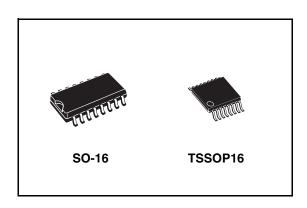


STPIC6C595

Power logic 8-bit shift register


Features

- Low R_{DS(on)}: 4 Ω typ
- 30 mJ avalanche energy
- Eight 100 mA DMOS outputs
- 250 mA current limit capability
- 33 V output clamp voltage
- Device are cascadable
- Low power consumption

This STPIC6C595 is a monolithic, medium-voltage, low current power 8-bit shift register designed for use in systems that require relatively moderate load power such as LEDs. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other low-current or medium-voltage loads.

The device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage register clock (SRCK) and the register clock (RCK), respectively. The device transfers data out the serial output (SER OUT) port on the rising edge of SRCK. The storage register transfers data to the output buffer when shift register clear (CLR) is high. When CLR is low, the input shift register is cleared. When output enable (G) is held high, all data in the output buffer is held low and all drain output are off. When G is held low, data from the storage register is transparent to the output buffer.

When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability. The SER OUT allows for cascading of the data from the shift register to additional devices.

Output are low-side, open-drain DMOS transistors with output ratings of 33 V and 100 mA continuous sink-current capability. Each output provides a 250 mA maximum current limit at $T_C = 25\,^{\circ}\text{C}$. The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 1.5KV of ESD protection when tested using the human-body model and 150 V machine model.

The STPIC6C595 is characterized for operation over the operating case temperature range of -40 °C to 125 °C.

Table 1. Device summary

Order codes	Package	Packaging
STPIC6C595MTR	SO-16 (Tape and reel)	2500 parts per reel
STPIC6C595TTR	TSSOP16 (Tape and reel)	2500 parts per reel

May 2008 Rev 4 1/22

Contents STPIC6C595

Contents

1	Logi	ic symbol and pin configuration	. 3
2	Max	imum rating	. 4
	2.1	Absolute maximum ratings	
	2.2	Thermal data	. 5
	2.3	Recommended operating conditions	. 5
3	Elec	trical characteristics	. 6
	3.1	DC characteristics	. 6
	3.2	Switching characteristics	. 7
4	Logi	ic diagram	. 8
5	Турі	cal operating circuit	. 9
6	Турі	cal performance and characteristics	13
7	Pack	kage mechanical data	16
R	Revi	ision history	21

1 Logic symbol and pin configuration

Figure 1. Logic symbol and pin configuration

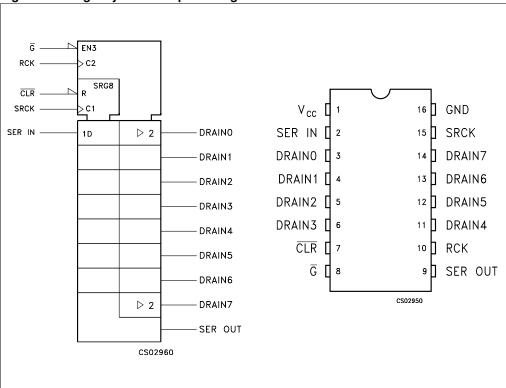
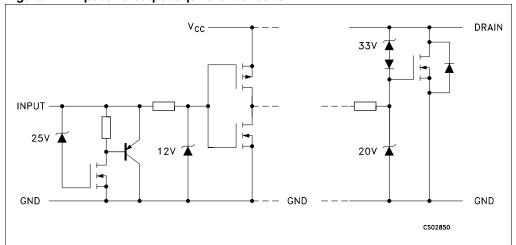



Figure 2. Input and output equivalent circuits

Maximum rating STPIC6C595

2 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE program and other relevant quality documents.

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Logic supply voltage (See Note 1)	7	V
V _I	Logic input voltage range	-0.3 to 7	V
V _{DS}	Power DMOS drain to source voltage (See Note 2)	33	٧
I _{DS}	Continuous source to drain diode anode current	250	mA
I _{DS}	Pulsed source to drain diode anode current (See <i>Note 3</i>)	500	mA
I _D	Pulsed drain current, each output, all output ON $(T_C = 25 ^{\circ}C)$	250	mA
I _D	Continuous current, each output, all output ON (T _C = 25 °C)	100	mA
I _D	Peak drain current single output (T _C = 25 °C) (See <i>Note 3</i>)	250	mA
E _{AS}	Single pulse avalanche energy (See Figure 11 and Figure 12)	30	mJ
I _{AS}	Avalanche current (See Note 4 and Figure 17)	200	mA
P _d	Continuous total dissipation (T _C \leq 25 °C)	1087	mW
P _d	Continuous total dissipation (T _C = 125 °C)	217	mW
TJ	Operating virtual junction temperature range	-40 to +150	°C
T _C	Operating case temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-65 to +150	°C
TL	Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260	°C

