clock pulse System clock control register generator Power- down mode Standby control register SBYCR R/W H'08 H'FF38 System clock control register SCKCR R/W H'00 H'FF3A Module stop control register H MSTPCRH R/W H'3F H'FF3C Module stop control register L MSTPCRL R/W H'00 H'FF3D Port 1 Port 1 data direction register P1DDR W H'00 H'FF60 Port 1 register P1DR R/W H'00 H'FF60 Port 2 data direction register P2DDR W H'00 H'FF50 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register P2DR R/W H'00 H'FF61 Port 2 register P3DR R/W H'00 H'FF61 Port 3 data direction register P3DDR W H'00 H'FF61 Port 3 register P3DR R/W H'00 H'FF62 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62		RAM emulation register	RAMER*21	R/W	H'00	H'FEDB	
generator Power-down mode Standby control register SBYCR R/W H'08 H'FF38 System clock control register SCKCR R/W H'00 H'FF3A Module stop control register H MSTPCRH R/W H'3F H'FF3C Module stop control register L MSTPCRL R/W H'FF H'FF3D Port 1 Port 1 data direction register P1DDR W H'00 H'FEB0 Port 1 data register P1DR R/W H'00 H'FF60 Port 2 data direction register P2DDR W H'00 H'FEB1 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DR W H'00 H'FE82 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76		System control register 2	SYSCR2*16	R/W	H'00	H'FF42	
down mode System clock control register SCKCR R/W H'00 H'FF3A Module stop control register H MSTPCRH R/W H'3F H'FF3C Module stop control register L MSTPCRL R/W H'FF H'FF3D Port 1 Port 1 data direction register P1DDR W H'00 H'FEB0 Port 1 data register P1DR R/W H'00 H'FF60 Port 1 register P0RT1 R Undefined H'FF50 Port 2 data direction register P2DR W H'00 H'FEB1 Port 2 register P0RT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76	•	System clock control register	SCKCR	R/W	H'00	H'FF3A	
mode Module stop control register H MSTPCRH R/W H'3F H'FF3C	Power-	Standby control register	SBYCR	R/W	H'08	H'FF38	
Module stop control register H MSTPCRH R/W H'3F H'FF3C Module stop control register L MSTPCRL R/W H'FF H'FF3D Port 1 Port 1 data direction register P1DDR W H'00 H'FEB0 Port 1 data register P1DR R/W H'00 H'FF60 Port 1 register PORT1 R Undefined H'FF50 Port 2 data direction register P2DDR W H'00 H'FEB1 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76		System clock control register	SCKCR	R/W	H'00	H'FF3A	
Port 1 data direction register P1DDR W H'00 H'FEB0 Port 1 data register P1DR R/W H'00 H'FF60 Port 1 register PORT1 R Undefined H'FF50 Port 2 data direction register P2DDR W H'00 H'FEB1 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76	mode	Module stop control register H	MSTPCRH	R/W	H'3F	H'FF3C	
Port 1 data register P1DR R/W H'00 H'FF60 Port 1 register PORT1 R Undefined H'FF50 Port 2 data direction register P2DDR W H'00 H'FEB1 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF62		Module stop control register L	MSTPCRL	R/W	H'FF	H'FF3D	
Port 1 register PORT1 R Undefined H'FF50 Port 2 data direction register P2DDR W H'00 H'FEB1 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76	Port 1	Port 1 data direction register	P1DDR	W	H'00	H'FEB0	
Port 2 data direction register P2DDR W H'00 H'FEB1 Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF62		Port 1 data register	P1DR	R/W	H'00	H'FF60	
Port 2 data register P2DR R/W H'00 H'FF61 Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76		Port 1 register	PORT1	R	Undefined	H'FF50	
Port 2 register PORT2 R Undefined H'FF51 Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76	Port 2	Port 2 data direction register	P2DDR	W	H'00	H'FEB1	
Port 3 data direction register P3DDR W H'00 H'FEB2 Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76		Port 2 data register	P2DR	R/W	H'00	H'FF61	
Port 3 data register P3DR R/W H'00 H'FF62 Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76		Port 2 register	PORT2	R	Undefined	H'FF51	
Port 3 register PORT3 R Undefined H'FF52 Port 3 open drain control register P3ODR R/W H'00 H'FF76	Port 3	Port 3 data direction register	P3DDR	W	H'00	H'FEB2	
Port 3 open drain control register P3ODR R/W H'00 H'FF76		Port 3 data register	P3DR	R/W	H'00	H'FF62	
		Port 3 register	PORT3	R Undefined		H'FF52	
Port 4 Port 4 register PORT4 R Undefined H'FF53		Port 3 open drain control register	P3ODR	R/W	H'00	H'FF76	
	Port 4	Port 4 register	PORT4	R	Undefined	H'FF53	

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Port 5	Port 5 data direction register	P5DDR	W	H'0*17	H'FEB4
	Port 5 data register	P5DR	R/W	H'0*17	H'FF64
	Port 5 register	PORT5	R	Undefined	H'FF54
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
	System control register	SYSCR	R/W	H'01	H'FF39
Port 6	Port 6 data direction register	P6DDR	W	H'00	H'FEB5
	Port 6 data register	P6DR	R/W	H'00	H'FF65
	Port 6 register	PORT6	R	Undefined	H'FF55
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
Port 7	Port 7 data direction register	P7DDR	W	H'00	H'FEB6
	Port 7 data register	P7DR	R/W	H'00	H'FF66
	Port 7 register	PORT7	R	Undefined	H'FF56
Port 8	Port 8 data direction register	P8DDR	W	H'00*18	H'FEB7
	Port 8 data register	P8DR	R/W	H'00*18	H'FF67
	Port 8 register	PORT8	R	Undefined*18	H'FF57
	Port function control register 2	PFCR2	R/W	H'30 ^{*18}	H'FFAC
Port 9	Port 9 data direction register	P9DDR	W	H'00*19	H'FEB8
	Port 9 data register	P9DR	R/W	H'00*19	H'FF68
	Port 9 register	PORT9	R	Undefined	H'FF58
	System control register	SYSCR	R/W	H'01	H'FF39
Port A	Port A data direction register	PADDR	W	H'00	H'FEB9
	Port A data register	PADR	R/W	H'00	H'FF69
	Port A register	PORTA	R	Undefined	H'FF59
	Port A MOS pull-up control register	PAPCR	R/W	H'00	H'FF70
	Port A open drain control register	PAODR	R/W	H'00	H'FF77
	Port function control register 1	PFCR1	R/W	H'0F	H'FF45
Port B	Port B data direction register	PBDDR	W	H'00	H'FEBA
	Port B data register	PBDR	R/W	H'00	H'FF6A
	Port B register	PORTB	R	Undefined	H'FF5A
	Port B MOS pull-up control register	PBPCR	R/W	H'00	H'FF71

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Port C	Port C data direction register	PCDDR	W	H'00	H'FEBB
	Port C data register	PCDR	R/W	H'00	H'FF6B
	Port C register	PORTC	R	Undefined	H'FF5B
	Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF72
Port D	Port D data direction register	PDDDR	W	H'00	H'FEBC
	Port D data register	PDDR	R/W	H'00	H'FF6C
	Port D register	PORTD	R	Undefined	H'FF5C
	Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FF73
Port E	Port E data direction register	PEDDR	W	H'00	H'FEBD
	Port E data register	PEDR	R/W	H'00	H'FF6D
	Port E register	PORTE	R	Undefined	H'FF5D
	Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FF74
Port F	Port F data direction register	PFDDR	W	H'80/H'00*5	H'FEBE
	Port F data register	PFDR	R/W	H'00	H'FF6E
	Port F register	PORTF	R	Undefined	H'FF5E
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
	System control register	SYSCR	R/W	H'01	H'FF39
Port G	Port G data direction register	PGDDR	W	H'10/H'00 *5 *20	H'FEBF
	Port G data register	PGDR	R/W	H'00*20	H'FF6F
	Port G register	PORTG	R	Undefined*20	H'FF5F
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC

Notes: 1. Lower 16 bits of the address.

- 2. Only 0 can be written for flag clearing.
- 3. Registers in the DTC cannot be read or written to directly.
- 4. Located as register information in on-chip RAM addresses H'EBC0 to H'EFBF. Cannot be located in external memory space. Do not clear the RAME bit in SYSCR to 0 when using the DTC.
- 5. The initial value differs depending on the MCU operating mode.
- 6. Bits used for pulse output cannot be written to.
- 7. If the pulse output group 2 and pulse output group 3 output triggers are the same according to the PCR setting, the NDRH address will be H'FF4C, and if different, the address of NDRH for group 2 will be H'FF4E, and that for group 3 will be H'FF4C. Similarly, if the pulse output group 0 and pulse output group 1 output triggers are the same according to the PCR setting, the NDRL address will be H'FF4D, and if different, the address of NDRL for group 0 will be H'FF4F, and that for group 1 will be H'FF4D.
- 8. Only 0 can be written to bits 7 to 5, to clear the flags.

- 9. For information on writing, see section 13.2.4, Notes on Register Access.
- 10. Only 0 can be written to bit 7, to clear the flag.
- 11. Flash memory registers selection is performed by means of the FLSHE bit in system control register 2 (SYSCR2).
- 12. In modes in which the on-chip flash memory is disabled, a read will return H'00, and writes are invalid. Writes are also disabled when the FWE bit in FLMCR1 is cleared to 0. (Not applies to H8S/2339 F-ZTAT.)
- 13. In H8S/2338 F-ZTAT, when a high level is input to the FWE pin, the initial value is H'80. In H8S/2339 F-ZTAT, the initial value is H'80.
- 14. In H8S/2338 F-ZTAT, when a low level is input to the FWE pin, or if a high level is input but the SWE bit in FLMCR1 is not set, these registers are initialized to H'00. In H8S/2339 F-ZTAT, when the SWE bit in FLMCR1 is not set, these registers are initialized to H'00.
- 15. FLMCR1, FLMCR2, EBR1, and EBR2 are 8-bit registers. Only byte access can be used on these registers, with the access requiring two states.
- 16. The SYSCR2 register can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be written to.
- 17. Value of bits 3 to 0.
- 18. Value of bits 6 to 0.
- 19. Value of bits 7 to 2.
- 20. Value of bits 4 to 0.
- 21. Valid only in flash memory versions.

B.3 Functions

MRA—DTC Mode Register A H'F800 to H'FBFF DTC Bit 7 5 4 3 2 1 0 6 SM1 SM0 DM1 DM0 MD1 MD0 DTS Sz Undefined Undefined Undefined Undefined Undefined Undefined Undefined Initial value: Read/Write: DTC Data Transfer Size 0 Byte-size transfer 1 Word-size transfer **DTC Transfer Mode Select** Destination side is repeat area or block area 1 Source side is repeat area or block area DTC Mode 0 Normal mode 1 Repeat mode 1 0 Block transfer mode 1 **Destination Address Mode** 0 DAR is fixed 1 0 DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1) 1 DAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1) Source Address Mode SAR is fixed 1 0 SAR is incremented after a transfer

Rev.4.00 Sep. 07, 2007 Page 1012 of 1210 REJ09B0245-0400

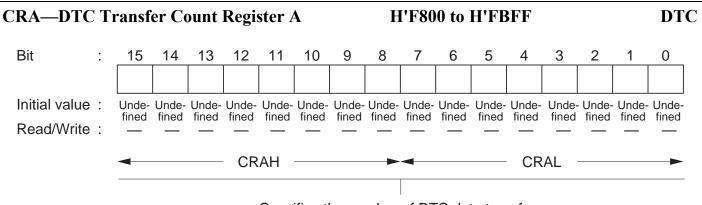
1

(by +1 when Sz = 0; by +2 when Sz = 1)

SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

MRB—DTC Mode Register B H'F800 to H'FBFF **DTC** Bit 7 6 5 4 2 1 0 CHNE DISEL **CHNS** Undefined Undefined Undefined Undefined Undefined Undefined Undefined Initial value: Read/Write: Reserved Only 0 should be written to these bits DTC Chain Transfer Enable, DTC Chain Transfer Select CHNE CHNS Description 0 No chain transfer. (At end of DTC data transfer, DTC waits for activation) 1 0 Chain transfer every time 1 1 Chain transfer only when transfer counter = 0 **DTC Interrupt Select** After DTC data transfer ends, the CPU interrupt is

SAR—DTC Source Address Register						H'F800 to H'F1	H'F800 to H'FBFF					
Bit	:	23	22	21	20	19		4	3	2	1	0
Initial va	ılue :	Unde- fined	Unde- fined		Unde- fined	Unde- fined		Unde- fined	Unde- fined		Unde- fined	
Read/W	rite :		_		_	_		_	_	_	_	


Specifies DTC transfer data source address

disabled unless the transfer counter is 0

After DTC data transfer ends, the CPU interrupt is enabled

DAR—DTC Destination Address Register DTC H'F800 to H'FBFF Bit 23 22 21 20 19 3 2 1 0 Unde- Unde- Unde- Unde-Unde- Unde- Unde- Unde-Initial value: fined fined fined fined fined fined fined fined fined Read/Write:

Specifies DTC transfer data destination address

Specifies the number of DTC data transfers

CRB—DTC Transfer Count Register B							H'F800 to H'FBFF								DTC		
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial va	alue :	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined		Unde- fined			Unde- fined	Unde- fined	Unde- fined		Unde- fined	Unde- fined
Read/W	rite :	_	_												_	_	

Specifies the number of DTC block data transfers

TCR3—Timer Control Register 3

H'FE80

TPU3

Bit :	7	6		5	4		3	,		2	1	0	_
	CCLR2	CCL	R1	CCLR0	CKEG	3 1	CKE	G0	TI	PSC	2 TPSC1	TPSC0	
Initial value :	0	0		0	0		0)		0	0	0	
Read/Write:	R/W	R/V	V	R/W	R/W	1	R/	W	I	R/W	R/W	R/W	
								Time	r Pr	esca	ıler —		
								0	0	0	Internal clock:	counts on	φ/1
										1	Internal clock:	counts on	φ/4
									1	0	Internal clock:	counts on	φ/16
										1	Internal clock:	counts on	φ/64
								1	0	0	External clock	c: counts on	TCLKA pin input
										1	Internal clock:	counts on	ф/1024
									1	0	Internal clock:	counts on	φ/256
										1	Internal clock:	counts on	ф/4096
	Clock Edge												
					0			nunt.	ot ric	nin a	odao		
						0					edge edge		
					1	<u>'</u>							
	C	ounter	Clea	ır	'		- 00	Juni	al Di	Jui e	edges		
	Ĺ	0 0	0	TCNT clea	arina dis	abl	ed						
			1					mpar	e ma	atch/	/input capture		
		1	0								/input capture		
			1								other channel		
					•				•		onous operatio	n *1	
		1 0	0	TCNT clea	aring dis	abl	ed						
			1	TCNT clea	ared by	TGI	RC co	mpar	e m	atch	/input capture ³	*2	
		1	0	TCNT clea	ared by	TGI	RD compare match/input capture *2						
			1	TCNT clea							n *1		

- Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.
 - When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

TMDR3—Timer Mode Register 3

H'FE81

TPU3

Bit :	7	6	5	4	3	2	1	0
	_		BFB	BFA	MD3	MD2	MD1	MD0
Initial value:	1	1	0	0	0	0	0	0
Read/Write:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

Mode

0	0	0	0	Normal operation			
			1	Reserved			
		1	0	PWM mode 1			
			1	PWM mode 2			
	1	0	0	Phase counting mode 1			
			1	Phase counting mode 2			
		1	0	Phase counting mode 3			
			1	Phase counting mode 4			
1	*	*	*	_			

*: Don't care

Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0.

Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2.

Buffer Operation A

0	TGRA operates normally
1	TGRA and TGRC used together for buffer operation

Buffer Operation B

0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

TIOR3H—Timer I/O Control Register 3H

H'FE82

TPU3

Bit 7 6 5 4 3 2 1 0 IOB3 IOB2 IOB1 IOA2 Initial value: IOB0 IOA3 IOA1 IOA0 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W

TGR3A I/O Control

0	0	0	0	is output	Output disabled					
			1	is output compare	Initial output is	0 output at compare match				
		1	0	register	0 output	1 output at compare match				
			1			Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is	0 output at compare match				
		1	0		1 output	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR3A	Capture input source is	Input capture at rising edge				
			1	is input capture	TIOCA ₃ pin	Input capture at falling edge				
		1	*	register		Input capture at both edges				
	1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down				

* : Don't care

TGR3B I/O Control

	Terror We control										
0	0	0	0	TGR3B	Output disabled						
			1	is output compare	Initial output is	0 output at compare match					
		1	0	register	0 output	1 output at compare match					
			1			Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is 1	0 output at compare match					
		1	0		output	1 output at compare match					
			1			Toggle output at compare match					
1	0	0	0	TGR3B	Capture input	Input capture at rising edge					
			1	is input capture	source is TIOCB ₃ pin	Input capture at falling edge					
		1	*	register		Input capture at both edges					
	1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down*1					

*: Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000, and $\phi/1$ is used as the TCNT4 count clock, this setting is invalid and input capture does not occur.

TIOR3L—Timer I/O Control Register 3L

H'FE83

TPU3

Bit :	7	6	5	4	3	2	1	0
	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR3C I/O Control

0	0	0	0	TGR3C	Output disabled				
			1	is output compare	Initial output is 0 output	0 output at compare match			
		1	0	register*1	Output	1 output at compare match			
			1			Toggle output at compare match			
	1	0	0		Output disabled				
			1		Initial output is 1	0 output at compare match			
		1	0		output	1 output at compare match			
			1			Toggle output at compare match			
1	0	0	0	TGR3C	Capture input	Input capture at rising edge			
			1	is input capture	source is TIOCC ₃ pin	Input capture at falling edge			
		1	*	register*1		Input capture at both edges			
	1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/ count-down			

* : Don't care

Note: 1. When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

TGR3D I/O Control

0	0	0	0	TGR3D	Output disabled			
			1	is output compare	Initial output is 0 output	0 output at compare match		
		1	0	register *2	σαιραί	1 output at compare match		
			1			Toggle output at compare match		
	1	0	0		Output disabled			
			1		Initial output is 1	0 output at compare match		
		1	0		output	1 output at compare match		
			1			Toggle output at compare match		
1	0	0	0	TGR3D	Capture input source is	Input capture at rising edge		
			1	is input capture	TIOCD ₃ pin	Input capture at falling edge		
		1	*	register *2		Input capture at both edges		
	1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/ count-down*1		

* : Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and φ/1 is used as the TCNT4 count clock, this setting is invalid and input capture does not occur.

2. When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

RENESAS

TIER3—Timer Interrupt Enable Register 3 **H'FE84** TPU3 Bit 7 6 5 4 3 2 1 0 TTGE **TCIEV TGIED TGIEC TGIEB TGIEA** Initial value: 0 1 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) by TGFA bit disabled Interrupt request (TGIA) by TGFA bit enabled TGR Interrupt Enable B Interrupt request (TGIB) by TGFB bit disabled Interrupt request (TGIB) by TGFB bit enabled TGR Interrupt Enable C Interrupt request (TGIC) by TGFC bit disabled Interrupt request (TGIC) by TGFC bit enabled TGR Interrupt Enable D Interrupt request (TGID) by TGFD bit disabled Interrupt request (TGID) by TGFD

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

bit enabled

Interrupt request (TCIV) by TCFV disabled
Interrupt request (TCIV) by TCFV enabled

Overflow Interrupt Enable

TSR3—Timer Status Register 3

H'FE85

TPU3

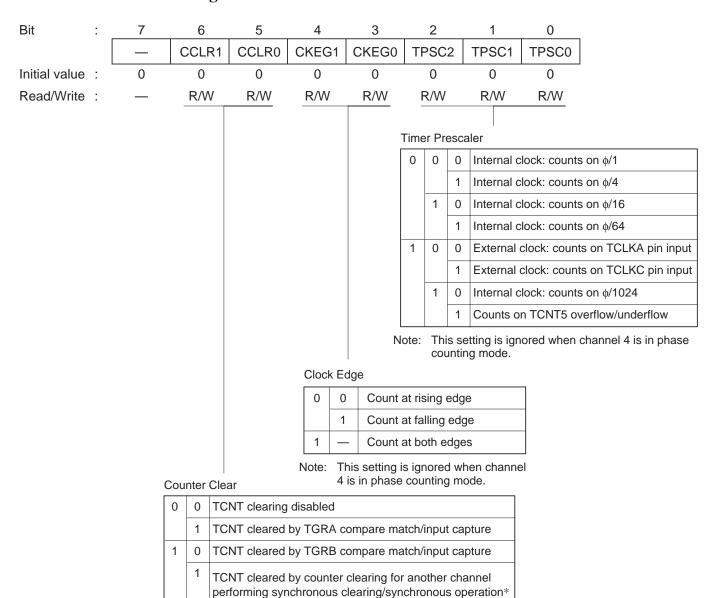
Bit :	7	6	5	4	3		2	1		0	
	_	-	_	TCFV	TGF) то	GFC	TGF	в	TGFA	
Initial value:	1	1	0	0	0		0	0		0	•
Read/Write:	_	_	_	R/(W)*	R/(W)	* R/	(W)*	R/(W))*	R/(W)*	
									_		
										TGR Inp	out Capture/Output Compare Flag A
										•	Clearing conditions] When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1 When 0 is written to TGFA after reading TGFA = 1
										•	etting conditions] When TCNT=TGRA while TGRA is functioning as output compare register When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register
								TGR	Input	t Captur	e/Output Compare Flag B
								0	• W	hen DTO	onditions] C is activated by TGIB interrupt while DISEL bit DTC is 0 written to TGFB after reading TGFB = 1
								1		ting cond	
											NT = TGRB while TGRB is functioning as mpare register
									• W	/hen TCI	NT value is transferred to TGRB by input gnal while TGRB is functioning as input capture
						TGR	Input	Capture	e/Ou	tput Con	npare Flag C
						0	• Wh	C is 0	C is a	activated	I by TGIC interrupt while DISEL bit of MRB in
						1		ien 0 is ing con			GFC after reading TGFC = 1
						'	• W	hen TC			while TGRC is functioning as output compare
							• W				ransferred to TGRC by input capture signal ning as input capture register
					TGR	Input C	apture	e/Outpu	ıt Co	mpare F	ilag D
					0	[Clear	ing co	ndition	s]		
						is 0					er reading TGFD = 1
					1			ditions]	1	J. D all	5. 15dding 1 51 5 = 1
						• Wh	en TC en TC	NT = To	ue is	transfer	GRD is functioning as output compare register red to TGRD by input capture signal while capture register
				Overflov	v Flag						
				0 [0	Clearing			CFV aft	ter re	ading T	CFV = 1

Note: * Can only be written with 0 for flag clearing.

[Setting condition]

When the TCNT value overflows (changes from H'FFFF to H'0000)

TCNT3—Timer Counter 3 **H'FE86** TPU3 Bit Initial value: Read/Write: **Up-counter** TGR3A—Timer General Register 3A **H'FE88** TPU3


TGR3B—Timer General Register 3B	H'FE8A	TPU3
TGR3C—Timer General Register 3C	H'FE8C	TPU3
TGR3D—Timer General Register 3D	H'FE8E	TPU3

Bit 12 11 Initial value:

TCR4—Timer Control Register 4

H'FE90

TPU4

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR4—Timer Mode Register 4

H'FE91

TPU4

Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	MD3	MD2	MD1	MD0
Initial value:	1	1	0	0	0	0	0	0
Read/Write:	_	_	_	_	R/W	R/W	R/W	R/W

M	lod	ρ

0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	_

* : Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR4—Timer I/O Control Register 4

H'FE92

TPU4

Bit :	7	6	5	4	3			2	1	0	
	IOB3	IOB2	IOB1	IOB0	10	IOA3		IOA2	IOA1	IOA0	
Initial value:	0	0	0	0		0		0	0	0	
Read/Write:	R/W	R/W	R/W	R/W	_F	R/W		R/W	R/W	R/W	
				TO	GR4/	A I/O	Со	ntrol			
				0	0	0	0	TGR4A	Output	disabled	
							1	is output compare		utput is 0	0 output at compare match
						1	0	register	output		1 output at compare match
							1	1			Toggle output at compare match
					1	0	0	1	Output	disabled	
							1	1		utput is 1	0 output at compare match
						1	0	1	output		1 output at compare match
							1				Toggle output at compare match
				1	0	0	0	TGR4A	Capture		Input capture at rising edge
							1	is input capture	source TIOCA		Input capture at falling edge
						1	*	register		* 1	Input capture at both edges
					1	*	*			is TGR3A e match/	Input capture at generation of TGR3A compare match/input capture

*: Don't care

TGR4B I/O Control

	_		_	1							
0	0	0	0	TGR4B	Output disabled						
			1	is output compare	Initial output is 0 output	0 output at compare match					
		1	0	register	σαιραί	1 output at compare match					
			1			Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is 1	0 output at compare match					
	1 0			output	1 output at compare match						
			1			Toggle output at compare match					
1	0	0	0	TGR4B	Capture input	Input capture at rising edge					
			1	is input capture	source is TIOCB ₄ pin	Input capture at falling edge					
		1	*	register		Input capture at both edges					
	1	*	*		Capture input source is TGR3C compare match/ input capture	Input capture at generation of TGR3C compare match/input capture					

*: Don't care

TIER4—Timer Interrupt Enable Register 4 H'FE94 TPU4 Bit 5 0 7 6 4 3 2 1 **TTGE TCIEU TCIEV TGIEB TGIEA** 0 0 0 0 0 0 0 Initial value: 1 Read/Write: R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) by TGFA bit disabled Interrupt request (TGIA) by TGFA bit enabled TGR Interrupt Enable B Interrupt request (TGIB) by TGFB bit disabled Interrupt request (TGIB) by TGFB bit enabled Overflow Interrupt Enable Interrupt request (TCIV) by TCFV disabled 1 Interrupt request (TCIV) by TCFV enabled Underflow Interrupt Enable 0 Interrupt request (TCIU) by TCFU disabled Interrupt request (TCIU) by TCFU enabled A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR4—Timer Status Register 4 H'FE95 TPU4 Bit n **TCFD TCFU TCFV TGFB TGFA** 0 0 0 0 0 Initial value: 0 Read/Write: R/(W)* R/(W)* R/(W)* R/(W)* R TGR Input Capture/Output Compare Flag A [Clearing conditions] When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1 When 0 is written to TGFA after reading TGFA = 1 [Setting conditions] When TCNT = TGRA while TGRA is functioning as output compare register When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register TGR Input Capture/Output Compare Flag B [Clearing conditions] · When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 • When 0 is written to TGFB after reading TGFB = 1 [Setting conditions] • When TCNT = TGRB while TGRB is functioning as output compare register When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register Overflow Flag [Clearing condition] When 0 is written to TCFV after reading TCFV = 1 [Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000) Underflow Flag [Clearing condition] When 0 is written to TCFU after reading TCFU = 1

Count Direction Flag

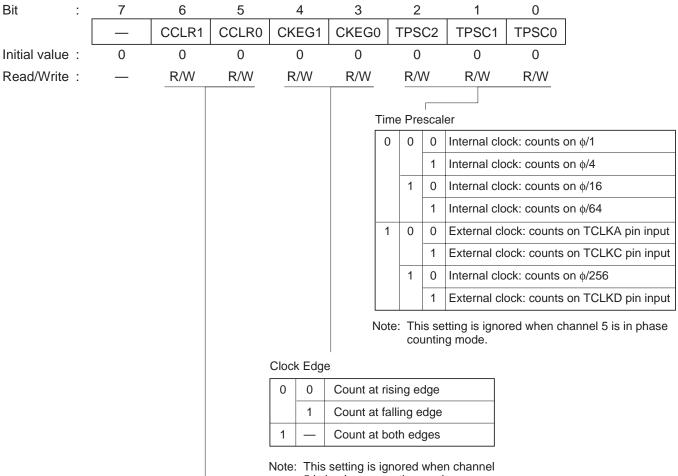
0	TCNT counts down
1	TCNT counts up

[Setting condition]

Note: * Can only be written with 0 for flag clearing.

When the TCNT value underflows (changes from H'0000 to H'FFFF)

TCNT4—Timer Counter 4											H'FE96							4
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	e :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Read/Write	e :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		Up/	down	 -cour	nter*													


Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR4A—Tir	H'FE98 H'FE9A								TPU4 TPU4								
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR5—Timer Control Register 5

H'FEA0

TPU5

5 is in phase counting mode.

Counter Clear

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR5—Timer Mode Register 5

H'FEA1

TPU5

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	MD3	MD2	MD1	MD0
Initial value	:	1	1	0	0	0	0	0	0
Read/Write	:	_	_			R/W	R/W	R/W	R/W

Mode

0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	_

*: Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR5—Timer I/O Control Register 5

H'FEA2

TPU5

Bit :		7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value :	_	0	0	0	0	0	0	0	0
Read/Write:		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR5A I/O Control

0	0	0	0	TGR5A	Output disabled			
			1	is output compare	Initial output is 0 output	0 output at compare match		
		1	0	register	σαιραί	1 output at compare match		
			1			Toggle output at compare match		
	1	0	0		Output disabled			
			1		Initial output is 1	0 output at compare match		
		1	0		output	1 output at compare match		
			1			Toggle output at compare match		
1	*	0	0	TGR5A	Capture input	Input capture at rising edge		
			1	is input capture	source is TIOCA ₅	Input capture at falling edge		
		1	*	register		Input capture at both edges		

* : Don't care

TGR5B I/O Control

0	0	0	0	TGR5B	Output disabled	
			1	is output compare	Initial output is 0 output	0 output at compare match
		1	0	register	σαιραί	1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	*	0	0	TGR5B	Capture input	Input capture at rising edge
			1	is input capture	source is TIOCB ₅ pin	Input capture at falling edge
		1	*	register		Input capture at both edges

* : Don't care

TIER5—Timer Interrupt Enable Register 5 H'FEA4 TPU5 Bit 7 6 5 4 3 2 1 0 **TTGE TCIEU TCIEV TGIEB TGIEA** 0 0 0 Initial value: 1 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) by TGFA bit disabled Interrupt request (TGIA) by TGFA bit enabled TGR Interrupt Enable B Interrupt request (TGIB) by TGFB bit disabled Interrupt request (TGIB) by TGFB bit enabled Overflow Interrupt Enable Interrupt request (TCIV) by TCFV disabled Interrupt request (TCIV) by TCFV enabled Underflow Interrupt Enable

Interrupt request (TCIU) by TCFU disabled
Interrupt request (TCIU) by TCFU enabled

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR5—Timer Status Register 5

Bit 3 **TCFD TCFU TCFV TGFB TGFA** Initial value: 1 1 0 0 0 0 0 0 Read/Write: R R/(W)* R/(W)* R/(W)* R/(W)* TGR Input Capture/Output Compare Flag A [Clearing conditions] • When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1 • When 0 is written to TGFA after reading TGFA = 1 [Setting conditions] • When TCNT = TGRA while TGRA is functioning as output compare register When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register TGR Input Capture/Output Compare Flag B [Clearing conditions] · When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 • When 0 is written to TGFB after reading TGFB = 1 [Setting conditions] When TCNT = TGRB while TGRB is functioning as output compare register When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register Overflow Flag [Clearing condition] When 0 is written to TCFV after reading TCFV = 1 [Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000) **Underflow Flag** [Clearing condition] When 0 is written to TCFU after reading TCFU = 1 [Setting condition] When the TCNT value underflows (changes from H'0000 to H'FFFF)

H'FEA5

TPU5

Note: * Can only be written with 0 for flag clearing.

