FEATURES

HDMI/DVI transmitter compatible with HDMI 1.1 and HDCP 1.1
Single 1.8 V power supply
Video/audio inputs are 3.3 V tolerant
Supports HDCP 1.1 with encrypted internal HDCP key storage
80-lead LQFP
Digital video
80 MHz operation supports all video formats from 480 i to 1080i and 720p
Programmable 2-way color space converter
Supports RGB, YCbCr, DDR, ITU656 formats
Auto input video format detection
Digital audio
Supports standard S/PDIF for stereo or compressed audio up to 192 kHz
8-channel LPCM I²S audio up to 192 kHz
Special features for easy system design
On-chip MPU to perform HDCP operations
On-chip $I^{2} C^{\oplus}$ master to handle EDID reading
5 V tolerant $\mathrm{I}^{2} \mathrm{C}$ and MPD I/Os, no extra device needed
No audio master clock needed for S/PDIF support

APPLICATIONS

DVD players and recorders

Digital set-top boxes

AV receivers

Digital cameras and camcorders

GENERAL DESCRIPTION

The AD9389 is an 80 MHz high-definition multimedia interface (HDMI 1.1) transmitter. It supports HDTV formats up to 1080i and 720p, and graphic resolutions up to XGA (1024×768 @ 75 Hz). With the inclusion of HDCP, the AD9389 allows the secure transmission of protected content as specified by the HDCP 1.1 protocol.
The AD9389 supports both S/PDIF and 8-channel I ${ }^{2}$ S audio. Its high fidelity 8-channel $I^{2} S$ can transmit either stereo or 7.1 surround audio at 192 kHz . The S/PDIF can carry stereo LPCM (linear pulse code modulation) audio or compressed audio including Dolby ${ }^{*}$ Digital, DTS*, and THX*.

FUNCTIONAL BLOCK DIAGRAM

The AD9389 helps to reduce system design complexity and cost by incorporating such features as HDCP master, $\mathrm{I}^{2} \mathrm{C}$ master for EDID reading, a single 1.8 V power supply, and 5 V tolerance on $\mathrm{I}^{2} \mathrm{C}$ and hot plug detect pins.

Fabricated in an advanced CMOS process, the AD9389 is provided in a space-saving, 80 -lead, surface-mount, Pb -free plastic LQFP and is specified over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

EVALUATION KITS AND OTHER RESOURCES

Evaluation kits, reference design schematics, software quick start guide, and codes are available from the Analog Devices local sales and marketing personnel.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

AD9389

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Evaluation Kits and Other Resources 1
Revision History 2
Electrical Specifications 3
Absolute Maximum Ratings 5
Explanation of Test Levels 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
$\mathrm{I}^{2} \mathrm{C}$ Addresses 8
List of Reference Documents 8
Format Standards 8
Design Guide 9
General Description 9
Video Data Capture 9
Input Formats 9
4:2:2 to 4:4:4 Data Conversion. 14
Horizontal Sync, Vertical Sync, and DE Generation 14
DE Generation 14
Hsync and Vsync Generation 14
Color Space Conversion Matrix (CSC) 15
Audio Data Capture 16
I^{2} S Audio 16
S/PDIF Audio 16
CTS Generation 16
N Parameter 17
CTS Parameter 17
Packet Configuration 18
Pixel Repetition 18
HDCP Handling 19
EDID Reading 19
Interrupts 19
Power Management 19
2-Wire Serial Register Map 20
2-Wire Serial Control Register Detail Chip Identification 33
Source Product Description (SPD) Infoframe 37
2-Wire Serial Control Port 40
Data Transfer via Serial Interface 40
Serial Interface Read/Write Examples 41
PCB Layout Recommendations. 42
Power Supply Bypassing 42
Digital Inputs 42
Color Space Converter (CSC) Common Settings 43
Outline Dimensions 45
Ordering Guide 45

REVISION HISTORY

[^0]
ELECTRICAL SPECIFICATIONS

Table 1.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Temp \& Test Level \({ }^{1}\) \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input Voltage, High (\(\mathrm{V}_{\mathbf{H}}\)) \\
Input Voltage, Low (VIL) \\
Input Current, High (\(\mathrm{V}_{\text {H }}\)) \\
Input Current, Low (V는) Input Capacitance
\end{tabular} \& \begin{tabular}{l}
Full \\
Full \\
Full \\
Full \\
\(25^{\circ} \mathrm{C}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{VI} \\
\& \mathrm{VI} \\
\& \mathrm{~V} \\
\& \mathrm{~V} \\
\& \mathrm{~V}
\end{aligned}
\] \& 1.4 \& 3 \& \[
\begin{aligned}
\& 0.7 \\
\& -1.0 \\
\& +1.0
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~V} \\
\& \mathrm{~mA} \\
\& \mathrm{~mA} \\
\& \mathrm{pF} \\
\& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DIGITAL OUTPUTS \\
Output Voltage, High (Vон) \\
Output Voltage, Low (Vol)
\end{tabular} \& Full Full \& \& \(A V_{\text {DD }}-0.1\) \& \& 0.4 \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
THERMAL CHARACTERISTICS \\
\(\theta_{\mathrm{Jc}}\) Junction-to-Case \\
Thermal Resistance \\
\(\theta_{\mathrm{JA}}\) Junction-to-Ambient \\
Thermal Resistance \\
Ambient Temperature
\end{tabular} \& Full \& \[
\begin{aligned}
\& \text { V } \\
\& \text { V } \\
\& \text { V }
\end{aligned}
\] \& 0 \& 25 \& \[
\begin{aligned}
\& 25 \\
\& \\
\& 30 \\
\& 70 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline \begin{tabular}{l}
DC SPECIFICATIONS \\
Input Leakage Current, IL \\
Input Clamp Voltage (-16 mA) \\
Input Clamp Voltage (+16 mA) \\
Differential High Level Output Voltage \\
Differential Output Short-Circuit Current
\end{tabular} \& \[
\begin{aligned}
\& 25^{\circ} \mathrm{C} \\
\& 25^{\circ} \mathrm{C} \\
\& 25^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{VI} \\
\& \mathrm{~V} \\
\& \mathrm{~V} \\
\& \mathrm{~V} \\
\& \mathrm{~V}
\end{aligned}
\] \& -10 \& \[
\begin{aligned}
\& -0.8 \\
\& +0.8 \\
\& A V_{c \mathrm{c}}
\end{aligned}
\] \& \[
\begin{aligned}
\& +10 \\
\& 10
\end{aligned}
\] \& \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
V \\
V \(\mu \mathrm{A}\)
\end{tabular} \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
VDD (All) Supply Voltage \\
\(V_{D D}\) Supply Voltage Noise \\
Complete Power-Down Current \\
(Everything Except \(I^{2} \mathrm{C}\)) \\
Quiet Power Down Current (Monitor Detect On) \\
Transmitter Supply Current (27 MHz Typical Random Pattern) Transmitter Supply Current (80 MHz Typical Random Pattern) Transmitter Total Power (80 MHz Single Pixel Stripe Pattern; Worst Case Operating Conditions)
\end{tabular} \& \begin{tabular}{l}
Full \\
Full \\
\(25^{\circ} \mathrm{C}\) \\
\(25^{\circ} \mathrm{C}\) \\
\(25^{\circ} \mathrm{C}\) \\
\(25^{\circ} \mathrm{C}\) \\
Full
\end{tabular} \& IV
V
IV
VI
VI
V
IV

VI \& 1.71 \& | 1.8 |
| :--- |
| 6 |
| 7 |
| 165 |
| 185 | \& \[

$$
\begin{aligned}
& 1.89 \\
& 50 \\
& 13 \\
& \\
& 205 \\
& 430
\end{aligned}
$$

\] \& | V |
| :--- |
| mV p-p |
| mA |
| mA |
| mA |
| mA |
| mW |

\hline | AC SPECIFICATIONS |
| :--- |
| CLK Frequency |
| CLK Duty Cycle |
| Worst Case CLK Input Jitter |
| Setup Time to CLK Falling Edge |
| Hold Time to CLK Falling Edge |
| TMDS Differential Swing |
| VSYNC and HSYNC Delay from DE Falling Edge |
| VSYNC and HSYNC Delay to DE Rising Edge |
| DE High Time |
| DE Low Time |
| Differential Output Swing Low-to-High Transition Time |
| Differential Swing Output High-to-Low Transition Time | \& | $25^{\circ} \mathrm{C}$ |
| :--- |
| $25^{\circ} \mathrm{C}$ |
| Full |
| $25^{\circ} \mathrm{C}$ |
| $25^{\circ} \mathrm{C}$ |
| $25^{\circ} \mathrm{C}$ |
| $25^{\circ} \mathrm{C}$ | \& \[

$$
\begin{aligned}
& \mathrm{IV} \\
& \mathrm{VII} \\
& \mathrm{VI} \\
& \mathrm{VI} \\
& \mathrm{VI} \\
& \mathrm{VII} \\
& \mathrm{VI} \\
& \mathrm{VI} \\
& \mathrm{VI} \\
& \mathrm{VI} \\
& \mathrm{VII}
\end{aligned}
$$
\]

VII \& 13.5
40
TBD
TBD
800

75

75 \& $$
\begin{aligned}
& 1000 \\
& 1 \\
& 1 \\
& 138
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 80 \\
& 60 \\
& 1.0 \\
& \text { TBD } \\
& \text { TBD } \\
& 1200 \\
& 8191 \\
& 490 \\
& 490
\end{aligned}
$$

\] \& | MHz |
| :--- |
| \% |
| ns |
| ns |
| ns |
| mV |
| UI |
| UI |
| UI |
| UI |
| ps |
| ps |

\hline
\end{tabular}

AD9389

Parameter	Temp	Test Level ${ }^{1}$	Min	Typ	Max	Unit
AUDIO AC TIMING						
Sample Rate (${ }^{2}$ S and S/PDIF)	Full	IV	32	192	kHz	
I^{2} S Cycle Time	$25^{\circ} \mathrm{C}$	IV		1	UI	
I 2 Setup Time	$25^{\circ} \mathrm{C}$	IV		15	ns	
I 2 S Hold Time	$25^{\circ} \mathrm{C}$	IV		ns		
Audio Pipeline Delay	$25^{\circ} \mathrm{C}$	IV		75		

[^1]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Digital Inputs	5 V to 0.0 V
Digital Output Current	20 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Maximum Case Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

EXPLANATION OF TEST LEVELS

Table 3.

Level	Test		
I	100% production tested.		
II	100% production tested at $25^{\circ} \mathrm{C}$ and sample tested at		
specified temperatures.			
III	Sample tested only.		
IV	Parameter is guaranteed by design and characterization testing.		
V	Parameter is a typical value only. VI		
100% production tested at $25^{\circ} \mathrm{C}$; guaranteed by design			
and characterization testing.		,	VII
:---			

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD9389

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 4. Complete Pinout List

Pin Type	Pin No.	Mnemonic	Description	Value
INPUTS	50 to 58, 65 to 78,2 6 3 4 5 23 25 7 8 12 to 9 13 14 33	$\mathrm{D}[23: 0]$ CLK DE HSYNC VSYNC EXT_SW HPD S/PDIF MCLK ${ }^{12} \mathrm{~S}[3: 0]$ SCLK LRCLK PD/AO	Video Data Input Video Clock Input Data Enable Bit for Digital Video Horizontal SYNC Input Vertical SYNC Input Differential Output Swing Adjustment Hot Plug Detect Signal S/PDIF (Sony/Philips Digital Interface) Audio Input Pin Audio Reference Clock, from $128 \times$ fs to $512 \times$ fs I2S Audio Data Inputs I'S Audio Clock Left/Right Channel Selection Power-Down Control	1.8 V CMOS 1.8 V CMOS
OUTPUTS	$\begin{aligned} & 28,27 \\ & 38,37 \\ & 35,34 \end{aligned}$	TxC+ TxC- Tx2+ Tx2- Tx1+ Tx1-	Differential Clock Output Differential Clock Output Complement Differential Output Channel 2 Differential Output Channel 2 Complement Differential Output Channel 1 Differential Output Channel 1 Complement	TMDS TMDS TMDS

AD9389

Pin Type	Pin No.	Mnemonic	Description	Value
	$\begin{aligned} & 31,30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Tx0+ } \\ & \text { Tx0- } \\ & \text { INT } \\ & \hline \end{aligned}$	Differential Output Channel 0 Differential Output Channel 0 Complement Interrupt	TMDS 1.8 V CMOS
POWER SUPPLY	$\begin{aligned} & 24,29,36,41 \\ & 1,61,62,63,64 \\ & 16,19,20,21 \\ & 15,17,18,22, \\ & 26,32,39,42, \\ & 43,59,60,79 \\ & 80 \end{aligned}$	AV ${ }_{D D}$ DVD PV ${ }_{D D}$ GND	Output Power Supply Digital and I/O Power Supply PLL Power Supply Ground	$\begin{aligned} & 1.8 \mathrm{~V} \\ & 1.8 \mathrm{~V} \\ & 1.8 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
CONTROL	$\begin{aligned} & 47 \\ & 46 \\ & 45 \\ & 44 \end{aligned}$	SDA SCL DDSDA DDCSCL	Serial Port Data I/O Serial Port Data Clock (100 kHz Maximum) Serial Port Data I/O to Receiver Serial Port Data Clock to Receiver	3.3 V CMOS 3.3 V CMOS 3.3 V CMOS 3.3 V CMOS
NO CONNECT	48, 49	NC	No Connect.	

Table 5. Pin Function Descriptions

Pin Mnemonic	Description
OUTPUTS	
TxC+	Differential Clock Output at Pixel Clock Rate; Transition Minimized Differential Signaling (TMDS).
TxC-	Differential Clock Output Complement.
Tx2+	Differential Output of the Red Data at 10x the Pixel Clock Rate; TMDS.
Tx2-	Differential Red Output Complement.
Tx1+	Differential Output of the Green Data at $10 \times$ the Pixel Clock Rate; TMDS.
Tx1-	Differential Green Output Complement.
Tx0+	Differential Output of the Blue Data at 10x the Pixel Clock Rate; TMDS.
Tx0-	Differential Blue Output Complement.
INT	Interrupt.
SERIAL PORT (2-WIRE)	
SDA	Serial Port Data I/O.
SCL	Serial Port Data Clock.
DDSDA	Serial Port Data I/O Master to Receiver.
DDCSCL	Serial Port Data Clock Master to Receiver.
	For a full, functional description of the 2-wire serial register, refer to the 2-Wire Serial Control Port section.
INPUTS	
D[23:0]	Digital Input in RGB or YCbCr Format.
CLK	Video Clock Input.
DE	Data Enable for Video Data.
HSYNC	Horizontal Sync Input.
VSYNC	Vertical Sync Input. This is the input for vertical sync.
EXT_SW	Place an 887Ω resistor (1\% tolerance) between this pin and ground.
HPD	Hot Plug Detect. This indicates to the interface whether the receiver is connected.
S/PDIF	S/PDIF Audio Input. This is the audio input from a Sony/Philips Digital Interface.
MCLK	Audio Reference Clock. Can be set from $128 \times$ fs to $512 \times$ fs.
$\mathrm{I}^{2} \mathrm{~S}$ [3:0]	I^{2} S Audio Inputs. These represent the eight channels of audio (two per input) available through ${ }^{2} \mathrm{~S}$.
$1^{2} \mathrm{~S}$ CLK	I2S Audio Clock.
LRCLK	Left/Right Channel Selection.
PD/AO	Power Down.

Pin Mnemonic	Description
POWER SUPPLY	Main Power Supply. These pins supply power to the main elements of the circuit. They should be filtered and as quiet as possible.
AV $_{\text {DD }}$	Output Power Supply. Clock Generator Power Supply. The most sensitive portion of the AD9389 is the clock generation circuitry. These pins provide power to the clock PLL (phase-locked loop) and help the user design for optimal performance. The designer should provide quiet, noise-free power to these pins. Ground. The ground return for all circuitry on-chip. It is recommended that the AD9389 be assembled on a single solid ground plane, with careful attention given to ground current paths.
GND	

$I^{2} \mathrm{C}$ ADDRESSES

The SDA/SCL programming address can be 0 x 72 or 0 x 7 A based on whether the $\mathrm{PD} / \mathrm{A} 0$ pin is pulled high ($10 \mathrm{k} \Omega$ resistor $=0 \mathrm{x} 7 \mathrm{~A}$) or pulled low ($10 \mathrm{k} \Omega$ resistor $=0 \times 72$).