TCNT counts down

Count Direction Flag

0

Port 1

TCNT5—Timer Counter 5 H'FEA6 TPU5 Bit Initial value: Up/down-counter*

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR5A—Timer General Register 5A TGR5B—Timer General Register 5B								H'FEA8 H'FEAA						TPU5 TPU5			
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial v	alue :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/V	Vrite :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

			8					
Bit :	7	6	5	4	3	2	1	0
	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	W	W	W	W	W	W	W	W

Specify input or output for individual port 1 pins

H'FEB0

P1DDR—Port 1 Data Direction Register

P2DDR—P	ort 2	Data Dir	ection Register H'FEB1					Port 2			
Bit	:	7	6	5	4	3	2	1	0		
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR		
Initial value:		0	0	0	0	0	0	0	0		
Read/Write	e :	W	W	W	W	W	W	W	W		

Specify input or output for individual port 2 pins

P3DDR—	Port 3	3 Data Dir	ection Re	gister	Н		Port 3			
Bit	:	7	6	5	4	3	2	1	0	_
		_	_	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	
Initial val	ue:	Undefined	Undefined	0	0	0	0	0	0	•
Read/Wr	ite:	_	_	W	W	W	W	W	W	

Specify input or output for individual port 3 pins

P5DDR-	–Port	5 Data Di	rection R	Register		H'FEB4	Port 5			
Bit	:	7	6	5	4	3	2	1	0	
		_	_	_	_	P53DDR	P52DDR	P51DDR	P50DDR	
Initial v	alue:	Undefined	Undefined	Undefined	Undefined	0	0	0	0	•
Read/V	Vrite:	_	_	_	_	W	W	W	W	

Specify input or output for individual port 5 pins

P6DDR—Port	6 Data Dii	rection Re	egister	Н	'FEB5	Port 6			
Bit :	7	6	5	4	3	2	1	0	
	P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR	
Initial value:	0	0	0	0	0	0	0	0	
Read/Write:	W	W	W	W	W	W	W	W	

Specify input or output for individual port 6 pins

P7DDR—	-Port	7 Data Dir	ection Re	gister	Н	I'FEB6		Port		
Bit	:	7	6	5	4	3	2	1	0	
		_	_	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR	
Initial va	alue :	Undefined	Undefined	0 t	0	0	0	0	0	,
Read/W	/rite:	_	_	W	W	W	W	W	W	
										-

Specify input or output for individual port 7 pins

Data D	irection F	Register	Н	'FEB7			Port	8
7	6	5	4	3	2	1	0	
_	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR	
ndefined	0	0	0	0	0	0	0	
_	W	W	W	W	W	W	W	
	7 —	7 6 — P86DDR Indefined 0	—P86DDRP85DDRIndefined00	7 6 5 4 — P86DDR P85DDR P84DDR Indefined 0 0 0	7 6 5 4 3 — P86DDR P85DDR P84DDR P83DDR Indefined 0 0 0 0 0	7 6 5 4 3 2 — P86DDR P85DDR P84DDR P83DDR P82DDR Indefined 0 0 0 0 0	7 6 5 4 3 2 1 — P86DDR P85DDR P84DDR P83DDR P82DDR P81DDR P81DDR	7 6 5 4 3 2 1 0 — P86DDR P85DDR P84DDR P83DDR P82DDR P81DDR P80DDR P86fined 0 0 0 0 0 0 0 0

Specify input or output for individual port 8 pins

P9DDR—Port 9	OA Data D	irection I	Register	Н	'FEB8			Port	9
Bit :	7	6	5	4	3	2	1	0	
	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	_	_	
Initial value:	0	0	0	0	0	0	Undefined	Undefined	
Read/Write:	W	W	W	W	W	W	_	_	

Specify input or output for individual port 9 pins

PADDR—	Port A	Data Dir	ection Re	gister	H'l	FEB9			Port A
Bit	:	7	6	5	4	3	2	1	0
		PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial value	e :	0	0	0	0	0	0	0	0
Read/Write	e :	W	W	W	W	W	W	W	W

Specify input or output for individual port A pins

PBDDR—Port	t B l	Data Dire	ction Reg	gister	Η'	FEBA			Por	t B
Bit	:	7	6	5	4	3	2	1	0	
		PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	
Initial value	:	0	0	0	0	0	0	0	0	
Read/Write	:	W	W	W	W	W	W	W	W	

Specify input or output for individual port B pins

PCDDR—Por	t C	Data Dir	ection Re	gister	H'.	FEBB			Port C
Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port C pins

PDDDR—Port	D Data Di	rection R	egister	Н	'FEBC			Port D		
Bit :	7	6	5	4	3	2	1	0		
	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR		
Initial value:	0	0	0	0	0	0	0	0		
Read/Write:	W	W	W	W	W	W	W	W		

Specify input or output for individual port D pins

PEDDR—	Port	E Data Di	irection R	Register	Н	I'FEBD			Port	E
Bit	:	7	6	5	4	3	2	1	0	_
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	
Initial valu	ue:	0	0	0	0	0	0	0	0	
Read/Wri	te:	W	W	W	W	W	W	W	W	

Specify input or output for individual port E pins

PFDDR—Port	F	Data Dire	ection Reg	gister	Η'	FEBE			Port F
Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to 6						l	ı		
Initial value	:	1	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W
Mode 7									
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port F pins

PGDDR—Por	t G	Data Dir	ection Re	egister	Η'	FEBF			Port G
Bit	:	7	6	5	4	3	2	1	0
		_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
Modes 4 and	5								
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0
Read/Write	:	_	_	_	W	W	W	W	W
Modes 6 and	7								
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0
Read/Write	:	_	_	_	W	W	W	W	W

Specify input or output for individual port G pins

IPRA — Interrupt Priority Register A	H'FEC4	Interrupt Controller
IPRB — Interrupt Priority Register B	H'FEC5	Interrupt Controller
IPRC — Interrupt Priority Register C	H'FEC6	Interrupt Controller
IPRD — Interrupt Priority Register D	H'FEC7	Interrupt Controller
IPRE — Interrupt Priority Register E	H'FEC8	Interrupt Controller
IPRF — Interrupt Priority Register F	H'FEC9	Interrupt Controller
IPRG— Interrupt Priority Register G	H'FECA	Interrupt Controller
IPRH— Interrupt Priority Register H	H'FECB	Interrupt Controller
IPRI — Interrupt Priority Register I	H'FECC	Interrupt Controller
IPRJ — Interrupt Priority Register J	H'FECD	Interrupt Controller
IPRK— Interrupt Priority Register K	H'FECE	Interrupt Controller
		-

Bit 6 5 2 0 7 4 3 1 IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 Initial value: 1 1 1 0 1 1 1 Read/Write: R/W R/W R/W R/W R/W R/W

Set priority (levels 7 to 0) for interrupt sources

Correspondence between Interrupt Sources and IPR Settings

Pogistor	Bi	ts
Register	6 to 4	2 to 0
IPRA	IRQ0	IRQ1
IPRB	IRQ2	IRQ4
	IRQ3	IRQ5
IPRC	IRQ6	DTC
	IRQ7	
IPRD	WDT	Refresh timer
IPRE	*	A/D converter
IPRF	TPU channel 0	TPU channel 1
IPRG	TPU channel 2	TPU channel 3
IPRH	TPU channel 4	TPU channel 5
IPRI	8-bit timer channel 0	8-bit timer channel 1
IPRJ	DMAC	SCI channel 0
IPRK	SCI channel 1	SCI channel 2

Note: * Reserved bits.

ABWCR—Bu	us '	Width Co	ontrol Reg	gister	Н	'FED0		Bus	Controlle
Bit	: _	7	6	5	4	3	2	1	0
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 5 to 7	7								
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Mode 4									
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
					Area 7	to 0 Bus V	Vidth Cont	rol	
					0 /	Area n is d	esignated	for 16-bit	access

(n = 7 to 0)

Area n is designated for 8-bit access

ASTCR—Access State Control Register				gister	H'FED1			Bus Controller		
Bit	:	7	6	5	4	3	2	1	0	_
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	
Initial value:		1	1	1	1	1	1	1	1	-
Read/Write:		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

1

Area 7 to 0 Access State Control

0	Area n is designated for 2-state access
	Wait state insertion in area n external space is disabled
1	Area n is designated for 3-state access
	Wait state insertion in area n external space is enabled

(n = 7 to 0)

WCRH—Wait Control Register H

H'FED2

Bus Controller

Area 4 Wait Control

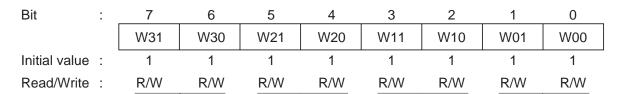
0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 5 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 6 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted


Area 7 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

WCRL—Wait Control Register L

H'FED3

Bus Controller

Area 0 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 1 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 2 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 3 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

BCRH—Bus Control Register H H'FED4 **Bus Controller** Bit 7 6 5 4 3 2 1 0 BRSTRM BRSTS1 **BRSTS0** ICIS₁ ICIS₀ RMTS2 RMTS1 RMTS0 Initial value: 1 1 0 1 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W **RAM Type Select** RMTS2|RMTS1|RMTS0|Area 5|Area 4|Area 3|Area 2 0 0 0 Normal space DRAM 1 Normal space space Normal 0 1 DRAM space space 1 DRAM space 1 Note: When areas selected in DRAM space are all 8-bit space, the PF2 pin can be used as an I/O port or BREQO. Burst Cycle Select 0 0 Max. 4 words in burst access Max. 8 words in burst access **Burst Cycle Select 1** 0 Burst cycle comprises 1 state 1 Burst cycle comprises 2 states Area 0 Burst ROM Enable 0 Basic bus interface **Burst ROM interface** Idle Cycle Insert 0 Idle cycle not inserted in case of successive external read and external write cycles Idle cycle inserted in case of successive external read and external write cycles 1 Idle Cycle Insert 1

0	Idle cycle not inserted in case of successive external read cycles in different areas
1	Idle cycle inserted in case of successive external read cycles in different areas

BCRL—Bus Control Register L H'FED5 **Bus Controller** Bit 6 5 4 3 2 1 0 **BRLE BREQOE** EAE **DDS WDBE** WAITE Initial value: 0 0 1 0 1 1 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W WAIT Pin Enable Wait input by WAIT* pin disabled Wait input by WAIT* pin enabled Note: * The WAIT input pin can be switched between P86 and P53 by means of WAITPS. Write Data Buffer Enable Write data buffer function not used Write data buffer function used Reserved **DACK Timing Select** When DMAC single address transfer is performed in DRAM space, full access is always executed. DACK signal goes low from Tr or T1 cycle Burst access is possible when DMAC single address transfer is performed in DRAM space. DACK signal goes low from Tc1 or T2 cycle Reserved External Address Enable In the H8S/2339 and H8S/2338, addresses H'010000 to H'03FFFF*2 are on-chip ROM • In the H8S/2337, addresses H'010000 to H'01FFFF are on-chip ROM, and addresses H'020000 to H'03FFFF are a reserved area*1 • Addresses H'010000 to H'03FFFF*2 are external addresses in external expanded mode • Reserved area*1 in single-chip mode Notes: 1. Do not access a reserved area.

Addresses H'010000 to H'05FFFF in the H8S/2339.

BREQO Pin Enable

0	BREQO* output disabled
1	BREQO* output enabled

Note: * BREQO output pin can be switched between PF₂ and P5₃ by means of BREQOPS.

Bus Release Enable

0	External bus release disabled
1	External bus release enabled

MCR—Memory Control Register H'FED6 **Bus Controller** Bit 3 2 0 7 6 5 4 1 **TPC** ΒE **RCDM** MXC1 MXC0 RLW1 RLW0 0 0 Initial value: 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Refresh Cycle Wait Control 0 No wait state inserted 1 wait state inserted 1 0 2 wait states inserted 1 3 wait states inserted Multiplex Shift Count 8-bit shift 0 1 9-bit shift 1 0 10-bit shift 1 Reserved RAS Down Mode RAS up mode selected for DRAM interface RAS down mode selected for DRAM interface **Burst Access Enable**

TP Cycle Control

0	1-state precharge cycle is inserted
1	2-state precharge cycle is inserted

Burst disabled (always full access)

For DRAM space access, access in fast page mode

DRAMCR—DRAM Control Register H'FED7 **Bus Controller** Bit 7 6 5 4 3 2 1 0 CKS1 **RFSHE RCW RMODE CMF CMIE** CKS2 CKS₀ Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Refresh Counter Clock Select 0 0 Count operation disabled 1 Count uses $\phi/2$ 1 0 Count uses $\phi/8$ 1 Count uses $\phi/32$ 1 0 0 Count uses $\phi/128$ Count uses $\phi/512$ 1 0 Count uses $\phi/2048$ Count uses $\phi/4096$ Compare Match Interrupt Enable Interrupt request (CMI) by CMF flag disabled Interrupt request (CMI) by CMF flag enabled Compare Match Flag [Clearing condition] When 0 is written to CMF after reading CMF = 1 [Setting condition] When RTCNT = RTCOR Refresh Mode Self-refreshing is not performed in software standby mode Self-refreshing is performed in software standby mode **RAS-CAS Wait** Wait state insertion in CAS-before-RAS refreshing disabled RAS falls in T_{Rr} cycle 1 One wait state inserted in CAS-before-RAS refreshing RAS falls in T_{Rc1} cycle Refresh Control

0	Refresh control is not performed
1	Refresh control is performed

RTCNT-	-Refre	sh Timer	Counter		H	'FED8	Bus	Bus Controller			
Bit	:	7	6	5	4	3	2	1	0		
Initial val	ue :	0	0	0	0	0	0	0	0		
Read/Wr	ite :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Internal clock count value

RTCOR—Re	efre	sh Time (Constant 1	Register	H	FED9	Bus Controller				
Bit	:	7	6	5	4	3	2	1	0		
Initial value	:	1	1	1	1	1	1	1	1		
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Sets the period for compare match operations with RTCNT

RAMER—RAM Emulation Register

H'FEDB

Bus Controller (F-ZTAT version only)

Bit : 7 6 5 4 3 2 1 0

- - - RAMS RAM2 RAM1 RAM0

Initial value : 0 0 0 0 0 0 0 0 0 0 Read/Write : — — — R/W R/W R/W R/W

RAM Select. Flash Memory Area Select -

TO WIND COLOUT, I last Michiely Area Colour													
RAMS	RAMS RAM2 RAM1 RAM0		RAM0	RAM Area	Block Name								
0	*	*	*	H'FFDC00 to H'FFEBFF	RAM area, 4 kbytes								
1	0	0	0	H'000000 to H'000FFF	EB0 (4 kbytes)								
			1	H'001000 to H'001FFF	EB1 (4 kbytes)								
		1	0	H'002000 to H'002FFF	EB2 (4 kbytes)								
			1	H'003000 to H'003FFF	EB3 (4 kbytes)								
	1	0	0	H'004000 to H'004FFF	EB4 (4 kbytes)								
			1	H'005000 to H'005FFF	EB5 (4 kbytes)								
		1	0	H'006000 to H'006FFF	EB6 (4 kbytes)								
			1	H'007000 to H'007FFF	EB7 (4 kbytes)								

^{*:} Don't care

DMAC

*: Undefined

MAR0AL—Memory Address Register 0AL **DMAC** H'FEE2 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MAR0AH Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W Bit 15 13 12 10 9 7 14 11 6 MAR0AL Initial value: * Read/Write:

H'FEE0

MAR0AH—Memory Address Register 0AH

In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

IOAR0A—I/C	H'FEE4							DMAC									
Bit :		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IOAR0A :																	
Initial value:	_	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write:	F	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	_														*: (Jnde	fined

In short address mode: Specifies transfer source/transfer destination address In full address mode: Not used

ETCR0A—Tra	H'FEE6								DMAC							
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETCR0A :																
Initial value:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Sequential mode Idle mode Normal mode	ode Transfer counter lle mode															
Repeat mode	Tra	Transfer number storage register Transfer counter														
Block transfer mode		Block size storage register Block size counter														
														*:		fined
MAROBH—M				_					['FE]							OMA(
MAR0BL—Me	emory	y Au	uress	Keg	ister	UBL		1	['FE]	LA					J	OMA(
Bit :	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MAR0BH :	-	_	_	_	_	_	_	_								
Initial value:	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
Read/Write:	_	_	_	_	_	_	_	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAROBL :																
Initial value:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
														*:	Jnde	fined

In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

2

DMAC

0

Initial value: * * * * * * * * * Read/Write: *: Undefined In short address mode: Specifies transfer source/transfer destination address In full address mode: Not used ETCR0B—Transfer Count Register 0B **H'FEEE DMAC** Bit 15 14 13 12 11 10 9 8 7 5 3 2 1 0 6 ETCR0B Initial value: * * * * Sequential mode and Transfer counter idle mode Repeat mode Transfer number storage register Transfer counter Block transfer mode Block transfer counter *: Undefined Note: Not used in normal mode.

H'FEEC

7

5

IOAR0B—I/O Address Register 0B

15

14

13

12

11

10

9

8

Bit

IOAR0B

MAR1AH—Memory Address Register 1AH H'FEF0 **DMAC** MAR1AL—Memory Address Register 1AL **DMAC** H'FEF2 Bit 30 25 31 29 28 27 26 24 23 22 21 20 19 18 17 16 MAR1AH Initial value: 0 0 * 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W Bit 15 14 7 6 3 2 13 12 11 10 9 8 MAR1AL Initial value: *: Undefined

> In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

IOAR1A—I/O Address Register 1A								H'FEF4							DMAC		
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IOAR1A	:																
Initial value	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
															*:	Unde	fined

In short address mode: Specifies transfer source/transfer destination address

In full address mode: Not used

ETCR1A—Transfer Count Register 1A H'FEF6 **DMAC** Bit 15 14 13 12 11 10 9 8 7 3 2 6 5 ETCR1A Initial value: Sequential mode Transfer counter Idle mode Normal mode Repeat mode Transfer number storage register Transfer counter Block transfer mode Block size storage register Block size counter *: Undefined MAR1BH — Memory Address Register 1BH **DMAC** H'FEF8 MAR1BL — Memory Address Register 1BL **DMAC H'FEFA** Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MAR1BH Initial value: 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W Bit 15 14 13 12 11 10 9 8 7 6 5 3 2 0 MAR1BL Initial value: * * *

In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

*: Undefined

IOAR1B—I/O Address Register 1B

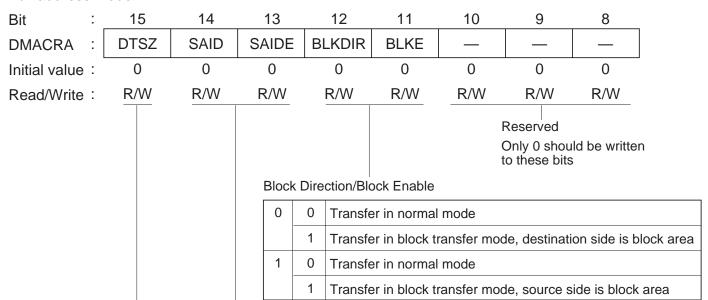
DIL	•	15	14	13	12	11	10	9	8		ь	5	4	3	2	1	0
IOAR1	В :																
Initial v	alue :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/V	Vrite:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/V	V R/W	R/W	R/W	R/W	R/W	R/W	R/W
											* : Undefined						fined
		In sh	ort ac	ddres	s mo	de: S	Specif	ies tr	ansfe	er so	urce/t	ransf	er des	stinat	ion a	ddres	ss
		In ful					•										
		III I GI	ı ada	1000 1	noac). T T O	. 4000	.									
ETCR1E	3—Tra	nsfer	· Cou	int R	egist	er 11	3		F	I'FE	EFE					J	DMA
	Bit	:	15	14	13	12	11	10	9	8	7 (5 5	4	3	2	1	0
	ETCR1	В :															
	Initial va	alue :	*	*	*	*	*	*	*	*	*	* *	*	*	*	*	*
	Read/V	Vrite :	R/W	/ R/W	R/W	R/W	R/W	R/W F	R/W F	R/W F	R/W R	W R/\	W R/V	V R/W	/ R/W	R/W	R/W
Sequen	tial mod	lo															
and idle		10		Transfer counter													
									110	211316	i cour	lGi					
Repeat	mode									_			T				
			ı	ransı	ernu	mber	stora	ge re	gister				ma	nsier	count	.er	
Block tra	ansfer n	node							1- 4-								
			Block transfer counter														
															*:	Unde	efined
Note:	Not use	ed in r	norma	I mod	le.												

RENESAS

H'FEFC

DMAC

Rev.4.00 Sep. 07, 2007 Page 1054 of 1210 REJ09B0245-0400


DMAWER—DMA Write Enable Register **DMAC** H'FF00 7 3 2 1 0 Bit 6 5 4 WE1B WE1A WE0B WE0A DMAWER Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W Write Enable 0A Writes to all bits in DMACR0A, and bits 8, 4, and 0 in DMABCR are disabled Writes to all bits in DMACR0A, and bits 8, 4, and 0 in DMABCR are enabled Write Enable 0B 0 Writes to all bits in DMACR0B, bits 9, 5, and 1 in DMABCR, and bit 4 in DMATCR are disabled 1 Writes to all bits in DMACR0B, bits 9, 5, and 1 in DMABCR, and bit 4 in DMATCR are enabled Write Enable 1A Writes to all bits in DMACR1A, and bits 10, 6, and 2 in DMABCR are disabled 1 Writes to all bits in DMACR1A, and bits 10, 6, and 2 in DMABCR are enabled Write Enable 1B

0	Writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR are disabled
1	Writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR are enabled

DMATCR—DN	AA Term	inal Conti	ol Regist	er H	'FF01			DMAC
Bit :	7	6	5	4	3	2	1	0
DMATCR :	_	_	TEE1	TEE0		_	_	_
Initial value:	0	0	0	0	0	0	0	0
Read/Write:			R/W	0 TE		able 0 output disabled output enabled		
			Transfe	er End Ena	ble 1			
			0 TI	END ₁ pin o	output dis	abled		
			1 T	END₁ pin o	output ena	abled		

DMACR0A—DMA Control Register 0A	H'FF02	DMAC
DMACR0B—DMA Control Register 0B	H'FF03	DMAC
DMACR1A—DMA Control Register 1A	H'FF04	DMAC
DMACR1B—DMA Control Register 1B	H'FF05	DMAC

Full address mode

Source Address Increment/Decrement

0	0	MARA is fixed
	1	MARA is incremented after a data transfer
1	0	MARA is fixed
	1	MARA is decremented after a data transfer

Data Transfer Size

0	Byte-size transfer
1	Word-size transfer

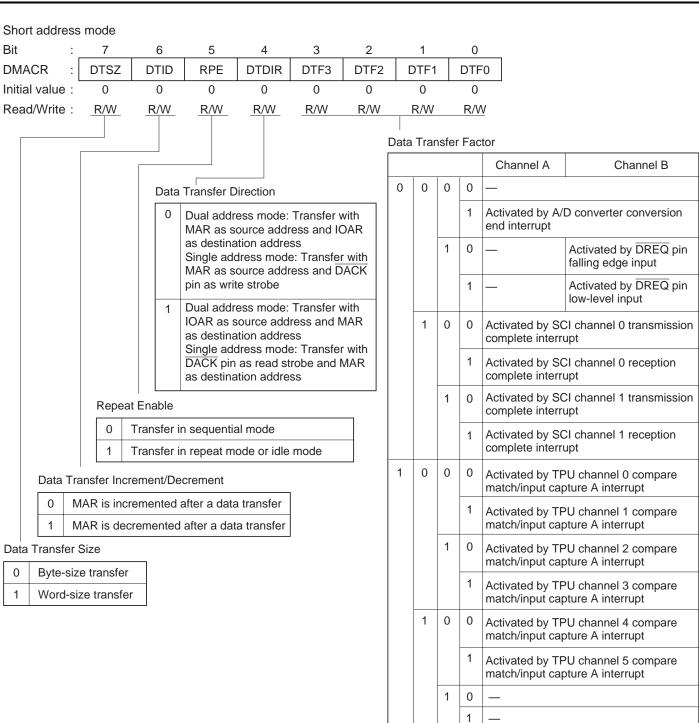
Full address mode (cont)

Bit 5 3 2 0 7 6 4 1 **DMACRB** DAID DAIDE DTF3 DTF2 DTF1 DTF0 0 0 0 0 0 0 0 Initial value: 0 R/W R/W R/W Read/Write: R/W R/W R/W R/W R/W

Reserved

Reserved

Only 0 should be writtento this bit


Only 0 should be writtento this bit

Data Transfer Factor

DTF 3	DTF 2	DTF 1	DTF 0	Block Transfer Mode	Normal Mode		
0	0	0	0	_	_		
			1	Activated by A/D converter conversion end interrupt	_		
		1	0	Activated by DREQ pin falling edge input	Activated by DREQ pin falling edge inpu		
			1	Activated by DREQ pin low-level input	Activated by DREQ pin low-level input		
	1	0	0	Activated by SCI channel 0 transmission-data-empty interrupt	_		
			1	Activated by SCI channel 0 reception-data-full interrupt	_		
		1	0	Activated by SCI channel 1 transmission-data-empty interrupt	Auto-request (cycle steal)		
			1	Activated by SCI channel 1 reception-data-full interrupt	Auto-request (burst		
1	0	0	0	Activated by TPU channel 0 compare match/input capture A interrupt	_		
			1	Activated by TPU channel 1 compare match/input capture A interrupt	_		
		1	0	Activated by TPU channel 2 compare match/input capture A interrupt	_		
			1	Activated by TPU channel 3 compare match/input capture A interrupt	_		
	1	0	0	Activated by TPU channel 4 compare match/input capture A interrupt	_		
			1	Activated by TPU channel 5 compare match/input capture A interrupt	_		
		1	0	_	_		
			1	_	_		

Destination Address Increment/Decrement

0	0	MARB is fixed
	1	MARB is incremented after a data transfer
1	0	MARB is fixed
	1	MARB is decremented after a data transfer

DMABCRH—DMA Band Control Register

DMABCRL—DMA Band Control Register **DMAC** H'FF07 Full address mode Bit 15 14 13 12 10 9 8 11 DMABCRH: FAE1 FAE0 DTA1 DTA₀ Initial value: 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Read/Write: Reserved Reserved Reserved Only 0 should be Only 0 should be Only 0 should be writtento these bits writtento this bit writtento this bit Channel 0 Data Transfer Acknowledge Clearing of selected internal interrupt source at time of DMA transfer is disabled Clearing of selected internal interrupt source at time of 1 DMA transfer is enabled Channel 1 Data Transfer Acknowledge Clearing of selected internal interrupt source at time of DMA transfer is disabled Clearing of selected internal interrupt source at time of 1 DMA transfer is enabled Channel 0 Full Address Enable

H'FF06

DMAC

Channel 1 Full Address Enable

0

0	Short address mode
1	Full address mode

Short address mode
Full address mode

(Continued on next page)

Full address mode (cont) Bit 7 6 5 3 2 0 DMABCRL: DTE1 DTME0 DTE₀ DTIE1B DTIE1A DTIE0B DTME1 DTIE0A Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Channel 0 Data Transfer Interrupt Enable A Transfer end interrupt disabled Transfer end interrupt enabled Channel 0 Data Transfer Interrupt Enable B Transfer suspended interrupt disabled 1 Transfer suspended interrupt enabled Channel 1 Data Transfer Interrupt Enable A Transfer end interrupt disabled 1 Transfer end interrupt enabled Channel 1 Data Transfer Interrupt Enable B 0 Transfer suspended interrupt disabled 1 Transfer suspended interrupt enabled Channel 0 Data Transfer Enable Data transfer disabled 1 Data transfer enabled Channel 0 Data Transfer Master Enable Data transfer disabled. In burst mode, cleared to 0 by an NMI interrupt 1 Data transfer enabled Channel 1 Data Transfer Enable Data transfer disabled 1 Data transfer enabled Channel 1 Data Transfer Master Enable Data transfer disabled. In burst mode, cleared to 0 by an NMI interrupt

Data transfer enabled

(Continued on next page)

Short address m	ode								
Bit :	15	14	13	12	11	10	9	8	
DMABCRH :	FAE1	FAE0	SAE1	SAE0	DTA1B	DTA1A	DTA0B	DTA0A	
Initial value :	0	0	0	0	0	0	0	0	
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
								Changel OA Data Transfer Asknowledge	
								Channel 0A Data Transfer Acknowledge 0 Clearing of selected internal interruption	
								Clearing of selected internal interrup source at time of DMA transfer is disabled	л
								Clearing of selected internal interrupt source at time of DMA transfer is enabled	
							 Channel 0	B Data Transfer Acknowledge	
								aring of selected internal interrupt source me of DMA transfer is disabled	
								aring of selected internal interrupt urce at time of DMA transfer is enabled	
						Channel 1	A Data Tr	ansfer Acknowledge	
								ected internal interrupt source transfer is disabled	
						I I	-	lected internal interrupt of DMA transfer is enabled	
					Channel	1B Data T	ransfer A	cknowledge	
					1 1	-		rnal interrupt ansfer is disabled	
								rnal interrupt ransfer is enabled	
				Chann	el 0B Sing	le Address	: Fnahle		
				0		n dual add		e	
				1		n single ac			
			Channe	I 1B Sing	le Address	Enable			
0 Transfer in dual address mode									
						ddress mod			
		Channel 0							
			ort addres						
			II address						
	Channel	1 Full Add							

Rev.4.00 Sep. 07, 2007 Page 1062 of 1210 REJ09B0245-0400

Short address mode
Full address mode

(Continued on next page)

Short address mode (cont) 7 6 5 4 3 2 0 DMABCRL: DTE1B DTE1A DTE0B DTE0A DTIE1B DTIE1A DTIE0B DTIE0A 0 0 0 0 0 0 0 0 Initial value: R/W R/W R/W R/W R/W R/W Read/Write: R/W R/W Channel 0A Data Transfer Interrupt Enable Transfer end interrupt disabled Transfer end interrupt enabled Channel 0B Data Transfer Interrupt Enable Transfer end interrupt disabled Transfer end interrupt enabled Channel 1A Data Transfer Interrupt Enable Transfer end interrupt disabled 1 Transfer end interrupt enabled Channel 1B Data Transfer Interrupt Enable Transfer end interrupt disabled 0 Transfer end interrupt enabled Channel 0A Data Transfer Enable 0 Data transfer disabled Data transfer enabled Channel 0B Data Transfer Enable Data transfer disabled 1 Data transfer enabled Channel 1A Data Transfer Enable Data transfer disabled Data transfer enabled Channel 1B Data Transfer Enable 0 Data transfer disabled

Data transfer enabled

Appendix B Internal I/O Registers											
ISCRH—IRC	_		0			FF2C FF2D		Interrupt Controller Interrupt Controller			
ISCRH											
Bit	:	15	14	13	12	11	10	9	8		
		IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA		
Initial value	:	0	0	0	0	0	0	0	0		
Read/Write	:	R/W	R/W	R/W	R/W	R/W R/W		R/W	R/W		
				IRQ7	to IRQ4 S	ense Cont	rol				
ISCRL											
Bit	:	7	6	5	4	3	2	1	0		
		IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA		
Initial value	:	0	0	0	0	0	0	0	0		

IRQ3 to IRQ0 Sense Control

R/W

R/W

R/W

IRQnSCB	IRQnSCA	Interrupt Request Generation
0	0	IRQ _n input low level
	1	Falling edge of IRQ _n input
1	0	Rising edge of IRQ _n input
	1	Both falling and rising edges of \overline{IRQ}_n input

(n = 7 to 0)

R/W

R/W

Read/Write:

R/W

R/W

R/W

IER—IRQ Enable Register H'FF2E **Interrupt Controller** Bit 6 5 4 3 2 0 7 1 IRQ7E IRQ6E IRQ5E IRQ4E **IRQ3E** IRQ2E IRQ1E IRQ0E Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W IRQn Enable IRQn interrupt disabled 0 IRQn interrupt enabled 1 (n = 7 to 0)

ISR—IRQ Status Register				H'FF2F			Interrupt Controller		
Bit	:	7	6	5	4	3	2	1	0
		IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial va	ılue :	0	0	0	0	0	0	0	0
Read/W	rite:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Indicate the status of IRQ7 to IRQ0 interrupt requests

Note: * Can only be written with 0 for flag clearing.

DTCERA to DTCERF—DTC Enable Registers

H'FF30 to H'FF35

DTC

Bit 0 7 6 5 4 3 2 1 DTCE7 DTCE6 DTCE1 DTCE5 DTCE4 DTCE3 DTCE2 DTCE0 0 Initial value: 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W

DTC Activation Enable

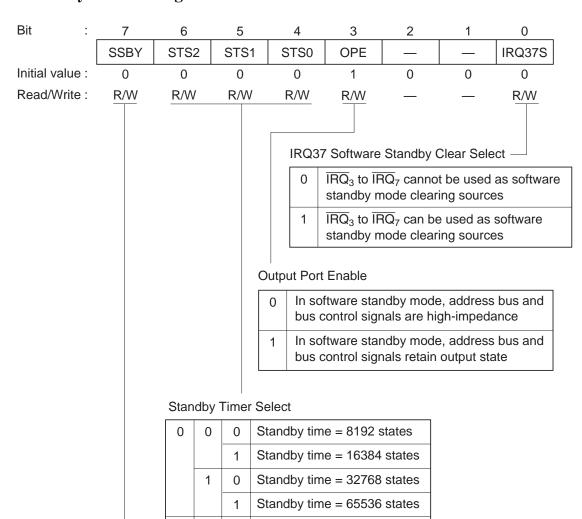
DTC activation by this interrupt is disabled [Clearing conditions]
 When the DISEL bit is 1 and data transfer has ended
 When the specified number of transfers have ended
 DTC activation by this interrupt is enabled [Holding condition]
 When the DISEL bit is 0 and the specified number of

Correspondence between Interrupt Sources and DTCER

transfers have not ended

Register	7	6	5	4	3	2	1	0
DTCERA	IRQ0	IRQ1	IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7
DTCERB	_	ADI	TGI0A	TGI0B	TGI0C	TGI0D	TGI1A	TGI1B
DTCERC	TGI2A	TGI2B	TGI3A	TGI3B	TGI3C	TGI3D	TGI4A	TGI4B
DTCERD	_	_	TGI5A	TGI5B	CMIA0	CMIB0	CMIA1	CMIB1
DTCERE	DMTEND0A	DMTEND0B	DMTEND1A	DMTEND1B	RXI0	TXI0	RXI1	TXI1
DTCERF	RXI2	TXI2	_	_	_	_	_	_

Note: For DTCE bit setting, read/write operations must be performed using bit-manipulation instructions such as BSET and BCLR. For the initial setting only, however, when multiple activation sources are set at one time, it is possible to disable interrupts and write after executing a dummy read on the relevant register.


DTVECR—DTC Vector Register H'FF37 **DTC** Bit 7 5 2 1 0 6 4 3 **SWDTE** DTVEC6 DTVEC5 DTVEC4 DTVEC3 DTVEC2 DTVEC1 DTVEC0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* Sets vector number for DTC software activation **DTC Software Activation Enable** DTC software activation is disabled [Clearing conditions] • When the DISEL bit is 0 and the specified number of transfers have not ended • When SWDTEND is requested to the CPU, then 0 is written to the SWDTE bit 1 DTC software activation is enabled [Holding conditions] When the DISEL bit is 1 and data transfer has ended When the specified number of transfers have ended • During data transfer due to software activation

Note: * DTVEC6 to DTVEC0 bits can be written to when SWDTE = 0.

SBYCR—Standby Control Register

H'FF38

Power-Down State

Software Standby

0

1

1

0

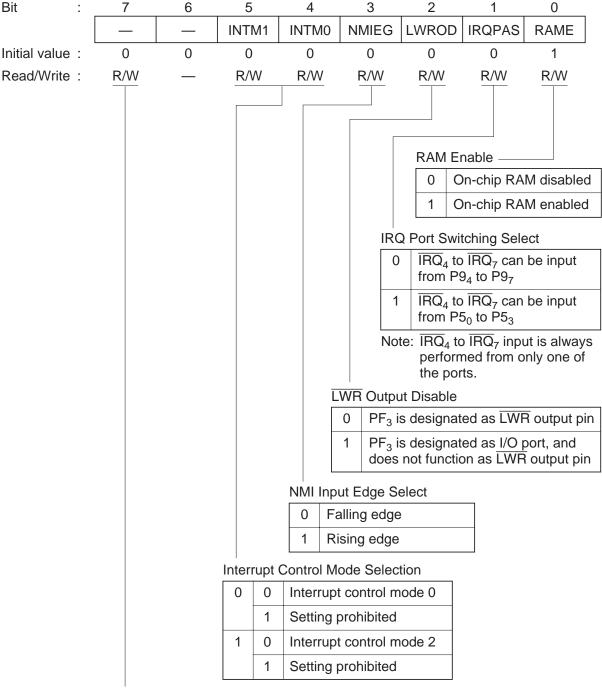
1

0

Reserved

0	Transition to sleep mode after execution of SLEEP instruction
1	Transition to software standby mode after execution of SLEEP instruction

Standby time = 16 states


Standby time = 131072 states

Standby time = 262144 states

SYSCR—System Control Register Bit : 7 6

H'FF39

MCU

Reserved

Only 0 should be written to this bit

SCKCR—System Clock Control Register H'FF3A **Clock Pulse Generator** Bit 7 6 5 4 3 2 1 0 **PSTOP** DIV SCK2 SCK1 SCK0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W Division

Reserved
Only 0 should be written to this bit

Ratio Select

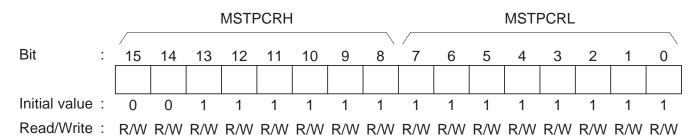
System Clock Select

SCK2	SCK1	SCK0	DIV = 0	DIV = 1
0	0	0	Bus master is in high-speed mode	Bus master is in high-speed mode
		1	Medium-speed clock is φ/2	Clock supplied to entire chip is $\phi/2$
	1	0	Medium-speed clock is φ/4	Clock supplied to entire chip is $\phi/4$
		1	Medium-speed clock is φ/8	Clock supplied to entire chip is \$\phi/8\$
1	0	0	Medium-speed clock is φ/16	_
		1	Medium-speed clock is φ/32	_
	1	_	_	_

PSTOP	Normal Operation	Sleep Mode	Software Standby Mode	Hardware Standby Mode
0	φ output	φ output	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

MDCR—Mode Control Register

H'FF3B


MCU

Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	_	MDS2	MDS1	MDS0
Initial value:	1	0	0	0	0	*	*	*
Read/Write:	_	_	_	_	_	R	R	R

Current mode pin operating mode

Note: * Determined by pins MD₂ to MD₀

MSTPCRH—Module Stop Control Register H MSTPCRL—Module Stop Control Register L H'FF3C H'FF3D Power-Down State
Power-Down State

Specifies module stop mode

0	Module stop mode cleared
1	Module stop mode set

MSTP Bits and On-Chip Supporting Modules

Register	Bits	Module
MSTPCRH	MSTP15	DMAC
	MSTP14	DTC
	MSTP13	TPU
	MSTP12	8-bit timer
	MSTP11	PPG
	MSTP10	DA0,1
	MSTP9	A/D
	MSTP8	_
MSTPCRL	MSTP7	SCI2
	MSTP6	SCI1
	MSTP5	SCI0
	MSTP4	DA2, 3
	MSTP3	_
	MSTP2	_
	MSTP1	_
	MSTP0	_

SYSCR2—System Control Register 2

H'FF42

MCU

(Valid only in F-ZTAT version)

Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	FLSHE	_	_	_
Initial value :	0	0	0	0	0	0	0	0
Read/Write:	_	_	_	_	R/W	_	_	— (R/W)

In H8S/2339 only this bit is R/W, and should only be written with 0

Flash Memory Control Register Enable

0	Flash control register is not selected
	for addresses H'FFFFC8 to HFFFFCB

1 Flash control register is selected for addresses H'FFFC8 to HFFFCB

Only 0 should be written to these bits

Reserved Re	gist	er							
Bit	:	7	6	5	4	3	2	1	0
		_		_	_	_	_	_	_
Initial value) : '	0	0	0	0	0	0	0	0
Read/Write	:	_	_	R/W	_	_	_	_	_
					Res	served			

PFCR1—Po	rt F	unction (Control R	egister 1	Н	'FF45			
Bit	:	7	6	5	4	3	2	1	0
		_		_	_	A23E	A22E	A21E	A20E
Initial value	:	0	0	0	0	1	1	1	1
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				- — A23E A22E A21E A				PR = 1	
		F	Reserved						

Only 0 should be written to these bits

Rev.4.00 Sep. 07, 2007 Page 1074 of 1210 REJ09B0245-0400

PCR—PPG Output Control Register H'FF46 PPG Bit 7 6 5 4 3 2 1 0 G3CMS1 G3CMS0 G2CMS1 G2CMS0 G1CMS1 G1CMS0 G0CMS1 G0CMS0 Initial value: 1 1 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Output Trigger for Pulse Output Group 0 Compare match in TPU channel 0 1 Compare match in TPU channel 1 1 Compare match in TPU channel 2 Compare match in TPU channel 3 Output Trigger for Pulse Output Group 1 Compare match in TPU channel 0 Compare match in TPU channel 1 1 Compare match in TPU channel 2 1 Compare match in TPU channel 3 Output Trigger for Pulse Output Group 2 Compare match in TPU channel 0 1 Compare match in TPU channel 1 1 Compare match in TPU channel 2 Compare match in TPU channel 3

Output Trigger for Pulse Output Group 3

0	0	Compare match in TPU channel 0
	1	Compare match in TPU channel 1
1	0	Compare match in TPU channel 2
	1	Compare match in TPU channel 3

PMR—PPG Output Mode Register **PPG** H'FF47 Bit 3 7 5 4 2 6 0 **G1INV G3NOV G1NOV** G3INV G2INV **G0INV** G2NOV **G0NOV** Initial value: 1 1 1 1 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Pulse Output Group n Normal/Non-Overlap **Operation Select** Normal operation in pulse output group n (output values updated at compare match A in the selected TPU channel)

(n = 3 to 0)

Pulse Output Group n Direct/Inverse Output

0	Inverse output for pulse output group n (low-level output at pin for a 1 in PODRH)
1	Direct output for pulse output group n (high-level output at pin for a 1 in PODRH)

(n = 3 to 0)

Non-overlapping operation in pulse output group n (independent 1 and 0 output at compare match A

or B in the selected TPU channel)

NDERH—Next NDERL—Next		O			'FF48 'FF49			PPG PPG
NDERH								
Bit :	7	6	5	4	3	2	1	0
	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		5.1	0	E /B:				
			· ·	Enable/Dis				
		0	Pulse or	utputs PO ₁	15 to PO ₈ 8	are disable	d	
		1	Pulse ou	utputs PO	₁₅ to PO ₈ a	are enable	d	
NDERL								
Bit :	7	6	5	4	3	2	1	0
	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Pu	lse Output	: Enable/D	isable			
		0				are disable	Ь	
		1			· · ·			
			Puise	outputs PC	7 10 10 6	are enable	u	

PODRH—Output Data Register H	H'FF4A	PPG
PODRL—Output Data Register L	H'FF4B	PPG

PODRH

Bit	:	7	6	5	4	3	2	1	0
		POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Stores output data for use in pulse output

PODRL

Bit 7 6 5 4 3 2 1 0 POD6 POD3 POD2 POD1 POD7 POD5 POD4 POD0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)* R/(W)*

Stores output data for use in pulse output

Note: * A bit that has been set for pulse output by NDER is read-only.

NDRH—Next Data Register H

H'FF4C (FF4E)

PPG

(1) When pulse output group output triggers are the same

(a) Address: H'FF4C

Bit :	7	6	5	4	3	2	1	0
	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores the next data for pulse output groups 3 and 2

(b) Address: H'FF4E

Bit	:	7	6	5	4	3	2	1	0
		_			_	_	_		_
Initial value	:	1	1	1	1	1	1	1	1
Read/Write	:								

(2) When pulse output group output triggers are different

(a) Address: H'FF4C

Bit :	7	6	5	4	3	2	1	0
	NDR15	NDR14	NDR13	NDR12		_	_	_
Initial value:	0	0	0	0	1	1	1	1
Read/Write:	R/W	R/W	R/W	R/W	_	_	_	_

Stores the next data for pulse output group 3

(b) Address: H'FF4E

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	NDR11	NDR10	NDR9	NDR8
Initial value	e :	1	1	1	1	0	0	0	0
Read/Write	Э:	_	_	_	_	R/W	R/W	R/W	R/W

Stores the next data for pulse output group 2

NDRL—Next Data Register L

H'FF4D (FF4F)

PPG

- (1) When pulse output group output triggers are the same
 - (a) Address: H'FF4D

Bit 7 5 3 2 1 0 6 4 NDR7 NDR6 NDR5 NDR4 NDR3 NDR2 NDR1 NDR0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W

Stores the next data for pulse output groups 1 and 0

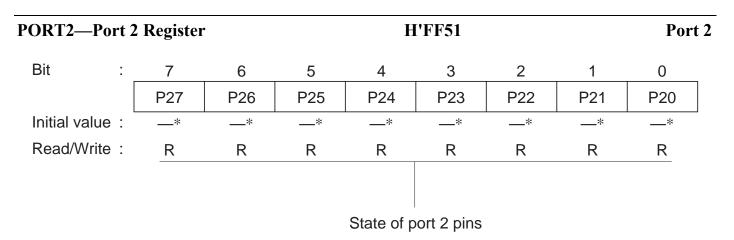
(b) Address: H'FF4F

- (2) When pulse output group output triggers are different
 - (a) Address: H'FF4D

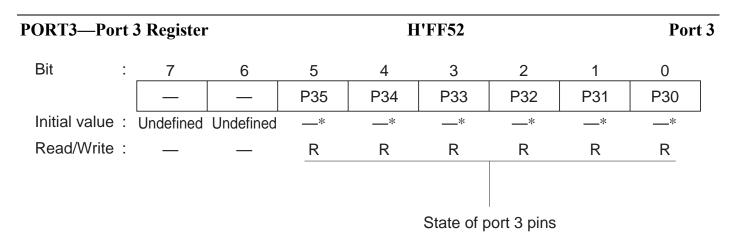
Bit 7 6 5 4 2 0 NDR7 NDR6 NDR5 NDR4 Initial value: 1 1 0 0 0 0 Read/Write: R/W R/W R/W R/W

Stores the next data for pulse output group 1

(b) Address: H'FF4F


Bit 7 3 2 1 0 NDR3 NDR2 NDR1 NDR0 Initial value: 0 0 0 0 Read/Write: R/W R/W R/W R/W

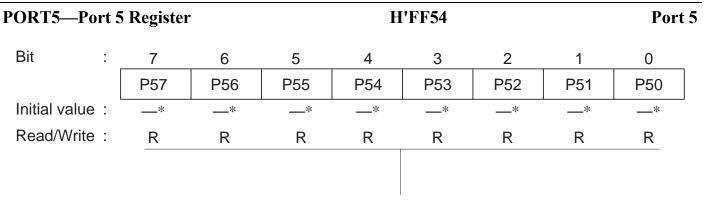
RENESAS


Stores the next data for pulse output group 0

PORT1—Port 1 Register **H'FF50** Port 1 Bit 6 5 4 2 0 7 3 1 P17 P16 P15 P14 P13 P12 P11 P10 Initial value: ___* ___* ___* Read/Write: R R R R R R R R State of port 1 pins

Note: * Determined by the state of pins P1₇ to P1₀.

Note: * Determined by the state of pins P2₇ to P2₀.



Note: * Determined by the state of pins $P3_5$ to $P3_0$.

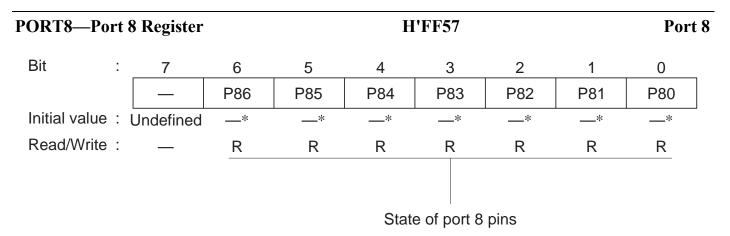
Port 4 **H'FF53 PORT4—Port 4 Register** Bit 7 6 5 4 3 2 1 0 P47 P40 P46 P45 P44 P43 P42 P41 ___* Initial value: ___* ___* ___* ___* ___* Read/Write: R R R R R R R R

State of port 4 pins

Note: * Determined by the state of pins P4₇ to P4₀.

State of port 5 pins

Note: * Determined by the state of pins $P5_7$ to $P5_0$.


PORT6—Port	6 Register	•			Port 6				
Bit :	7	6	5	4	3	2	1	0	_
	P67	P66	P65	P64	P63	P62	P61	P60	
Initial value:	*	*	*	*	*	*	*	*	_
Read/Write:	R	R	R	R	R	R	R	R	
							-		

State of port 6 pins

Note: * Determined by the state of pins $P6_7$ to $P6_0$.

PORT7—Port 7 Register **H'FF56** Port 7 Bit 6 5 4 3 2 1 0 P75 P74 P73 P72 P71 P70 Initial value: ___* ___* Undefined Undefined Read/Write: R R R R R R State of port 7 pins

Note: * Determined by the state of pins P7₅ to P7₀.

Note: * Determined by the state of pins P8₆ to P8₀.

PORT9—Por	Register (•		Port 9					
Bit	:	7	6	5	4	3	2	1	0
		P97	P96	P95	P94	P93	P92	_	_
Initial value:		*	*	*	*	*	*	Undefined	Undefined
Read/Write	:	R	R	R	R	R	R		
				State of n	ort 9 pins				

Note: * Determined by the state of pins P9₇ to P9₂.

PORTA—Port A Register

H'FF59

Port A

Bit 2 7 6 5 4 3 1 0 PA6 PA7 PA5 PA4 PA3 PA2 PA1 PA0 Initial value: ___* ___* ___* ___* ___* <u>--</u>* Read/Write: R R R R R R R R

State of port A pins

Note: * Determined by the state of pins PA₇ to PA₀.

PORTB—Port B Register H'FF5A Port B 2 0 Bit 5 7 6 4 3 1 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Initial value: ___* <u>--</u>* ___* ___* ___* ___* ___* Read/Write: R R R R R R R R

State of port B pins

Note: * Determined by the state of pins PB₇ to PB₀.

PORTC-	—Port (C Registe	r		Port C					
Bit	:	7	6	5	4	3	2	1	0	
		PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	
Initial va	alue :	*	*	*	*	*	*	*	*	
Read/W	/rite :	R	R	R	R	R	R	R	R	

State of port C pins

Note: * Determined by the state of pins PC_7 to PC_0 .

Port D **PORTD—Port D Register** H'FF5C Bit 7 6 5 2 0 4 3 1 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Initial value: ___* ___* ___* ___* ___* Read/Write: R R R R R R R R

State of port D pins

Note: * Determined by the state of pins PD₇ to PD₀.

PORTE—Port E Register					Port E					
Bit	:	7	6	5	4	3	2	1	0	_
		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	
Initial valu	ue:	*	*	*	*	*	*	*	*	_
Read/Wri	te:	R	R	R	R	R	R	R	R	
					State of p	ort E pins				

Note: * Determined by the state of pins PE₇ to PE₀.

PORTF—P	F Register	r		Port F						
Bit	:	7	6	5	4	3	2	1	0	
		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	
Initial valu	e :	*	*	*	*	*	*	*	*	_
Read/Write	ead/Write:	R	R	R	R	R	R	R	R	
					State of p	ort F pins				

Note: * Determined by the state of pins PF_7 to PF_0 .

Port G **PORTG—Port G Register** H'FF5F Bit 3 2 1 0 4 6 PG4 PG3 PG2 PG1 PG0 ___* Initial value: Undefined Undefined Read/Write: R R R R R State of port G pins

Note: * Determined by the state of pins PG₄ to PG₀.

P1DR—Port	1	Data Regi	ster		H'FF60					
Bit	:	7	6	5	4	3	2	1	0	_
		P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	
Initial value	:	0	0	0	0	0	0	0	0	_
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Stores output data for port 1 pins (P1₇ to P1₀)

P2DR—Po	ort 2 l	Data Regi	ster		Н	Port 2				
Bit	:	7	6	5	4	3	2	1	0	
		P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR	
Initial val	ue :	0	0	0	0	0	0	0	0	
Read/Wr	ite:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

RENESAS

Stores output data for port 2 pins (P2₇ to P2₀)

P3DR—Port 3 Data Register **H'FF62** Port 3 Bit 7 6 5 4 3 2 1 0 P33DR P35DR P34DR P32DR P31DR P30DR 0 0 0 0 Initial value: Undefined Undefined 0 0 Read/Write: R/W R/W R/W R/W R/W R/W Stores output data for port 3 pins (P3₅ to P3₀)

P5DR—Port 5 Data Register					H'FF64					
Bit	:	7	6	5	4	3	2	1	0	
		_	_	_	_	P53DR	P52DR	P51DR	P50DR	
Initial value	:	Undefined	Undefined	Undefined	Undefined	0	0	0	0	,
Read/Write	:	_	_	_	_	R/W	R/W	R/W	R/W	

Stores output data for port 5 pins (P5₃ to P5₀)

Bit : 7	6	5	4	0			
P67DI			7	3	2	1	0
1 07 01	R P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR
Initial value: 0	0	0	0	0	0	0	0
Read/Write: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores output data for port 6 pins (P6₇ to P6₀)

P7DR—Port 7	Data Regi	ster			Port 7				
Bit :	7	6	5	4	3	2	1	0	
	_	_	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR	
Initial value:	Undefined	Undefined	0	0	0	0	0	0	•
Read/Write:	_	_	R/W	R/W	R/W	R/W	R/W	R/W	
Stores output data for port 7 pins (P75 to F								P7 ₀)	

P8DR—P	ort 8	Data Regi	ster		Port 8					
Bit	:	7	6	5	4	3	2	1	0	
		_	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR	
Initial va	lue :	Undefined	0	0	0	0	0	0	0	,
Read/W	rite:	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			Sto	res output	data for p	ort 8 pins	(P8 ₆ to P8	0)		

P9DR—Port 9	Data Reg	ister		E		Port 9			
Bit :	7	6	5	4	3	2	1	0	
	P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	_	_	
Initial value:	0	0	0	0	0	0	Undefined	Undefined	
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	_	_	

Stores output data for port 9 pins (P9₇ to P9₂)

Rev.4.00 Sep. 07, 2007 Page 1088 of 1210

PADR—Por	Data Reg	gister		Н	Port A					
Bit	:	7	6	5	4	3	2	1	0	
		PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR	
Initial value	: '	0	0	0	0	0	0	0	0	
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Stores output data for port A pins (PA₇ to PA₀)

PBDR—Por	Data Reg	ister		Port B						
Bit	:	7	6	5	4	3	2	1	0	
		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	
Initial value	:	0	0	0	0	0	0	0	0	,
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Stores output data for port B pins (PB₇ to PB₀)

PCDR—P	Data Reg	gister			Port C				
Bit	:	7	6	5	4	3	2	1	0
		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial valu	ue :	0	0	0	0	0	0	0	0
Read/Wri	te:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores output data for port C pins (PC₇ to PC₀)

PDDR—Port D		H		Port D					
Bit :	7	6	5	4	3	2	1	0	
	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	
Initial value:	0	0	0	0	0	0	0	0	
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		•							

Stores output data for port D pins (PD₇ to PD₀)

PEDR—Port E	Data Reg	ister		Н	Port E				
Bit :	7	6	5	4	3	2	1	0	
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	
Initial value:	0	0	0	0	0	0	0	0	
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Stores output data for port E pins (PE₇ to PE₀)

PFDR—Port	Data Reg	ister		Port F						
Bit	:	7	6	5	4	3	2	1	0	
		PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	
Initial value	:	0	0	0	0	0	0	0	0	
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Stores output data for port F pins (PF₇ to PF₀)

PGDR—Port G Data Register					H'FF6F					
Bit	:	7	6	5	4	3	2	1	0	_
		_	_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0	1
Read/Write	:		_		R/W	R/W	R/W	R/W	R/W	
					Stores	output dot	a for part (C nina (DC	to DC)	
					Stores	output dat	a for port (pins (Pc	p_4 (0 PG ₀)	

PAPCR—Port A MOS Pull-Up Control Register H'FF70 Port										
Bit	:	7	6	5	4	3	2	1	0	
		PA7PCR	PA6PCR	PA5PCR	PA4PCR	PA3PCR	PA2PCR	PA1PCR	PA0PCR	
Initial value	e :	0	0	0	0	0	0	0	0	•
Read/Write	e :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Controls the MOS input pull-up function incorporated into port A on a bit-by-bit basis

PBPCR—Port B MOS Pull-Up Control Register H'FF71 Port B										ort B
Bit	:	7	6	5	4	3	2	1	0	_
		PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	
Initial value	:	0	0	0	0	0	0	0	0	•
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Controls the MOS input pull-up function incorporated into port B on a bit-by-bit basis

Bit	:	7	6	5	4	3	2	1	0
		PC7PCR	PC6PCF	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
nitial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PCR—Po	rt]	D MOS P	ull-Up Co	ontrol Reg	gister I	H'FF73			Po
	rt]	D MOS P	ull-Up Co	ontrol Res	gister I	H'FF73 3	2	1	Po :
PCR—Po	rt] :	7	6	`	4	3	T		0
iit	:	7	6	5	4	3	T		0
	:	7 PD7PCR	6 PD6PCR	5 PD5PCR	4 PD4PCR	3 PD3PCR	PD2PCR	PD1PCR	0 PD0PCR

PEPCR—Port E MOS Pull-Up Control Register

Bit	:	7	6	5	4	3	2	1	0
		PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Controls the MOS input pull-up function incorporated into port E on a bit-by-bit basis

P3ODR—Port 3 Open Drain Control Register H'FF76 Port 3										
Bit	:	7	6	5	4	3	2	1	0	_
		_	_	P35ODR	P34ODR	P33ODR	P32ODR	P31ODR	P30ODR	
Initial value	:	Undefined	Undefined	0	0	0	0	0	0	
Read/Write	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

Controls the PMOS on/off status for each port 3 pin (P35 to P30)

PAODR—Port A Open Drain Control Register H'FF77 Port A										
Bit :	7	6	5	4	3	2	1	0		
	PA7ODR	PA6ODR	PA5ODR	PA4ODR	PA3ODR	PA2ODR	PA10DR	PA0ODR		
Initial value:	0	0	0	0	0	0	0	0		
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Controls the PMOS on/off status for each port A pin (PA_7 to PA_0)

SCI0 SMR0—Serial Mode Register 0 **H'FF78** Bit 2 0 7 6 5 4 3 1 C/\overline{A} PΕ O/E CKS1 **CHR STOP** MP CKS0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Clock Select 0 0 1 1 0 Multiprocessor Mode 0 Multiprocessor function disabled 1 Multiprocessor format selected Stop Bit Length 0 1 stop bit 1 2 stop bits Parity Mode 0 Even parity 1 Odd parity Parity Enable 0 Parity bit addition and checking disabled 1 Parity bit addition and checking enabled Character Length 0 8-bit data 7-bit data* Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted. Asynchronous Mode/Synchronous Mode Select

0	Asynchronous mode
1	Synchronous mode

SMR0—Serial Mode Register 0 **H'FF78 Smart Card Interface 0** Bit 7 6 5 4 3 2 1 0 GM **BLK** PΕ O/E BCP1 BCP0 CKS₁ CKS₀ Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Clock Select φ clock 1 1 0 1 ₀/64 clock Base Clock Pulse BCP1 BCP0 Base Clock Pulse 0 32 clocks 1 64 clocks 1 0 372 clocks 1 256 clocks Parity Mode Even parity 0 1 Odd parity Parity Enable (Set to 1 when using the smart card interface) Setting prohibited Parity bit addition and checking enabled Block Transfer Mode Select 0 Normal smart card interface mode 1 Block transfer mode GSM Mode Normal smart card interface mode operation • TEND flag generated 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit · Clock output on/off control only

Note: etu: Elementary time unit (time for transfer of one bit)

GSM mode smart card interface mode operation

• TEND flag generated 11.0 etu after beginning of start bit

• Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

1

BRR0—I	Bit Rate	e Register	0 0		Н	'FF79	SCI0, Sn	nart Card	Interface 0
Bit	:	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1
Read/W	/rite :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Sets the serial transfer bit rate

Note: For details, see section 14.2.8, Bit Rate Register (BRR).