The EDID EEPROM on the receiver is expected to have an address of $0 \times \mathrm{xA} 0$.

LIST OF REFERENCE DOCUMENTS

Table 6.

Document	Description
EIA/CEA-861B	Describes audio and video infoframes as well as the E-EDID structure for HDMI.
HDMI v1.1	Defining document for HDMI Version 1.1. Can be located at www.hdmi.org.
HDCPv1.1	Defining document for HDCP Version 1.1. Can be located at www.digital-cp.com.
ITU-R BT.656-3	Defining document for BT656.

FORMAT STANDARDS

In this document, data is represented in a variety of ways.
Table 7.

Data Type	Format
0xNN	Hexadecimal (base-16) numbers are represented using the C language notation, preceded by 0x.
ObNN	Binary (base-2) numbers are represented using the C language notation, preceded by 0b.
NN	Decimal (base-10) numbers are represented using no additional prefixes or suffixes.
Bit	Bits are numbered in little-endian format, that is, the least significant bit (LSB) of a byte or word is referred to as Bit 0.

DESIGN GUIDE

GENERAL DESCRIPTION

The AD9389 HDMI transmitter provides a high bandwidth digital content protected (HDCP) digital link between a wide range of digital input formats-both audio and video (see Table 8) and output formats (see Table 9). Video and audio data are captured and prepared for transmission while two separate $\mathrm{I}^{2} \mathrm{C}$ buses (one of which is a master) are used to program and provide content protection for the data to be transmitted.

VIDEO DATA CAPTURE

The AD9389 can accept video data from as few as eight pins (YCbCr DDR) representing 8 -bit data or as many as 24 pins representing 12-bit data. The AD9389 is capable of detecting all of the 34 video formats defined in the EIA/CEA-861B specification. If video ID (VID) 32,33 , or 34 is present, the user needs to set Register 0x15[0] to 0b1, as these modes have $V_{\text {REF }}$ frequencies of 30 Hz or less. The user can read the detected video format at 0x3E[7:2]. Formats outside the EIA/CEA-861B specification can be read in $0 \times 3 \mathrm{~F}[7: 5]$. Detailed line count differences for 240 p and 288 p modes can be read from $0 \times 3 \mathrm{~F}$ [4:3]. In order to distinguish between an aspect ratio of 4:3 and one of 16:9, 0×17 [1] should be set accordingly.

Table 8. Input Formats Supported

No. of Bits	Input Format
12	$R G B$ (DDR)
12	$\mathrm{YCbCr} 4: 4: 4$ (DDR)
24	RGB 4:4:4
24	$\mathrm{YCbCr} 4: 4: 4$
16	$\mathrm{YCbCr} 4: 2: 2$ (ITU.601)
20	$\mathrm{YCbCr} 4: 2: 2$ (ITU.601)
24	$\mathrm{YCbCr} 4: 2: 2$ (ITU.601)
8	YCbCr (DDR)
10	$\mathrm{YCbCr}(\mathrm{DDR})$
12	YCbCr (DDR)
8	$\mathrm{YCbCr} 4: 2: 2$ (ITU.656)
10	$\mathrm{YCbCr} 4: 2: 2$ (ITU.656)
12	$\mathrm{YCbCr} 4: 2: 2$ (ITU.656)

Table 9. Output Formats Supported

No. of Bits	Output Format
24	RGB 4:4:4
24	YCbCr 4:4:4
16	$\operatorname{YCbCr} 4: 2: 2$
20	YCbCr 4:2:2
24	$\operatorname{YCbCr~4:2:2~}$

INPUT FORMATS

Figure 3. Timing for Data Input

AD9389

Normal 4:4:4 Input Format (RGB or YCbCr) Input ID = 0

An input format of RGB 4:4:4 or YCbCr 4:4:4 can be selected by setting the input ID ($0 \mathrm{x} 15[3: 1]$) to 0 b 000 . The input color space (CS) must be selected by setting $0 \mathrm{x} 16[0]$ to 0 b 0 for RGB or 0 b 1 for YCbCr. There is no need to set the input style ($0 \mathrm{x} 16[3: 2]$).
Table 10.

	Data[23:0]																							
Input Format	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RGB 4:4:4	R[7:0]							G[7:0]									B[7:0]							
YCbCr 4:4:4	Cr[7:0]							Y[7:0]									$\mathrm{Cb}[7: 0]$							

YCbCr 4:2:2 Formats (24 bits, 20 bits, or 16 bits) with Separate Sync, Input ID = 1

An input with YCbCr 4:2:2 with separate syncs can be selected by setting the Input ID ($0 \times 15[3: 1]$) to 0b001. The input CS ($0 \times 16[0]$) must be set to 0 b 1 for proper operation. The data bit width (24 bits, 20 bits, or 16 bits) must be set with $0 \times 16[5: 4]$. The three input pin assignment styles are shown in Table 11. The input style can be set in 0x16[3:2].

Table 11.

AD9389

YCbCr 4:2:2 Formats (24 bits, 20 bits, or 16 bits) with Embedded Syncs, Input ID = 2

An input with $\mathrm{YCbCr} 4: 2: 2$ with embedded syncs can be selected by setting the input ID ($0 \mathrm{x} 15[3: 1]$) to 0 b 010 . HSYNC and VSYNC are embedded as Start of Active Video (SAV) and End of Active Video (EAV). The input CS (0x16[0]) must be set to 0b1 for proper operation. The data bit width ($24=12$ bits, $20=10$ bits, or $16=8$ bits) must be set with $0 x 16[5: 4]$. The three input pin assignment styles are shown in Table 12. The input style can be set in $0 \times 16[3: 2]$. The only difference between Input ID 1 and Input ID 2 is that the syncs on ID 2 are embedded in the data much like ITU 656 running at $1 \times$ clock and double width.
Table 12.

YCbCr 4:2:2 Formats (Double Data Rate) Formats (12 bits, 10 bits, or 8 bits) with Separate Syncs, Input ID = 3

An input with $\mathrm{YCbCr} 4: 2: 2 \mathrm{DDR}$ data and separate syncs can be selected by setting the input ID (0 x 15 [3:1]) to 0b011. The Input CS (0 x 16 [0]) must be set to 0 b 1 . The data bit width (12 bits, 10 bits, or 8 bits) must be set with 0 x 16 [5:4]. The two input pin assignment styles are shown in Table 13. The input style can be set in 0x16[3:2].

Table 13.

	Data[23:0]																							
Input Format	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Style 1																								
12-bit									Cb/Y/Cr/Y[11:4]												[3:0]			
10-bit									Cb/Y/Cr/Y[9:2]												[1:0]			
8-bit									$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[7: 0]$															
Style 2																								
12-bit													$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[11: 0]$											
10-bit															$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[9: 0]$									
8-bit																	$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[7: 0]$							

AD9389

YCbCr 4:2:2 DDR (Double Data Rate) Formats (12 bits, 10 bits, or 8 bits) with Embedded Syncs, Input ID = 4

An input with $\mathrm{YCbCr} 4: 2: 2 \mathrm{DDR}$ data and embedded syncs (ITU 656) can be selected by setting the input ID ($0 \mathrm{x} 15[3: 1$) to 0 b100. The Input CS ($0 \times 16[0]$) must be set to 0 b 1 . The data bit width (12 bits, 10 bits, or 8 bits) must be set with $0 \times 16[5: 4]$. The two input pin assignment styles are shown in Table 14. The input style can be set in $0 \times 16[3: 2]$. The order of data input is the order in the table (for example, 12 bit data is accepted as: $\mathrm{Cb} 0, \mathrm{Y} 0, \mathrm{Cr} 0, \mathrm{Y} 1, \mathrm{Cb} 2, \mathrm{Y} 2, \mathrm{Cr} 2, \mathrm{Y} 3)$.
Table 14.

	Data[23:0]																							
Input Format	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Style 1																								
12-bit	$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[11: 4]$																				[3:0]			
10-bit	$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[9: 2]$																				[1:0]			
8-bit	$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[7: 0]$																							
Style 2																								
12-bit													Cb/Y/Cr/Y[11:0]											
10-bit															$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[9: 0]$									
8-bit																	$\mathrm{Cb} / \mathrm{Y} / \mathrm{Cr} / \mathrm{Y}[7: 0]$							

Normal 4:4:4 Input Format (RGB or YCbCr) Clocked at Double Data Rate (DDR), Input ID = 5

An input with YCbCr 4:4:4 DDR data and separate syncs can be selected by setting the input ID (0×15 [3:1]) to 0 b 011 . The input CS ($0 \times 16[0]$) must be set to 0 b 1 . The data bit width (12 bits, 10 bits, or 8 bits) must be set with $0 \times 16[5: 4]$. The three input pin assignment styles are shown in Table 15. The input style can be set in 0x16[3:2].
Table 15.

AD9389

YCbCr 4:2:2 Formats (24 bits, 20 bits, or 16 bits) DDR with Separate Sync, Input ID = 6

An input format of $\mathrm{YCbCr} 4: 2: 2 \mathrm{DDR}$ can be selected by setting the input ID ($0 \mathrm{x} 15[3: 1]$) to 0 b 110 . The three different input pin assignment styles are shown in Table 16. The input style can be set in $0 \times 16[3: 2]$. The input CS ($0 \times 16[0]$) must be set to 0 b1. The data bit width (12 bits, 10 bits, or 8 bits) must be set to with $0 \times 16[5: 4]$.

The $1^{\text {st }}$ or the $2^{\text {nd }}$ edge can be the rising or falling edge. The data input edge is defined in $0 \mathrm{x} 16[1] .0 \mathrm{~b} 0=$ rising edge; $0 \mathrm{~b} 1=$ falling edge. Pixel 0 is the first pixel of the 4:2:2 word and should be where DE starts.
Table 16.

4:2:2 TO 4:4:4 DATA CONVERSION

The AD9389 has the ability to convert YCbCr video from 4:4:4 to 4:2:2 and 4:2:2 to 4:4:4. To convert from 4:4:4 to 4:2:2, the video data goes through a filter first to remove any artificial downsampling noise. To convert from 4:2:2 to 4:4:4, the AD9389 utilizes either the zero-order upconversion (pixel repetition) or first-order upconversion (linear interpolation). The upconversion and downconversions are used when the video output timing format does not match the video input timing format. The video output format is set by Register $0 \times 16[7: 6]$. The video input format is set by the video ID ($0 \times 15[3: 1]$) and video color space ($0 \times 16[0]$). The default mode for upconversion is pixel repetition. To use linear interpolation, set Register 0x17[2] to 1.

HORIZONTAL SYNC, VERTICAL SYNC, AND DE GENERATION

When transmitting video data across the TMDS interface, it is necessary to have an HSYNC, VSYNC, and data enable (DE) defined for the image. ITU-656 based sources have start of active video (SAV) and end of active video (EAV) signals built in, but the HSYNC and VSYNC must be generated (the DE is implied by the SAV and EAV signals). Other sources (with separate syncs) have HSYNC, VSYNC, and DE supplied at the same time as the pixel data.

DE GENERATION

The AD9389 offers a choice of DE from an external pin, or an internally generated DE . To activate the internal DE generation, set Register 0x17[0] to 1 . Registers 0x35 to 0x3A are used to define the DE. 0×35 and 0×36 [7:6] define the number of pixels from the HS leading edge to the DE leading edge. 0x36[5:0] are the number of HSYNCs between the leading edge of VS and DE. 0x37[7:5] defines the difference of HS counts during VS blanking for interlace video. 0×37 [4:0] and 0×38 [7:1] indicate the width of the DE. 0×39 and $0 \times 3 \mathrm{~A}[7: 4]$ are the number of lines of active video (see Figure 4).

HSYNC AND VSYNC GENERATION

For video with embedded HSYNC and VSYNC, such as EAV and SAV, found in ITU 656 format, it is necessary to reconstruct HSYNC and VSYNC. This is done with registers 0×30 to 0×34. 0×30 and $0 \times 31[7: 6]$ specify the number of pixels between the HSYNC leading edge and the trailing edge of DE. Register 0×31 [5:0] and Register $0 \times 32[7: 4]$ are the duration of the HSYNC in pixel clocks. 0×32 [3:0] and 0×33 [7:2] are the number of HS pulses between the trailing edge of the last DE and the leading edge of the VSYNC pulse. Register 0x33[1:0] and $0 \times 34[7: 0]$ are the duration of VSYNC in units of HSYNCs. HSYNC and VSYNC polarity can be specified by setting 0x17[6] (for VSYNC) and 0x17[5] (for HSYNC).

Figure 4. Active Video

Figure 5. HSYNC Reconstruction

Figure 6. VSYNC Reconstruction

Figure 7. Single CSC Channel

COLOR SPACE CONVERSION MATRIX (CSC)

The color space conversion matrix in the AD9389 consists of three identical processing channels. In each channel, three input values are multiplied by three separate coefficients. Also included are an offset value for each row of the matrix and a scaling multiple for all values. Each value is 13 -bit, twos complement resolution to ensure the signal integrity is maintained. The CSC is designed to run at speeds up to 80 MHz supporting resolutions up to 1080 i at 60 Hz and UXGA at 60 Hz . With any-to-any color space support, RGB, $\mathrm{YUV}, \mathrm{YCbCr}$, and other formats are supported by the CSC.

The main inputs, $\mathrm{R}_{\mathrm{IN}}, \mathrm{G}_{\mathrm{IN}}$, and $\mathrm{B}_{\text {IN }}$ come from the 8 -bit to 12 -bit inputs from each channel. These inputs are based on the input format detailed in Table 10 to Table 16. The mapping of these inputs to the CSC inputs is shown in Table 17.
Table 17. CSC Port Mapping

Input Channel	CSC Input Channel
R / Cr	R_{IN}
Gr / Y	G_{IN}
B / Cb	B_{IN}

One of the three channels is represented in Figure 7. In each processing channel, the three inputs are multiplied by three separate coefficients marked a1, a2, and a3. These coefficients are divided by 4096 to obtain nominal values ranging from -0.9998 to +0.9998 . The variable labeled a4 is used as an offset control. The CSC_Mode setting is the same for all three processing channels. This multiplies all coefficients and offsets by a factor of 2CSC_Mode.

The functional diagram for a single channel of the CSC, as per Figure 7, is repeated for the remaining G and B channels. The coefficients for these channels are b1, b2, b3, b4, c1, c2, c3, and c4.

Register settings for several common conversions are listed in the Color Space Converter (CSC) Common Settings section.

For a detailed functional description and more programming examples, refer to AN-795, The AD9880 Color Space Converter User's Guide.

AUDIO DATA CAPTURE

The AD9389 is capable of receiving audio data in either I I^{2} S or S/PDIF format for packetization and transmission over the HDMI interface.

I^{2} S AUDIO

The AD9389 can accommodate from two to eight channels of $\mathrm{I}^{2} \mathrm{~S}$ audio at up to a 192 kHz sampling rate. Selection of $\mathrm{I}^{2} \mathrm{~S}$ audio mode (vs. $\mathrm{S} / \mathrm{PDIF}$) is set with $0 \mathrm{x} 0 \mathrm{~A}[4]=0$. The detected sampling frequency (from 32 kHz to 192 kHz) can be read in $0 \mathrm{x} 04[7: 4]$. The output sampling frequency (from 32 kHz to 192 kHz) can be selected with $0 \times 15[7: 4]$. The number of channels and the specific channels can be selected in $0 x 0 C[5: 2]$ and $0 x 50[7: 5]$. If all eight channels ($\mathrm{I}^{2} \mathrm{~S} 0$ to $\mathrm{I}^{2} \mathrm{~S} 3$) are required, setting all bits or $0 \mathrm{x} 0 \mathrm{C}[5: 2]$ to 1 selects eight channels. If I'S0 only is needed, setting $0 \times 0 \mathrm{C}[2]$ to 1 selects this. The placement of these packets with respect to their output can be specified in Register 0x0E to Register 0x11. Default settings place all channels in their respective position ($\mathrm{I}^{2} \mathrm{~S} 0$ left channel in Channel 0 left position, $\mathrm{I}^{2} \mathrm{~S} 3$ right channel in Channel 3 right position), but this mapping is completely programmable.

The AD9389 supports standard $\mathrm{I}^{2} \mathrm{~S}$, left-justified $\mathrm{I}^{2} \mathrm{~S}$, and rightjustified $I^{2} S$ formats via $0 \times 0 C[1: 0]$ and sample word lengths between 16 bits and 24 bits (0×14 [3:0]).

S/PDIF AUDIO

The AD9389 is capable of accepting two channel LPCM and encoded audio up to a 192 kHz sampling rate via the S/PDIF. S/PDIF audio input is selected by setting $0 x 0 \mathrm{~A}[4]=1$. The AD9389 is capable of accepting S/PDIF with or without an MCLK input. When no MCLK is present, the AD9389 makes the determination of the CTS value (N/CTS determines the MCLK frequency).

CTS GENERATION

Audio data being carried across the HDMI link, which is driven by a TMDS (video) clock only, does not retain the original audio sample clock.

The task of recreating this clock at the sink is called audio clock regeneration. There are a variety of clock regeneration methods that can be implemented in an HDMI sink, each with a different set of performance characteristics. The HDMI specification does not attempt to define exactly how these mechanisms operate. It does, however, present a possible configuration and it does define the data items that the HDMI source supplies to the HDMI sink in order to allow the HDMI sink to adequately regenerate the audio clock. It also defines how that data is generated. In many video source devices, the audio and video clocks are generated from a common clock (coherent clocks). In this situation, there exists a rational (integer divided by integer) relationship between these two clocks. The HDMI clock regeneration architecture can take advantage of this rational relationship and can also work in an environment where there is no such relationship between these two clocks, that is, where the two clocks are truly asynchronous or where their relationship is unknown.
Figure 8 shows the system architecture model used by HDMI for audio clock regeneration. The source determines the fractional relationship between the video clock and an audio reference clock ($128 \times$ audio sample rate) and passes the numerator and denominator for that fraction to the sink across the HDMI link. The sink can then recreate the audio clock from the TMDS clock by using a clock divider and a clock multiplier. The exact relationship between the two clocks is

$$
128 \times f_{s}=f_{\text {TMDS_clock }} \times N / C T S
$$

The source determines the value of the numerator N as stated in Section 7.2.1 of the HDMI specification. Typically, this value N is used in a clock divider to generate an intermediate clock that is slower than the $128 \times \mathrm{f}_{\mathrm{s}}$ clock by the factor N . The source typically determines the value of the denominator cycle time stamp (CTS) by counting the number of TMDS clocks in each of the $128 \times \mathrm{f}_{\mathrm{s}} / \mathrm{N}$ clocks.

Figure 8. Audio Clock Regeneration

N PARAMETER

N shall be an integer number that meets the following restriction: $128 \times \mathrm{f}_{\mathrm{s}} / 1500 \mathrm{~Hz} \leq \mathrm{N} \leq 128 \times \mathrm{f}_{\mathrm{s}} / 300 \mathrm{~Hz}$ with a recommended optimal value of $128 \times \mathrm{f}_{\mathrm{s}} / 1000 \mathrm{~Hz}$ equals N . For coherent audio and video clock sources, use Table 18 to Table 20 to determine the value of N. For noncoherent sources or sources where coherency is not known, use the equations previously described.

CTS PARAMETER

CTS is an integer number that satisfies the following:

$$
(\text { Average } C T S \text { Value })=\left(f_{\text {TMDs_clock }} \times N\right) /\left(128 \times f_{s}\right)
$$

Recommended \mathbf{N} and Expected CTS Values

The recommended value of N for several standard pixel clocks is given in Table 18 to Table 20. It is recommended that sources with noncoherent clocks use the values listed for the pixel clock type labeled Other.

Table 18. Recommended N and Expected CTS Values for 32 kHz Audio

Pixel Clock (MHz)	$32 \mathbf{~ k H z}$	
	\mathbf{N}	CTS
$25.1 / 1.001$	4576	28125
25.2	4096	25200
27	4096	27000
27×1.001	4096	27027
54	4096	54000
54×1.001	4096	54054
$74.25 / 1.001$	11648	210937 to
74.25		210938^{1}
$148.5 / 1.001$	4096	74250
148.5	11648	421875
Other	4096	148500

${ }^{1}$ This value alternates because of the restriction on N.

Table 19. Recommended N and Expected CTS Values for 44.1 kHz Audio and Multiples

Pixel Clock (MHz)	$\mathbf{4 4 . 1} \mathbf{~ k H z}$		$\mathbf{8 8 . 2} \mathbf{~ k H z}$		$\mathbf{1 7 6 . 4} \mathbf{~ k H z}$	
	N	CTS	N	CTS	N	CTS
$25.1 / 1.001$	7007	31250	14014	31250	28028	31250
25.2	6272	28000	12544	28000	25088	28000
27	6272	3000	12544	30000	25088	30000
27×1.001	6272	30030	12544	30030	25088	30030
54	6272	60000	12544	60000	25088	60000
54×1.001	6272	60060	12544	60060	25088	60060
$74.25 / 1.001$	17836	234375	35672	234375	71344	234375
74.25	6272	82500	12544	82500	25088	82500
$148.5 / 1.001$	8918	234975	17836	234375	35672	123375
148.5	6272	165000	12544	16500	25088	162000
Other	6272	Measured	15244	Measured	25088	Measured

Table 20. Recommended N and Expected CTS Values for 48 kHz Audio and Multiples

	44.1 kHz		$\mathbf{8 8 . 2} \mathbf{~ k H z}$		$\mathbf{1 7 6 . 4 ~ k H z}$	
Pixel Clock (MHz)	N	CTS	N	CTS	N	CTS
$25.1 / 1.001$	6864	28125	13728	28125	27456	28125
25.2	6144	25200	12288	25200	24576	25200
27	6144	27000	12288	27027	24576	27027
27×1.001	6144	27027	12288	27027	24576	27027
54	6144	54000	12288	54000	24576	54000
54×1.001	6144	54054	12288	54054	24576	74250
$74.25 / 1.001$	11648	140625	23296	140625	46592	140625
74.25	6144	74250	12288	74250	24576	74250
$148.5 / 1.001$	5824	140625	11648	140625	23296	140625
148.5	6144	148500	12288	148500	24576	148500
Other	6144	Measured	12288	Measured	24576	Measured

AD9389

The AD9389 has two modes for CTS generation: manual mode and auto mode. In manual mode, the user can program the CTS number directly into the chip (0 x 07 to 0 x 09) and select this external mode by setting $0 \times 0 \mathrm{~A}[7]$ to 1 . In auto mode, the chip computes the CTS based on the actual audio and video rates. This can be selected by setting $0 \times 0 \mathrm{~A}[7]$ to 0 , and the results can be read from $0 x 04$ to $0 x 06$. Manual mode is good for coherent audio and video, where the audio and video clock are generated from the same crystal; thus CTS should be a fixed number. The auto mode is appropriate for incoherent audio-video, where there is no simple integer ratio between the audio and video clock. A filter is available ($0 \times 0 \mathrm{~A}$ [6:5]) to stabilize the chip generated CTS. The 20 -bit N value can be programmed into the AD9389 in Register 0x01 to Register 0x03.

PACKET CONFIGURATION

The AD9389 supports all the packets listed in the HDMI 1.1 specification. Each packet can be separately enabled and disabled. Based on the audio and video input, the packets are added to the HDMI link at the earliest time, so that a minimum delay is incurred. Notice the ISRC1 packet has one bit to enable the ISRC2 packet. For the general control packet, remember to clear or reset the bits to avoid system lock-up.

PIXEL REPETITION

Due to HDMI specification and bandwidth requirements, sometimes it is necessary to set clock multiplication by $2 \times$ and $4 \times$ in order to maintain the minimum TMDS clock frequency. The AD9389 offers three choices for the user to implement this function: auto mode, manual mode, and max mode ($0 x 3 \mathrm{~B}[6: 5]$).

For the auto mode $(0 \times 3 \mathrm{~B}[6: 5]=00)$, based on the input video format (either programmed by user, or chip detection) and audio sampling rate, the AD9389 automatically sets the pixel repetition factor ($0 \times 3 \mathrm{D}[7: 6]$).

For manual mode ($0 \times 3 \mathrm{~B}[6: 5]=1 \times$), the user programs the pixel repetition factor in $0 \times 3 \mathrm{~B}[4: 3]$.

For max mode ($0 \mathrm{x} 3 \mathrm{~B}[6: 5]=01$), based on the input video format, the AD9389 selects the maximum repetition factor. The advantage of the max mode is that it is independent of the audio sampling rate.

Table 21. Pixel Repetition-Valid Pixel Repeat Values for Each Format

Video Code	Video Description	EIA/CEA-861B Pixel Repeat Values	HDMI Pixel Repeat Values
1	$640 \times 480 \mathrm{p}$ @ 60 Hz	No repetition	No repetition
2,3	$720 \times 480 \mathrm{p} @ 59.94 / 60 \mathrm{~Hz}$	No repetition	No repetition
4	1280×720 p @ 59.94/60 Hz	No repetition	No repetition
5	$1920 \times 1080 \mathrm{i} @ 59.94 / 60 \mathrm{~Hz}$	No repetition	No repetition
6,7	720/1440 × 480i @ 59.94/60 Hz	Pixel sent 2 times	Pixel sent 2 times
8,9	720/1440 $\times 240$ p $059.94 / 60 \mathrm{~Hz}$	Pixel sent 2 times	Pixel sent 2 times
10, 11	$2880 \times 480 \mathrm{i} @ 59.94 / 60 \mathrm{~Hz}$	Pixel sent 0 to 10 times	Pixel sent 1 to 10 times
12,13	$2880 \times 240 \mathrm{p} @ 59.94 / 60 \mathrm{~Hz}$	Pixel sent 1 to 10 times	Pixel sent 1 to 10 times
14, 15	$1440 \times 480 \mathrm{p} @ 59.94 / 60 \mathrm{~Hz}$	No repetition	Pixel sent 1 to 2 times 1
16	$1920 \times 1080 \mathrm{p}$ @ 59.94/60 Hz	No repetition	No repetition
17, 18	$720 \times 576 \mathrm{p}$ @ 50 Hz	No repetition	No repetition
19	$1280 \times 720 \mathrm{p}$ @ 50 Hz	No repetition	No repetition
20	$1920 \times 1080 \mathrm{i} @ 50 \mathrm{~Hz}$	No repetition	No repetition
21, 22	720/1440 $\times 576 \mathrm{i} @ 50 \mathrm{~Hz}$	Pixel sent 2 times	Pixel sent 2 times
23, 24	$720 / 1440 \times 288 \mathrm{p} @ 50 \mathrm{~Hz}$	Pixel sent 2 times	Pixel sent 2 times
25, 26	$2880 \times 576 \mathrm{i} @ 50 \mathrm{~Hz}$	Pixel sent 1 to 10 times	Pixel sent 1 to 10 times
27, 28	2880×288 @ 50 Hz	Pixel sent 1 to 10 times	Pixel sent 1 to 10 times
29,30	$1440 \times 576 \mathrm{p}$ @ 50 Hz	No repetition	Pixel sent 1 to 2 times 1
31	$1920 \times 1080 \mathrm{p}$ @ 50 Hz	No repetition	No repetition
32	$1920 \times 1080 \mathrm{p} @ 23.97 / 24 \mathrm{~Hz}$	No repetition	No repetition
33	$1920 \times 1080 \mathrm{p}$ @ 25 Hz	No repetition	No repetition
34	$1920 \times 1080 \mathrm{p}$ @ 29.9/30 Hz	No repetition	No repetition

[^2]
HDCP HANDLING

The AD9389 has a built-in microcontroller to handle HDCP transmitter states, including handling downstream HDCP repeaters. To activate HDCP from a system level, the main controller needs to set 0 xAF [7] to 1 to inform AD9389 that the video stream should be encrypted. The AD9389 takes control from there, and implements all remaining tasks defined by the HDCP 1.1 specification.

The system controller should monitor the status of HDCP by reading Register 0xB8[6] (indicating the HDCP link has been established). There are also some error flags ($0 \mathrm{xC5}$ [7] and $0 \mathrm{xC} 8[7: 4]$) to help debug the system.

The AD9389 also supports AV functions to suspend HDCP temporarily. To set AV mute, clear 0x45[7] and set 0x45[6] to 1 . To clear AV mute, clear 0×45 [6] and set 0×45 [7] to 1 . (Note that it is invalid to set the two mute bits at the same time.)

For more information, refer to application note AN-810, EDID and HDCP Controller User Guide for the AD9889.

EDID READING

The AD9389 has an $I^{2} \mathrm{C}$ master (DDC Pin 44 and Pin 45) to read the EDID based on system need. It buffers segment 0 once HPD is detected. The system can request other segments by programming Register 0xC4. An interrupt bit (0x96[2]) indicates the completion of EDID rebuffering.

To read the EDID data from the AD9389, use the AD9389 programming bus (Pin 46 and Pin 47) with $\mathrm{I}^{2} \mathrm{C}$ Address $0 \times 7 \mathrm{E}$. This is the default address but can be changed by writing the desired address into Register 0x43.

For more information, refer to Application Note AN-810, EDID and HDCP Controller User Guide for the AD9889.

INTERRUPTS

The AD9389 has interrupts to help with the system design: hot plug detection, receiver sense, VS detection, audio FIFO overflow, ITU 656 error, EDID ready, HDCP error, and BKSV ready. Interrupts can be cleared by writing 1 into the interrupt register ($0 \mathrm{x} 96,0 \mathrm{x} 97$). There are read-only registers ($0 \mathrm{xC5}$, $0 \mathrm{xC6}$) to show the state of these signals. Masks ($0 \mathrm{x} 94,0 \mathrm{x} 95$) are available to let the user selectively activate each interrupt. To enable a specific interrupt register, write 1 to the corresponding mask bit.

POWER MANAGEMENT

The AD9389 power-down pin polarity depends on the AD9389's $I^{2} \mathrm{C}$ address selection. To use $0 x 72$, the PD pin is high active. To use $0 \times 7 \mathrm{~A}$, the PD pin is low active. The power-down pin polarity can be verified by reading Register 0x42[7].

The AD9389 can be powered down or reset either by Pin 33 or by Register 0×41 [6]. During power-down mode, all the circuits are inactive except the $\mathrm{I}^{2} \mathrm{C}$ slave and some circuits related to mode and activity detection. During power-down mode, the chip status can still be read through the $\mathrm{I}^{2} \mathrm{C}$ slave. To enter normal power-down mode, either drive Pin 33 to 1 , or set $0 x 41[6]$ to 1 . To further reduce power consumption, disable the receiver sense detection by setting Register 0xA4[2] to 1 .

For HDCP security reasons, the $\mathrm{I}^{2} \mathrm{C}$ power-down bit is also reset by the power-down pin. Anytime after power down, the user needs to drive the PD pin back to 0 , and set $0 \times 41[6]$ to 0 to activate the chip.