SCR0—Serial Control Register 0

H'FF7A

SCI0

Bit :	7	6	5	4	3	2		1		0		
	TIE	RIE	TE	RE	MPIE	TEIE		CKE	≣1	CKE0		
Initial value:	0	0	0	0	0	0		0		0		
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	_	R/V	N	R/W		
							Clo	ck En	nable			
							0	0	Asyı	nchronous de	Internal clock/S as I/O port	CK pin functions
									Syn	chronous de	Internal clock/S as serial clock of	CK pin functions output
								1	Asyı	nchronous de	Internal clock/S as clock output	CK pin functions
									Syn	chronous de	Internal clock/S as serial clock of	CK pin functions output
							1	0	Asyı	nchronous de	External clock/s as clock input*2	SCK pin functions
									Syn	chronous de	External clock/s as serial clock i	SCK pin functions
								1	Asyı	nchronous de	as clock input*2	
									Syn	chronous de	External clock/S as serial clock i	SCK pin functions nput
						N	lotes					ency as the bit rate. times the bit rate.
					Tr	ansmit l	End		-		Ta inequency 10	unies the bit rate.
											equest disabled	
						Tran	smi	t-end	linter	rrupt (TEI) re	equest enabled	
				Mu	Itiprocess	or Interr	upt	Enab	ole			
				Го	-i	ocessor	<u> </u>			abled		
					[Cleari	ng cond n the MF	ition	s]				
										received		
				1		ocessor						
											s, receive-error in , and ORER flag	
											or bit set to 1 is r	
			Re	eceive Ena	able							
				Recep	tion disab	led						
				Recep	tion enabl	ed						
		Tra	ansmit En	able								
		0	Trans	mission di	sabled							
		1	Trans	mission er	abled							
	Re	ceive Inte	rrupt Enab	ole								
	С	Receiv	e-data-ful	l interrupt (
	1	Receiv	e-data-ful	errupt (ERI	(RXI) requ	est and						
_				errupt (ÉRI) request	enabled						
Tran	smit Interr	upt Enable	9									

	Transmit-data-empty interrupt (TXI) request disabled
1	Transmit-data-empty interrupt (TXI) request enabled

SCR0—Serial Control Register 0 H'FF7A **Smart Card Interface 0** Bit 7 6 5 4 3 2 0 TIE RIE TE RE **MPIE** TEIE CKE1 CKE0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Clock Enable **SCMR SMR** SCR setting SCK pin function **SMIF** GM CKE1 CKE0 See SCI specification Operates as port I/O 1 0 0 0 Clock output as SCK 0 1 0 output pin Fixed-low output as 1 0 0 SCK output pin Clock output as SCK 1 1 0 1 output pin Fixed-high output as 1 0 1 1 SCK output pin Clock output as SCK 1 1 output pin Transmit End Interrupt Enable Transmit-end interrupt (TEI) request disabled 1 Transmit-end interrupt (TEI) request enabled Multiprocessor Interrupt Enable Multiprocessor interrupts disabled [Clearing conditions] • When the MPIE bit is cleared to 0 • When data with MPB = 1 is received Multiprocessor interrupts enabled Receive-data-full interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received Receive Enable Reception disabled Reception enabled Transmit Enable

Receive Interrupt Enable

0 Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request disabled

Transmission disabled

Transmission enabled

1 Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request enabled

Transmit Interrupt Enable

Transmit-data-empty interrupt (TXI) request disabled
 Transmit-data-empty interrupt (TXI) request enabled

TDR0—Transmit Data Register 0 **SCI0, Smart Card Interface 0** H'FF7B Bit 7 6 5 4 3 2 1 0 Initial value: 1 1 1 1 1 1 1 1 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W

Stores data for serial transmission

SSR0—Serial Status Register 0

H'FF7C

SCI0

Bit :	7	6	5	4	3	2	1	0
	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial value:	1	0	0	0	0	1	0	0
Read/Write:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W
							М	lultiprocessor Bit Transfer
								0 Data with a 0 multiprocessor bit is transmitted
								1 Data with a 1 multiprocessor bit is transmitted
						M	ultiproces	sor Bit
						C		ring condition] data with a 0 multiprocessor bit is received
								ng condition] data with a 1 multiprocessor bit is received
					Tra	ansmit En	d	
					0	• Whe	ing conditi n 0 is writt n the DMA writes data	ten to TDRE after reading TDRE = 1 AC or DTC is activated by a TXI interrupt
					1	• Whe	n TDRE =	ons] bit in SCR is 0 that 1 at transmission of the last bit of a 1-byte character
				Do	L	36116	ai transiiit	Character
				0	rity Error	ng conditio	nl	
								fter reading PER = 1
				1	When, i		n, the num	nber of 1 bits in the receive data plus the parity bit etting (even or odd) specified by the O/E bit in SMR
			Fra	ــــا ∣ ıming Erro				taming (even er each epoemica 2) and e/_ zhan ellin
			0		ng conditio	nl		
							ter readin	g FER = 1
				When t	condition he SCI char nen recept	ecks the s		he end of the receive op bit is 0
		Ov	— ∣ errun Erro	r				
		0		ng condition	on]			
			+		to ORER	after read	ing ORER	R = 1
] erial recept	ion is com	pleted wh	ile
	Re	∟ ∣ ceive Data	Register	Full				
	0	[Clearin	g conditio	ns]	after read	ding RDRI	= 1	
		When	the DMAC	or DTC i				and reads data from RDR
		When s	condition] erial recep SR to RDR	tion ends	normally a	and receiv	e data is t	ransferred
Transmi	t Data Reg	jister Emp	ty					

Transmit Data Register Empty

0	[Clearing conditions] • When 0 is written to TDRE after reading TDRE = 1 • When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR
1	[Setting conditions] • When the TE bit in SCR is 0 • When data is transferred from TDR to TSR and data can be written to TDR

Note: * Can only be written with 0 for flag clearing.

Rev.4.00 Sep. 07, 2007 Page 1100 of 1210 REJ09B0245-0400

SSR0—Serial Status Register 0

H'FF7C

Smart Card Interface 0

t	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
tial value		1	0	0	0	0	1	0	0
ead/Write	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	$\frac{R}{\top}$	<u>R/W</u>
								М	Multiprocessor Bit Transfer
									0 Data with a 0 multiprocessor bit is transmitted
									1 Data with a 1 multiprocessor bit is transmitted
								ultiprocess	
							0		ring condition] n data with a 0 multiprocessor bit is received
						_		When	ng condition] n data with a 1 multiprocessor bit is received
							ransmit En		progress
							[Clear	ing conditi	tions]
							• Whe		ten to TDRE after reading TDRE = 1 AC or DTC is activated by a TXI interrupt and TDR
							1 Transı	mission ha	as ended
								g conditio eset. or in	ons] I standby mode or module stop mode
							• Whe	n the TE b	bit in SCR is 0 and the ERS bit is 0
									= 1 and ERS = 0 (normal transmission) 2.5 etu after of a 1-byte serial character when GM = 0 and BLK = 0
									= 1 and ERS = 0 (normal transmission) 1.5 etu after of a 1-byte serial character when GM = 0 and BLK = 1
							• Whe	n TDRE =	= 1 and ERS = 0 (normal transmission) 1.0 etu after
									of a 1-byte serial character when GM = 1 and BLK = 0 and ERS = 0 (normal transmission) 1.0 etu after
							trans	mission of	of a 1-byte serial character when GM = 1 and BLK = 1
							ote: etu (Ele	ementary t	time unit): Interval for transfer of one bit
					Pa	rity Error	na conditio	nl	
							ng conditio 0 is written		fter reading PER = 1
					1		g condition		
									nber of 1 bits in the receive data plus the parity bit etting (even or odd) specified by the O/E bit in SMR
				Er	ror Signal	Status			
							eceived no	mally, and	d there is no error signal
						ng condition		nde or mo	odule stop mode
									ling ERS = 1
				1		ignal indic		ction of pa	arity error has been sent by receiving device
				L			0	<u>'</u>	he low level not affect the ERS flag, which retains its prior state.
			Ov	errun Erro		g tile i L i	on in ook t	0 0 0063 1	not affect the ENO hag, which retains its prior state.
			0		ng condition	 n]			
				When	0 is writter	to ORER	after read	ing ORER	R = 1
					g conditior the next se		otion is com	pleted wh	nile RDRF = 1
		Re	ceive Data	Register	Full				
		0	F	g condition		- ofter rec	dina BDB	= 1	
							ading RDRF d by an RX		t and reads data from RDR
		1		condition					transfermed from DOD to DDD
			When s	erial rece	ption ends	normally	and receiv	e data is ti	transferred from RSR to RDR
			jister Emp	ty					
0		earing cor /hen 0 is v		DRE afte	r reading	DRE = 1			
				TC is act	ivated by a	TXI inter	rupt and wi	ites data t	to TDR
1	• W		E bit in S0		TDD to TO	D and dat	a can he w	ritten to T	TDP

Note: * Can only be written with 0 for flag clearing.

• When data is transferred from TDR to TSR and data can be written to TDR

RDR0—Receive Data Register 0

H'FF7D SCI0, Smart Card Interface 0

Bit	:	7	6	5	4	3	2	1	0
Initial value:		0	0	0	0	0	0	0	0
Read/Wr	ite:	R	R	R	R	R	R	R	R

Stores received serial data

SCMR0—Smart Card Mode Register 0

H'FF7E SCI0, Smart Card Interface 0

Bit :	7	6	5	4	3	2	1	0
	-	_	_	_	SDIR	SINV	_	SMIF
Initial value :	1	1	1	1	0	0	1	0
Read/Write:	_	_	_	_	R/W	R/W	_	R/W

Smart Card ——Interface Mode Select

0	Smart card interface function is disabled
1	Smart card interface function is enabled

Smart Card Data Invert

0	TDR contents are transmitted as they are Receive data is stored in RDR as it is
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

SMR1—Serial Mode Register 1 H'FF80 **SCI1** Bit 2 7 5 1 0 6 4 3 C/\overline{A} **CHR** PE O/E **STOP** MP CKS1 CKS0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Clock Select 0 1 1 0 φ/64 clock 1 Multiprocessor Mode Multiprocessor function disabled 1 Multiprocessor format selected Stop Bit Length 0 1 stop bit 1 2 stop bits Parity Mode Even parity 0 1 Odd parity Parity Enable Parity bit addition and checking disabled 0 1 Parity bit addition and checking enabled Character Length 0 8-bit data 1 7-bit data* Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted. Asynchronous Mode/Synchronous Mode Select

0	Asynchronous mode
1	Synchronous mode

Smart Card Interface 1 SMR1—Serial Mode Register 1 H'FF80 Bit 7 6 5 4 3 2 1 0 PΕ O/E BCP1 BCP0 CKS₁ CKS₀ **GM BLK** Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Clock Select 1 ₀/4 clock 1 0 Base Clock Pulse BCP1 BCP0 Base Clock Pulse 0 0 32 clocks 1 64 clocks 1 0 372 clocks 1 256 clocks Parity Mode (Set to 1 when using the smart card interface) Even parity 1 Odd parity Parity Enable Setting prohibited 1 Parity bit addition and checking enabled Block Transfer Mode Select 0 Normal smart card interface mode 1 Block transfer mode **GSM Mode** 0 Normal smart card interface mode operation • TEND flag generated 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit • Clock output on/off control only

Note: etu: Elementary time unit (time for transfer of one bit)

GSM mode smart card interface mode operation

• TEND flag generated 11.0 etu after beginning of start bit

1

• Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

BRR1—Bit Rate Register 1 **H'FF81 SCI1, Smart Card Interface 1** Bit 7 6 5 4 3 2 1 0 Initial value: 1 1 1 1 1 1 1 1 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W

Sets the serial transfer bit rate

Note: For details, see section 14.2.8, Bit Rate Register (BRR).

SCR1—Serial Control Register 1 **H'FF82** SCI1 Bit 7 5 4 3 2 0 TIE RIE TE **MPIE** TEIE CKE₁ CKE0 RE Initial value: 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Clock Enable Internal clock/SCK pin functions Asynchronous 0 as I/O port mode Synchronous Internal clock/SCK pin functions mode as serial clock output Asynchronous Internal clock/SCK pin functions mode as clock output*1 Synchronous Internal clock/SCK pin functions mode as serial clock output Asynchronous External clock/SCK pin functions mode as clock input*2 Synchronous External clock/SCK pin functions mode as serial clock input External clock/SCK pin functions Asynchronous mode as clock input*2 External clock/SCK pin functions Synchronous mode as serial clock input Notes: 1. Outputs a clock of the same frequency as the bit rate. 2. Inputs a clock with a frequency 16 times the bit rate. Transmit End Interrupt Enable Transmit-end interrupt (TEI) request disabled Transmit-end interrupt (TEI) request enabled Multiprocessor Interrupt Enable Multiprocessor interrupts disabled [Clearing conditions] When the MPIE bit is cleared to 0 • When data with MPB = 1 is received Multiprocessor interrupts enabled Receive-data-full interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received Receive Enable Reception disabled Reception enabled Transmit Enable Transmission disabled Transmission enabled

Receive Interrupt Enable

0	Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request disabled
1	Receive-data-full interrupt (RXI) request and

Transmit Interrupt Enable

0	Transmit-data-empty interrupt (TXI) request disabled Transmit-data-empty interrupt (TXI) request enabled
1	Transmit-data-empty interrupt (TXI) request enabled

SCR1—Serial Control Register 1

H'FF82

Smart Card Interface 1

Bit :	7	6	5	4	3	2	1	0
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W_	R/W_	R/W	R/W

Clock Enable

SCMR	SMR	SCR	setting	SCK pin function	
SMIF	GM	CKE1	CKE0	SCK pin function	
0		See	SCI spe	ecification	
1	0	0	0	Operates as port I/O pin	
1	0	0	1	Clock output as SCK output pin	
1	1	0	0	Fixed-low output as SCK output pin	
1	1	0	1	Clock output as SCK output pin	
1	1	1	0	Fixed-high output as SCK output pin	
1 1		1	1	Clock output as SCK output pin	

Transmit End Interrupt Enable

Transmit-end interrupt (TEI) request disabledTransmit-end interrupt (TEI) request enabled

Multiprocessor Interrupt Enable

- 0 Multiprocessor interrupts disabled [Clearing conditions]
 - When the MPIE bit is cleared to 0
 - When data with MPB = 1 is received
- 1 Multiprocessor interrupts enabled

Receive-data-full interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received

Receive Enable

0 Reception disabled1 Reception enabled

Transmit Enable

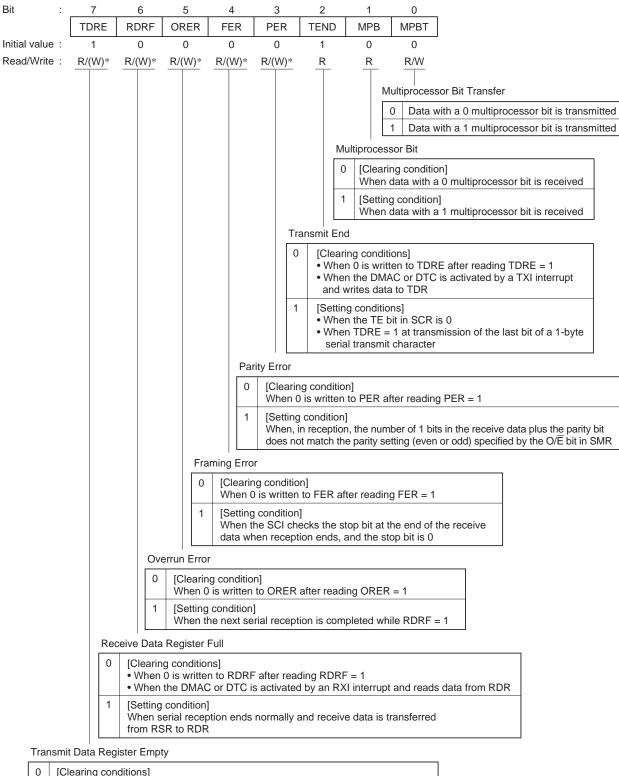
0 Transmission disabled1 Transmission enabled

Receive Interrupt Enable

Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request disabled
 Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request enabled

Transmit Interrupt Enable

0	Transmit-data-empty interrupt (TXI) request disabled
1	Transmit-data-empty interrupt (TXI) request enabled


TDR1—Tr	ansn	nit Data R	Register 1	'FF83	SCI1, Sn	nart Card	Interface 1		
Bit	:	7	6	5	4	3	2	1	0
Initial valu	ie :	1	1	1	1	1	1	1	1
Read/Wri	te:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

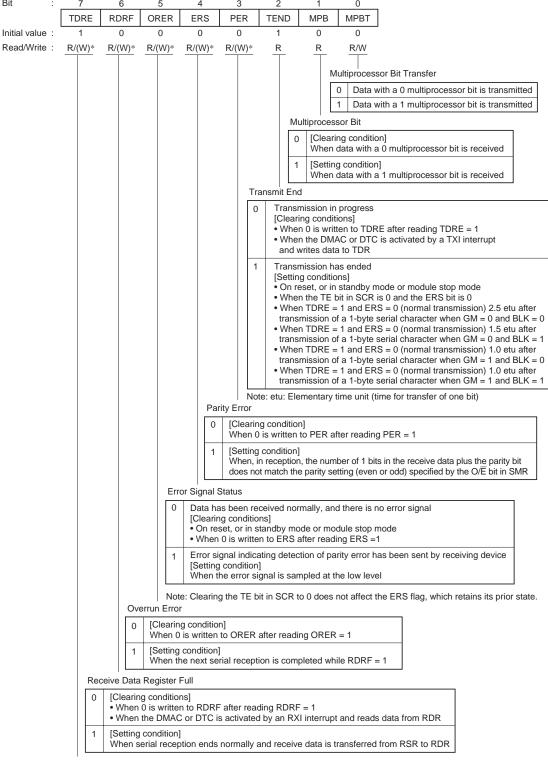
Stores data for serial transmission

SSR1—Serial Status Register 1

H'FF84

SCI1

0 [Clearing conditions]
• When 0 is written to TDRE after reading TDRE = 1
• When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR


1 [Setting conditions]
• When the TE bit in SCR is 0
• When data is transferred from TDR to TSR and data can be written to TDR

Note: * Can only be written with 0 for flag clearing.

SSR1—Serial Status Register 1

H'FF84

Smart Card Interface 1

Transmit Data Register Empty

0 [Clearing conditions]
• When 0 is written to TDRE after reading TDRE = 1
• When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR

1 [Setting conditions]
• When the TE bit in SCR is 0
• When data is transferred from TDR to TSR and data can be written to TDR

Note: * Can only be written with 0 for flag clearing.

REJ09B0245-0400

RDR1—Receive Data Register 1 **H'FF85 SCI1, Smart Card Interface 1** Bit 7 5 3 2 0 6 4 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R R R R R R R R

Stores received serial data

SCMR1—Smart Card Mode Register 1 SCI1, Smart Card Interface 1 H'FF86 Bit 3 2 0 7 6 5 **SMIF SDIR** SINV 1 Initial value: 1 1 0 0 1 0 Read/Write: R/W R/W R/W **Smart Card** Interface Mode Select Smart card interface function is disabled 1 Smart card interface function is enabled **Smart Card Data Invert** TDR contents are transmitted as they are Receive data is stored in RDR as it is 1 TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

SMR2—Serial	Mode R	egister 2			H'FF88			SCI2
Bit :	7	6	5	4	3	2	1	0
	C/A	CHR	PE	O/E	STOP	MP	CKS	CKS0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/V	V R/W
	R/W	Charace 0 1	Parity	Parity I O 1 Enable Parity bit a Parity bit a	Stop Bi 0 1 2 Mode Even parity addition ar addition ar	Multiprod Multiprod Mi Mi Mi Mi Mi Mi Mi Mi Mi M	lock Se 0 0 1 1 0 1 cessor I lultiprocesabled lultiproceselected	lect \$\phi\$ clock \$\phi/4\$ clock \$\phi/64\$ clock \$\phi/64\$ clock Mode cessor function cessor format
			of TDR is	not trans	mitted.			
		ronous Mo	-		de Select	7		
	0 /	Asynchron	ous mode					

0	Asynchronous mode
1	Synchronous mode

Smart Card Interface 2 SMR2—Serial Mode Register 2 H'FF88 Bit 2 7 6 5 4 3 1 0 GM BLK PΕ O/E BCP1 BCP0 CKS1 CKS₀ Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W Clock Select 0 0 1 φ/4 clock 1 0 φ/16 clock Base Clock Pulse BCP1 BCP0 Base Clock Pulse 0 0 32 clocks 1 64 clocks 1 0 372 clocks 256 clocks Parity Mode (Set to 1 when using the smart card interface) 0 Even parity 1 Odd parity Parity Enable 0 Setting prohibited 1 Parity bit addition and checking enabled Block Transfer Mode Select Normal smart card interface mode 0 1 Block transfer mode **GSM Mode** Normal smart card interface mode operation • TEND flag generated 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit Clock output on/off control only 1

GSM mode smart card interface mode operation • TEND flag generated 11.0 etu after beginning of start bit

• Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

Note: etu: Elementary time unit (time for transfer of one bit)

BRR2—Bit Rate Register 2

BRR2—Bit Ra	te Registei	r 2		H	I'FF89	SCI2, Smart Card Interface 2			
Bit :	7	6	5	4	3	2	1	0	_
Initial value:	1	1	1	1	1	1	1	1	•
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

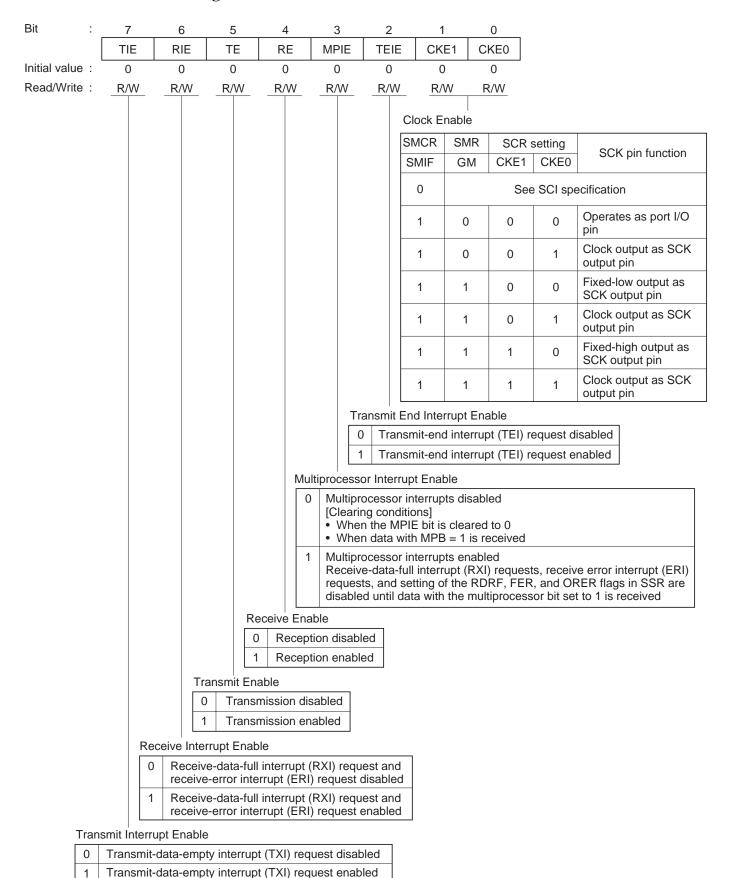
Sets the serial transfer bit rate

Note: For details, see section 14.2.8, Bit Rate Register (BRR).

SCR2—Serial Control Register 2

H'FF8A

SCI2


Bit :	7	6	5	4	3	2		1		0		
	TIE	RIE	TE	RE	MPIE	TEIE		CK	≣1	CKE0		
Initial value:	0	0	0	0	0	0		0		0		
Read/Write:	R/W_	R/W	R/W	R/W_	R/W_	R/W	_	RΛ	Ν	R/W		
							Clo	ck Er	nable	 e		
							0	0	Asy	ynchronous ode	Internal clock/S as I/O port	CK pin functions
									Syı mo	nchronous ode	Internal clock/S as serial clock of	CK pin functions output
								1	Asy mo	ynchronous ode	Internal clock/S as clock output	CK pin functions
									Syı mo	nchronous ode	Internal clock/S as serial clock of	CK pin functions output
							1	0	Asy mo	ynchronous ode	External clock/S as clock input*2	SCK pin functions
									Syı mo	nchronous ode	External clock/s as serial clock i	SCK pin functions nput
								1	Asy mo	ynchronous ode	External clock/S as clock input*2	SCK pin functions
									Syı mo	nchronous ode	External clock/S as serial clock i	SCK pin functions nput
						N	lote					ency as the bit rate times the bit rate.
					Tra	ansmit E	End	Inter	rupt	Enable		
) Tran	smi	t-enc	d inte	errupt (TEI) re	equest disabled	
					1	Tran	smi	t-enc	d inte	errupt (TEI) re	equest enabled	
				Mu	ltiprocess	or Interr	upt	Enab	ole			
				0	ividitipi	ocessor			ts di	sabled		
									clea	ared to 0		
										is received		
				1	Receiv reques	ts, and	ull ir setti	nterro	upt (f the	RXI) request RDRF, FER	s, receive error ir , and ORER flags	s in SSR are
						d until c	lata	with	the	multiprocess	or bit set to 1 is r	eceived
				eceive Ena								
			C	-	tion disab							
			1		tion enabl	led						
			ansmit En									
		0		mission dis								
		1	Transi	mission en	abled							
		ceive Inter	•		(5)(1)		\neg					
	0	receive	e-error inte	interrupt (errupt (ERI	request (disabled	ı					
	1			interrupt (errupt (ERI								
		upt Enable										
1.0	Transmit	data amp	ty intarrun	t (TVI) roa	upet dieak	Jod						

	Transmit-data-empty interrupt (TXI) request disabled
1	Transmit-data-empty interrupt (TXI) request enabled

SCR2—Serial Control Register 2

H'FF8A

Smart Card Interface 2

Rev.4.00 Sep. 07, 2007 Page 1116 of 1210 REJ09B0245-0400

R/W

0

1

R/W

TDR2—Transmit Data Register 2 **SCI2, Smart Card Interface 2** H'FF8B Bit 7 6 5 4 3 2 1 Initial value: 1 1 1 1 1 1 1

R/W

Stores data for serial transmission

R/W

R/W

R/W

Read/Write:

R/W

R/W

SSR2—Serial Status Register 2

H'FF8C

SCI2

Bit :	7	6	5	4	3	2	1	0
	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
nitial value:	1	0	0	0	0	1	0	0
Read/Write:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	<u>R/W</u>
							N	 ultiprocessor Bit Transfer
								Data with a 0 multiprocessor bit is transmitted
							L	Data with a 1 multiprocessor bit is transmitted
						M	ultiproces	sor Bit
								ng condition] data with a 0 multiprocessor bit is received
							L	g condition] data with a 1 multiprocessor bit is received
					Tra	ansmit En	d	
					0	• Whe		ten to TDRE after reading TDRE = 1 AC or DTC is activated by a TXI interrupt
					1	• Whe	n TDRE =	ons] oit in SCR is 0 1 at transmission of the last bit of a 1-byte character
				Pa	rity Error			
				0		ng condition	nl	
								fter reading PER = 1
				1	When, i		n, the num	ber of 1 bits in the receive data plus the parity bit etting (even or odd) specified by the O/E bit in SMR
			Fra	—ا ming Erro	or		. ,	
			0	[Clearing	ng conditio	n]		
				When () is written	to FER at	fter readin	g FER = 1
				When t	g condition he SCI che nen recept	ecks the s		he end of the receive
		Ov	⊢ ⊢ errun Erro					
		0	[Clearin	g condition		- <i>f</i> t	: ODE	
			-	condition	to ORER	anter read	ing ORER	. = 1
						ion is com	pleted wh	ile RDRF = 1
	Re	ceive Data	Register	Full				
	0		ng conditio					
					= after read s activated			t and reads data from RDR
	1	[Setting When s	condition	l otion ends				ransferred
Transmi	t Data Reg							
			,					

O [Clearing conditions]

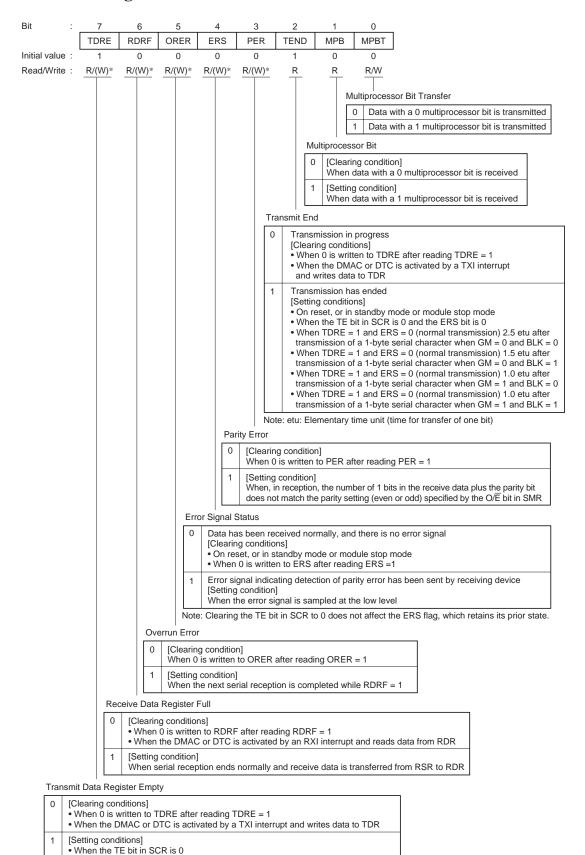
• When 0 is written to TDRE after reading TDRE = 1

• When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR

[Setting conditions]

• When the TE bit in SCR is 0

• When data is transferred from TDR to TSR and data can be written to TDR


Note: * Can only be written with 0 for flag clearing.

SSR2—Serial Status Register 2

H'FF8C

Smart Card Interface 2

Note: * Can only be written with 0 for flag clearing.

• When data is transferred from TDR to TSR and data can be written to TDR

RDR2—Receive Data Register 2

H'FF8D

SCI2, Smart Card Interface 2

Bit 7 6 5 2 0 4 3 1 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R R R R R R R R

Stores received serial data

SCMR2—Smart Card Mode Register 2

H'FF8E SCI2, Smart Card Interface 2

Bit 7 3 2 0 6 5 **SDIR** SINV **SMIF** Initial value: 1 1 1 1 0 0 1 0 Read/Write: R/W R/W R/W

Smart Card ___ Interface Mode Select

0	Smart card interface function is disabled
1	Smart card interface function is enabled

Smart Card Data Invert

0	TDR contents are transmitted as they are Receive data is stored in RDR as it is
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

ADDRAH—A/D Data Register AH ADDRAL—A/D Data Register AL ADDRBH—A/D Data Register BH ADDRBL—A/D Data Register BL ADDRCH—A/D Data Register CH ADDRCL—A/D Data Register CL ADDRDH—A/D Data Register DH	H'FF90 H'FF91 H'FF92 H'FF93 H'FF94 H'FF95 H'FF96	A/D Converter A/D Converter A/D Converter A/D Converter A/D Converter A/D Converter A/D Converter
ADDRDH—A/D Data Register CL ADDRDH—A/D Data Register DH ADDRDL—A/D Data Register DL	H'FF96 H'FF97	A/D Converter A/D Converter A/D Converter

Bit 13 12 11 15 14 10 9 8 7 6 5 1 0 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Initial value: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read/Write: R R R R R R R R R R R R R R R R

Stores the results of A/D conversion

	Analog Inp					
Channel Set 0 (CH3 = 1)		Channel Set 1 (CH3 = 0)	A/D Data Register		
Group 0	Group 1	Group 0	Group 1			
AN0	AN4	Setting prohibited	AN12	ADDRA		
AN1	AN5	Setting prohibited	AN13	ADDRB		
AN2	AN6	Setting prohibited	AN14	ADDRC		
AN3	AN7	Setting prohibited	AN15	ADDRD		

ADCSR—A/D	Control	/Status R	egister	H'FF98			A/D Converter			
Bit :	7	6	5	4	3	2	1	0		
	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0		
Initial value :	0	0	0	0	0	0	0	0		
Read/Write:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
			A/D Start		Clock S Note: C	in co in AE the a See H'FF elect CKS is used it 3 (CKS1) See ADCR- d'FF99 A/D	to CH0 are mbination work and SC nalog input ADCR—A/E 99 A/D Con	with CH3 bit CAN bit to select channels. Control Registe verter.		
O A/D conversion stopped Single mode: A/D conversion is started. Cleared automatically when conversion ends Scan mode: A/D conversion is started. Conversequentially on the selected channels until ADS O by software, a reset, or transition to standby module stop mode										
					when conversion ends A/D conversion is started. Conversion continues on the selected channels until ADST is cleared to a reset, or transition to standby mode or					
A/D Interrupt Enable										
	0 A/D conversion end interrupt request disabled									
		1 A/E) conversion	n end interri	upt request	enabled				
	A/D End	d Flag								
	0 [Clearing conditions] • When 0 is written to the ADF flag after reading ADF = 1 • When the DMAC or DTC is activated by an ADI interrupt, and ADDR is read									
	[Setting conditions] • Single mode: When A/D conversion ends • Scan mode: When A/D conversion ends on all specified channels									

Note: * Can only be written with 0 for flag clearing.