AD9389

2-WIRE SERIAL REGISTER MAP

The AD9389 is initialized and controlled by a set of registers that determine the operating modes. An external controller is employed to write and read the control registers through the two-line serial interface port.
Table 22. Control Register Map

Hex Address	Read/Write or Read Only	Bits	Default Value	Register Name	Description
0x00	Read	[7:0]	00000000	Chip Revision	Revision of the chip, start from 0.
0x01	Read/Write	[3:0]	****0000	N[19:16]	20-bit N used with cycle time stamp (CTS) (see Table 18 to Table 20 for appropriate settings) to regenerate the audio clock in the receiver. For remaining bits, see 0×02 and 0×03. Used only with 1^{2} S audio, not S/PDIF.
0x02	Read/Write	[7:0]	00000000	N[15:8]	The middle byte of N .
0x03	Read/Write	[7:0]	00000000	N[7:0]	The lower byte of N .
0x04	Read	[7:4] [3:0]		S/PDIF_SF CTS_Int[19:16]	S/PDIF sampling frequency for S/PDIF audio decoded from hardware. This information is used both by the audio Rx and the pixel repetition. $\begin{aligned} & 0011=32 \mathrm{kHz} . \\ & 0000=44.1 \mathrm{kHz} . \\ & 0010=48 \mathrm{kHz} . \\ & 1000=88.2 \mathrm{kHz} . \\ & 1010=96 \mathrm{kHz} . \\ & 1100=176.4 \mathrm{kHz} . \\ & 1110=192 \mathrm{kHz} . \\ & \text { Default }=0 \times 0 . \end{aligned}$ CTS measured (internal). This 20-bit value is used in the receiver with the N value to regenerate an audio clock. For remaining bits, see 0×05 and 0×06.
0x05	Read	[7:0]	00000000	CTS_Int[15:8]	Middle byte of measured CTS.
0x06	Read	[7:0]	00000000	CTS_Int[7:0]	Low byte of measured CTS.
0x07	Read/Write	[3:0]	****0000	CTS_Ext[19:16]	CTS (external). This 20-bit value is used in the receiver with the N value to regenerate an audio clock. For remaining bits, see 0×08 and 0×09.
0x08	Read/Write	[7:0]	00000000	CTS_Ext[15:8]	Middle byte of external CTS.
0x09	Read/Write	[7:0]	00000000	CTS_Ext[7:0]	Low byte of external CTS.
0x0A	Read/Write	[7] [6:5] [4] [3] [2]		CTS_Sel Avg_Mode Audio_Sel MCLK_SP MCLK_IS	CTS source select. 0 = internal CTS. 1 = external CTS. Default $=0$. CTS filter mode. $00=$ no filter. $01=$ divide by 4. $10=$ divide by 8 . 11 = divide by 16 . Default = 10 . Audio type select. $\begin{aligned} & 0=I^{2} \mathrm{~S} \\ & 1=\mathrm{S} / \mathrm{PDIF} . \end{aligned}$ Default $=0$. MCLK for S/PDIF. 1 = MCLK active. $0=$ MCLK inactive. Default $=0$. MCLK for ${ }^{2} \mathrm{~S}$. $1=I^{2} S$ MCLK active. $0=I^{2} S$ MCLK inactive. Default $=0$.
		[1:0]	******01	MCLK_Ratio	MCLK ratio.

Hex Address	Read/Write or Read Only	Bits	Default Value	Register Name	Description
					$\begin{aligned} & 00=\times 128 \mathrm{f}_{\mathrm{s}} \\ & 01=\times 256 \mathrm{f} . \\ & 10=\times 384 \mathrm{f}_{\mathrm{s}} . \\ & 11=\times 512 \mathrm{f}_{\mathrm{s}} . \\ & \text { Default }=01 . \end{aligned}$
0x0B	Read/Write	[6]	${ }^{*} 0^{* * * * * *}$	MCLK_Pol	MCLK polarity. 0 = rising edge. 1 = falling edge. Default $=0$.
		[5]	${ }^{* *} 0^{* * * * *}$	Flat_Line	Flat line. 1 = flat line audio (audio sample not valid). $0=$ normal. Default $=0$.
		[4:0]	****0111	Test bits	Must be set to 0×7 for proper operation.
0x0C	Read/Write	[5:2]	${ }^{* *} 1111^{* *}$	1^{2} S enable	$I^{2} S$ enable for the four $I^{2} S$ pins (active). $\begin{aligned} & 0001=I^{2} \text { S } 0 . \\ & 0010=I^{2} \text { S } 1 . \\ & 0100=I^{2} \text { S } 2 . \\ & 1000=I^{2} \text { S } . \end{aligned}$ Default = 1111 for all.
		[1:0]	******00	1^{2} S Format	1^{2} S format.
					$\begin{aligned} & 00=\text { standard } I^{2} S \text { mode. } \\ & 01=\text { right-justified } I^{2} S \text { mode. } \\ & 10=\text { left-justified } I^{2} S \text { mode. } \\ & 11=\text { raw IEC60958 mode. } \\ & \text { Default }=0 . \end{aligned}$
0x0D	Read/Write	[4:0]	${ }^{* * *} 11000$	12S_bit_width	$I^{2} S$ bit width. For right justified audio only. Default is 24. Not valid for widths greater than 24.
0x0E	Read/Write	$[5: 3]$ [2:0]	$\begin{aligned} & * * 000^{* * *} \\ & * * * * * 001 \end{aligned}$	SUBPKTO_L_src SUBPKTO_R_src	Registers 0x0E to 0×11 should be set based on the speaker mapping information obtained from EDID. Source of sub packet 0, left channel. Default $=000$. Source of sub packet 0, right channel. Default $=001$.
0xOF	Read/Write	$\begin{aligned} & {[5: 3]} \\ & {[2: 0]} \end{aligned}$	$\begin{aligned} & { }^{* *} 010^{* * *} \\ & { }^{* * * *} 011 \end{aligned}$	SUBPKT1_R_src	Source of sub packet 1 , left channel. Default $=010$. Source of sub packet 1 , right channel. Default $=011$.
0×10	Read/Write	$\begin{aligned} & {[5: 3]} \\ & {[2: 0]} \end{aligned}$	$\begin{aligned} & { }^{* *} 100^{* * *} \\ & { }^{* * * * *} 101 \end{aligned}$	$\begin{aligned} & \hline \text { SUBPKT2_L_src } \\ & \text { SUBPKT2_R_src } \end{aligned}$	Source of sub packet 2, left channel. Default $=100$. Source of sub packet 2, right channel. Default $=101$.
0×11	Read/Write	$\begin{aligned} & {[5: 3]} \\ & {[2: 0]} \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{* * *} 110^{* * *} \\ & { }^{* * * *} 11 \end{aligned}$	SUBPKT3_L_src SUBPKT3_R_src	Source of sub packet 3, left channel. Default $=110$. Source of sub packet 3, right channel. Default = 111 .
0x12	Read/Write	[5]	**0****	CR_bit	$\begin{aligned} & \text { Copyright bit. } \\ & 0=\text { copyright. } \\ & 1=\text { not copyright protected. } \end{aligned}$
		[4:2]	***000**	a_info	Additional information for channel status bits. $000=2$ audio channels without pre-emphasis. $100=2$ audio channels with $50 / 15 \mu$ s pre-emphasis. $010=$ reserved. $110=$ reserved. Default $=000$.
		[1:0]	******00	Clk_Acc	Clock accuracy. $00=$ Level II, normal accuracy $\pm 1000 \times 10^{-6}$. $01=$ Level III, variable pitch shifted clock. $10=$ Levell I, high accuracy $\pm 50 \times 10^{-6}$. 11 = reserved. Default $=00$.
0x13	Read/Write	[7:0]	00000000	Category Code	Category code for audio infoframe; see IEC 60958.

AD9389

Hex Address	Read/Write or Read Only	Bits	Default Value	Register Name	Description
0x14	Read/Write	$\begin{aligned} & {[7: 4]} \\ & {[3: 0]} \end{aligned}$	$\begin{aligned} & 0000 * * * * \\ & * * * * 0000 \end{aligned}$	Source Number Word Length	Source number. Audio word length. $0000=$ not specified. $0100=16$ bits. $0011=17$ bits. $0010=18$ bits. $0001=19$ bits. $0101=20$ bits. $1000=$ not specified. $1100=20$ bits. $1011=21$ bits. $1010=22$ bits. $1001=23$ bits. $1101=24$ bits. Default $=0 \times 0$.
0x15	Read/Write	[7:4]	$0000^{* * * *}$	$I^{2} \mathrm{~S} \text { _SF }$	Sampling frequency for $I^{2} S$ audio. This information is used both by the audio Rx and the pixel repetition. $\begin{aligned} & 0011=32 \mathrm{kHz} . \\ & 0000=44.1 \mathrm{kHz} . \\ & 0010=48 \mathrm{kHz} . \\ & 1000=88.2 \mathrm{kHz} . \\ & 1010=96 \mathrm{kHz} . \\ & 1100=176.4 \mathrm{kHz} . \\ & 1110=192 \mathrm{kHz} . \\ & \text { Default }=0 \times 0 . \end{aligned}$
		[3:1]	****000*	VFE_input_id	```Input video format. 000 = RGB and YCbCr 4:4:4 (Y on Green). 001 = YCbCr 4:2:2; 16-bit, 20-bit, and 24-bit. 010 = Same as 001 with HS and VS embedded as SAV and EAV. 011 = ITU656 with separated syncs. 100 = ITU656 with embedded syncs. 101 = DDR RGB 4:4:4 or YCbCr 4:4:4. 110 = DDR YCbCr 4:2:2. 111 = undefined. Default = 000.```
		[0]	*******0	low_frq_video	Video refresh rate. $\begin{aligned} & 0=V_{\text {REF }}>30 \mathrm{~Hz} . \\ & 1=V_{\text {REF }} \leq 30 \mathrm{~Hz} \text { refresh rate video. } \\ & \text { Default }=0 . \end{aligned}$
0x16	Read/Write	[7:6]	$00^{* * * * * *}$	VFE_out_fmt	Video output format. This should be written along with $0 \times 45[5: 4]$. $\begin{aligned} & 00=\text { RGB 4:4:4. } \\ & 01=\text { YCbCr 4:4:4. } \\ & 1 x=\text { YCbCr 4:2:2. } \\ & \text { Default }=00 . \end{aligned}$
			${ }^{* *} 00 * * * *$	VFE_422_width	4:2:2 input, could be either 8-bit, 10-bit, or 12-bit. $x 0=12$ bits. $01=10$ bits. $11=8$ bits. Default $=00$.
		[3:2]	****00**	VFE_input_style	Styles refer to the input pin assignments. See Table 23 to Table 28. $\begin{aligned} & x 0=\text { Style } 1 . \\ & 01=\text { Style } 2 . \\ & 11=\text { Style } 3 . \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline Hex Address \& Read/Write or Read Only \& Bits \& Default Value \& Register Name \& Description

\hline \& \& [1]

$[0]$ \& ******0* \& | VFE_input_edge |
| :--- |
| VFE_input_cs | \& | Video data input edge. Defines the first clock edge of video word clocked. |
| :--- |
| $0=$ rising edge. |
| 1 = falling edge. |
| Default $=0$ (in reference to DDR). |
| Video input color space. $\begin{aligned} & 0=\mathrm{RGB} . \\ & 1=\mathrm{YCbCr} . \end{aligned}$ $\text { Default }=0$ |

\hline \multirow[t]{7}{*}{0x17} \& \multirow[t]{7}{*}{Read/Write} \& [7] \& $0^{* * * * * * *}$ \& itu_error_correct_en \& | ITU656 error correction. This must be enabled if using ITU656 format. |
| :--- |
| $0=$ disable. |
| 1 = enable. |
| Default $=0$. |

\hline \& \& [6] \& * $0^{* * * * * * ~}$ \& itu_vsync_pol \& $$
\begin{aligned}
& \text { VS polarity from regenerated ITU } 656 \text { input. } \\
& 0=\text { high polarity. } \\
& 1=\text { low polarity. } \\
& \text { Default }=0 .
\end{aligned}
$$

\hline \& \& [5] \& ${ }^{* *} 0^{* * * * *}$ \& itu_hsync_pol \& | HS polarity from regenerated ITU 656 input. |
| :--- |
| $0=$ high polarity. |
| 1 = low polarity. |
| Default $=0$. |

\hline \& \& $$
[4: 3]
$$ \& \[

* * * 00^{* * *}
\] \& csc_mode \& Sets the fixed point position of the CSC coefficients, including the $\mathrm{a} 4, \mathrm{~b} 4$, and c 4 offsets.

$$
\begin{aligned}
& 00= \pm 1.0, \text { (from }-4096 \text { to }+4095) . \\
& 01= \pm 2.0, \text { (from }-8192 \text { to }+8190 .) \\
& 1 \times= \pm 4.0, \text { (from }-16,384 \text { to }+16,380) . \\
& \text { Default }=000 .
\end{aligned}
$$

\hline \& \& [2] \& \[
{ }^{* * * * *} 0^{* *}

\] \& gen_444_en \& | 4:2:2 to 4:4:4 upconversion mode. |
| :--- |
| $1=$ uses interpolation. |
| $0=$ no interpolation. |
| Default $=0$. |

\hline \& \& [1] \& ******0* \& ASP_ratio \& Aspect ratio of input video.

$$
\begin{aligned}
& 0=4: 3 . \\
& 1=16: 9 . \\
& \text { Default }=0 .
\end{aligned}
$$

\hline \& \& [0] \& *******0 \& deGen_en \& | Enable DE generator. The DE generator should be enabled when a $D E$ input is not provided. |
| :--- |
| 1 = enable DE generator. |
| Default = 0 (see Register 0×30 to Register 0x3A). |

\hline 0x18 \& Read/Write \& [4:0] \& ***00110 \& CSC_A1_MSB \& MSB of 0x19.

\hline 0x19 \& Read/Write \& [7:0] \& 01100010 \& CSC_A1_LSB \& Color space converter (CSC) coefficient for equation:

$$
\begin{aligned}
& \text { Rout }=\left(\mathbf{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\
& \mathrm{G}_{\text {out }}=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{b} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{b} 4 \\
& \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{c} 4
\end{aligned}
$$

\hline 0x1A \& Read/Write \& [4:0] \& ***00100 \& CSC_A2_MSB \& MSB of 0x1B.

\hline 0x1B \& Read/Write \& [7:0] \& 10101000 \& CSC_A2_LSB \& CSC coefficient for equation:

$$
\begin{aligned}
& \text { Rout }=\left(\mathrm{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathbf{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\
& \mathrm{G}_{\text {out }}=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {IN }}\right)+(\mathrm{b} 3 \times \mathrm{B} \text { IN })+\mathrm{b} 4 \\
& \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{c} 4
\end{aligned}
$$

\hline 0x1C \& Read/Write \& [4:0] \& ***00000 \& CSC_A3_MSB \& MSB of 0x1D.

\hline 0x1D \& Read/Write \& [7:0] \& 00000000 \& CSC_A3_LSB \& CSC coefficient for equation:

\hline 0x1E \& Read/Write \& [4:0] \& ***11100 \& CSC_A4_MSB \& MSB of $0 \times 1 \mathrm{~F}$.

\hline
\end{tabular}

AD9389

Hex Address	Read/Write or Read Only	Bits	Default Value	Register Name	Description
0x1F	Read/Write	[7:0]	10000100	CSC_A4_LSB	CSC coefficient for equation: $\begin{aligned} & \text { Rout }=\left(\mathrm{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a4} \\ & \mathrm{G}_{\text {out }}=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{b} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{b} 4 \\ & \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{BIN}^{2}\right)+\mathrm{c} 4 \end{aligned}$
0x20	Read/Write	[4:0]	${ }^{* * *} 11100$	CSC_B1_MSB	MSB of 0x21.
0x21	Read/Write	[7:0]	10111111	CSC_B1_LSB	CSC coefficient for equation: $\begin{aligned} & \text { Rout }=\left(\mathrm{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\ & \left.\mathrm{G}_{\text {out }}=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {IN }}\right)+(\mathrm{b} 3 \times \mathrm{BIN})\right)+\mathrm{b} 4 \\ & \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{RIN}_{1 N}\right)+\left(\mathrm{c} 2 \times \mathrm{GIN}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{BIN}^{2}\right)+\mathrm{c} 4 \end{aligned}$
0x22	Read/Write	[4:0]	***00100	CSC_B2_MSB	MSB of 0x23.
0x23	Read/Write	[7:0]	10101000	CSC_B2_LSB	CSC coefficient for equation:
0x24	Read/Write	[4:0]	***11110	CSC_B3_MSB	MSB of 0x25.
0x25	Read/Write	[7:0]	01110000	CSC_B3_LSB	CSC coefficient for equation:
0x26	Read/Write	[4:0]	***00010	CSC_B4_MSB	MSB of 0x27.
0x27	Read/Write	[7:0]	00011110	CSC_B4_LSB	CSC coefficient for equation: $\begin{aligned} & \text { Rout }=\left(\mathrm{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\ & \mathrm{G}_{\text {out }}=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {INN }}\right)+\left(\mathrm{b} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{b} 4 \\ & \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{GIN}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{BIN}^{\prime}\right)+\mathrm{c} 4 \end{aligned}$
0x28	Read/Write	[4:0]	***00000	CDC_C1_MSB	MSB of 0x29.
0x29	Read/Write	[7:0]	00000000	CSC_C1_LSB	CSC coefficient for equation:
0x2A	Read/Write	[4:0]	${ }^{* * * 00100}$	CSC_C2_MSB	MSB of 0x2B.
$0 \times 2 \mathrm{~B}$	Read/Write	[7:0]	10101000	CSC_C2_LSB	CSC coefficient for equation:
0x2C	Read/Write	[4:0]	***01000	CSC_C3_MSB	MSB of 0x2D.
0x2D	Read/Write	[7:0]	00010010	CSC_C3_LSB	CSC coefficient for equation: $\begin{aligned} & \text { Rout }=\left(\mathrm{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\ & \mathrm{G}_{\text {out }}=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {INN }}\right)+\left(\mathrm{b} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{b} 4 \\ & \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{c} 4 \end{aligned}$
0x2E	Read/Write	[4:0]	***11011	CSC_C4_MSB	MSB of 0x2F.
0x2F	Read/Write	[7:0]	10101100	CSC_C4_LSB	CSC coefficient for equation:
0x30	Read/Write	[7:0]	00000000	VFE_hs_pla_MSB	Most significant 8 bits for HSYNC placement for ITU 656 HSYNC regeneration.
0x31	Read/Write	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{aligned} & \hline 00^{* * * * * *} \\ & * * 000000 \end{aligned}$	VFE_hs_pla_LSB VFE_hs_dur_MSB	HSYNC placement lower 2 bits (see 0x30). Most significant 6 bits for HSYNC duration.
0x32	Read/Write	$\begin{aligned} & {[7: 4]} \\ & {[3: 0]} \end{aligned}$	$\begin{aligned} & \hline 0000^{* * * *} \\ & * * * * 0000 \end{aligned}$	VFE_hs_dur_LSB VFE_vs_pla_MSB	HSYNC duration lower 4 bits (see 0x31). Most significant 4 bits for VSYNC placement for ITU 656 VSYNC regeneration.
0x33	Read/Write	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	$\begin{aligned} & 000000 * * \\ & * * * * * * 00 \end{aligned}$	VFE_vs_pla_LSB VFE_vs_dur_MSB	VSYNC placement lower 6 bits (see 0×32). Most significant 2 bits for VSYNC duration.
0x34	Read/Write	[7:0]	00000000	VFE_vs_dur_LSB	VSYNC duration lower 8 bits (see 0x33).
0x35	Read/Write	[7:0]	00000000	VFE_hsDelayln_MSB	Most significant 8 bits for HSYNC delay in for ITU 656 HSYNC regeneration.

AD9389

Hex Address	Read/Write or Read Only	Bits	Default Value	Register Name	Description
0x40	Read/Write	$\begin{aligned} & {[7]} \\ & {[6]} \\ & {[5]} \\ & {[4]} \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{* * * * * * *} \\ & * 0^{* * * * * *} \\ & * 0^{* * * * *} \\ & * * 0^{* * * *} \\ & * * * 0^{* * *} \end{aligned}$	GC_pkt_en SPD_pkt_en MPEG_pkt_en ACP_pkt_en ISRC_pkt_en	```1 = enable general control packet. Default = 0. 1 = enable source product descriptor packet. Default = 0. 1 = enable MPEG packet. Default = 0. 1 = enable ACP packet. Default =0. 1 = enable ISRC packet. Default = 0.```
0×41	Read/Write	[6] [5] [4] [3]	$* 1 * * * * * *$ ${ }^{* *} 0^{* * * * *}$ *** $1^{* * * * ~}$ $* * * * 0 * * *$	system_PD Test bit INTR_pol initiate_scan	$0=$ all circuits powered up. 1 = power down the whole chip, except $I^{2} \mathrm{C}$, HPD interrupt and MSEN interrupt. Default $=1$. Must be set to 0 . Interrupt polarity. $0=$ low active interrupt. 1 = high active interrupt. Default $=1$. 1 = initiate scan. Default = 1.
0x42	Read	[7] [6] [5]	$1^{* * * * * * *}$ ${ }^{*} 0^{* * * * * *}$ $* * 0^{* * * * *}$	PD_pol HPD_state MSEN_state	Polarity for power-down pin. $0=$ low active. 1 = high active. State of the hot plug detection. $0=$ hot plug detect inactive. 1 = hot plug active. State of the monitor connection. $0=$ HDMI clock termination not detected. $1=\mathrm{HDMI}$ clock termination detected.
0x43	Read/Write	[7:0]	01111110	EDID_ID	The $I^{2} \mathrm{C}$ address for EDID memory. Default $=0 \times 7 \mathrm{E}$.
0x44	Read/Write	$\begin{aligned} & {[7]} \\ & {[6]} \\ & {[5]} \\ & {[4]} \\ & {[3]} \end{aligned}$	$\begin{aligned} & 0^{* * * * * * *} \\ & * 1^{* * * * * *} \\ & * * 1^{* * * * *} \\ & * * 1^{* * * *} \\ & * * * 1^{* * *} \end{aligned}$	spdif_en N_CTS_pkt_en audio_sample_pkt_en avilF_pkt_en audiolF_pkt_en	$\begin{aligned} & 1=\text { enable S/PDIF receiver. Default }=0 . \\ & 1=\text { enable } \text { N_CTS packet. Default }=1 . \\ & 1=\text { enable audio sample packet. Default }=1 . \\ & 1=\text { enable avi info frame. Default }=1 . \\ & 1=\text { enable audio info frame. Default }=1 . \end{aligned}$
0x45	Read/Write	[7] [6] [5:4] [3] [2:1]	$\begin{aligned} & 0 * * * * * * * \\ & * 0 * * * * * * \\ & * 00 * * * * \\ & * * * * 0 * * * \\ & * * * * * 00 * \end{aligned}$	clear_avmute set_avmute Y1Y0 Active Format Information Status Bar Information	1 = clear av mute. Default $=0$. $1=$ set av mute. Default $=0$. Output format, should be written when $0 \times 16[7: 6]$ is written. $\begin{aligned} & 00=\text { RGB. } \\ & 01=\text { YCbCr 4:2:2. } \\ & 10=\text { YCbCr 4:4:4. } \\ & 11=\text { reserved. } . \end{aligned}$ Default $=00$. Active format information present. $0=$ no data. 1 = active format information valid. Default $=0$. B[1:0]. $00=$ no bar information. 01 = horizontal bar information valid. $10=$ vertical bar information valid. 11 = horizontal and vertical bar information valid. Default $=00$.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Hex \\
Address
\end{tabular} \& Read/Write or Read Only \& Bits \& Default Value \& Register Name \& Description \\
\hline \multirow[t]{4}{*}{0x46} \& \multirow[t]{4}{*}{Read/Write} \& [7:6] \& \(00^{* * * * * *}\) \& Scan Information \& ```
S[1:0].
00 = no information.
01 = overscanned (television).
10 = underscanned (computer).
11 = undefined.
Default = 00.
``` \\
\hline \& \& [5:4] \& \({ }^{* *} 00 * * * *\) \& Colorimetry \& \[
\begin{aligned}
\& \text { C[1:0]. } \\
\& 00=\text { no data. } \\
\& 01=\text { SMPTE } 170 M, \text { ITU601. } \\
\& 10=\text { ITU709. } \\
\& 11 \text { = undefined. } \\
\& \text { Default = } 00 .
\end{aligned}
\] \\
\hline \& \& [3:2] \& **** \(00^{* *}\) \& Picture Aspect Ratio \& \begin{tabular}{l}
\[
\text { M } 11: 0] .
\]
\[
00=\text { no data. }
\]
\[
01=4: 3
\]
\[
10=16: 9
\] \\
\(11=\) undefined. \\
Default \(=00\).
\end{tabular} \\
\hline \& \& [1:0] \& *******00 \& Nonuniform Picture Scaling \& \begin{tabular}{l}
SC[1:0]. \\
\(00=\) No known nonuniform scaling. \\
\(01=\) picture has been scaled horizontally. \\
\(10=\) picture has been scaled vertically. \\
11 = picture has been scaled horizontally and vertically. Default \(=00\).
\end{tabular} \\
\hline \(0 \times 47\) \& Read/Write \& [7:4] \& 0000**** \& Active Format Aspect Ratio \& ```
R[3:0].
1000 = same as picture aspect ratio.
1001 = 4:3 (center).
1010 = 16:9 (center).
1011 = 14:9 (center).
Default = 0x0.
``` \\
\hline 0x48 \& Read/Write \& [7:0] \& 00000000 \& Active Line Start LSB \& \multirow[t]{2}{*}{This represents the line number at the end of the top horizontal bar. If 0 , there is no horizontal bar.} \\
\hline 0x49 \& Read/Write \& [7:0] \& 00000000 \& Active Line Start MSB \& \\
\hline 0x4A \& Read/Write \& [7:0] \& 00000000 \& Active Line End LSB \& \multirow[t]{2}{*}{This represents the line number at the beginning of a lower horizontal bar. If greater than the number of active video lines, there is no lower horizontal bar.} \\
\hline 0x4B \& Read/Write \& [7:0] \& 00000000 \& Active Line End MSB \& \\
\hline 0x4C \& Read/Write \& [7:0] \& 00000000 \& Active Pixel Start LSB \& \multirow[t]{2}{*}{This represents the last pixel in a vertical pillar bar at the left side of the picture. If 0 , there is no left bar.} \\
\hline 0x4D \& Read/Write \& [7:0] \& 00000000 \& Active Pixel Start MSB \& \\
\hline 0x4E \& Read/Write \& [7:0] \& 00000000 \& Active Pixel End LSB \& \multirow[t]{2}{*}{This represents the first horizontal pixel in a vertical pillar bar at the right side of the picture. If greater than the maximum number of horizontal pixels, there is no vertical bar.} \\
\hline 0x4F \& Read/Write \& [7:0] \& 00000000 \& Active Pixel End MSB \& \\
\hline \multirow[t]{3}{*}{0x50} \& \multirow[t]{3}{*}{Read/Write} \& \multirow[t]{2}{*}{[7:5]

$[4]$} \& \[
000^{* * * * *}

\] \& audio_IF_CC \& | Channel count. |
| :--- |
| $000=$ refer to stream header. |
| $001=2$ channels. |
| $010=3$ channels. |
| \ldots |
| $111=8$ channels. |
| Default $=000$. |

\hline \& \& \& ${ }^{* * *} 0^{* * * *}$ \& audio_IF_DM_INH \& | Down-mix inhibit. |
| :--- |
| $0=$ Permitted or no information about this. |
| 1 = Prohibited. |
| Default $=0$. |

\hline \& \& [3:0] \& ****0000 \& Level Shift \& | LSV[3:0]. Level Shift Values with attenuation information. |
| :--- |
| $0000=0 \mathrm{~dB}$ attenuation. |
| $0001=1 \mathrm{~dB}$ attenuation. |
| $1111=15 \mathrm{~dB}$ attenuation. |
| Default $=0 \times 0$. |

\hline
\end{tabular}

AD9389

| Hex
 Address | Read/Write or
 Read Only | Bits | Default
 Value | Register Name | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | | | | |
| :--- | :--- | :--- | :--- |
| 0x51 | Read/Write | 00000000 | Speaker Mapping | | CA[7:0]. Speaker mapping or placement for up to |
| :--- |
| 8 channels (see Table 24). |
| Default = 0x00. |.

| Hex Address | Read/Write or Read Only | Bits | Default Value | Register Name | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0x71 | Read/Write | [7:0] | 00000000 | Audio Content
 Protection Packet (ACP) Type | ```ACP type. 0 = generic audio. 1 = IEC 60958-identified audio. 2 = DVD audio. 3 = reserved for SACD. Default = 0x00.``` |
| 0x72 | Read/Write | [7:0] | 00000000 | ACP_byte1 | Audio content protection.
 [7:6] audio_copy_permission.
 [5:3] audio_copy_number.
 [2:1] quality.
 [0] transaction. |
| 0x73 | Read/Write | [7]
 [6]
 [5:3] | 0*******
 *0******
 000* | ISRC1 Continued
 ISRC1_valid
 ISRC1 Status | International standard recording code continued (ISRC1). Indicates an ISRC2 packet is being transmitted.
 $1=$ the 2 nd ISRC packet is needed.
 Default $=0$.
 $0=$ ISRC1 status bits and PBs not valid.
 $1=$ ISRC1 status bits and PBs valid.
 Default $=0$.
 These bits indicate beginning, middle, and end of a track. $\begin{aligned} & 001=\text { start. } \\ & 010=\text { middle. } \\ & 100=\text { end. } . \\ & \text { Default }=000 . \end{aligned}$ |
| 0x74 | Read/Write | [7:0] | 00000000 | ISRC1_PB0 | ISRC1 Packet Byte 0. |
| 0x75 | Read/Write | [7:0] | 00000000 | ISRC1_PB1 | ISRC1 Packet Byte 1. |
| 0x76 | Read/Write | [7:0] | 00000000 | ISRC1_PB2 | ISRC1 Packet Byte 2. |
| 0x77 | Read/Write | [7:0] | 00000000 | ISRC1_PB3 | ISRC1 Packet Byte 3. |
| 0x78 | Read/Write | [7:0] | 00000000 | ISRC1_PB4 | ISRC1 Packet Byte 4. |
| 0x79 | Read/Write | [7:0] | 00000000 | ISRC1_PB5 | ISRC1 Packet Byte 5. |
| 0x7A | Read/Write | [7:0] | 00000000 | ISRC1_PB6 | ISRC1 Packet Byte 6. |
| 0x7B | Read/Write | [7:0] | 00000000 | ISRC1_PB7 | ISRC1 Packet Byte 7. |
| 0x7C | Read/Write | [7:0] | 00000000 | ISRC1_PB8 | ISRC1 Packet Byte 8. |
| 0x7D | Read/Write | [7:0] | 00000000 | ISRC1_PB9 | ISRC1 Packet Byte 9. |
| 0x7E | Read/Write | [7:0] | 00000000 | ISRC1_PB10 | ISRC1 Packet Byte 10. |
| 0x7F | Read/Write | [7:0] | 00000000 | ISRC1_PB11 | ISRC1 Packet Byte 11. |
| 0x80 | Read/Write | [7:0] | 00000000 | ISRC1_PB12 | ISRC1 Packet Byte 12. |
| 0x81 | Read/Write | [7:0] | 00000000 | ISRC1_PB13 | ISRC1 Packet Byte 13. |
| 0x82 | Read/Write | [7:0] | 00000000 | ISRC1_PB14 | ISRC1 Packet Byte 14. |
| 0x83 | Read/Write | [7:0] | 00000000 | ISRC1_PB15 | ISRC1 Packet Byte 15. |
| 0x84 | Read/Write | [7:0] | 00000000 | ISRC2_PB0 | ISRC2 Packet Byte 0. |
| 0x85 | Read/Write | [7:0] | 00000000 | ISRC2_PB1 | ISRC2 Packet Byte 1. |
| 0x86 | Read/Write | [7:0] | 00000000 | ISRC2_PB2 | ISRC2 Packet Byte 2. |
| 0x87 | Read/Write | [7:0] | 00000000 | ISRC2_PB3 | ISRC2 Packet Byte 3. |
| 0x88 | Read/Write | [7:0] | 00000000 | ISRC2_PB4 | ISRC2 Packet Byte 4. |
| 0x89 | Read/Write | [7:0] | 00000000 | ISRC2_PB5 | ISRC2 Packet Byte 5. |
| 0x8A | Read/Write | [7:0] | 00000000 | ISRC2_PB6 | ISRC2 Packet Byte 6. |
| 0x8B | Read/Write | [7:0] | 00000000 | ISRC2_PB7 | ISRC2 Packet Byte 7. |
| 0x8C | Read/Write | [7:0] | 00000000 | ISRC2_PB8 | ISRC2 Packet Byte 8. |
| 0x8D | Read/Write | [7:0] | 00000000 | ISRC2_PB9 | ISRC2 Packet Byte 9. |
| 0x8E | Read/Write | [7:0] | 00000000 | ISRC2_PB10 | ISRC2 Packet Byte 10. |
| 0x8F | Read/Write | [7:0] | 00000000 | ISRC2_PB11 | ISRC2 Packet Byte 11. |