ADCR—A/D Control Register

H'FF99

A/D Converter

Bit 7 6 5 3 2 TRGS1 TRGS0 CKS1 CH3 1 Initial value: 0 0 1 Read/Write: R/W R/W R/W R/W

Channel Select

Selects the analog input channels. Ensure that conversion is halted (ADST = 0) before making a channel selection.

Channel Selection			on	Desc	ription	
СНЗ	CH2*	CH1*	CH0*	Single Mode Scan Mode (SCAN = 0) (SCAN = 1)		
0	0	0	0	Setting prohibited	Setting prohibited	
			1			
		1	0			
			1			
	1	0	0	AN12	AN12	
			1	AN13	AN12, AN13	
		1	0	AN14	AN12 to AN14	
			1	AN15	AN12 to AN15	
1	0	0	0	AN0 (Initial value)	AN0	
			1	AN1	AN0, AN1	
		1	0	AN2	AN0 to AN2	
			1	AN3	AN0 to AN3	
	1	0	0	AN4	AN4	
			1	AN5	AN4, AN5	
		1	0	AN6	AN4 to AN6	
			1	AN7	AN4 to AN7	

Note: * CH2, CH1, and CH0 are bits in ADCSR.

Clock Select

_			
Bit 3	ADCSR Bit 3	Description	
CKS1	CKS		
0	0	Conversion time = 530 states (max.)	
	1	Conversion time = 68 states (max.)	
1	0	Conversion time = 266 states (max.)	(Initial value)
	1	Conversion time = 134 states (max.)	

Timer Trigger Select

TRGS1	TRGS1	Description
0	0	A/D conversion start by external trigger is disabled
	1	A/D conversion start by external trigger (TPU) is enabled
1	0	A/D conversion start by external trigger (8-bit timer) is enabled
	1	A/D conversion start by external trigger pin (ADTRG) is enabled

DADR0—D/A Data Register 0 DADR1—D/A Data Register 1				H'FFA4 H'FFA5			D/A Converter D/A Converter	
Bit :	7	6	5	4	3	2	1	0
Initial value :	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores data for D/A conversion

DACR01—D/A Control Register 01

H'FFA6

D/A Converter

7	6	5	4	3	2	1	0
DAOE1	DAOE0	DAE	_			_	_
0	0	0	1	1	1	1	1
R/W	R/W	R/W	_	_	_	_	_

Initial value : Read/Write :

D/A Output Enable 0

0	Analog output DA ₀ is disabled
1	Channel 0 D/A conversion is enabled Analog output DA ₀ is enabled

D/A Output Enable 1

0	Analog output DA ₁ is disabled
1	Channel 1 D/A conversion is enabled Analog output DA ₁ is enabled

DAOE1	DAOE0	DAE	Description
0	0	*	Channel 0 and 1 D/A conversion disabled
	1	0	Channel 0 D/A conversion enabled
			Channel 1 D/A conversion disabled
		1	Channel 0 and 1 D/A conversion enabled
1	0	0	Channel 0 D/A conversion disabled
			Channel 1 D/A conversion enabled
		1	Channel 0 and 1 D/A conversion enabled
	1	*	Channel 0 and 1 D/A conversion enabled

*: Don't care

DADR2—D/A Data Register 2 DADR3—D/A Data Register 3				H'FFA8 H'FFA9			D/A Converter D/A Converter	
Bit :	7	6	5	4	3	2	1	0
Initial value :	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Store	s data for	D/A conve	ersion		

RENESAS

DACR23—D/A Control Register 23

H'FFAA

D/A Converter

DI	ι		

Read/Write:

D/A Output Enable 0

0	Analog output DA ₂ is disabled
1	Channel 2 D/A conversion is enabled Analog output DA ₂ is enabled

D/A Output Enable 1

0	Analog output DA ₃ is disabled
1	Channel 3 D/A conversion is enabled Analog output DA ₃ is enabled

D/A Conversion Control

DAOE1	DAOE0	DAE	Description		
0	0	*	Channel 2 and 3 D/A conversion disabled		
	1	0	Channel 2 D/A conversion enabled		
			Channel 3 D/A conversion disabled		
		1	Channel 2 and 3 D/A conversion enabled		
1	0	0	Channel 2 D/A conversion disabled		
			Channel 3 D/A conversion enabled		
		1	Channel 2 and 3 D/A conversion enabled		
	1	*	Channel 2 and 3 D/A conversion enabled		

*: Don't care

PFCR2—Port	Function	Control R	Register 2		H'FFAC			Ports
Bit :	7	6	5	4	3	2	1	0
	WAITPS	BREQOPS	CS167E	CS25E	ASOD	_		_
Initial value :	0	0	1	1	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R	R	R
				A	AS Output D	Disable		
					0 PF ₆ is	s designat	ed as AS	output pin
					-	s designat not function		
				N	lote: This b	it is valid i	n modes 4	4 to 6.
	CS25 Enable							
	0 \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output d (can be used as I/O ports)					disabled		
				<u> </u>	\overline{S}_2 , \overline{CS}_3 , \overline{C}			enabled
					Clear the DE	-		
				tł	ne CS25E s	etting.		
			CS167 I	Enable				
					and $\overline{CS_7}$ osed as I/O p	-	bled	
			1 0	$\overline{\text{CS}}_1, \overline{\text{CS}}_6,$	and \overline{CS}_7 o	utput enak	oled	
					DDR bits to	0 before	changing	
		PDE00			7E setting.			
			Pin Selec					
			BREQO ou					
			REQO ou					
			Set BREQ(he BREQ(BCRL to 1.			
	WAIT	Pin Select						
	0	WAIT inpu	ıt is P8 ₆ pi	n				

 $\overline{\text{WAIT}}$ input is P5_3 pin Note: Set WAITPS before setting the WAITE bit in BCRL to 1.

1

TCR0—Time Control Register 0 TCR1—Time Control Register 1

H'FFB0 H'FFB1 8-Bit Timer Channel 0 8-Bit Timer Channel 1

Bit 7 6 5 4 3 2 0 1 **CMIEB** CKS0 **CMIEA** OVIE CCLR1 CCLR0 CKS2 CKS₁ 0 0 0 0 0 0 0 0 Initial value: R/W R/W R/W R/W R/W R/W R/W R/W Read/Write: Clock Select Clock input disabled Internal clock: counted at falling edge 1 of $\phi/8$ 1 0 Internal clock: counted at falling edge of $\phi/64$ Internal clock: counted at falling edge 1 of $\phi/8192$ 0 0 For channel 0: Count at TCNT1 overflow signal* For channel 1: Count at TCNT0 compare match A* External clock: counted at rising edge 1 1 0 External clock: counted at falling edge 1 External clock: counted at both rising and falling edges Note: * If the count input of channel 0 is the TCNT1 overflow signal and that of channel 1 is the TCNT0 compare match signal, no incrementing clock is generated. Do not use this setting. Counter Clear 0 0 Clear is disabled 1 Clear by compare match A 1 0 Clear by compare match B 1 Clear by rising edge of external reset input Timer Overflow Interrupt Enable OVF interrupt requests (OVI) are disabled 1 OVF interrupt requests (OVI) are enabled Compare Match Interrupt Enable A 0 CMFA interrupt requests (CMIA) are disabled 1 CMFA interrupt requests (CMIA) are enabled

Compare Match Interrupt Enable B

0	CMFB interrupt requests (CMIB) are disabled
1	CMFB interrupt requests (CMIB) are enabled

TCSR0—T				_			H'FF H'FF						nannel 0 nannel 1
TCSR0	Bit	:	7	6	5	4		3	2		1	0	
			CMFE		A OVF	ADTI	<u> </u>	OS3	OS2	2	OS1	OS0	
	Initial valu	ıe :	0	0	0	0	I	0	0		0	0	_
	Read/Writ	te:	R/(W) ³	` ,	` ,	R/W		R/W	R/W	/	R/W	R/W	
TCSR1	Bit	:	7	6	5	4		3	2		1	0	7
			CMFE				(OS3	OS2	2	OS1	OS0	
	Initial valu		0	0	0	1		0	0		0	0	
	Read/Writ	te:	R/(W)	* R/(W)	* R/(W)*	<u> </u>	_	R/W	R/W	_	R/W	R/W	
									Outpu	ıt Sele	ect ——		
									0	0	No chan match A	ge when co	mpare
										1		ut when cor	mpare
									1	0	1 is outp	ut when cor	npare
										1	compare	s inverted w match A	
							Output	 t Select			occurs (1	oggle outpu	it)
							0		o chang	e whe	en compar	e match B	occurs
												e match B o	
							1	0 1	is outpu	t whe	n compare	e match B o	ccurs
									utput is ccurs (to			compare ma	tch B
					A/D	∣ Trigger En	able (T	CSR0 o	nly)				
					0					/ com	pare matc	h A are disa	abled
					1	A/D cor	verter	start req	uests by	/ com	pare matc	h A are ena	bled
				Tim	er Overflow F	lag							
				0		condition		after rea	ding OV	′F = 1			
				1	[Setting of	condition]							
			Carre	Loro Matal		UVEIII	ovvo (CI	iai iyes I	IOIII IT F	. IO F	100)		_
			Comp	are Match I	conditions								
				• When 0	is written to C e DTC is acti			-		he DI	SEL bit of	MRB in DT	C is 0
			1	[Setting co	ondition] NT matches	TCORA							
	Comp	are M	latch Flag										
	0	[Clea	aring con	ditions]	IFB after read								
					ted by a CMI	B interrupt	, while	the DIS	EL bit of	MRE	in DTC is	0	
	1		ting condi en TCNT i	tion] matches TC	ORB								

Note: * Only 0 can be written to bits 7 to 5, to clear these flags.

8-Bit Timer Channel 0

TCORA1—Time Constant Register A1 H'FFB5 8-Bit Timer Channel 1 TCORA0 TCORA1 Bit Initial value:

H'FFB4

TCORA0—Time Constant Register A0

TCORB0—Time Constant Register B0 8-Bit Timer Channel 0 H'FFB6 TCORB1—Time Constant Register B1 H'FFB7 8-Bit Timer Channel 1 TCORB0 TCORB1 Bit Initial value:

8-Bit Timer Channel 0 **TCNT0—Timer Counter 0** H'FFB8 **TCNT1—Timer Counter 1** H'FFB9 8-Bit Timer Channel 1 TCNT0 TCNT1 Bit Initial value: Read/Write:

TCSR—Timer Control/Status Register

H'FFBC (W), H'FFBC (R)

WDT

0

0

Bit

Initial value

Read/Write*1:

7 6 1 5 3 2 **OVF** WT/IT **TME** CKS₂ CKS₁ CKS₀ 0 0 0 1 1 0 0 R/(W)*2 R/W R/W R/W R/W R/W

Clock Select

CKS2	CKS1	CKS0	Clock	Overflow period* (when ϕ = 20 MHz)
0	0	0	φ/2 (Initial value)	25.6µs
		1	φ/64	819.2µs
	1	0	φ/128	1.6ms
		1	φ/512	6.6ms
1	0	0	φ/2048	26.2ms
		1	φ/8192	104.9ms
	1	0	ф/32768	419.4ms
		1	ф/131072	1.68s

Note: * The overflow period is the time from when TCNT starts counting up from H'00 until overflow occurs.

Timer Enable

0	TCNT is initialized to H'00 and halted
1	TCNT counts

Timer Mode Select

0	Interval timer mode: Sends the CPU an interval timer interrupt request (WOVI) when TCNT overflows
1	Watchdog timer mode: Generates the WDTOVF*1 signal when TCNT overflows*2

Notes: 1. The WDTOVF pin function is not available in the F-ZTAT versions.

2. For details of the case where TCNT overflows in watchdog timer mode, see section 13.2.3, Reset Control/Status Register (RSTCSR).

Overflow Flag

0	[Clearing condition] When 0 is written to OVF after reading OVF = 1
1	[Setting condition] When TCNT overflows from H'FF to H'00 in interval timer mode

Notes: 1. The method for writing to TCSR is different from that for general registers to prevent accidental overwriting. For details, see section 13.2.4, Notes on Register Access.

2. Can only be written with 0 for flag clearing.

Rev.4.00 Sep. 07, 2007 Page 1132 of 1210 REJ09B0245-0400

TCNT—Timer Counter H'FFBC (W), H'FFBD (R) **WDT** Bit 7 6 5 4 3 2 1 0 Initial value: 0 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W R/W R/W

STCSR—Re	set	Control	/Status R	egister	Н	WDT				
Bit :		7	6	5	4	3	2	1	0	
	,	WOVF	RSTE	_	_	_	_	_	_	
Initial value :		0	0	0	1	1	1	1	1	
Read/Write:	ı	R/(W)*	R/W	R/W		_	_	_		
			Reset E		hould be v					
			Reset E	nable						
			0 R	0 Reset signal is not generated if TCNT overflows*						
			Reset signal is generated if TCNT overflows							
	Note: * The modules in the H8S/2339 Group are not res									

Watchdog Timer Overflow Flag

0	[Clearing condition] When 0 is written to WOVF after reading RSTCSR when WOVF = 1
1	[Setting condition] When TCNT overflows (changes from H'FF to H'00) during watchdog timer operation

Notes: The method for writing to RSTCSR is different from that for general registers to prevent accidental overwriting. For details, see section 13.2.4, Notes on Register Access.

* Can only be written with 0 for flag clearing.

TSTR—Timer Start Register

H'FFC0

TPU

Bit :	7	6	5	4	3	2	1	0
	_	_	CST5	CST4	CST3	CST2	CST1	CST0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

Counter Start

0	TCNTn count operation is stopped
1	TCNTn performs count operation

(n = 5 to 0)

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

TSYR—Timer Synchro Register

H'FFC1

TPU

Bit :	7	6	5	4	3	2	1	0
	_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:		_	R/W	R/W	R/W	R/W	R/W	R/W

Timer Synchronization

0	TCNTn operates independently (TCNT presetting/ clearing is unrelated to other channels)
1	TCNTn performs synchronous operation TCNT synchronous presetting/synchronous clearing is possible

(n = 5 to 0)

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.

2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

Flash Memory

(Valid only in F-ZTAT version) Bit 7 6 5 4 3 2 1 0 **FWE SWE ESU PSU** PV Ε Ρ EV ___* 0 0 0 0 0 0 0 Initial value: R/W Read/Write: R/W R/W R/W R/W R/W R/W R Program Program mode cleared Transition to program mode [Setting condition] When FWE = 1, SWE = 1, and PSU = 1 Erase Erase mode cleared Transition to erase mode [Setting condition] When FWE = 1, SWE = 1, and ESU = 1 Program-Verify Program-verify mode cleared Transition to program-verify mode [Setting condition] When FWE = 1 and SWE = 1 Erase-Verify Erase-verify mode cleared Transition to erase-verify mode [Setting condition] When FWE = 1 and SWE = 1 Program Setup Program setup cleared Program setup [Setting condition] When FWE = 1 and SWE = 1 Erase Setup Software Write Enable Erase setup cleared Writes disabled Writes enabled Erase setup 1 [Setting condition] [Setting condition] When FWE = 1 When FWE = 1 and SWE = 1 Flash Write Enable When a low level is input to the FWE pin (hardware-protected state) When a high level is input to the FWE pin

H'FFC8

FLMCR1—Flash Memory Control Register 1

Note: * Determined by the state of the FWE pin (H8S/2338 F-ZTAT). The FWE pin is fixed to 1 in the H8S/2339 F-ZTAT.

FLMCR2—	-Flash	Memory	Control	Register	2
---------	--------	--------	---------	----------	---

H'FFC9

Flash Memory (Valid only in F-ZTAT version)

Bit

7 6 5 4 3 2 1 0

FLER — — — — — — —

0 0 0 0 0 0 0 0 0

R — — — — — — —

Initial value: Read/Write:

Flash Memory Error

0	Flash memory is operating normally Flash memory program/erase protection (error protection) is disabled [Clearing condition] Reset or hardware standby mode
1	An error has occurred during flash memory programming/erasing Flash memory program/erase protection (error protection) is enabled [Setting condition] See section 19.8.3, Error Protection for H8S/2339 F-ZTAT, and section 19.17.3, Error Protection for H8S/2338 F-ZTAT.

EBR1—Erase Block Register 1	H'FFCA	Flash Memory
EBR2—Erase Block Register 2	H'FFCB	Flash Memory
	(Valid o	only in F-ZTAT version)

Bit :	7	6	5	4	3	2	1	0
EBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value :	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit :	7	6	5	4	3	2	1	0
EBR2	_	_	EB13*	EB12*	EB11	EB10	EB9	EB8
Initial value :	0	0	0	0	0	0	0	0
Read/Write:			— (R/W)*	— (R/W)	* R/W	R/W	R/W	R/W

Note: * Valid only in H8S/2339 F-ZTAT.

Rev.4.00 Sep. 07, 2007 Page 1136 of 1210

TCR0—Timer Control Register 0

H'FFD0

TPU0

Bit :	7	6	5	4		3		2	1	0	_
	CCLR2	CCLR1	CCLR0	CKEG ²		CKEG0	Т	PSC	2 TPSC1	TPSC0	
Initial value:	0	0	0	0		0		0	0	0	,
Read/Write:	R/W	R/W	R/W	R/W		R/W		R/W	R/W	R/W	
						Time	Pre	escal	er —		
						0	0	0	Internal clock	: counts on	ф/1
								1	Internal clock	counts on	φ/4
							1	0	Internal clock	counts on	ф/16
								1	Internal clock	counts on	φ/64
						1	0	0	External clock	c: counts on	TCLKA pin input
								1	External clock	c: counts on	TCLKB pin input
							1	0	External clock	c: counts on	TCLKC pin input
								1	External clock	c: counts on	TCLKD pin input
				Clock	Edge	е				_	
				0	0	Count	at ri	sing	edge		
					1	Count	at fa	lling	edge		
				1	-	Count	at b	oth e	edges		
	C	ounter Clea	ar								
		0 0 0	TCNT clea	aring disa	bled	I		_			

0	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRA compare match/input capture
	1	0	TCNT cleared by TGRB compare match/input capture
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1
1	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRC compare match/input capture*2
	1	0	TCNT cleared by TGRD compare match/input capture*2
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

TMDR0—Timer Mode Register 0 H'FFD1 **TPU0** Bit 5 4 3 2 1 0 6 **BFB BFA** MD3 MD2 MD1 MD0 Initial value: 1 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W Mode 0 0 0 0 Normal operation 1 Reserved PWM mode 1 1 PWM mode 2 1 0 0 Phase counting mode 1 1 Phase counting mode 2 1 Phase counting mode 3 1 Phase counting mode 4 1 * : Don't care Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0. 2. Phase counting mode cannot be

TGRA Buffer Operation

0	TGRA operates normally
1	TGRA and TGRC used together
	for buffer operation

MD2.

set for channels 0 and 3. In this case, 0 should always be written to

TGRB Buffer Operation

0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

TIOR0H—Timer I/O Control Register 0H

H'FFD2

TPU0

Bit :	7	6	5	4	;	3		2	1	0	
	IOB3	IOB2	IOB1	IOB0	10	АЗ		IOA2	IOA1	IOA0	
Initial value:	0	0	0	0	. (0	•	0	0	0	
Read/Write:	R/W	R/W	R/W	R/W	R	/W		R/W	R/W	R/W	
				TGI	R0A I/	O C	ontro	ol			
				0	0	0	0	TGR0A		disabled	
							1	is output compare	Initial o	output is	0 output at compare match
						1	0	register	0 outp	ut	1 output at compare match
							1				Toggle output at compare match
					1	0	0		Output	disabled	
							1			output is	0 output at compare match
						1	0		1 outp	ut	1 output at compare match
							1				Toggle output at compare match
				1	0	0	0	TGR0A		e input	Input capture at rising edge
							1	is input capture	source		Input capture at falling edge
						1	*	register			Input capture at both edges
					1	*	*		source	e input	Input capture at TCNT1 count-up/count-down

TGR0B I/O Control

*: Don't care

0	0	0	0	TGR0B	Output disabled						
			1	is output compare	Initial output is	0 output at compare match					
		1	0	register	0 output	1 output at compare match					
			1			Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is	0 output at compare match					
		1	0		0 output	1 output at compare match					
			1			Toggle output at compare match					
1	0	0	0	TGR0B	Capture input	Input capture at rising edge					
			1	is input capture	source is TIOCB ₀ pin	Input capture at falling edge					
		1	*	register		Input capture at both edges					
	1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down*1					

*: Don't care

1/count clock

Note: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000, and φ/1 is used as the TCNT1 count clock, this setting is invalid and input capture does not occur.

TIOR0L—Timer I/O Control Register 0L

H'FFD3

TPU0

Bit	: _	7	6	5	4	3	2	1	0
	:	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value	: _	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR0C I/O Control

0	0	0	0	TGR0C	Output disabled						
			1	is output compare	Initial output is	0 output at compare match					
		1	0	register	0 output	1 output at compare match					
			1			Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is	0 output at compare match					
		1	0		1 output	1 output at compare match					
			1			Toggle output at compare match					
1	0	0	0	TGR0C	Capture input	Input capture at rising edge					
			1	is input capture	source is TIOCC ₀ pin	Input capture at falling edge					
		1	*	register		Input capture at both edges					
	1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down					

*: Don't care

Note: When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

TGR0D I/O Control

0	0	0	0	TGR0D	Output disabled					
			1	is output compare	Initial output is	0 output at compare match				
		1	0	register *2	0 output	1 output at compare match				
			1	_		Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is 1 output	0 output at compare match				
		1	0		i output	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR0D	Capture input	Input capture at rising edge				
			1	is input capture	source is TIOCD ₀ pin	Input capture at falling edge				
		1	*	register *2		Input capture at both edges				
	1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down*1				

*: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000, and φ/1 is used as the TCNT1 count clock, this setting is invalid and input capture does not occur.

2. When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

RENESAS

TIER0—Timer Interrupt Enable Register 0 H'FFD4 **TPU0** Bit 7 6 5 4 3 2 1 0 **TGIED TGIEC TGIEB TTGE TCIEV TGIEA** Initial value: 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) by TGFA bit disabled Interrupt request (TGIA) by TGFA bit enabled TGR Interrupt Enable B Interrupt request (TGIB) by TGFB bit disabled 1 Interrupt request (TGIB) by TGFB bit enabled TGR Interrupt Enable C Interrupt request (TGIC) by TGFC bit disabled 1 Interrupt request (TGIC) by TGFC bit enabled TGR Interrupt Enable D Interrupt request (TGID) by TGFD bit disabled Interrupt request (TGID) by TGFD bit enabled Overflow Interrupt Enable 0 Interrupt request (TCIV) by TCFV disabled 1 Interrupt request (TCIV) by TCFV enabled

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR0—Timer Status Register 0

H'FFD5

TPU0

Bit :	7	6	5	4	3	2	2	1	0
	_	_	_	TCFV	TGFD	TG	FC	TGFB	TGFA
Initial value :	 1	1	0	0	0)	0	0
Read/Write:	_	_	_	R/(W)*	R/(W)*	R/(\	N)*	R/(W)*	R/(W)*
			_						FOR head 0 and 10 days (0. days 10 and 10 an
								Ļ	FGR Input Capture/Output Compare Flag A Ulicon [Clearing conditions]
									O [Clearing conditions] When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1 When 0 is written to TGFA after reading TGFA = 1
									 [Setting conditions] When TCNT = TGRA while TGRA is functioning as output compare register When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register
						Т	ΓGR I	Input Cap	oture/Output Compare Flag B
							0	When of MRI	g conditions] DTC is activated by TGIB interrupt while DISEL bit B in DTC is 0 o is written to TGFB after reading TGFB = 1
							1	When compaWhen	conditions] TCNT = TGRB while TGRB is functioning as output are register TCNT value is transferred to TGRB by input capture signal TGRB is functioning as input capture register
					TGR Ir	nput Ca	aptur	e/Output	Compare Flag C
						Whe	n DT		vated by TGIC interrupt while DISEL bit of MRB in DTC is 0 to TGFC after reading TGFC = 1
						WheWhe	en TC en TC	NT value	RC while TGRC is functioning as output compare register is transferred to TGRC by input capture signal while TGRC uput capture register
				 TGF	R Input Ca	apture	/Outr	out Comp	are Flag D
				0	[Clear	ing cor	nditio	ons] ctivated b	by TGID interrupt while DISEL bit of MRB in DTC is 0 FD after reading TGFD = 1
				1	• Whe	en TCN en TCN	NT = '	TGRD wh	nile TGRD is functioning as output compare register nsferred to TGRD by input capture signal while TGRD is ure register

Overflow Flag

0	[Clearing condition] When 0 is written to TCFV after reading TCFV = 1
1	[Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000)

Note: * Can only be written with 0 for flag clearing.

TCNT0—Tir	nei	· Cou	nter	0			H'FFD6										TPU0
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								ı	Up-ca	 ounte	r						
op-counter																	
TGR0A—Ti	me	r Gen	eral	Regi	ster	0A	H'FFD8									TPU0	
TGR0B—Ti	H'FFDA								TPU0								

TGR0C—Timer General Register 0C TGR0D—Timer General Register 0D										('FFI ('FFI	_						TPU TPU	
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

TCR1—Timer Control Register 1

H'FFE0

TPU1

Bit	:	7		6	5	4		3			2		1	0	
		_	CC	CLR1	CCLR0	CKEG	1	CKE	G0	TF	PSC2	2 TP	SC1	TPSC0	
Initial value	:	0		0	0	0	-	0			0		0	0	1
Read/Write	:	_	F	R/W	R/W	R/W		R/۱	Ν	F	R/W		R/W	R/W	
									— Time	e Prescaler ———					
									0	0	0 I	Interna	l clock:	counts on	φ/1
											1 I	Interna	l clock:	counts on	φ/4
										1	0 1	Interna	l clock:	counts on	ф/16
											1 I	Interna	l clock:	counts on	φ/64
								•	1	0	0 E	Externa	al clock	c counts or	TCLKA pin input
											1 E	Externa	al clock	: counts or	TCLKB pin input
										1	0 I	Interna	l clock:	counts on	φ/256
											1 (Counts	on TC	NT2 overflo	ow/underflow
								١	lote:			ing is iq mode.		when char	nnel 1 is in phase
						Clock	Ed	ge*							
						0	0	Co	ount a	at ris	sing e	dge			
							1	Co	ount a	at fa	lling e	edge			
						1	_	Count at both edges							
						Note:						when o	channe	_ 	
			Count	ter Clea	ar										
0 0 TCNT clearing disabled															

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR1—Timer Mode Register 1

H'FFE1

TPU1

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	MD3	MD2	MD1	MD0
Initial value	:	1	1	0	0	0	0	0	0
Read/Write	:	_	_	_	_	R/W	R/W	R/W	R/W

R A	\sim	ィヘ
IVI	()(

0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	_

*: Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR1—Timer I/O Control Register 1

H'FFE2

TPU1

Bit	: _	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value	: -	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR1A I/O Control

0	0	0	0	TGR1A	Output disabled					
			1	is output compare	Initial output is	0 output at compare match				
		1	0	register	0 output	1 output at compare match				
			1			Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is	0 output at compare match				
		1	0		1 output	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR1A	Capture input	Input capture at rising edge				
			1	is input capture	source is TIOCA₁ pin	Input capture at falling edge				
		1	*	register		Input capture at both edges				
	1	*	*		Capture input source is TGR0A compare match/ input capture	Input capture at generation of channel 0/TGR0A compare match/ input capture				

* : Don't care

TGR1B I/O Control

		0 00								
0	0	0	0	TGR1B	Output disabled					
			1	is output compare	Initial output is 0 output	0 output at compare match				
		1	0	register	σομραί	1 output at compare match				
			1			Toggle output at compare match				
	1	0	0		Output disabled					
		1			Initial output is	0 output at compare match				
	1 0		0		1 output	1 output at compare match				
					Toggle output at compare match					
1	0	0	0	TGR1B	Capture input	Input capture at rising edge				
			1	is input capture	source is TIOCB₁ pin	Input capture at falling edge				
		1	*	register		Input capture at both edges				
	1	*	*		Capture input source is TGR0C compare match/ input capture	Input capture at generation of TGR0C compare match/input capture				

*: Don't care

TIER1—Timer Interrupt Enable Register 1 H'FFE4 TPU1 Bit 7 5 0 6 4 3 2 1 TTGE **TCIEU TCIEV TGIEB TGIEA** Initial value : 0 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) by TGFA bit disabled Interrupt request (TGIA) by TGFA bit enabled TGR Interrupt Enable B Interrupt request (TGIB) by TGFB bit disabled Interrupt request (TGIB) by TGFB bit enabled Overflow Interrupt Enable Interrupt request (TCIV) by TCFV disabled 1 Interrupt request (TCIV) by TCFV enabled Underflow Interrupt Enable Interrupt request (TCIU) by TCFU disabled 1 Interrupt request (TCIU) by TCFU enabled

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR1—Timer Status Register 1

H'FFE5

TPU1

Bit	: _	7	6	5		4	3	2	1		0
		TCFD	_	TCF	J T	CFV	_	_	TGF	В	TGFA
Initial value	:	1	1	0		0	0	0	0		0
Read/Write	:	R	_	R/(W)* R	/(W)*	_	_	R/(W	/)*	R/(W)*
										Т	rGR Input Capture/Output Compare Flag A
											O [Clearing conditions] • When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 • When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1 • When 0 is written to TGFA after reading TGFA = 1
											[Setting conditions] • When TCNT = TGRA while TGRA is functioning as output compare register • When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register
									TGR	Inp	out Capture/Output Compare Flag B
									0	•	Clearing conditions] When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 When 0 is written to TGFB after reading TGFB = 1
									1	•	Setting conditions] When TCNT = TGRB while TGRB is functioning as output compare register When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register
					0	ا verflo	w Flag				
						-	Clearing co Vhen 0 is w	-	CFV a	fter	r reading TCFV = 1
						-	Setting con Vhen the T	-	e overf	low	vs (changes from H'FFFF to H'0000)
				Unde	rflow F	lag					
				0		_	ondition] written to T	CFU after	readin	ıg T	ΓCFU = 1
				1			ndition] CNT value	e underflov	ws (cha	ang	ges from H'0000 to H'FFFF)
		Count I	Direction Fla	ag							
			TCNT coun		า						

Note: * Can only be written with 0 for flag clearing.

TCNT counts up

TCNT1—Timer Counter 1								H'FFE6									TPU	1
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Lin /dayun agunta w																		
Up/down-counter*																		

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR1A—Timer General Register 1A TGR1B—Timer General Register 1B								H'FFE8 H'FFEA									TPU1 TPU1	
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

TCR2—Timer Control Register 2

H'FFF0

TPU2

Bit	:	7	6	5	4		3		2		1	0	-		
		_	CCLR1	CCLR0	CKEG ²		CKEG0	Т	PSC	2	TPSC1	TPSC0			
Initial value	:	0	0	0	0	•	0	•	0		0	0	•		
Read/Write	:	_	R/W	R/W	R/W		R/W		R/W	1	R/W	R/W			
							Time	e Pre	escal	ler –					
							0	0	0	Inte	rnal clock:	counts on	φ/1		
									1	Inte	rnal clock:	counts on	φ/4		
								1	0	Inte	rnal clock:	counts on	ф/16		
									1	Inte	rnal clock:	counts on	φ/64		
							1	0	0	Exte	ernal clock	c: counts on	TCLKA pin input		
									1	Exte	ernal clock	c: counts on	TCLKB pin input		
								1	0	Exte	ernal clock	c: counts on	TCLKC pin input		
									1	Inte	rnal clock:	counts on	φ/1024		
							Note		nis se ountin	_	_	l when chai	nnel 2 is in phase		
					Clock	Edg	e*								
					0	0	Count	at ri	sing	edge	;]			
						1	Count	at fa	at falling edge						
					1	_	- Count at both edges								
						This setting is ignored when channel 2 is in phase counting mode.									