AD9389

| Hex Address | Read/Write or Read Only | Bits | Default Value | Register Name | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0x90 | Read/Write | [7:0] | 00000000 | ISRC2_PB12 | ISRC2 Packet Byte 12. |
| 0x91 | Read/Write | [7:0] | 00000000 | ISRC2_PB13 | ISRC2 Packet Byte 13. |
| 0x92 | Read/Write | [7:0] | 00000000 | ISRC2_PB14 | ISRC2 Packet Byte 14. |
| 0x93 | Read/Write | [7:0] | 00000000 | ISRC2_PB15 | ISRC2 Packet Byte 15. |
| 0x94 | Read/Write | [7:0] | 11000000 | mask1 | Mask for Interrupt Group1 (0x96). |
| 0x95 | Read/Write | [7:6] | $00^{* * * * * *}$ | mask2 | Mask for Interrupt Group 2 (0x97[7:6]. [7] for HDCP error.
 [6] for BKSV flag. |
| 0x96 | Read/Write | [7]
 [6]
 [5]
 [4]
 [3]
 [2] | | ```HPD_INT MSEN_INT VS_INT AUD_FIFO_FULL_INT ITU656_ERR_INT EDID_RDY_INT``` | Interrupt for hot plug detect (HPD). Interrupt for monitor connection (MSEN). Interrupt for active VS edge. Interrupt for audio FIFO overflow. Interrupt for ITU656 error. Interrupt for EDID Ready. |
| 0x97 | Read/Write | [7]
 [6]
 [2] | $\begin{aligned} & 0^{* * * * * * *} \\ & { }^{*} 0^{* * * * *} \\ & * * * * 0^{* *} \end{aligned}$ | $\begin{aligned} & \text { HDCP_ERR_INT } \\ & \text { BKSV_flag } \\ & \text { Test bit } \end{aligned}$ | Interrupt bit from HDCP master.
 Set to 1 to instruct the MPU to read the BKSV or the EDID MEM for revocation list checking.
 Must be written to 1 for proper operation. |
| 0x98 | Read/Write | $\begin{aligned} & {[7]} \\ & {[3: 0]} \end{aligned}$ | $\begin{aligned} & \hline 0^{* * * * * *} \\ & * * * * 0010 \end{aligned}$ | Test bits | Must be written to 0 for proper operation.
 Must be written to 0×2 for proper operation. |
| 0x9C | Read/Write | [7:0] | | Test bits | Must be written to 0x3A for proper operation. |
| 0x9D | Read/Write | [3:0] | ****0*** | Test bit | Must be written to 1 for proper operation. |
| 0xA2 | Read/Write | [7:0] | | Test bits | Must be written to 0x87 for proper operation. |
| 0xA3 | Read/Write | [7:0] | | Test bits | Must be written to 0×87 for proper operation. |
| 0xAF | Read/Write | [7]
 [5]
 [4]
 [3]
 [1]
 [0] | $\begin{aligned} & 0 * * * * * * * \\ & * * 0 * * * * * \\ & * * * 1 * * * * \\ & * * * * 0 * * * \\ & * * * * * * 0 * \\ & * * * * * * 0 \end{aligned}$ | HDCP_desired
 frame_enc
 ext_HDMI_MODE | HDCP encryption.
 $0=$ input A/V content not to be encrypted.
 1 = the input A/V content should be encrypted.
 Default $=0$.
 Must be written to 0 for proper operation.
 Frame encryption.
 $0=$ the current frame should not be encrypted.
 $1=$ the current frame should be encrypted.
 Default $=1$.
 Must be written to 0 for proper operation.
 HDMI mode. $\begin{aligned} & 0=\text { DVI. } \\ & 1=\text { HDMI. } \end{aligned}$
 Default $=0$.
 Must be written to 0 for proper operation. |
| 0xB0 | Read | [7:0] | 00000000 | An_0 | Byte 0 of An. |
| 0xB1 | Read | [7:0] | 00000000 | An_1 | Byte 1 of An. |
| 0xB2 | Read | [7:0] | 00000000 | An_2 | Byte 2 of An. |
| 0xB3 | Read | [7:0] | 00000000 | An_3 | Byte 3 of An. |
| 0xB4 | Read | [7:0] | 00000000 | An_4 | Byte 4 of An. |
| 0xB5 | Read | [7:0] | 00000000 | An_5 | Byte 5 of An. |
| 0xB6 | Read | [7:0] | 00000000 | An_6 | Byte 6 of An. |

\begin{tabular}{|c|c|c|c|c|c|}
\hline Hex Address \& Read/Write or Read Only \& Bits \& Default Value \& Register Name \& Description \\
\hline 0xB7 \& Read \& \begin{tabular}{l}
[7:0] \\
[6] \\
[5] \\
[4]
\end{tabular} \& \begin{tabular}{l}
00000000 \\
*0****** \\
** \(0^{* * * * * ~}\) \\
*** \({ }^{* * * * * ~}\)
\end{tabular} \& \begin{tabular}{l}
An_7 \\
ENC_on \\
int_HDMI_MODE \\
keys_read_error
\end{tabular} \& \begin{tabular}{l}
Byte 7 of An. \\
1 = the A/V content is being encrypted. \\
\(0=\) not encrypted. \\
Default \(=0\). \\
Digital mode. \\
\(1=\) HDMI mode. \\
\(0=\) DVI mode. \\
1 = HDCP key reading error.
\end{tabular} \\
\hline 0xBA \& Read/Write \& \begin{tabular}{l}
[7:5] \\
[4] \\
[3]
\end{tabular} \& \(000^{* * * * *}\)

$* * * 0^{* * * *}$

$* * * 0^{* * *}$ \& clk_delay \& | Edge select for input video clock. |
| :--- |
| 011 = positive edge capture. |
| 111 = negative edge capture. |
| Default $=000$. |
| Must be written to 1 for proper operation. |
| Must be written to 0 for proper operation. |

\hline 0xBE \& Read \& | [7] |
| :--- |
| [6] |
| [5] |
| [4] |
| [3:2] |
| [1] |
| [0] | \& \[

$$
\begin{aligned}
& 0 * * * * * * * \\
& * 0 * * * * * * \\
& * * 0 * * * * * \\
& * * * 0 * * * * \\
& * * * * 00 * * \\
& * * * * * * 0 *
\end{aligned}
$$

\] \& | BCAPS |
| :--- |
| Repeater |
| KSV ready |
| Test bit |
| Test bit |
| HDCP support |
| Fast HDCP | \& | HDMI reserved. |
| :--- |
| HDCP repeater. |
| $0=$ HDCP receiver is not repeater capable. |
| $1=$ HDCP receiver is repeater capable. |
| KSV FIFO ready. |
| 1 = HDCP receiver has compiled list of attached KSVs. |
| Must be written to 0 for proper operation. |
| Reserved. |
| HDCP 1.1 features support. |
| $0=$ HDCP receiver does not support version 1.1 |
| features. |
| 1 = HDCP receiver supports 1.1 features such as enhanced encryption status signaling (EESS). |
| Fast authentication. |
| $0=$ HDCP Receiver not capable of fast authentication. |
| 1 = HDCP Receiver capable of receiving unencrypted |
| video during the session re-authentication. |

\hline 0xBF \& Read \& [7:0] \& 00000000 \& BKSV1 \& \multirow[t]{5}{*}{BKSV read from Rx by the HDCP controller 40 bits (5 bytes).}

\hline 0xC0 \& Read \& [7:0] \& 00000000 \& BKSV2 \&

\hline 0xC1 \& Read \& [7:0] \& 00000000 \& BKSV3 \&

\hline 0xC2 \& Read \& [7:0] \& 00000000 \& BKSV4 \&

\hline 0xC3 \& Read \& [7:0] \& 00000000 \& BKSV5 \&

\hline 0xC4 \& Read/Write \& [7:0] \& 00000000 \& EDID Segment \& Sets the E-DDC segment used by the EDID fetch routine.

\hline 0xC5 \& Read \& | [7] |
| :--- |
| [6] |
| [5] |
| [4] |
| [3] |
| [2] |
| [1] |
| [0] | \& \[

$$
\begin{aligned}
& \hline 0^{* * * * * * *} \\
& * 0^{* * * * * *} \\
& * * 0^{* * * * *} \\
& * * * 0^{* * * *} \\
& * * * 0^{* * *} \\
& * * * * 0^{* *} \\
& * * * * * 0^{*} \\
& * * * * * * 0
\end{aligned}
$$

\] \& | Error Flag |
| :--- |
| AN Stop |
| HDCP Enabled |
| EDID Ready Flag |
| $1^{2} \mathrm{C}$ Interrupt |
| RI Flag |
| BKSV Update Flag |
| PJ Flag | \& | Error flag. |
| :--- |
| AN stop. |
| HDCP enabled. |
| EDID ready. |
| $I^{2} \mathrm{C}$. |
| RI. |
| BKSV update. |
| PJ. |

\hline 0xC6 \& Read \& | [4] |
| :--- |
| [3] |
| [2] |
| [1] |
| [0] | \& \[

$$
\begin{aligned}
& \hline * * * 0^{* * * *} \\
& * * * 0^{* * *} \\
& * * * * 0^{* *} \\
& * * * * * 0^{*} \\
& * * * * * * 0
\end{aligned}
$$

\] \& | HDMI Mode |
| :--- |
| HDCP Requested |
| Rx Sense |
| EEPROM Read OK |
| TMDS Output Enabled | \& | HDMI. |
| :--- |
| HDCP requested. |
| Rx sense. |
| EEPROM read. |
| TMDS output enabled. |

\hline 0xC7 \& Read/Write \& $$
\begin{aligned}
& \hline[7] \\
& {[6: 0]}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 0^{* * * * * * *} \\
& * 0000000
\end{aligned}
$$
\] \& BKSV Flag BKSV Count \& BKSV flag. BKSV count

\hline
\end{tabular}

Rev. $0 \mid$ Page 31 of 48

AD9389

| Hex
 Address | Read/Write or
 Read Only | Bits | Default
 Value | Register Name | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0xC8 | Read | $[7: 4]$ | $0000^{* * * *}$
 $[3: 0]$ | HDCP Controller Error
 HDCP Controller State | HDCP controller error, see Table 28.
 HDCP controller state. |
| 0xC9 | Read/Write | $[3: 0]$ | ${ }^{* * * * 00011}$ | EDID Tries | Number of times that the EDID is read if unsuccessful.
 Default $=0 \times 3$. |

AD9389

2-WIRE SERIAL CONTROL REGISTER DETAIL CHIP IDENTIFICATION

0x00—Bits[7:0] Chip Revision
An 8-bit register that represents the silicon revision.

0x01—Bits[3:0] N[19:16]

These are the most significant four bits of a 20-bit word used along with the 20 -bit CTS term in the receiver to regenerate the audio clock.

```
0x02—Bits[7:0] N[15-8]
0x03-Bits[7:0][(7-0]
0x04—Bits[3:0] CTS_Int[19:16]
```

These are the most significant four bits of a 20-bit word used along with the 20 -bit N term in the receiver to regenerate the audio clock. This is the measured or internal CTS. The internal or external CTS can be selected via 0x0A Bit 7 .

```
0x05—Bits[7:0] CTS_Int[15:8]
0x06—Bits[7:0] CTS_In[7:0]
0x07—Bits[3:0] CT_Ext[19:16])
```

These are the most significant four bits of a 20-bit word used along with the 20 -bit N term in the receiver to regenerate the audio clock. This is the external CTS. The internal or external CTS can be selected via $0 \times 0 \mathrm{~A}$ Bit 7 .

```
0x08-Bits[7:0] CTS_Ext[15:8]
0x09—Bits[7:0] CTS_Ext[7:0]
0x0A—Bits[7] CTS_Sel
```

When internal CTS is selected, the CTS is calculated by the AD9389.

$$
0=\text { internal CTS }
$$

1 = external CTS

```
Ox0A—Bits[6:5] Avg_Mode
    \(00=\) no filter
    \(01=\) divide by 4
    \(10=\) divide by 8
    11 = divide by 16
    Default = 10
```

0x0A—Bit[4] Audio_Sel
$0=I^{2} S$
$1=$ S/PDIF
Default $=0$

0x0A—Bit[3] MCLK_SP
If MCLK is available for S/PDIF, it is used for bit recovery; otherwise, internal circuitry is used.
$1=$ MCLK active
$0=$ MCLK inactive
Default = 0
Ox0A—Bit[2] MCLK_I²S
$1=I^{2} S$ MCLK active
$0=I^{2} S$ MCLK inactive
Default $=0$
If MCLK is available for $\mathrm{I}^{2} \mathrm{~S}$, it is used for bit recovery; otherwise, internal circuitry is used.

0x0A—Bits[1:0] MCLK_Ratio
$00=\times 128 \mathrm{f}_{\mathrm{S}}$
$01=\times 256 \mathrm{f}_{\mathrm{S}}$
$10=\times 384 \mathrm{fs}$
$11=\times 512 \mathrm{fs}$
Default $=01$
OxOB—Bit[6] MCLK_Pol
0 = rising edge
1 = falling edge
Default $=0$
OxOB—Bit[5] Flat_Line
1 = flat line audio (audio sample not valid)
$0=$ normal
Default $=0$
0x0C—Bits[5:2] 1^{2} S enable
$0001=I^{2}$ S 0
$0010=I^{2}$ S 1
$0100=I^{2} S 2$
$1000=I^{2}$ S 3
Default = 1111 for all
0x0C—Bits[1:0] I ${ }^{2}$ S Format
$00=$ standard I ${ }^{2} S$ mode
$01=$ right-justified $I^{2} S$ mode
$10=$ left-justified $\mathrm{I}^{2} S$ mode
11 = raw IEC60958 mode
Default $=00$
Ox0D—Bits[4:0] $1^{2} S$ bit width
For right-justified audio only. Default is 11000 (24). Not valid for widths greater than 24.

OxOE—Bits[5:3] SUBPKTO_L_src

Source of audio subpacket 0 (left channel) data. Default is 000 .

Table 23. Source of Subpacket Audio

| Field Code | Channel (0 to 3) and Left/Right |
| :--- | :--- |
| 000 | Channel 0 Left |
| 001 | Channel 0 Right |
| 010 | Channel 1 Left |
| 011 | Channel 1 Right |
| 100 | Channel 2 Left |
| 101 | Channel 2 Right |
| 110 | Channel 3 Left |
| 111 | Channel 3 Right |

OX0E—Bits[2:0] SUBPKTO_R_src
Default is 001 (see Table 27).

OxOF—Bits[5:3] SUBPKT1_L_src

Default is 010 (see Table 27).
OxOF—Bits[2:0] SUBPKT1_R_src
Default is 011 (see Table 27).

0x10—Bits[5:3] SUBPKT2_L_src

Default is 100 (see Table 27).

0x10—Bits[2:0] SUBPKT2_R_src

Default is 101 (see Table 27).

0x11—Bits[5:3] SUBPKT3_L_src

Default is 110 (see Table 27).

0x11—Bits[2:0] SUBPKT3_R_src

Default is 111 (see Table 27).

0x18-Bits[4:0] CSC_A1_MSB

These five bits form the 5 MSBs of the Color Space Conversion coefficient al. Combined with the 8 LSBs of the following register, they form a 13-bit, twos complement coefficient that is user programmable. The equation takes the form of

$$
\begin{aligned}
& \text { Rout }_{\text {}}^{\text {(}}\left(\mathrm{a} \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\
& \text { Gout }=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{b} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{b} 4 \\
& \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{c} 4
\end{aligned}
$$

The default value for the 13-bit, al coefficient is 0×0662.

0x19—Bits[7:0]CSC_A1_LSB

See Register 0x18.

0x1A—Bits[4:0] CSC_A2_MSB

These five bits form the 5 MSBs of the Color Space Conversion coefficient a2. This combined with the 8 LSBs of the following register form a 13 -bit, twos complement coefficient that is user programmable. The equation takes the form of

$$
\begin{aligned}
& \text { Rout }_{\text {on }}\left(\mathrm{a} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{a} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{a} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{a} 4 \\
& \text { Gout }=\left(\mathrm{b} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{b} 2 \times \mathrm{GII}_{\text {IN }}\right)+\left(\mathrm{b} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{b} 4 \\
& \text { Bout }=\left(\mathrm{c} 1 \times \mathrm{R}_{\text {IN }}\right)+\left(\mathrm{c} 2 \times \mathrm{G}_{\text {IN }}\right)+\left(\mathrm{c} 3 \times \mathrm{B}_{\text {IN }}\right)+\mathrm{c} 4
\end{aligned}
$$

0x1B—Bits[7:0] CSC_A2_LSB

See Register 0x1A.

0x1C—Bits[4:0] CSC_A3_MSB

The default value for the 13 -bit a3 is $0 x 0000$.