Counter Clear

_		
0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR2—Timer Mode Register 2

H'FFF1

TPU2

Bit	:	7	6	5	4	3	2	1	0
			_	_	<u> </u>	MD3	MD2	MD1	MD0
Initial value	: '	1	1	0	0	0	0	0	0
Read/Write	:	_	_	_	_	R/W	R/W	R/W	R/W

Mode

0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	_

*: Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR2—Timer I/O Control Register 2

H'FFF2

TPU2

Bit :	7	6	5	4	3	2	1	0
	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value:	0	0	0	0	0	0	0	0
Read/Write:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR2A I/O Control

0 0 0 0 TGR2A				Output disabled								
			1	is output compare	Initial output is	0 output at compare match						
		1	0	register	0 output	1 output at compare match						
			1			Toggle output at compare match						
	1	0	0		Output disabled							
			1		Initial output is	0 output at compare match						
		1	0		1 output	1 output at compare match						
			1			Toggle output at compare match						
1	*	0	0	TGR2A	Capture input	Input capture at rising edge						
			1	is input capture	source is TIOCA ₂ pin	Input capture at falling edge						
		1	*	register	21	Input capture at both edges						

* : Don't care

TGR2B I/O Control

0	0	0	0	TGR2B	Output disabled							
			1	is output compare	Initial output is	0 output at compare match						
		1	0	register	0 output	1 output at compare match						
			1			Toggle output at compare match						
	1	0	0		Output disabled							
			1		Initial output is	0 output at compare match						
		1	0		1 output	1 output at compare match						
			1			Toggle output at compare match						
1	*	0	0	TGR2B	Capture input	Input capture at rising edge						
			1	is input capture	source is TIOCB ₂ pin	Input capture at falling edge						
		1	*	register		Input capture at both edges						

*: Don't care

TIER2—Timer Interrupt Enable Register 2 H'FFF4 TPU2 Bit 7 6 5 4 3 2 1 0 TTGE TCIEU **TCIEV TGIEB TGIEA** Initial value : 0 1 0 0 0 0 0 0 Read/Write: R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) by TGFA bit disabled Interrupt request (TGIA) by TGFA bit enabled TGR Interrupt Enable B Interrupt request (TGIB) by TGFB bit disabled Interrupt request (TGIB) by TGFB bit enabled Overflow Interrupt Enable Interrupt request (TCIV) by TCFV disabled 1 Interrupt request (TCIV) by TCFV enabled Underflow Interrupt Enable Interrupt request (TCIU) by TCFU disabled 1 Interrupt request (TCIU) by TCFU enabled

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR2—Timer Status Register 2 Bit 5 4 0 **TCFU TCFD TCFV TGFB TGFA** Initial value : 1 0 0 0 0 0 0 Read/Write R R/(W)* R/(W)* R/(W)* R/(W)* TGR Input Capture/Output Compare Flag A [Clearing conditions] • When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 • When DMAC is activated by TGIA interrupt while DTA bit of DMABCR in DMAC is 1 • When 0 is written to TGFA after reading TGFA = 1 [Setting conditions] • When TCNT = TGRA while TGRA is functioning as output compare register • When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register TGR Input Capture/Output Compare Flag B [Clearing conditions] · When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 • When 0 is written to TGFB after reading TGFB = 1 [Setting conditions] • When TCNT = TGRB while TGRB is functioning as output compare register • When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register Overflow Flag [Clearing condition] When 0 is written to TCFV after reading TCFV = 1 [Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000) Underflow Flag [Clearing condition] When 0 is written to TCFU after reading TCFU = 1 [Setting condition] When the TCNT value underflows (changes from H'0000 to H'FFFF)

H'FFF5

TPU2

Count Direction Flag

0	TCNT counts down
1	TCNT counts up

Note: * Can only be written with 0 for flag clearing.

TCNT2—Time		H'FFF6									J 2						
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value: Read/Write:	0 R/W	0 R/W	0 R/W	0 R/W		0 R/W		0 R/W		0 R/W		0 R/W	0 R/W	0 R/W	0 'R/W	0 R/W	
							Up/d	down	-cour	nter*							

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR2A—Timer General Register 2A TGR2B—Timer General Register 2B								H'FFF8 H'FFFA									TPU2 TPU2	
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial va	alue :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Read/W	/rite:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Appendix C I/O Port Block Diagrams

C.1 Port 1

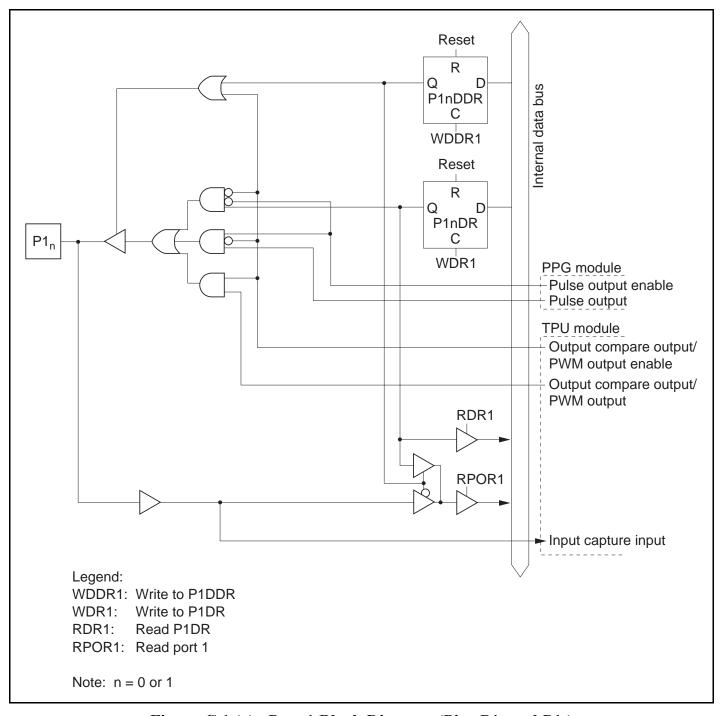


Figure C.1 (a) Port 1 Block Diagram (Pins P1₀ and P1₁)



Figure C.1 (b) Port 1 Block Diagram (Pins P1₂, P1₃, P1₅, and P1₇)

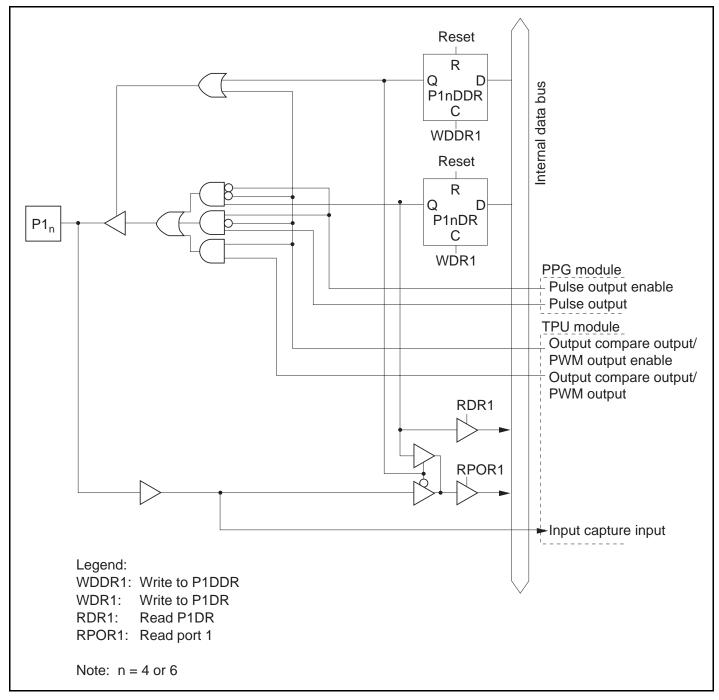


Figure C.1 (c) Port 1 Block Diagram (Pins P1₄ and P1₆)

C.2 Port 2

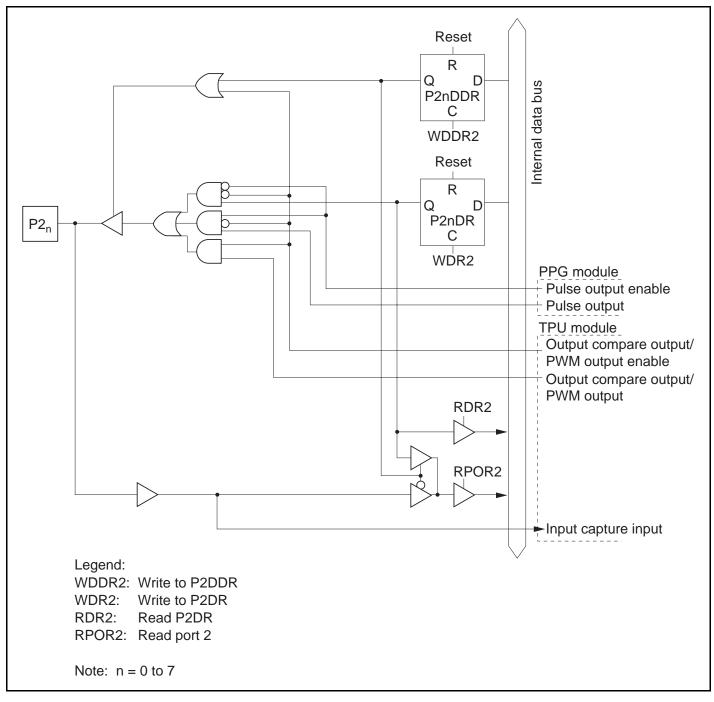


Figure C.2 Port 2 Block Diagram (Pins P2₀ to P2₇)

C.3 Port 3

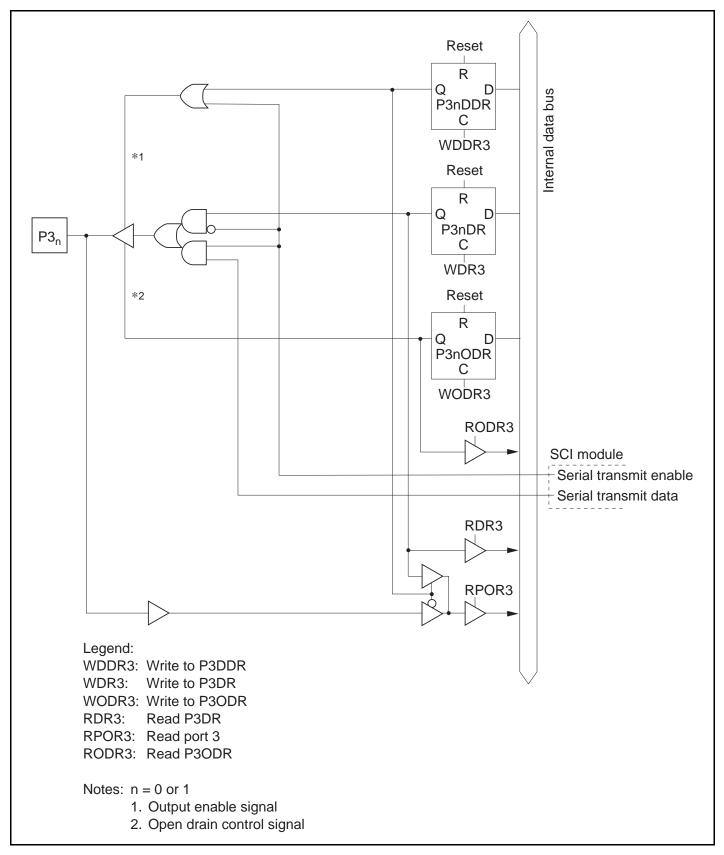


Figure C.3 (a) Port 3 Block Diagram (Pins P3₀ and P3₁)

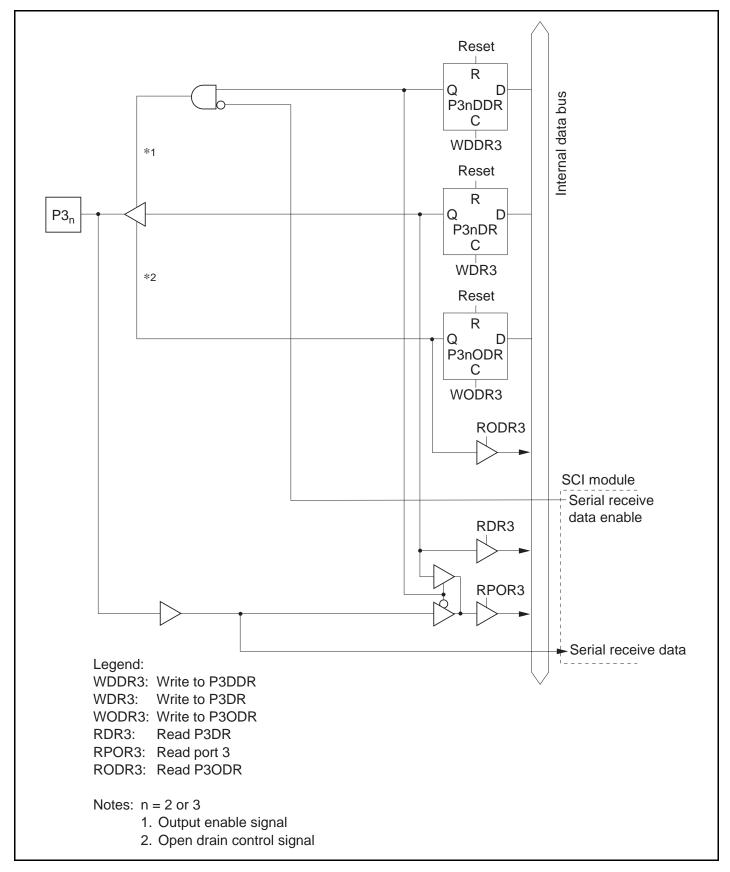


Figure C.3 (b) Port 3 Block Diagram (Pins P3₂ and P3₃)

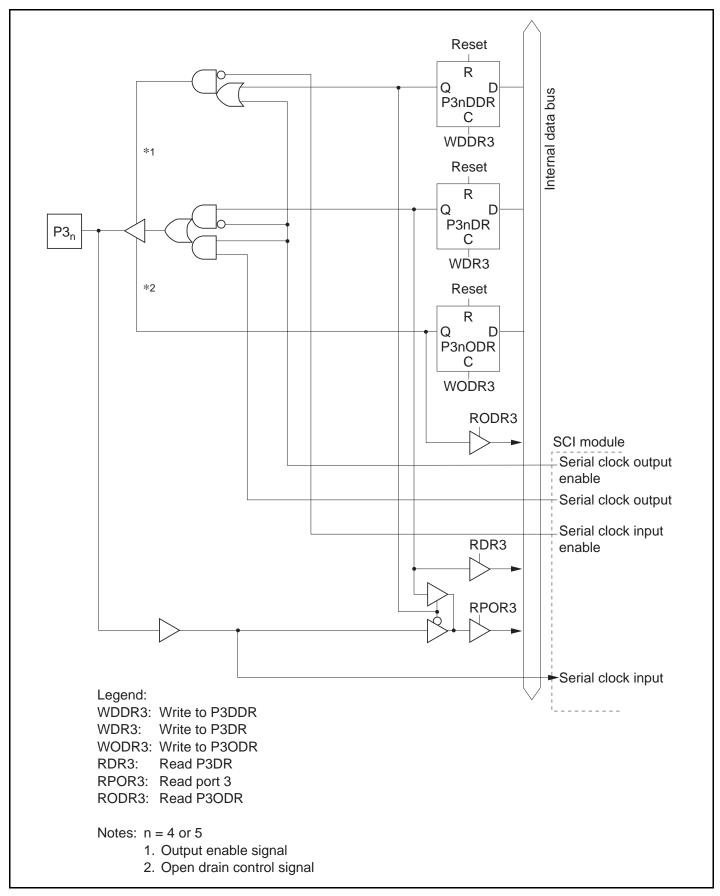


Figure C.3 (c) Port 3 Block Diagram (Pins P3₄ and P3₅)

C.4 Port 4

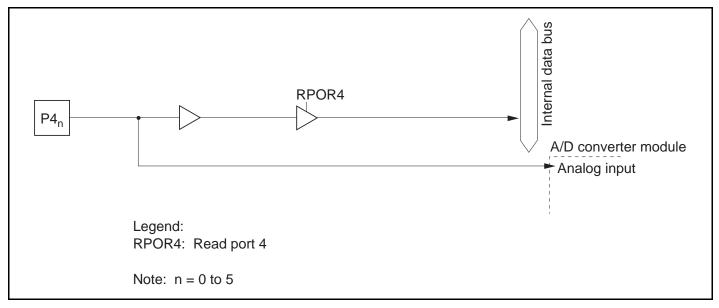


Figure C.4 (a) Port 4 Block Diagram (Pins P4₀ to P4₅)

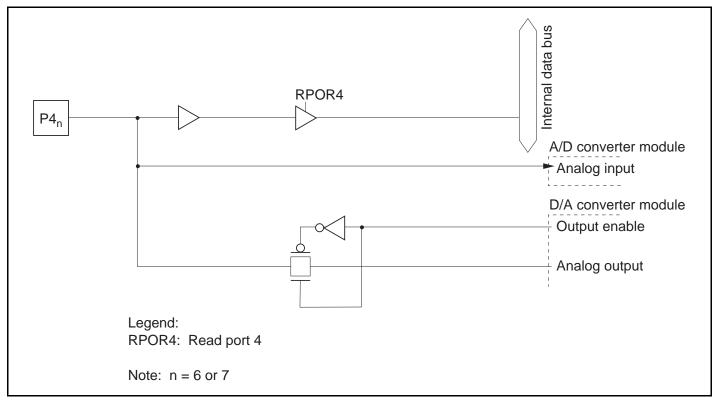


Figure C.4 (b) Port 4 Block Diagram (Pins P46 and P47)

C.5 Port 5

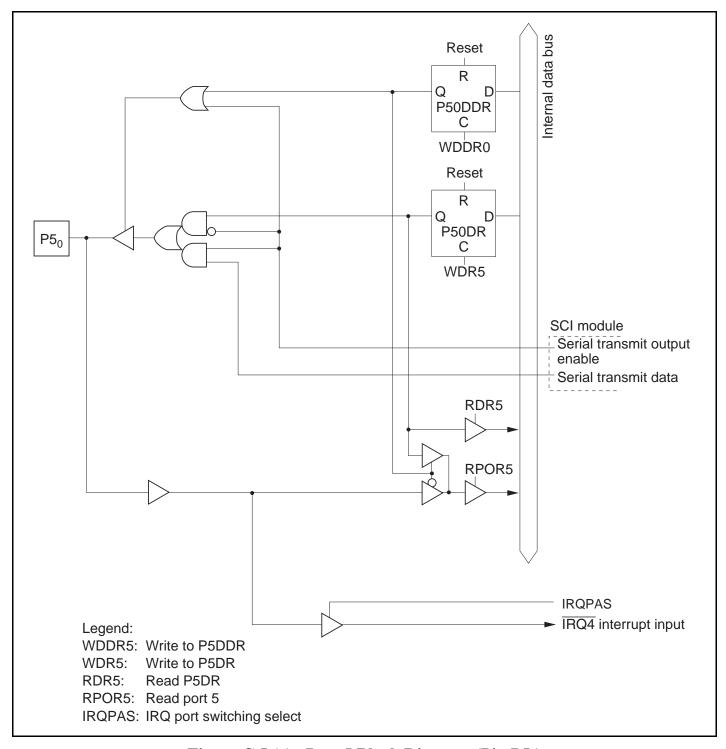


Figure C.5 (a) Port 5 Block Diagram (Pin P5₀)

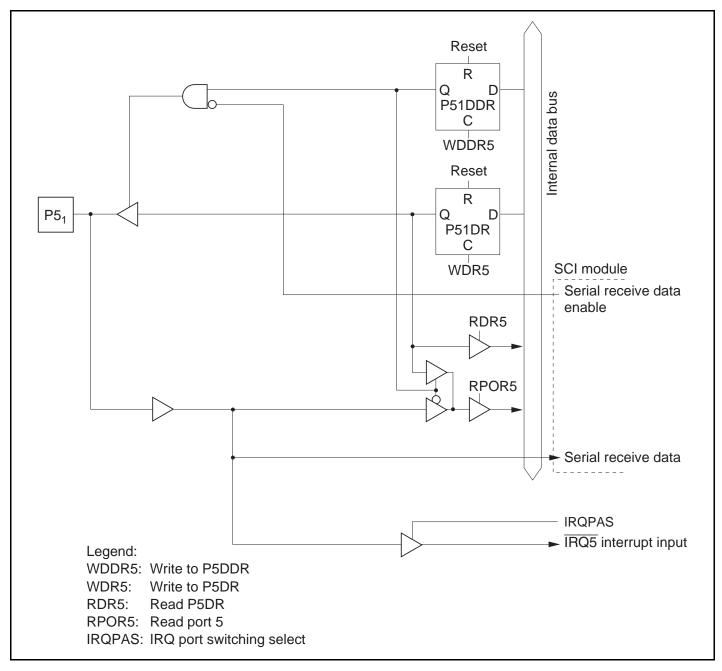


Figure C.5 (b) Port 5 Block Diagram (Pin P5₁)

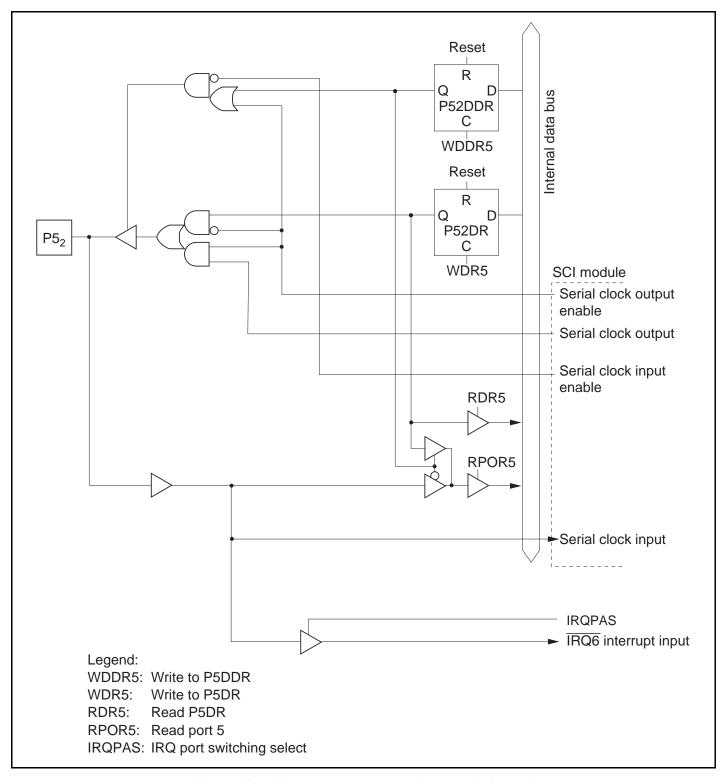


Figure C.5 (c) Port 5 Block Diagram (Pin P5₂)

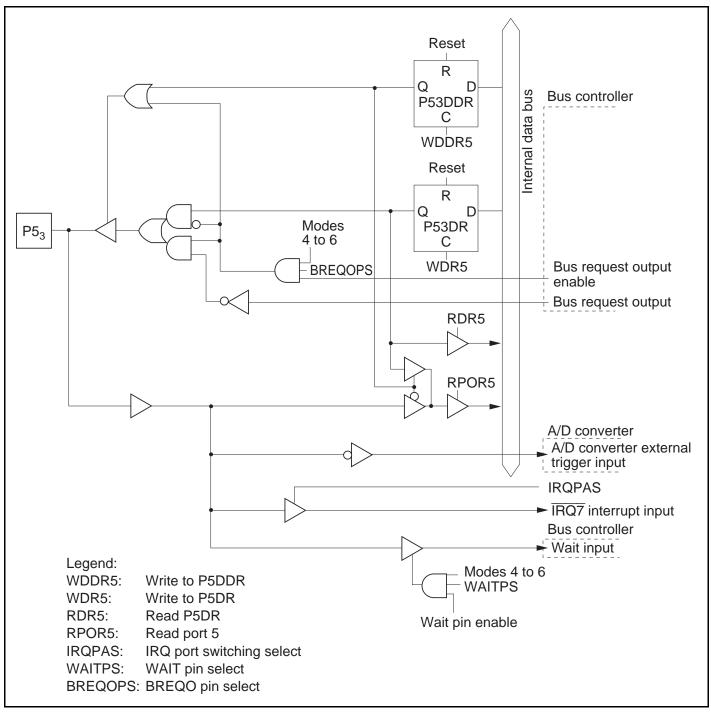


Figure C.5 (d) Port 5 Block Diagram (Pin P5₃)

Rev.4.00 Sep. 07, 2007 Page 1167 of 1210

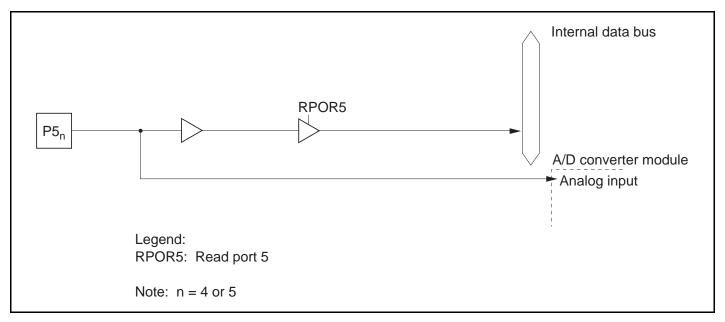


Figure C.5 (e) Port 5 Block Diagram (Pins P5₄ and P₅)

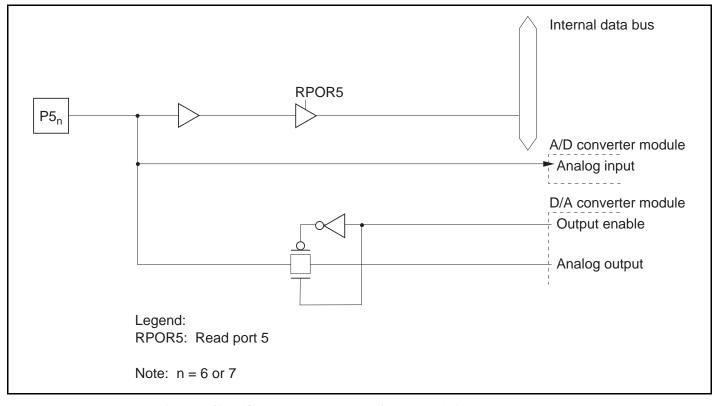


Figure C.5 (f) Port 5 Block Diagram (Pins P56 and P7)

C.6 Port 6

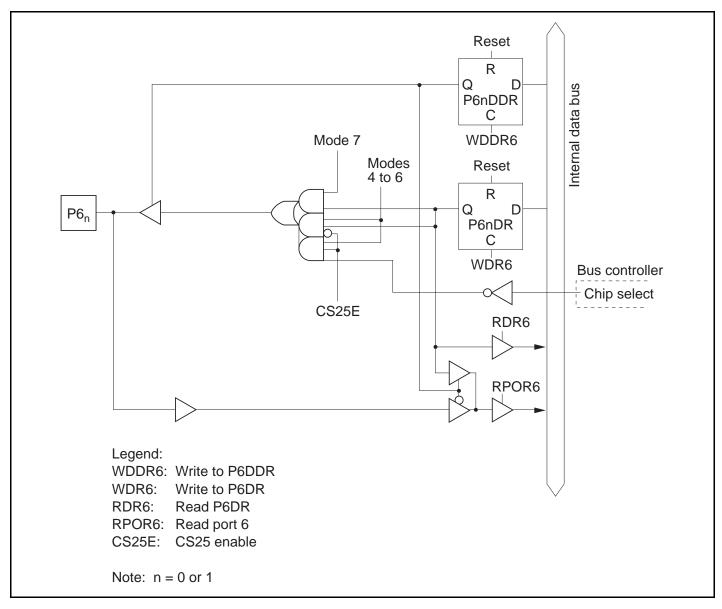


Figure C.6 (a) Port 6 Block Diagram (Pins P60 and P61)

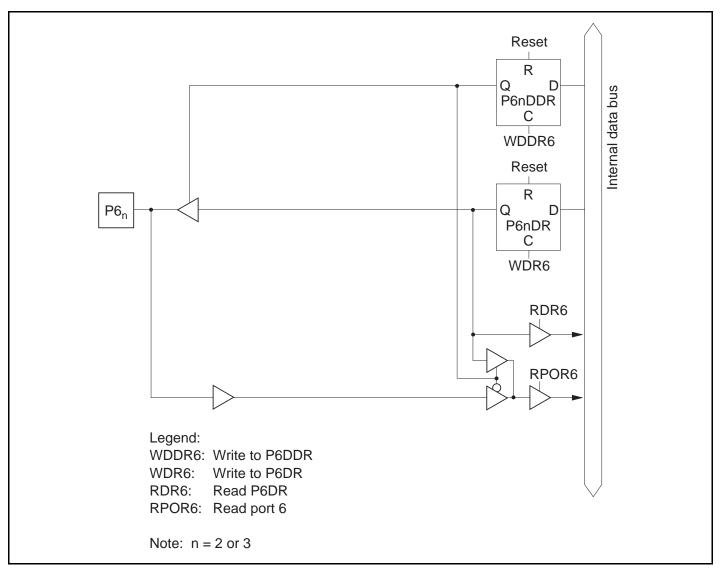


Figure C.6 (b) Port 6 Block Diagram (Pins P62 and P63)

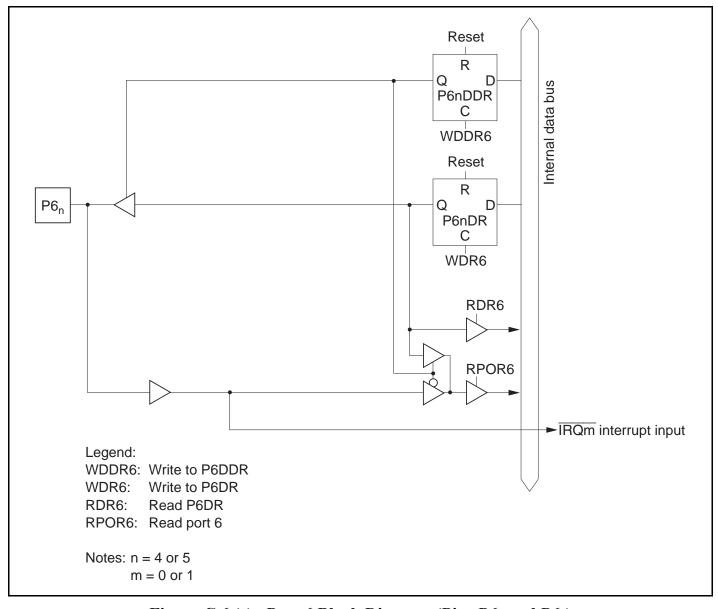


Figure C.6 (c) Port 6 Block Diagram (Pins P64 and P65)