0x1D—Bits[7:0] CSC_A3_LSB

0x1E—Bits[4:0] CSC_A4_MSB
The default value for the 13 -bit a4 is $0 \times 1 \mathrm{C} 84$.

```
0x1F—Bits[7:0] CSC_A4_LSB
0x20—Bits[4:0] CSC_B1_MSB
```

The default value for the 13 -bit b1 is 0×1 CBF.

```
0x21—Bits[7:0] CSC_B1_LSB
0x22—Bits[4:0] CSC_B2_MSB
```

The default value for the 13 -bit b2 is $0 \times 04 \mathrm{~A} 8$.

```
0x23—Bits[7:0] CSC_B2_LSB
0x24—Bits[4:0] CSC_B3_MSB
```

The default value for the 13 -bit b3 is $0 \times 1 E 70$.

```
0x25-Bits[7:0] CSC_B3_LSB
0x26-Bits[4:0] CSC_B4_MSB
```

The default value for the 13 -bit b4 is $0 \times 021 \mathrm{E}$.

```
0x27-Bits[7:0] CSC_B4_LSB
0x28-Bits[4:0] CSC_C1_MSB
```

The default value for the 13 -bit c 1 is 0 x 0000 .

```
0x29-Bits[7:0] CSC_C1_LSB
0x2A-Bits[4:0] CSC_C2_MSB
```

The default value for the 13 -bit c2 is $0 x 04 \mathrm{~A} 8$.

0x2B—Bits[7:0] CSC_C2_LSB 0x2C—Bits[4:0] CSC_C3_MSB

The default value for the 13 -bit c3 is 0×0812.

```
0x2D—Bits[7:0] CSC_C3_LSB
0x2E—Bits[4:0] CSC_C4_MSB
```

The default value for the 13 -bit c 4 is 0×1 BAC.

```
0x2F—Bits[7:0] CSC_C4_LSB
```

The default value for the 13 -bit a2 coefficient is $0 \times 04 \mathrm{~A} 8$.

0x3C—Bits[5:0] ext_VID_to_Rx
Table 24.

| VID | Format | Vertical Refresh |
| :---: | :---: | :---: |
| 1 | 480p | $\sim 60 \mathrm{~Hz}{ }^{1}$ |
| 2 | 480p | $\sim 60 \mathrm{~Hz}$ |
| 3 | 480p | $\sim 60 \mathrm{~Hz}$ |
| 4 | 720p | $\sim 60 \mathrm{~Hz}$ |
| 5 | 1080i | $\sim 60 \mathrm{~Hz}$ |
| 6 | 480i | $\sim 60 \mathrm{~Hz}$ |
| 7 | 480i | $\sim 60 \mathrm{~Hz}$ |
| 8 | 240p | $\sim 60 \mathrm{~Hz}$ |
| 9 | 240p | $\sim 60 \mathrm{~Hz}$ |
| 10 | 480i | $\sim 60 \mathrm{~Hz}$ |
| 11 | 480i | $\sim 60 \mathrm{~Hz}$ |
| 12 | 240p | $\sim 60 \mathrm{~Hz}$ |
| 13 | 240p | $\sim 60 \mathrm{~Hz}$ |
| 14 | 480p | $\sim 60 \mathrm{~Hz}$ |
| 15 | 480p | $\sim 60 \mathrm{~Hz}$ |
| 16 | 1080p | $\sim 60 \mathrm{~Hz}$ |
| 17 | 576p | $\sim 50 \mathrm{~Hz}^{2}$ |
| 18 | 576p | $\sim 50 \mathrm{~Hz}$ |
| 19 | 720p | $\sim 50 \mathrm{~Hz}$ |
| 20 | 1080i | $\sim 50 \mathrm{~Hz}$ |
| 21 | 576i | $\sim 50 \mathrm{~Hz}$ |
| 22 | 576i | $\sim 50 \mathrm{~Hz}$ |
| 23 | 288p | $\sim 50 \mathrm{~Hz}$ |
| 24 | 288p | $\sim 50 \mathrm{~Hz}$ |
| 25 | 576i | $\sim 50 \mathrm{~Hz}$ |
| 26 | 576i | $\sim 50 \mathrm{~Hz}$ |
| 27 | 288p | $\sim 50 \mathrm{~Hz}$ |
| 28 | 288p | $\sim 50 \mathrm{~Hz}$ |
| 29 | 576p | $\sim 50 \mathrm{~Hz}$ |
| 30 | 576p | $\sim 50 \mathrm{~Hz}$ |
| 31 | 1080p | $\sim 50 \mathrm{~Hz}$ |
| 32 | 1080p | 24 Hz to 30 Hz |
| 33 | 1080p | 24 Hz to 30 Hz |
| 34 | 1080p | 24 Hz to 30 Hz |

${ }^{1} V_{\text {REF }}$ can range from 59.826 Hz to 60.115 Hz .
${ }^{2} V_{\text {REF }}$ Can range from 49.761 Hz to 50.080 Hz .

0x3D—Bits[7:6] pr_to_Rx

0x43—Bits[7:0] EDID Read Address
This is a programmable $I^{2} \mathrm{C}$ address from which the EDID information (1 to 256 segment) can be read. Default is 0x7E.

0x48—Bits[7:0] Active Line Start LSB

Combined with the MSB in Register 0x49, these bits indicate the beginning line of active video. All lines before this comprise a top horizontal bar. This is used in letter-box modes. If the 2 -byte value is 0×00, there is no horizontal bar.

0x49—Bits[7:0] Active Line Start MSB

See Register 0x48.

0x4A—Bits[7:0] Active Line End LSB

Combined with the MSB in Register 0x4B, the bits indicate the last line of active video. All lines past this comprise a lower horizontal bar. This is used in letter-box modes. If the 2-byte value is greater than the number of lines in the display, there is no lower horizontal bar.

0x4B—Bits[7:0] Active Line End MSB

See Register 0x4A.

0x4C—Bits[7:0] Active Pixel Start LSB

Combined with the MSB in Register 0x4D, these bits indicate the first pixel in the display that is active video. All pixels before this comprise a left vertical bar. If the 2 -byte value is 0×00, there is no left bar.

0x4D—Bits[7:0] Active Pixel Start MSB

See Register 0x4C.

0x4E—Bits[7:0] Active Pixel End LSB

Combined with the MSB in Register 0x4F, these bits indicate the last active video pixel in the display. All pixels past this comprise a right vertical bar. If the 2 -byte value is greater than the number of pixels in the display, there is no vertical bar.

0x4F—Bits[7:0] Active Pixel End MSB

See Register 0x4E.

Figure 9. Horizontal Bars

Figure 10. Vertical Bars

AD9389

| $\mathbf{0 x 5 0}$ —Bits[7:5] audio_IF_cc | Ox50—Bits[4] audi_IF_DM_INH |
| :--- | :--- |
| $000=$ refer to stream header | $\mathbf{0 x 5 0 — B i t s [3 : 0] ~ L e v e l ~ S h i f t ~}$ |
| $001=2$ channels | LSV[3:0] - Level Shift Values with attenuation information. |
| $010=3$ channels | $0000=0 \mathrm{~dB}$ attenuation |
| \ldots | $0001=1 \mathrm{~dB}$ attenuation |
| $111=8$ channels | \ldots |
| | $1111=15 \mathrm{~dB}$ attenuation |
| | Default $=0 \times 0$ |

0x51—Bits[7:0] Speaker Mapping

These bits define the suggested placement of speakers.
Table 25.

| CA | | | | | Channel Number | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 |
| 0 | 0 | 0 | 0 | 0 | | | | | - | - | FR | FL |
| 0 | 0 | 0 | 0 | 1 | | | | | - | LFE | FR | FL |
| 0 | 0 | 0 | 1 | 0 | | | | | FC | - | FR | FL |
| 0 | 0 | 0 | 1 | 1 | | | | | FC | LFE | FR | FL |
| 0 | 0 | 1 | 0 | 0 | | | | RC | - | - | FR | FL |
| 0 | 0 | 1 | 0 | 1 | | | | RC | - | LFE | FR | FL |
| 0 | 0 | 1 | 1 | 0 | | | | RC | FC | | FR | FL |
| 0 | 0 | 1 | 1 | 1 | | | | RC | FC | LFE | FR | FL |
| 0 | 1 | 0 | 0 | 0 | | | RR | RL | - | - | FR | FL |
| 0 | 1 | 0 | 0 | 1 | | | RR | RL | - | LFE | FR | FL |
| 0 | 1 | 0 | 1 | 0 | | | RR | RL | FC | - | FR | FL |
| 0 | 1 | 0 | 1 | 1 | - | - | RR | RL | FC | LFE | FR | FL |
| 0 | 1 | 1 | 0 | 0 | - | RC | RR | RL | - | - | FR | FL |
| 0 | 1 | 1 | 0 | 1 | - | RC | RR | RL | - | LFE | FR | FL |
| 0 | 1 | 1 | 1 | 0 | - | RC | RR | RL | FC | - | FR | FL |
| 0 | 1 | 1 | 1 | 1 | - | RC | RR | RL | FC | LFE | FR | FL |
| 1 | 0 | 0 | 0 | 0 | RRC | RLC | RR | RL | - | - | FR | FL |
| 1 | 0 | 0 | 0 | 1 | RRC | RLC | RR | RL | - | LFE | FR | FL |
| 1 | 0 | 0 | 1 | 0 | RRC | RLC | RR | RL | FC | - | FR | FL |
| 1 | 0 | 0 | 1 | 1 | RRC | RLC | RR | RL | FC | LFE | FR | FL |
| 1 | 0 | 1 | 0 | 0 | FRC | FLC | - | - | - | - | FR | FL |
| 1 | 0 | 1 | 0 | 1 | FRC | FLC | - | - | - | LFE | FR | FL |
| 1 | 0 | 1 | 1 | 0 | FRC | FLC | - | - | FC | - | FR | FL |
| 1 | 0 | 1 | 1 | 1 | FRC | FLC | - | - | FC | LFE | FR | FL |
| 1 | 1 | 0 | 0 | 0 | FRC | FLC | - | RC | - | - | FR | FL |
| 1 | 1 | 0 | 0 | 1 | FRC | FLC | - | RC | - | LFE | FR | FL |
| 1 | 1 | 0 | 1 | 0 | FRC | FLC | - | RC | FC | - | FR | FL |
| 1 | 1 | 0 | 1 | 1 | FRC | FLC | - | RC | FC | LFE | FR | FL |
| 1 | 1 | 1 | 0 | 0 | FRC | FLC | RR | RL | - | - | FR | FL |
| 1 | 1 | 1 | 0 | 1 | FRC | FLC | RR | RL | - | LFE | FR | FL |
| 1 | 1 | 1 | 1 | 0 | FRC | FLC | RR | RL | FC | - | FR | FL |
| 1 | 1 | 1 | 1 | 1 | FRC | FLC | RR | RL | FC | LFE | FR | FL |

SOURCE PRODUCT DESCRIPTION (SPD) INFOFRAME

0x52-Bits[7:0] SPD_B1

This is the first character in eight that is the name of the company that appears on the product. The data characters are 7-bit ASCII code.

$$
\begin{aligned}
& \text { Ox53-Bits[7:0] SPD_B } 2 \text { (VN2) } \\
& \text { Ox54—Bits[7:0] SPD_B 3(VN3) } \\
& \text { Ox55—Bits[7:0] SPD_B 4(VN4) } \\
& \text { Ox56—Bits[7:0] SPD_B 5(VN5) } \\
& \text { Ox57—Bits[7:0] SPD_B 6(VN6) } \\
& \text { Ox58—Bits[7:0] SPD_B 7(VN7) } \\
& \text { Ox59—Bits[7:0] SPD_B 8(VN8) } \\
& \text { 0x5A—Bits[7:0] SBD_B9 }
\end{aligned}
$$

Product Description Character 1 (PD1)

This is the first character of 16 that contains the model number and a short description of the product. The data characters are 7-bit ASCII code.

```
0x5B—Bits[7:0] SBD_B10(PD2)
0x5C—Bits[7:0] SBD_B11(PD3)
0x5D—Bits[7:0] SBD_B12(PD4)
0x5E—Bits[7:0] SBD_B13(PD5)
0x5F—Bits[7:0] SBD_B14(PD6)
0x60—Bits[7:0] SBD_B15(PD7)
0x61-Bits[7:0] SBD_B16(PD8)
0x62-Bits[7:0] SBD_B17(PD9)
0x63—Bits[7:0] SBD_B18(PD10)
0x64—Bits[7:0] SBD_B19(PD11)
0x65—Bits[7:0] SBD_B20(PD12)
0x66—Bits[7:0] SBD_B21(PD13)
0x67—Bits[7:0] SBD_B22(PD14)
0x68—Bits[7:0] SBD_B23(PD15)
0x69—Bits[7:0] SBD_B24(PD16)
```

0x6A—Bits[7:0] Source Device Information Code

These bytes classify the source device.
Table 26.

| SDI Code | Source |
| :--- | :--- |
| 0×00 | Unknown |
| 0×01 | Digital STB |
| 0×02 | DVD |
| 0×03 | D-VHS |
| 0×04 | HDD Video |
| 0×05 | DVC |
| 0×06 | DSC |
| 0×07 | Video CD |
| 0×08 | Game |
| 0×09 | PC general |
| 0×0 A to 0xFF | Reserved |

```
0x84—Bits[7:0] ISRC2_PBO
This is transmitted only when the ISRC continue bit (Register
0x73 Bit 7) is set to 1.
```

```
0x85—Bits[7:0] ISRC2_PB1
```

0x85—Bits[7:0] ISRC2_PB1
0x86—Bits[7:0] ISRC2_PB2
0x86—Bits[7:0] ISRC2_PB2
0x87-Bits[7:0] ISRC2_PB3
0x87-Bits[7:0] ISRC2_PB3
0x88—Bits[7:0] ISRC2_PB4
0x88—Bits[7:0] ISRC2_PB4
0x89—Bits[7:0] ISRC2_PB5
0x89—Bits[7:0] ISRC2_PB5
0x8A—Bits[7:0] ISRC2_PB6
0x8A—Bits[7:0] ISRC2_PB6
0x8B—Bits[7:0] ISRC2_PB7
0x8B—Bits[7:0] ISRC2_PB7
0x8C—Bits[7:0] ISRC2_PB8
0x8C—Bits[7:0] ISRC2_PB8
0x8D—Bits[7:0] ISRC2_PB9
0x8D—Bits[7:0] ISRC2_PB9
0x8E—Bits[7:0] ISRC2_PB10
0x8E—Bits[7:0] ISRC2_PB10
0x8F—Bits[7:0] ISRC2_PB11
0x8F—Bits[7:0] ISRC2_PB11
0x90—Bits[7:0] ISRC2_PB12
0x90—Bits[7:0] ISRC2_PB12
0x91-Bits[7:0] ISRC2_PB13
0x91-Bits[7:0] ISRC2_PB13
0x92-Bits[7:0] ISRC2_PB14
0x92-Bits[7:0] ISRC2_PB14
0x93—Bits[7:0] ISRC2_PB15
0x93—Bits[7:0] ISRC2_PB15
0x94-Bits[7:0] mask1
0x94-Bits[7:0] mask1
0x95-Bits[7:6] mask2
0x95-Bits[7:6] mask2
0x96—Bit[7] HPD_INT
0x96—Bit[7] HPD_INT
0x96—Bit[6] MSEN_INT
0x96—Bit[6] MSEN_INT
0x96-Bit[5] VS_INT
0x96-Bit[5] VS_INT
Ox96-Bit[4]AUD_FIFO_FULL_INT
Ox96-Bit[4]AUD_FIFO_FULL_INT
0x96-Bit[3]ITU656_ERR_INT
0x96-Bit[3]ITU656_ERR_INT
0x96-Bit[2] EDID_RDY_INT
0x96-Bit[2] EDID_RDY_INT
0x97—Bit[7] HDCP_ERR_INT
0x97—Bit[7] HDCP_ERR_INT
0x97-Bit[6] BKSV_flag
0x97-Bit[6] BKSV_flag
0x97-Bit[2]
0x97-Bit[2]
0x98-Bit[7]
0x98-Bit[7]
0x98-Bits[3:0]
0x98-Bits[3:0]
0x9C—Bits[7:0]
0x9C—Bits[7:0]
0x9D—Bits[3:0]
0x9D—Bits[3:0]
0xA2—Bits[7:0]
0xA2—Bits[7:0]
0xA3-Bits[7:0]
0xA3-Bits[7:0]
0xAF—Bit[7] HDCP_desired
0xAF—Bit[7] HDCP_desired
0xAF—Bit[4] frame_enc
0xAF—Bit[4] frame_enc
OxAF—Bit[1] ext_HDMI_MODE
OxAF—Bit[1] ext_HDMI_MODE
0xBO—Bits[7:0] An_0
0xBO—Bits[7:0] An_0
0xB1—Bits[7:0] An_1
0xB1—Bits[7:0] An_1
0xB2—Bits[7:0] An_2
0xB2—Bits[7:0] An_2
0xB3-Bits[7:0] An_3
0xB3-Bits[7:0] An_3
0xB4-Bits[7:0] An_4

```
0xB4-Bits[7:0] An_4
```

```
0xB5—Bits[7:0] An_5
0xB6—Bits[7:0] An_6
0xB7—Bits[7:0] An_7
OxB7-Bit[6] ENC_on
OxB7—Bit[5] int_HDMI_MODE
0xB7-Bit[4] keys_read_error
0xBA—Bits[7:5] clk_delay
0xBA—Bit[4] clk_delay
OxBE-Bit[7] BCAPS
OxBE-Bit[6]
OxBE-Bit[5]
OxBE-Bit[4]
OxBE—Bits[3:2]
OxBE-Bit[1]
OxBE—Bit[0]
0xBF—Bits[7:0] Bksv1
OxC0—Bits[7:0] Bksv Byte2
0xC1—Bits[7:0] Bksv3
0xC2—Bits[7:0] Bksv4
0xC3—Bits[7:0] Bksv5
0xC4-Bits[7:0] EDID Segment
```

These bits support up to 256 EDID segments that can be addressed. The requested segment address is written here before initiation of the read.
0xC5—Bit[7] ErrorFlag
0xC5—Bit[6] AN Stop
0xC5—Bit[5] HDCP Enabled
0xC5—Bit[4] EDID Ready
0xC5—Bit[3] IC
0xC5—Bit[2] RI
0xC5—Bit[1] BKSV Update
0xC5—Bit[0] PJ
0xC6—Bit[4] HDMI Mode
0xC6—Bit[3] HDCP Requested
0xC6—Bit[2] Rx Sense
0xC6—Bit[1] EEPROM Read
0xC7—Bit[7] BKSV Flag
0xC7—Bits[6:0] BKSV Count
0xC5—Bit[7] ErrorFlag
OxC5—Bit[6] AN Stop
0xC5—Bit[5] HDCP Enabled
0xC5—Bit[4] EDID Ready
OxC5—Bit[3] $I^{2} C$
OxC5—Bit[2] RI
OxC5—Bit[1] BKSV Update
OxC5—Bit[0] PJ
OxC6—Bit[4] HDMI Mode
0xC6—Bit[3] HDCP Requested
OxC6—Bit[2] Rx Sense
OxC6—Bit[1] EEPROM Read
0xC7—Bit[7] BKSV Flag
0xC7—Bits[6:0] BKSV Count

0xC8—Bits[7:4] HDCP Controller Error

When an error occurs in the HDCP flow, it is reported here after setting the error flag ($0 \mathrm{xC5}[7]$).

Table 28.

| Error Code | Error Condition |
| :--- | :--- |
| 0000 | No error |
| 0001 | Bad receiver BKSV |
| 0010 | Ri mismatch |
| 0011 | Pj mismatch |
| 0100 | I2 C error (usually a no acknowledge) |
| 0101 | Timed out waiting for downstream repeater |
| 0110 | Maximum cascade of repeaters exceeded |
| 0111 | SHA-1 hash check of BKSV list failed |
| 1000 | Too many devices connected to repeater tree |

0xC8—Bits[3:0] HDCP Controller State

This information is used in troubleshooting the HDCP controller.

OxC9—Bits[3:0] EDID Read Tries

These bits define the number of times the EDID attempts to be read if unsuccessful.

2-WIRE SERIAL CONTROL PORT

A 2-wire serial interface is provided. Up to two AD9389 devices can be connected to the 2 -wire serial interface, with each device having a unique address.

The 2-wire serial interface comprises a clock (SCL) and a bidirectional data (SDA) pin. The analog flat panel interface acts as a slave for receiving and transmitting data over the serial interface. When the serial interface is not active, the logic levels on SCL and SDA are pulled high by external pull-up resistors.

Data received or transmitted on the SDA line must be stable for the duration of the positive going SCL pulse. Data on SDA must change only when SCL is low. If SDA changes state while SCL is high, the serial interface interprets that action as a start or stop sequence.

There are five components to serial bus operation:

- Start signal
- Slave address byte
- Base register address byte
- Data byte to read or write
- Stop signal

When the serial interface is inactive (SCL and SDA are high), communications are initiated by sending a start signal. The start signal is a high-to-low transition on SDA while SCL is high. This signal alerts all slave devices that a data transfer sequence is coming.

The first 8 bits of data transferred after a start signal comprise a 7 -bit slave address (the first 7 bits) and a single R/W bit (the eighth bit). The R/ $\overline{\mathrm{W}}$ bit indicates the direction of data transfer, read from (1) or write to (0) the slave device. If the transmitted slave address matches the address of the device, the AD9389 acknowledges by bringing SDA low on the ninth SCL pulse. If the addresses do not match, the AD9389 does not acknowledge.
Table 29. Serial Port Addresses

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{A}_{6}(\mathrm{MSB})$ | A_{5} | $\mathrm{~A}_{4}$ | $\mathrm{~A}_{3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{0}$ |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 |

DATA TRANSFER VIA SERIAL INTERFACE

For each byte of data read from or written to, the MSB is the first bit of the sequence.

If the AD9389 does not acknowledge the master device during a write sequence, the SDA remains high so the master can generate a stop signal. If the master device does not acknowledge the AD9389 during a read sequence, the AD9389 interprets this as the end of data. The SDA remains high so the master can generate a stop signal.

Writing data to specific control registers of the AD9389 requires that the 8 -bit address of the control register of interest be written to after the slave address has been established. This control register address is the base address for subsequent write operations. The base address auto-increments by one for each byte of data written after the data byte intended for the base address.

Data is read from the control registers of the AD9389 in a similar manner. Reading requires two data transfer operations:

- The base address must be written with the $\mathrm{R} / \overline{\mathrm{W}}$ bit of the slave address byte low to set up a sequential read operation.
- Reading (the $\mathrm{R} / \overline{\mathrm{W}}$ bit of the slave address byte high) begins at the previously established base address. The address of the read register auto-increments after each byte is transferred.

To terminate a read/write sequence to the AD9389, a stop signal must be sent. A stop signal comprises a low-to-high transition of SDA while SCL is high.

A repeated start signal occurs when the master device driving the serial interface generates a start signal without first generating a stop signal to terminate the current communication. This is used to change the mode of communication (read/write) between the slave and master without releasing the serial interface lines.

Figure 11. Serial Port Read/Write Timing

SERIAL INTERFACE READ/WRITE EXAMPLES

Write to one control register:

- Start signal
- Slave address byte $(\mathrm{R} / \overline{\mathrm{W}}$ bit $=$ low $)$
- Base address byte
- Data byte to base address
- Stop signal
- Write to four consecutive control registers
- Start signal
- Slave address byte $(\mathrm{R} / \overline{\mathrm{W}}$ bit = low)
- Base address byte
- Data byte to base address
- Data byte to (base address +1)
- Data byte to (base address +2)
- Data byte to (base address +3)
- Stop signal

Read from one control register:

- Start signal
- \quad Slave address byte $(\mathrm{R} / \overline{\mathrm{W}}$ bit $=$ low $)$
- Base address byte
- Start signal
- \quad Slave address byte $(\mathrm{R} / \overline{\mathrm{W}}$ bit $=$ high $)$
- Data byte from base address
- Stop signal

Read from four consecutive control registers:

- Start signal
- \quad Slave address byte $(\mathrm{R} / \overline{\mathrm{W}}$ bit $=$ low $)$
- Base address byte
- Start signal
- \quad Slave address byte $(\mathrm{R} / \overline{\mathrm{W}}$ bit = high $)$
- Data byte from base address
- Data byte from (base address +1)
- Data byte from (base address +2)
- Data byte from (base address +3)
- Stop signal

| SDA | |
| :---: | :---: |
| SCL | Figure 12. Serial Interface-Typical Byte Transfer |

PCB LAYOUT RECOMMENDATIONS

The AD9389 is a high precision, high speed analog device. As such, to get the maximum performance out of the part, it is important to have a well laid out board. The following is a guide for designing a board using the AD9389.

POWER SUPPLY BYPASSING

It is recommended to bypass each power supply pin with a $0.1 \mu \mathrm{~F}$ capacitor. The exception is when two or more supply pins are adjacent to each other. For these groupings of powers/grounds, it is necessary to have only one bypass capacitor. The fundamental idea is to have a bypass capacitor within about 0.5 cm of each power pin. Also, avoid placing the capacitor on the opposite side of the PC board from the AD9389, as that interposes resistive vias in the path.

The bypass capacitors should be physically located between the power plane and the power pin. Current should flow from the power plane to the capacitor to the power pin. Do not make the power connection between the capacitor and the power pin. Placing a via underneath the capacitor pads, down to the power plane, is generally the best approach.

It is particularly important to maintain low noise and good stability of $\mathrm{PV} \mathrm{VD}_{\mathrm{DD}}$ (the clock generator supply). Abrupt changes in $\mathrm{PV}_{\mathrm{DD}}$ can result in similarly abrupt changes in sampling clock phase and frequency. This can be avoided by careful attention to regulation, filtering, and bypassing. It is highly desirable to provide separate regulated supplies for each of the analog circuitry groups ($V_{D D}$ and $P V_{D D}$).

Some graphic controllers use substantially different levels of power when active (during active picture time) and when idle (during horizontal and vertical sync periods). This can result in a measurable change in the voltage supplied to the analog supply regulator, which can in turn produce changes in the regulated analog supply voltage. This can be mitigated by regulating the analog supply, or at least $\mathrm{PV}_{\mathrm{DD}}$, from a different, cleaner power source (for example, from a 12 V supply).

It is also recommended to use a single ground plane for the entire board. Experience has shown repeatedly that the noise performance is the same or better with a single ground plane. Using multiple ground planes can be detrimental because each separate ground plane is smaller, and long ground loops can result.

In some cases, using separate ground planes is unavoidable, therefore, it is recommended to place a single ground plane under the AD9389. The location of the split should be at the receiver of the digital outputs. For this case, it is even more important to place components wisely because the current loops are much longer (current takes the path of least resistance).

DIGITAL INPUTS

The digital inputs on the AD9389 are designed to work with 1.8 V signals, but are tolerant of 3.3 V signals. Therefore, no extra components need to be added if using 3.3 V logic.

Any noise that gets onto the HSYNC, VSYNC, or clock input traces can add jitter to the system. Therefore, minimize the trace lengths and do not run any digital or other high frequency traces near them. All TMDS lines must maintain a 50Ω impedance trace and it is recommended that the trace lengths be as short as possible. To request a sample layout, send email to flatpanel_apps@analog.com.

COLOR SPACE CONVERTER (CSC) COMMON SETTINGS

Table 30. HDTV YCbCr (0 to 255) to RGB (0 to 255) (Default Setting for AD9389)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0x0C | 0x52 | 0x08 | 0x00 | 0x00 | 0x00 | 0x19 | 0xD7 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0x22 | 0x23 | 0×24 | 0x25 | 0x26 | 0x27 |
| Value | 0x1C | 0x54 | 0×08 | 0x00 | 0x3E | 0x89 | 0x02 | 0x91 |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x00 | 0x00 | 0×08 | 0x00 | 0x0E | 0x87 | 0x18 | 0xBD |

Table 31. HDTV YCbCr (16 to 235) to RGB (0 to 255)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0x47 | 0x2C | 0×04 | 0xA8 | 0x00 | 0x00 | 0x1C | 0x1F |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0×20 | 0x21 | 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0x1D | 0xDD | 0x04 | 0xA8 | 0x1F | 0x26 | 0x01 | 0x34 |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x00 | 0x00 | 0×04 | 0xA8 | 0x08 | 0x 75 | 0x1B | 0x7B |

Table 32. SDTV YCbCr (0 to 255) to RGB (0 to 255)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0x2A | 0xF8 | 0x08 | 0x00 | 0x00 | 0x00 | 0x1A | 0x84 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0x1A | 0x6A | 0x08 | 0x00 | 0x1D | 0x50 | 0x04 | 0x23 |
| Register | Blue/Cb Coeff. 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x00 | 0x00 | 0×08 | 0x00 | 0x0D | 0xDB | 0x19 | 0x12 |

Table 33. SDTV YCbCr (16 to 235) to RGB (0 to 255)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0x46 | 0x63 | 0x04 | 0xA8 | 0x00 | 0x00 | 0x1C | 0x84 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0×22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0x1C | 0xC0 | 0x04 | 0xA8 | 0x1E | 0x6F | 0×02 | 0x1E |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x00 | 0x00 | 0x04 | 0xA8 | 0×08 | 0x11 | 0x1B | 0xAD |

AD9389

Table 34. RGB (0 to 255) to HDTV YCbCr (0 to 255)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | $0 \times 1 \mathrm{~A}$ | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0×08 | 0x2D | 0x18 | 0x93 | 0x1F | 0x3F | 0x08 | 0x00 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0×03 | 0x68 | 0x0B | 0x71 | 0x01 | 0x27 | 0×00 | 0x00 |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x1E | 0x21 | 0x19 | 0xB2 | 0x08 | 0x2D | 0×08 | 0x00 |

Table 35. RGB (0 to 255) to HDTV YCbCr (16 to 235)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0×07 | 0x06 | 0x19 | 0xA0 | 0x1F | 0x5B | 0x08 | 0x00 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0×02 | 0xED | 0x09 | 0xD3 | 0x00 | 0xFD | 0x01 | 0x00 |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x1E | 0x64 | $0 \times 1 \mathrm{~A}$ | 0x96 | 0x07 | 0×06 | 0×08 | 0x00 |

Table 36. RGB (0 to 255) to SDTV YCbCr (0 to 255)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0x08 | 0x2D | 0x19 | 0x27 | 0x1E | 0xAC | 0x08 | 0x00 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0x04 | 0xC9 | 0×09 | 0x64 | 0×01 | 0xD3 | 0x00 | 0x00 |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x1D | 0x3F | 0x1A | 0×93 | 0x08 | 0x2D | 0x08 | 0x00 |

Table 37. RGB (0 to 255) to SDTV YCbCr (16 to 235)

| Register | Red/Cr Coeff 1 | | Red/Cr Coeff 2 | | Red/Cr Coeff 3 | | Red/Cr Offset | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F |
| Value | 0×07 | 0x06 | 0x1A | 0x1E | 0x1E | 0xDC | 0x08 | 0x00 |
| Register | Green/Y Coeff 1 | | Green/Y Coeff 2 | | Green/Y Coeff 3 | | Green/Y Offset | |
| Address | 0x20 | 0x21 | 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 |
| Value | 0x04 | 0x1C | 0×08 | 0x11 | 0×01 | 0x91 | 0x01 | 0x00 |
| Register | Blue/Cb Coeff 1 | | Blue/Cb Coeff 2 | | Blue/Cb Coeff 3 | | Blue/Cb Offset | |
| Address | 0x28 | 0x29 | 0x2A | 0x2B | 0x2C | 0x2D | 0x2E | 0x2F |
| Value | 0x1D | 0xA3 | 0x1B | 0x57 | 0×07 | 0x06 | 0x08 | 0x00 |

OUTLINE DIMENSIONS

Figure 13. 80-Lead Low Profile Quad Flat Package [LQFP]
(ST-80-2)
Dimensions shown in millimeters

ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| AD9389KSTZ-80 | | | |
| AD9389/PCB | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $80-$ Lead Low Profile Quad Flat Package (LQFP)
 Evaluation Board | ST-80-2 |

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

AD9389

Notes

NOTES

AD9389

NOTES

Purchase of licensed $I^{2} C$ components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips.

[^0]: 1/06-Revision 0: Initial Version

[^1]: ${ }^{1}$ See Table 3.

[^2]: ${ }^{1}$ Denotes change from EIA/CEA-861B valid values. Pixel repetition is required to support some audio formats at 720×480 p and $720 \times 576 p$ video format timings.