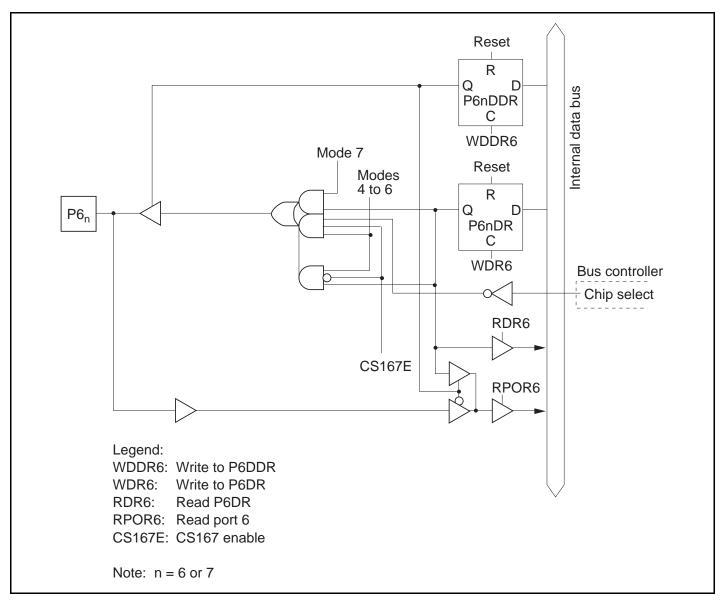


Figure C.6 (d) Port 6 Block Diagram (Pins P66 and P67)

C.7 Port 7

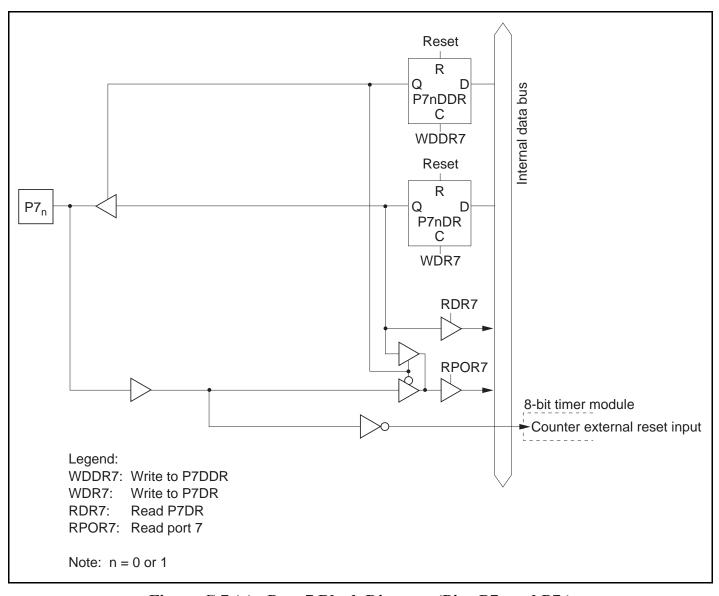


Figure C.7 (a) Port 7 Block Diagram (Pins P7₀ and P7₁)

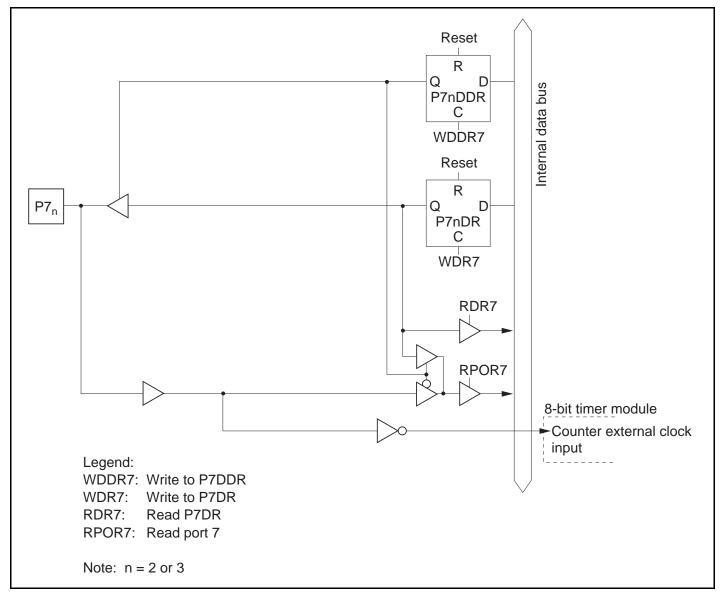


Figure C.7 (b) Port 7 Block Diagram (Pins P7₂ and P7₃)

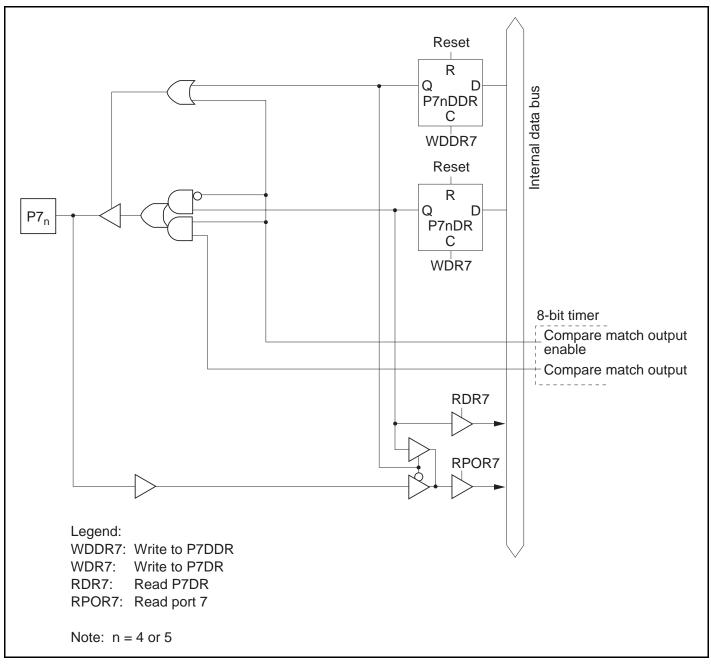


Figure C.7 (c) Port 7 Block Diagram (Pins P7₄ and P7₅)

C.8 Port 8

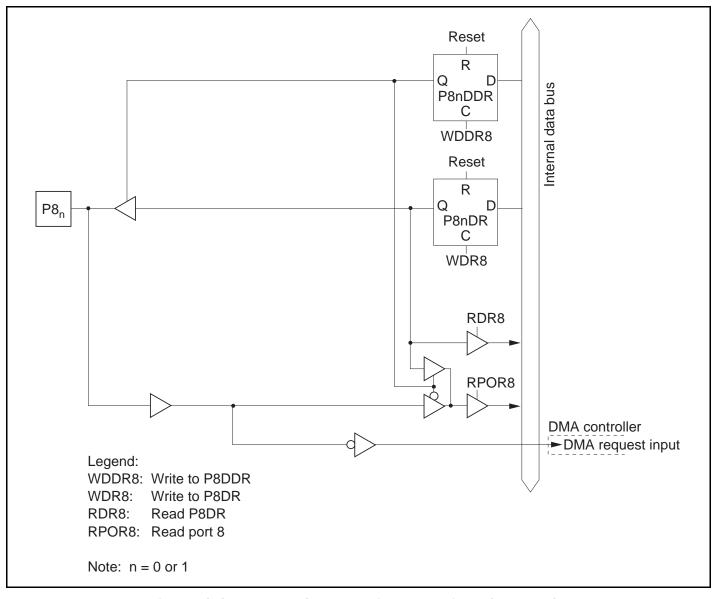


Figure C.8 (a) Port 8 Block Diagram (Pins P8₀ and P8₁)

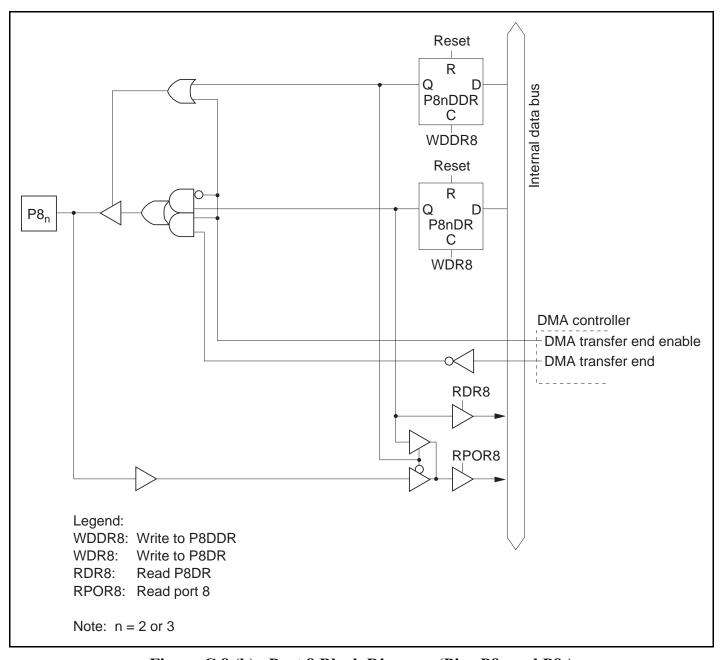


Figure C.8 (b) Port 8 Block Diagram (Pins P82 and P83)

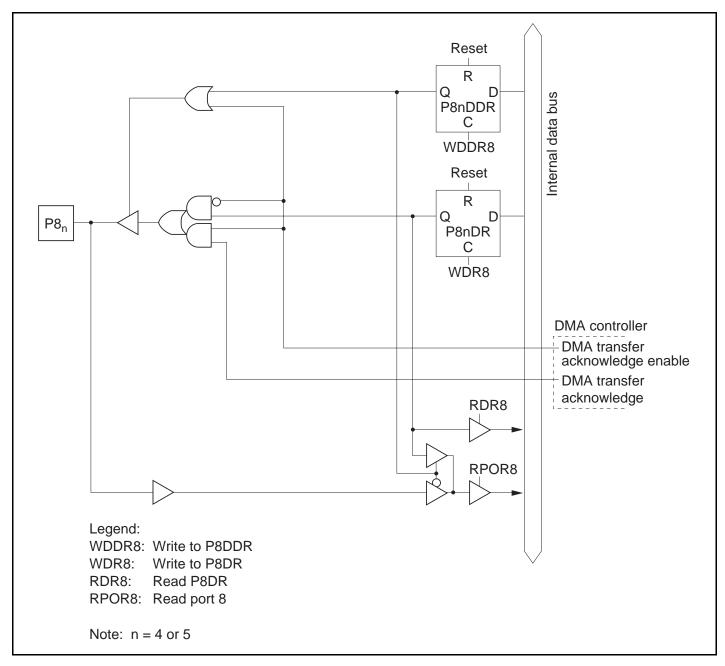


Figure C.8 (c) Port 8 Block Diagram (Pins P84 and P85)

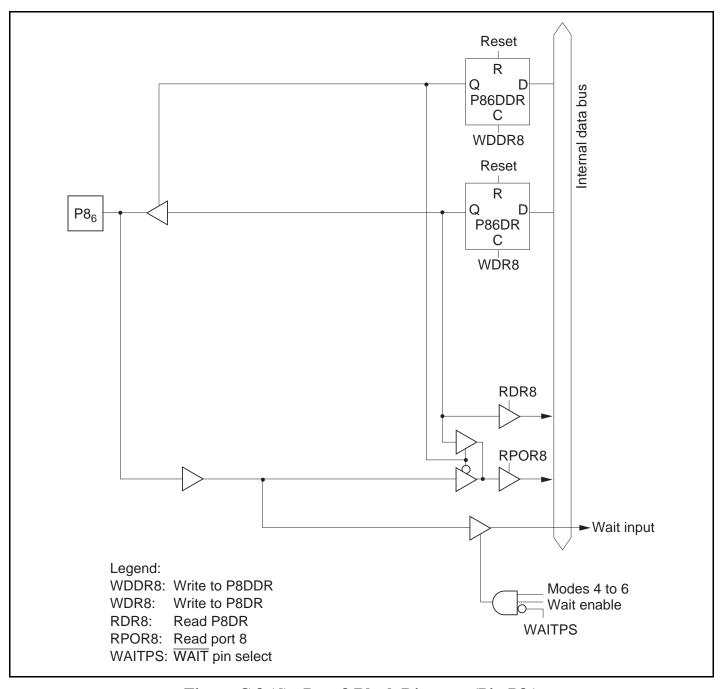


Figure C.8 (d) Port 8 Block Diagram (Pin P8₆)

C.9 Port 9

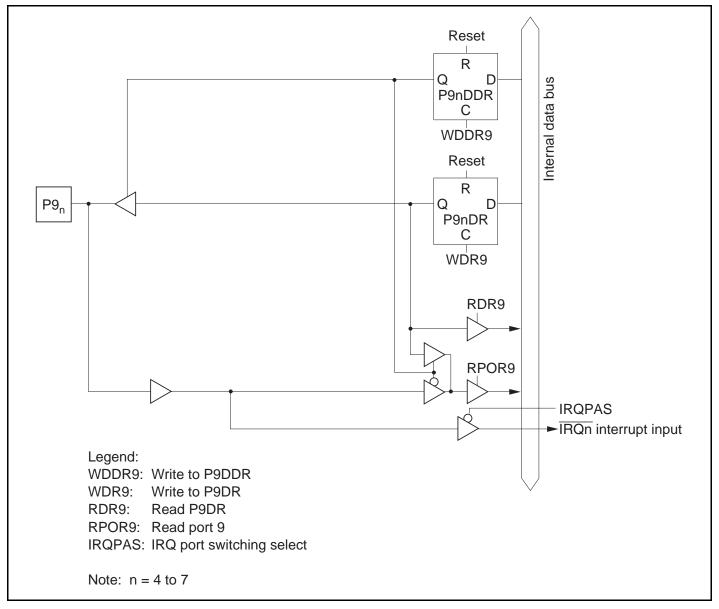


Figure C.9 (a) Port 9 Block Diagram (Pins P9₄ to P9₇)

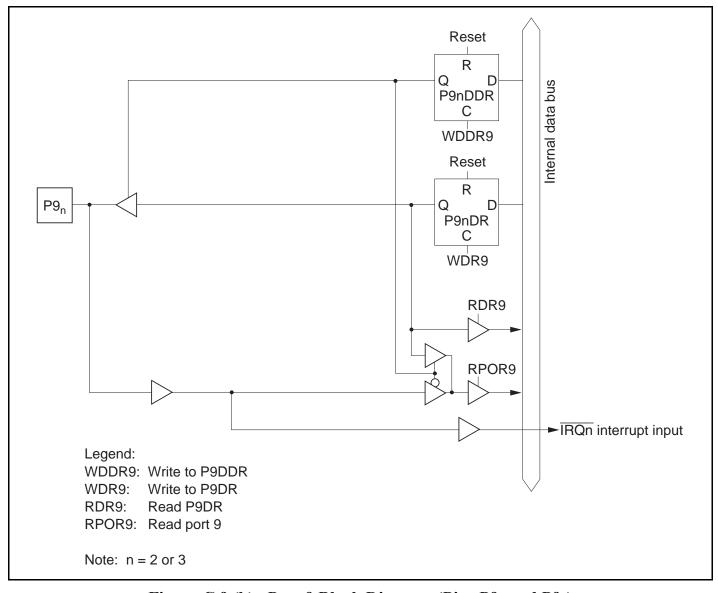


Figure C.9 (b) Port 9 Block Diagram (Pins P92 and P93)

C.10 Port A

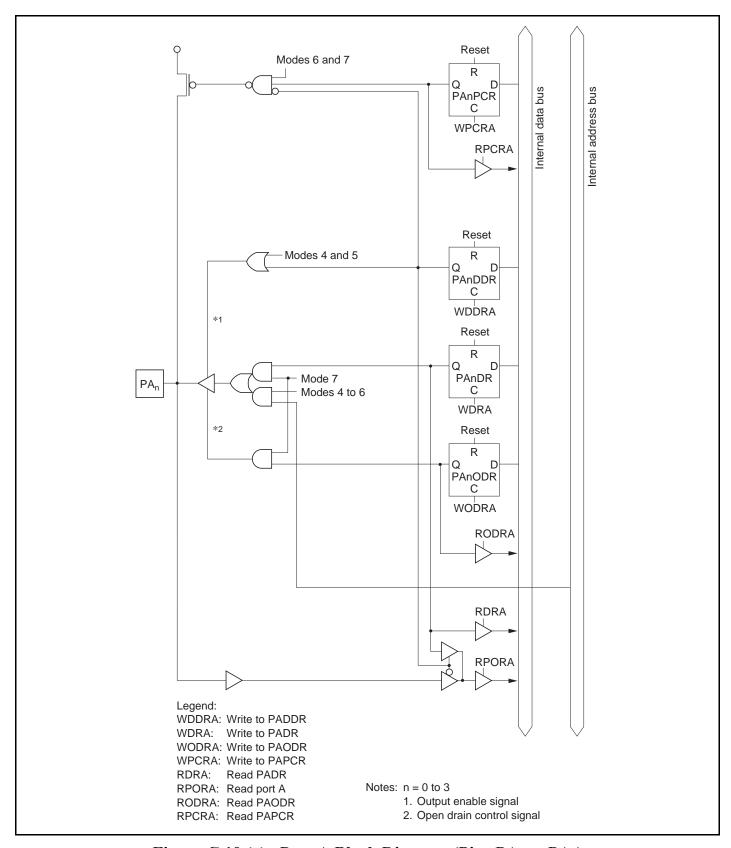


Figure C.10 (a) Port A Block Diagram (Pins PA₀ to PA₃)

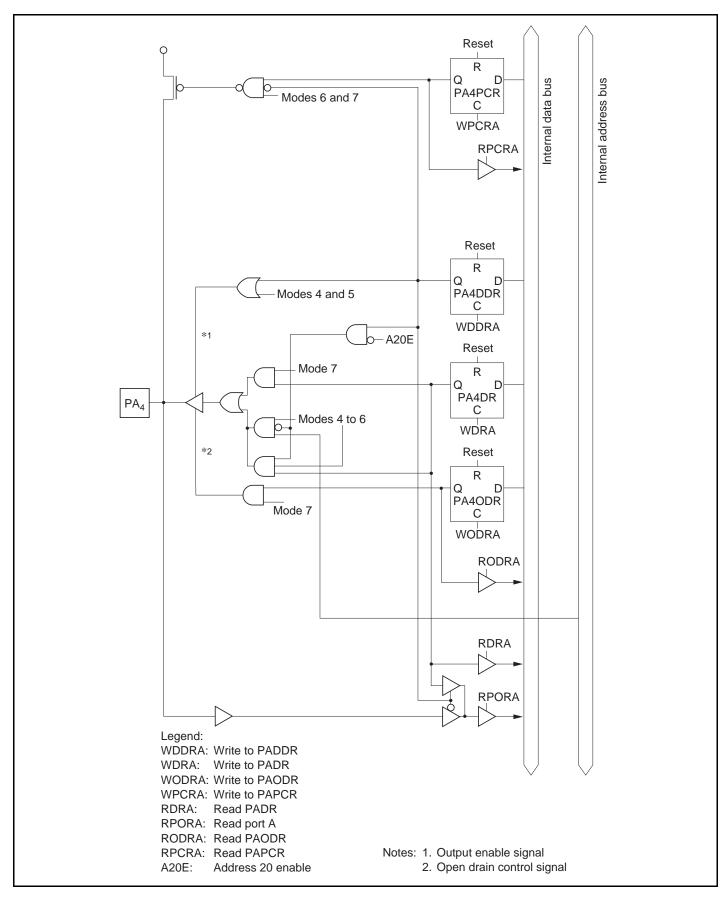


Figure C.10 (b) Port A Block Diagram (Pin PA₄)

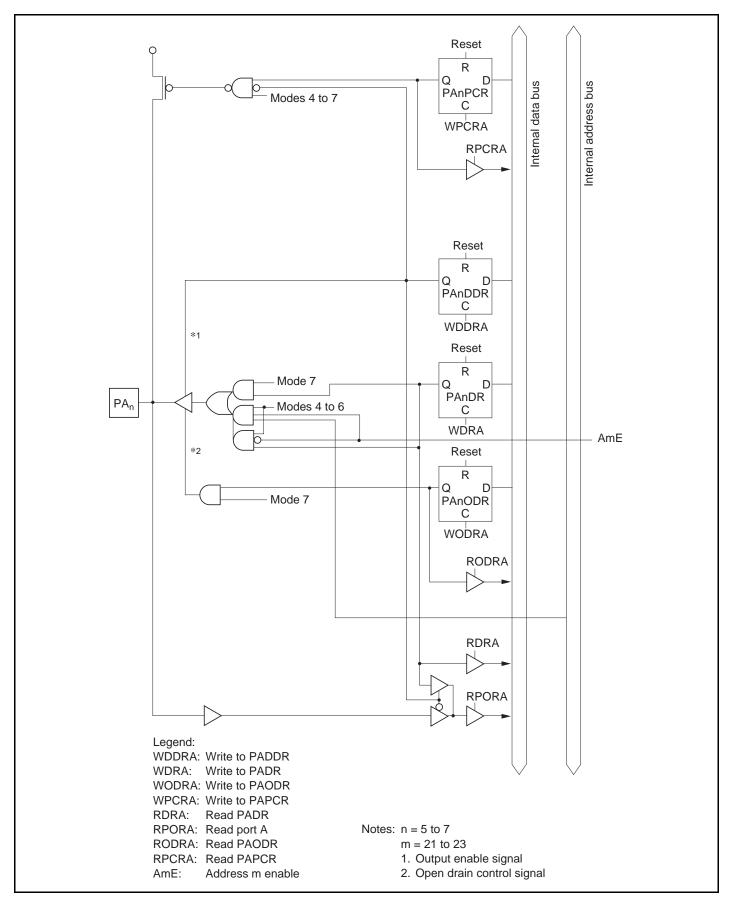


Figure C.10 (c) Port A Block Diagram (Pins PA₅ to PA₇)

C.11 Port B

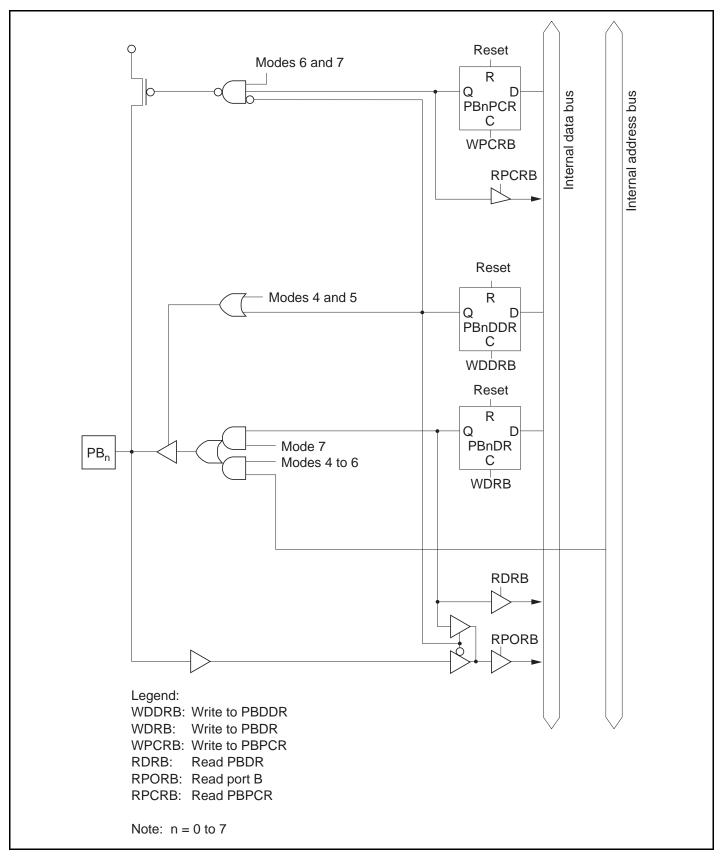


Figure C.11 Port B Block Diagram (Pins PB₀ to PB₇)

C.12 Port C

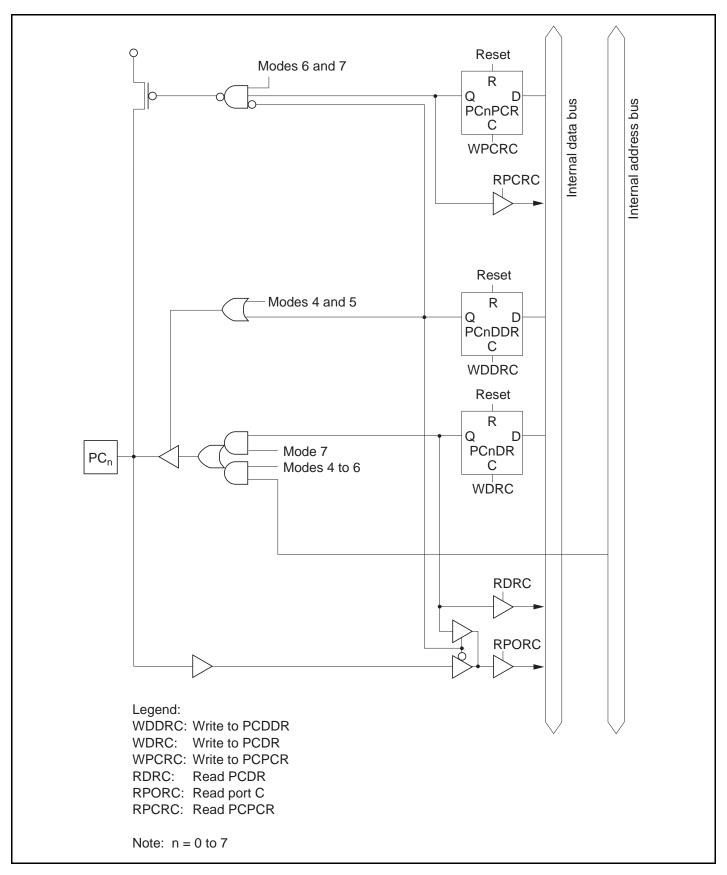


Figure C.12 Port C Block Diagram (Pins PC₀ to PC₇)

C.13 Port D

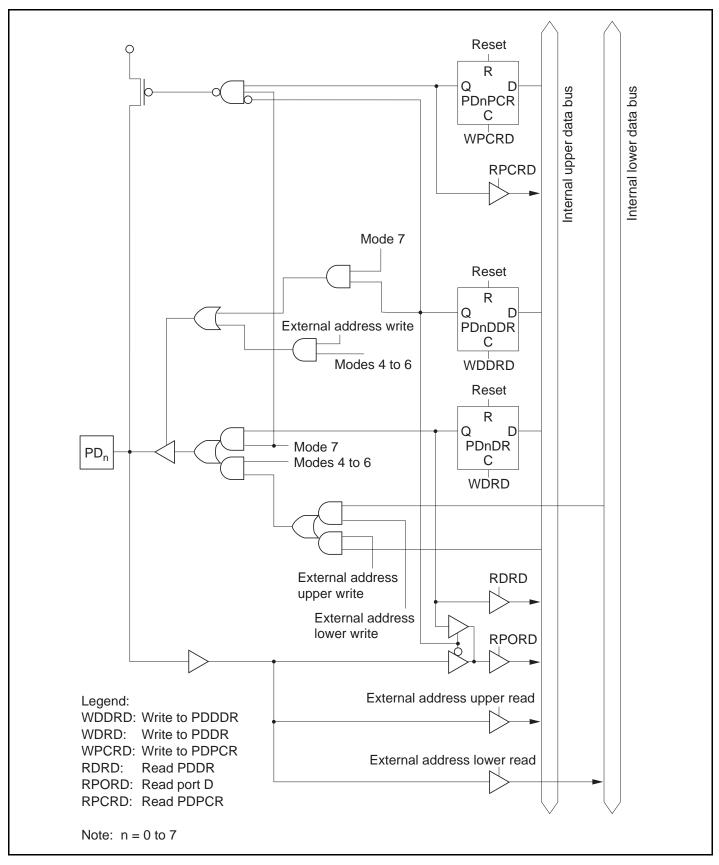


Figure C.13 Port D Block Diagram (Pins PD₀ to PD₇)

C.14 Port E

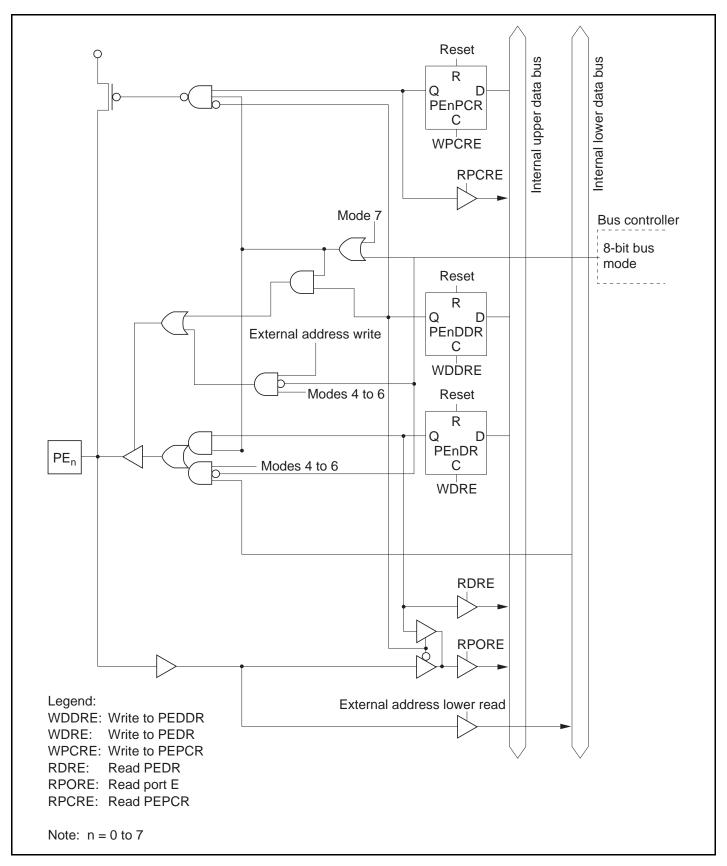


Figure C.14 Port E Block Diagram (Pins PE₀ to PE₇)

C.15 Port F

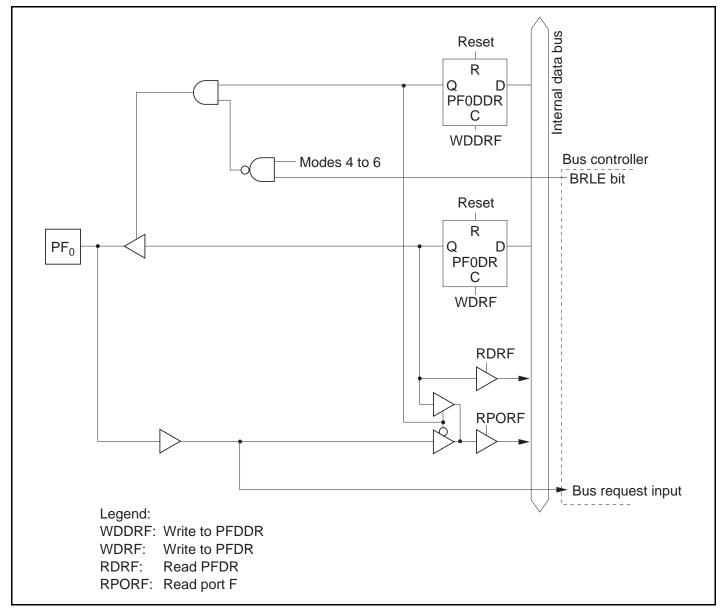


Figure C.15 (a) Port F Block Diagram (Pin PF₀)

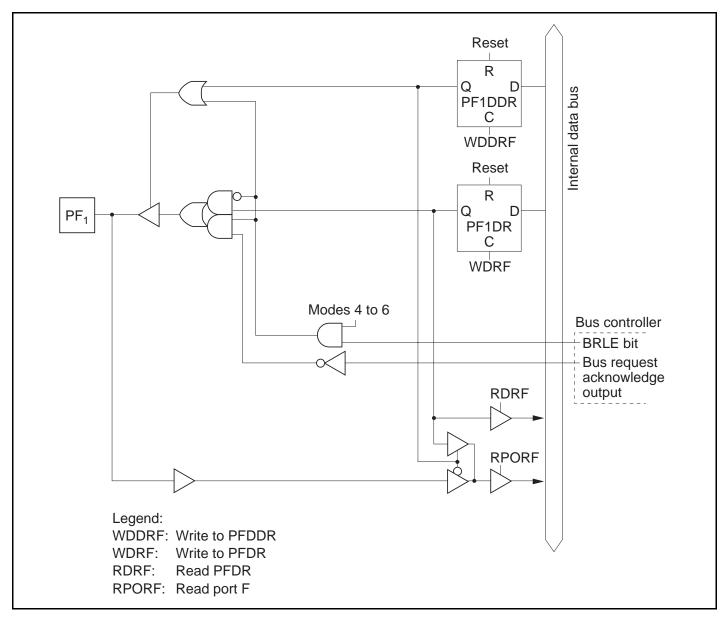


Figure C.15 (b) Port F Block Diagram (Pin PF₁)

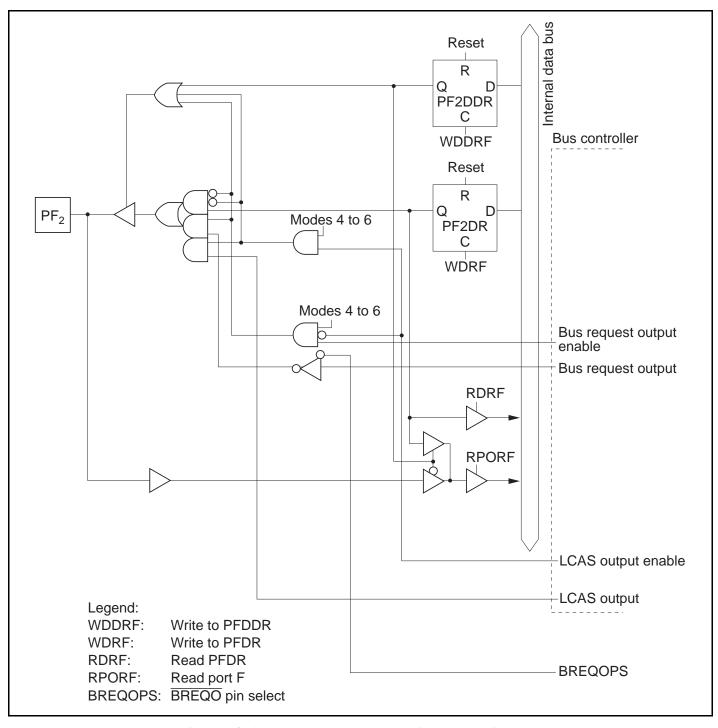


Figure C.15 (c) Port F Block Diagram (Pin PF₂)

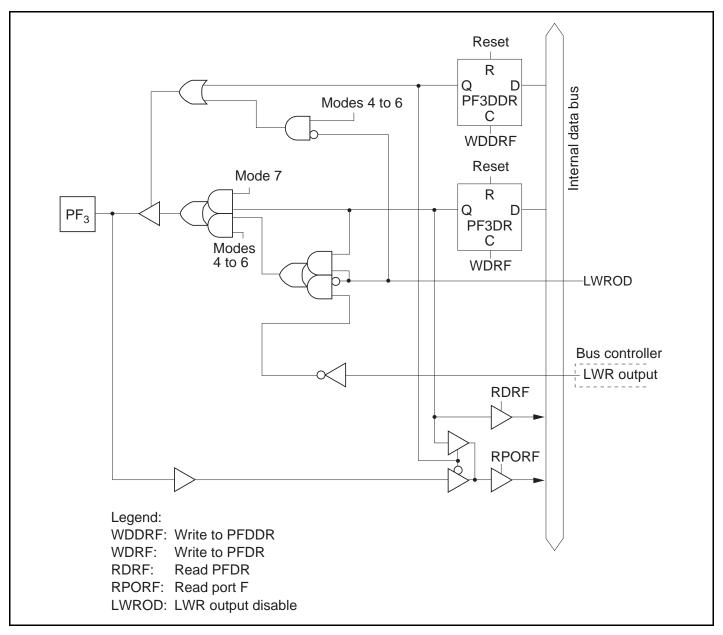


Figure C.15 (d) Port F Block Diagram (Pin PF₃)

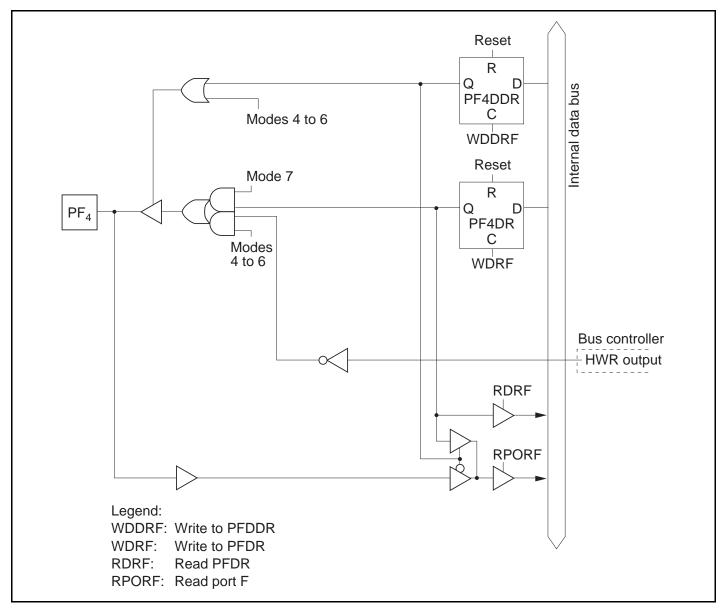


Figure C.15 (e) Port F Block Diagram (Pin PF₄)

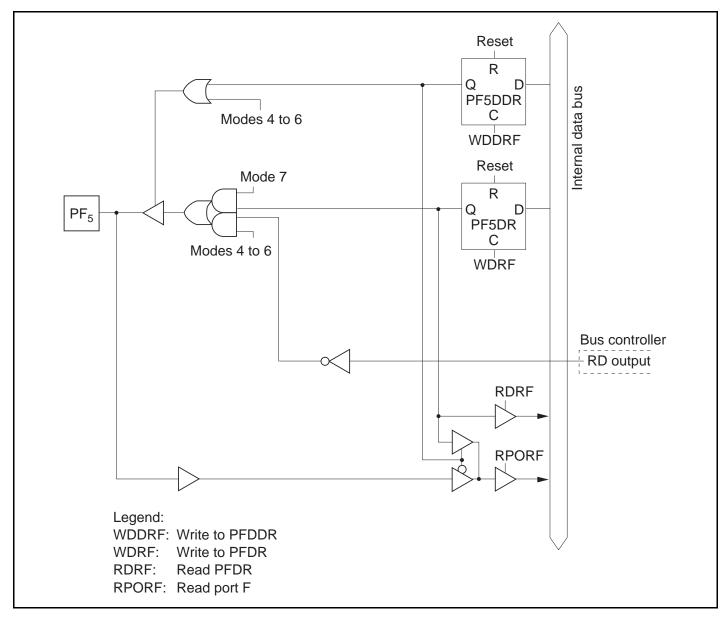


Figure C.15 (f) Port F Block Diagram (Pin PF₅)

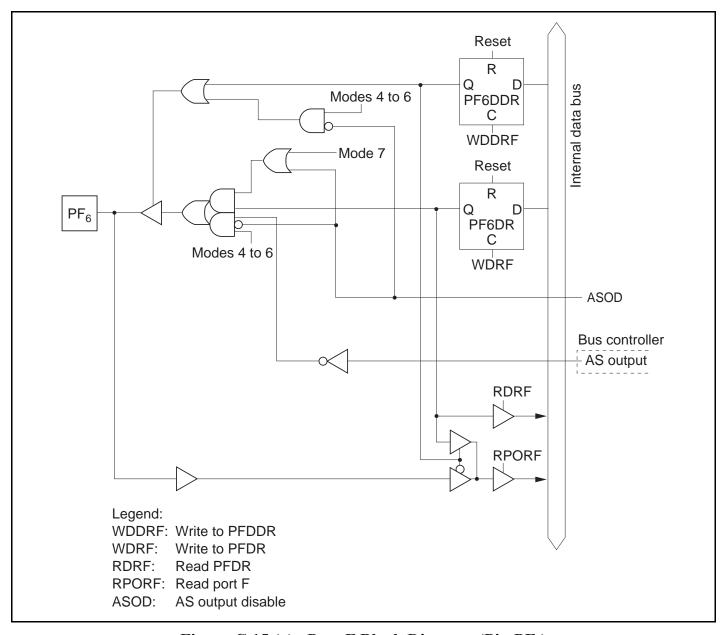


Figure C.15 (g) Port F Block Diagram (Pin PF₆)

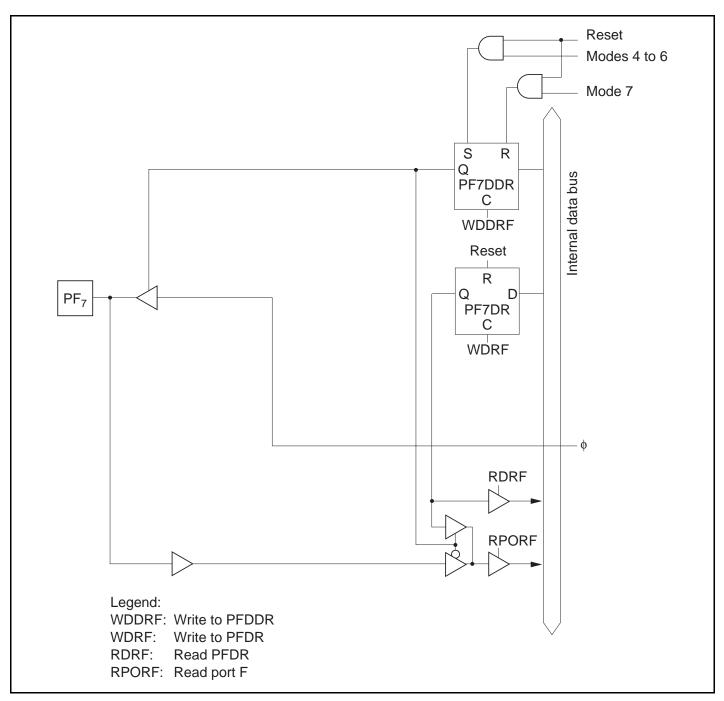


Figure C.15 (h) Port F Block Diagram (Pin PF₇)

C.16 Port G

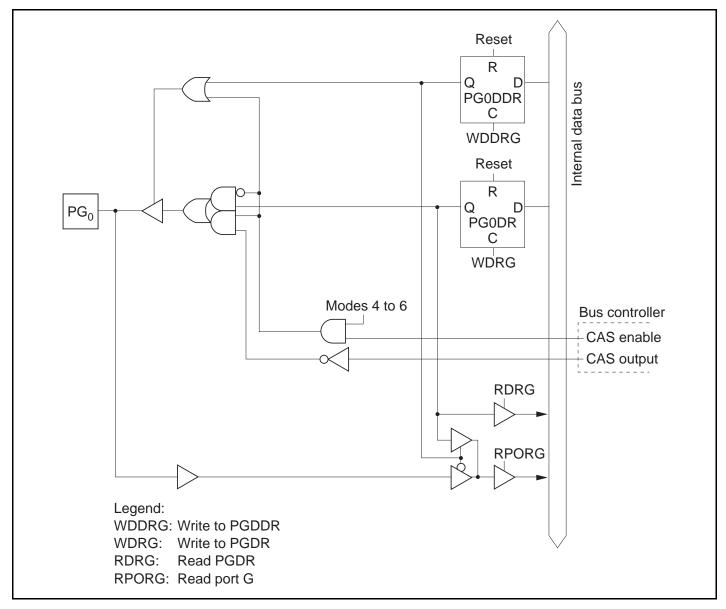


Figure C.16 (a) Port G Block Diagram (Pin PG₀)

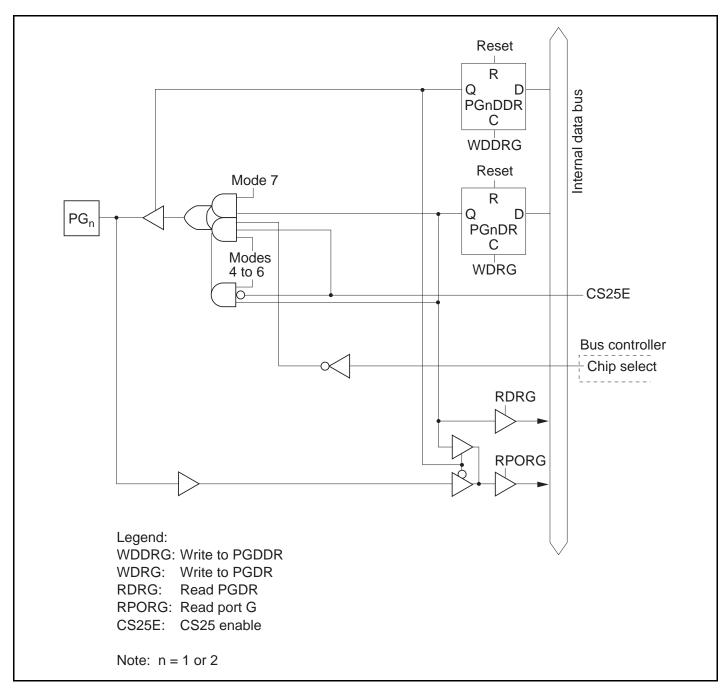


Figure C.16 (b) Port G Block Diagram (Pins PG₁ and PG₂)

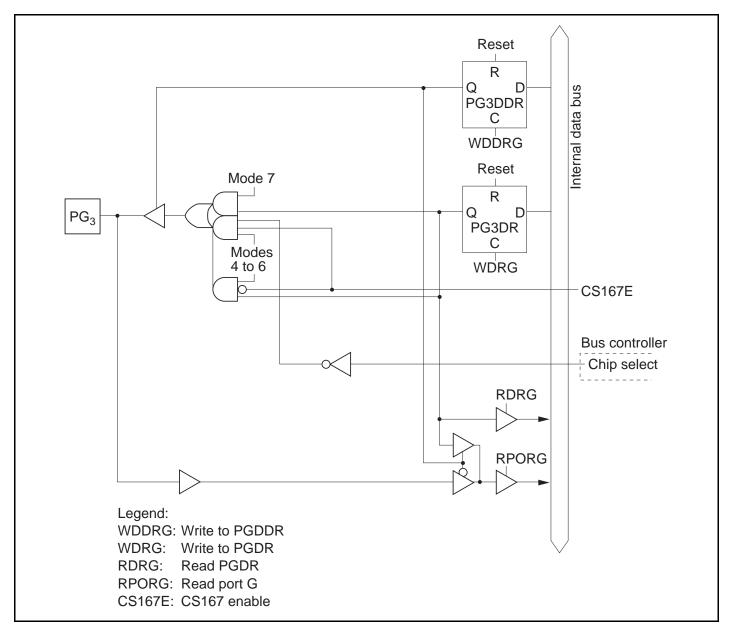


Figure C.16 (c) Port G Block Diagram (Pin PG₃)

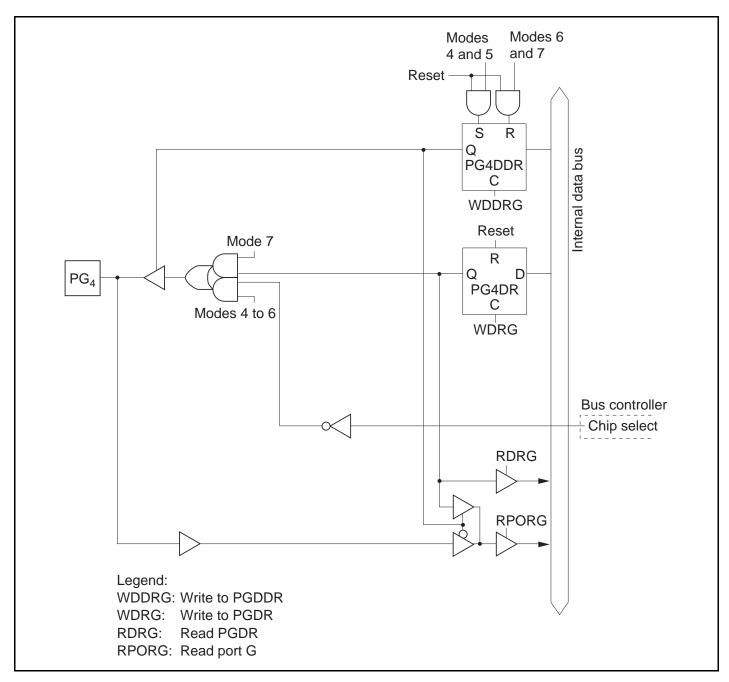


Figure C.16 (d) Port G Block Diagram (Pin PG₄)

Appendix D Pin States

Port States in Each Mode D.1

I/O Port States in Each Processing State Table D.1

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
Port 1	4 to 7	T	T	kept	kept	I/O port
Port 2	4 to 7	T	T	kept	kept	I/O port
Port 3	4 to 7	T	T	kept	kept	I/O port
P4 ₇ /DA ₁	4 to 7	T	Т	[DAOE1 = 1] kept [DAOE1 = 0] T	kept	I/O port
P4 ₆ /DA ₀	4 to 7	T	Т	[DAOE0 = 1] kept [DAOE0 = 0] T	kept	I/O port
P4 ₅ to P4 ₀	4 to 7	T	Т	T	Т	Input port
P5 ₇ /DA ₃	4 to 7	Т	T	[DAOE3 = 1] kept [DAOE3 = 0] T	kept	I/O port
P5 ₆ /DA ₂	4 to 7	T	Т	[DAOE2 = 1] kept [DAOE2 = 0] T	kept	I/O port
P5 ₅ , P5 ₄	4 to 7	Т	T	Т	Т	Input port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
P5 ₃ /WAIT/ BREQO	4 to 6	T	T	[BREQOE · BREQOPS + WAITE · WAITPS = 0] kept [BREQOE · BREQOPS = 1] kept [BREQOE · BREQOPS = 0] and [WAITE · WAITPS · DDR = 1] T	[BREQOE · BREQOPS + WAITE · WAITPS = 0] kept [BREQOE · BREQOPS = 1] BREQO [BREQOE · BREQOPS = 0] and [WAITE · WAITPS · DDR = 1] T	[BREQOE · BREQOPS + WAITE · WAITPS = 0] I/O port [BREQOE · BREQOPS = 1] BREQO [BREQOE · BREQOPS = 0] and [WAITE · WAITPS · DDR = 1] WAIT
	7	Т	T	kept	kept	I/O port
P5 ₂ to P5 ₀	4 to 7	T	T	kept	kept	I/O port
P6 ₇ /CS ₇ P6 ₆ /CS ₆	4 to 6	Т	Т	[CS167E = 0], [CS167E · DDR = 1] kept [CS167E · DDR · OPE = 1] T [CS167E · DDR · OPE = 1] H	[CS167E · DDR = 1] kept	[CS167E = 0] I/O port [CS167E \cdot \overline{DDR} = 1] Input port [CS167E \cdot DDR = 1] \overline{CS}_7 , \overline{CS}_6
	7	T	T	kept	kept	I/O port
P6 ₅ to P6 ₂	4 to 7	T	T	kept	kept	I/O port
P6 ₁ /CS ₅ P6 ₀ /CS ₄	4 to 6	Т	T	[CS25E · DDR · OPE = 1] T [CS25E · DDR · OPE = 1] H [CS25E = 0], [CS25E · DDR = 1] kept	[CS25E = 0] kept [CS25E · DDR = 1] kept [CS25E · DDR = 1] T	[CS25E = 0] I/O port [CS25E \cdot DDR = 1] Input port [CS25E \cdot DDR = 1] $\overline{\text{CS}}_{5}$, $\overline{\text{CS}}_{4}$
	7	T	Т	kept	kept	I/O port
Port 7	4 to 7	Т	Т	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
P8 ₆ /WAIT	4 to 6	T	T	[WAITE · WAITPS · DDR = 1] T	[WAITE · WAITPS · DDR = 1]	[WAITE · WAITPS · DDR = 1] WAIT
				[WAITE · WAITPS = 0] kept	[WAITE · WAITPS = 0] kept	[WAITE · WAITPS = 0] I/O port
	7	T	Т	kept	kept	I/O port
P8 ₅ to P8 ₀	4 to 7	T	Т	kept	kept	I/O port
Port 9	4 to 7	T	Т	kept	kept	I/O port
PA ₇ /A ₂₃ PA ₆ /A ₂₂	4 to 6	T	T	[AnE = 0] kept	[AnE = 0] kept	[AnE = 0] I/O port
PA ₅ /A ₂₁				$[AnE \cdot \overline{DDR} = 1]$	$[AnE \cdot \overline{DDR} = 1]$	[AnE · DDR = 1] Input port
				[AnE · DDR · OPE = 1] T	[AnE · DDR = 1] T	[AnE · DDR = 1] Address output
				[AnE · DDR · OPE = 1] kept		
	7	T	Т	kept	kept	I/O port
PA ₄ /A ₂₀	4, 5	L	Т	[A20E · DDR = 1] kept	[A20E · DDR = 1] kept	[A20E · DDR = 1] Output port
				[A20E · OPE = 1] T	[A20E + A20E · DDF = 1]	R[A20E + A20E · DDR = 1]
				[A20E · OPE = 1] kept	Т	Address output
	6	Т	Т	[A20E = 0], [A20E · DDR = 1] kept	[A20E = 0], [A20E · DDR = 1] kept	[A20E = 0] I/O port [A20E · DDR = 1]
				[A20E · DDR · OPE = 1] T	[A20E · DDR = 1] T	Input port [A20E · DDR = 1] Address output
				[A20E · DDR · OPE = 1] kept		
	7	Т	Т	kept	kept	I/O port

Port Name Pin Name	MCU Ope Mod	rating	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PA ₃ /A ₁₉ PA ₂ /A ₁₈ PA ₁ /A ₁₇ PA ₀ /A ₁₆	4, 5		L	Т	[OPE = 0] T [OPE = 1] kept	Т	Address output
1 A0/A16	6		Т	Т	[DDR · OPE = 0] T [DDR · OPE = 1] kept	Т	[DDR = 0] Input port [DDR = 1] Address output
	7		T	T	kept	kept	I/O port
Port B	4, 5		L	T	[OPE = 0] T [OPE = 1] kept	Т	Address output
	6		T	T	[DDR · OPE = 0] T [DDR · OPE = 1] kept	Т	[DDR = 0] Input port [DDR = 1] Address output
	7		T	T	kept	kept	I/O port
Port C	4, 5		L	T	[OPE = 0] T [OPE = 1] kept	Т	Address output
	6 7		T	T	[DDR · OPE = 0] T [DDR · OPE = 1] kept kept	T kept	[DDR = 0] Input port [DDR = 1] Address output I/O port
Port D	4 to	6	<u>.</u> Т	<u>.</u> Т	T	T	Data bus
. 0.0	7		 	<u>'</u> Т	kept	kept	I/O port
Port E		8-bit bus	T	T	kept	kept	I/O port
		16-bit bus	Т	Т	Т	T	Data bus
	7			T	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PF ₇ /φ	4 to 6	Clock output	Т	[DDR = 0] Input port	[DDR = 0] Input port	[DDR = 0] Input port
				[DDR = 1] H	[DDR = 1] Clock output	[DDR = 1] Clock output
	7	Т	Т	[DDR = 0] Input port	[DDR = 0] Input port	[DDR = 0] Input port
				[DDR = 1] H	[DDR = 1] Clock output	[DDR = 1] Clock output
PF ₆ /AS	4 to 6	Н	Т	[ASOD = 1] kept	[ASOD = 1] kept	[ASOD = 1] I/O port
				$[\overline{ASOD} \cdot \overline{OPE} = 1]$	[ASOD = 0] T	$\frac{[ASOD = 0]}{AS}$
				[ĀSOD · OPE = 1] H		
	7	T	Т	kept	kept	I/O port
PF₅/RD PF₄/HWR	4 to 6	Н	Т	[OPE = 0] T	Т	RD, HWR
7				[OPE = 1] H		
	7	T	Т	kept	kept	I/O port
PF ₃ /LWR	4 to 6	Н	Т	[LWROD = 1] kept	[LWROD = 1] kept	[LWROD = 1] I/O port
				$[\overline{LWROD} \cdot \overline{OPE} = 1]$	[LWROD = 0] T	$\frac{[LWROD = 0]}{LWR}$
				[LWROD · OPE = 1] H		
	7	T	Т	kept	kept	I/O port

Port Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PF ₂ /LCAS/ BREQO	4 to 6	Т	Т	[BREQOE · BREQO PS + LCASE = 0] kept	[BREQOE · BREQO PS + LCASE = 0] kept	[BREQOE · BREQO PS + LCASE = 0] I/O port
				[BREQOE · BREQO PS = 1] kept	[BREQOE · BREQO PS = 1] BREQO	[BREQOE · BREQO PS = 1] BREQO
				[LCASE = 1, OPE = 0] T	[LCASE = 1] T	[LCASE = 1] LCAS
				[LCASE = 1, OPE = 1] H		
	7	Т	Т	kept	kept	I/O port
PF ₁ /BACK	4 to 6	T	Т	[BRLE=0] kept	L	[BRLE = 0] I/O port
				[BRLE=1] BACK		[BRLE = 1] BACK
	7	T	T	kept	kept	I/O port
PF ₀ /BREQ	4 to 6	T	Т	[BRLE=0] kept	Т	[BRLE = 0] I/O port
				[BRLE=1] T		[BRLE = 1] BREQ
	7	T	T	kept	kept	I/O port
PG ₄ /CS ₀	4, 5	Н	Т	[DDR · OPE = 0] T	Т	[DDR = 0] Input port
	6	T	_	[DDR · OPE = 1] H		$\frac{[DDR=1]}{CS_0}$
	7	T	Т	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PG₃/CS₁	4 to 6	T	Т	[CS167E = 0] kept	[CS167E = 0] kept	[CS167E = 0] I/O port
				$[CS167E \cdot \overline{DDR} = 1]$	[CS167E = 1] T	$[CS167E \cdot \overline{DDR} = 1]$ Input port
				[CS167E · DDR · OPE = 1] T		$\frac{[CS167E \cdot DDR = 1]}{\overline{CS}_1}$
				[CS167E · DDR · OPE = 1] H		
	7	T	T	kept	kept	I/O port
PG ₂ / CS ₂ PG ₁ / CS ₃	4 to 6	T	Т	[CS25E = 0] kept	[CS25E = 0] kept	[CS25E = 0] I/O port
1 3				$[CS25E \cdot \overline{DDR} = 1]$	[CS25E = 1] T	$[CS25E \cdot \overline{DDR} = 1]$ Input port
				[CS25E · DDR · OPE = 1] T		$\frac{[CS25E \cdot DDR = 1]}{CS_2 \text{ to } \overline{CS}_3}$
				[CS25E · DDR · OPE = 1] H		
	7	T	T	kept	kept	I/O port
PG0/CAS	4 to 6	T	Т	[DRAME = 0] kept	Т	[DRAME = 0] Input port
				[DRAME \cdot $\overline{OPE} = 1$]		[DRAME = 1] CAS
				$\frac{[DRAME \cdot OPE = 1]}{CAS}$		
	7	T	Т	kept	kept	I/O port
WDTOVF	4 to 7	Н	Н	Н	Н	H*

Legend:

H: High level L: Low level

T: High impedance

kept: Input port becomes high-impedance, output port retains state

DDR: Data direction register
OPE: Output port enable
WAITE: Wait input enable
BRLE: Bus release enable
BREQOE: BREQO pin enable
DRAME: DRAM space setting

Appendix D Pin States

LCASE: DRAM space setting, 16-bit bus mode setting

AnE: Address n enable (n = 23 to 21)

A20E: Address 20 enable
BREQOPS: BREQO pin select
ASOD: AS output disable
WAITPS: WAIT pin select
CS167E: CS167 enable
CS25E: CS25 enable

LWROD: LWR output disable

Note: * A low level is output if a WDT overflow occurs while WT/IT is set to 1.

Appendix E Product Lineup

Table E.1 H8S/2339 Group Product Lineup

Product Typ	pe	Model	Marking	Package (Package Code)
H8S/2339	F-ZTAT version	HD64F2339	HD64F2339VFC	144-pin QFP (FP-144G)
		HD64F2339E*	HD64F2339EVFC	144-pin QFP (FP-144G)
H8S/2338	Mask ROM version	HD6432338	HD6432338FC	144-pin QFP (FP-144G)
	F-ZTAT version	HD64F2338	HD64F2338VFC	144-pin QFP (FP-144G)
H8S/2337	Mask ROM version	HD6432337	HD6432337FC	144-pin QFP (FP-144G)
H8S/2332	ROMless version	HD6412332	HD6412332VFC	144-pin QFP (FP-144G)

Note: * The on-chip debug function can be used with the E10-A emulator (E10-A compatible version). However, some function modules and pin functions are unavailable when the on-chip debug function is in use. Refer to figure 1.3.

Appendix F Package Dimensions

The package dimension that is shown in the Renesas Semiconductor Package Data Book has priority.

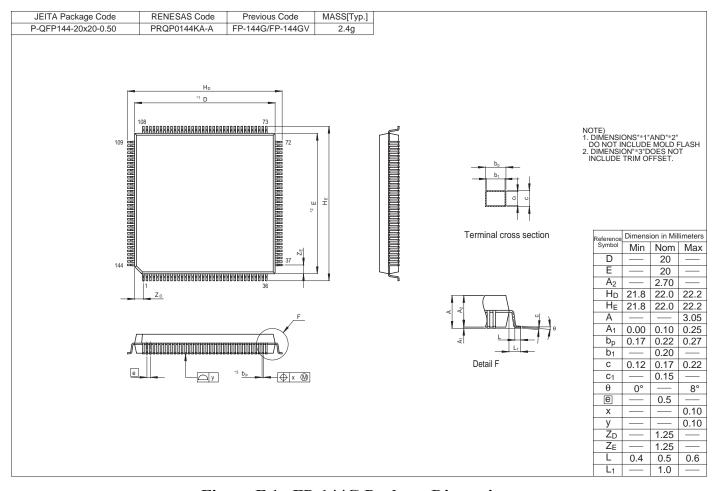


Figure F.1 FP-144G Package Dimensions

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2339 Group

Publication Date: 1st Edition, March 1999

Rev.4.00, September 7, 2007

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

Edited by: Customer Support Department

Global Strategic Communication Div.

Renesas Solutions Corp.

©2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

Co	امما		C	\sim
(,()	ш	1011	n.	u

H8S/2339 Group Hardware Manual