STPIC6C595 Maximum rating

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th(JA)}	Thermal resistance junction-ambient	115	°C/W

2.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Logic supply voltage	4.5		5.5	V
V _{IH}	High level input voltage	0.85V _{CC}		V _{CC}	٧
V _{IL}	Low level input voltage	0		0.15V _{CC}	٧
I _{DP}	Pulse drain output current (T _C = 25 °C, V _{CC} = 5 V, all outputs ON) (see <i>Note 3, Note 5</i> and <i>Figure 15</i>)			250	mA
t _{su}	Set-up time, SER IN high before SRCK ↑ (see Figure 4 and Figure 8)	1.6	3.0	5.7	ns
t _{hL}	Hold time, SER IN high before $\overline{G} \uparrow$ (see <i>Figure 4</i> , <i>Figure 7</i> , <i>Figure 8</i>)	2.8	4.0	9.6	ns
t _W	Pulse duration (see Figure 8)	40			ns
T _C	Operating case temperature	-40		125	°C

Electrical characteristics STPIC6C595

3 Electrical characteristics

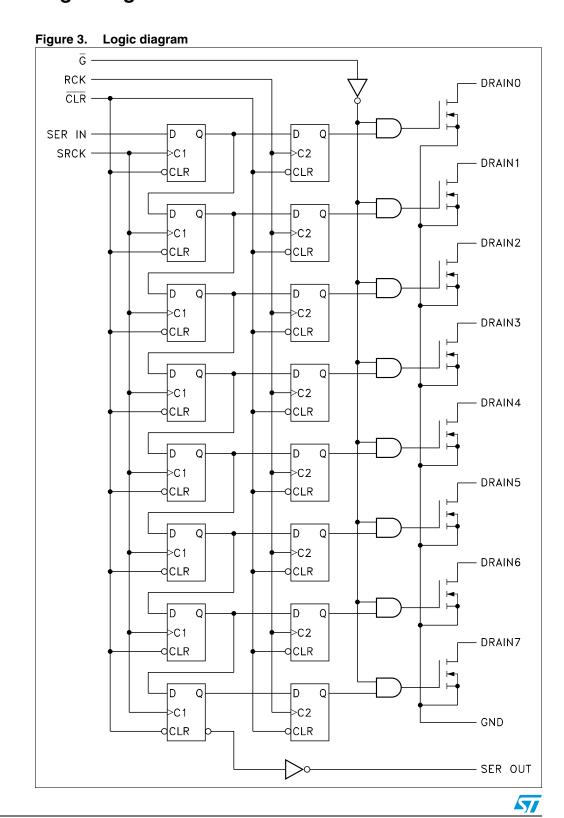
3.1 DC characteristics

Table 5. DC characteristics ($V_{CC} = 5 \text{ V}, T_{C} = 25 ^{\circ}\text{C}$, unless otherwise specified.)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{(BR)DSX}	Drain-to-source breakdown voltage	I _D = 1 mA	33	37		V
V _{SD}	Source-to-drain diode forward voltage	I _F = 100 mA		0.85	1.2	V
V _{OH}	High level output	$I_{OH} = -20 \mu A, V_{CC} = 4.5 V$	4.4	4.49		V
VOH	voltage SER OUT	$I_{OH} = -4 \text{ mA}, V_{CC} = 4.5 \text{ V}$	4	4.2		V
V _{OL}	Low level output	$I_{OH} = 20 \mu A, V_{CC} = 4.5 V$		0.005	0.1	V
VOL	voltage SER OUT	I _{OH} = 4 mA, V _{CC} = 4.5 V		0.3	0.5	V
I _{IH}	High level input current	$V_{CC} = 5.5 \text{ V}, V_I = V_{CC}$			1	μА
I _{IL}	Low level input current	$V_{CC} = 5.5 \text{ V}, V_{I} = 0$			-1	μА
I _{CC}	Logic supply current	$V_{CC} = 5.5 \text{ V}$,all outputs OFF or ON		20	200	μА
I _{CC(FRQ)}	Logic supply current at frequency	f _{SRCK} = 5 MHz, C _L = 30 pF All outputs OFF (See <i>Figure 6</i> , <i>Figure 18</i> and <i>Figure 19</i>)		0.2	2	mA
I _N	Nominal current	al current $V_{DS(on)} = 0.5 \text{ VI}_{N} = I_{D}$ $T_{C} = 85 \text{ °C}$ (See <i>Note 5, Note 6, Note 7</i>)		90		mA
		$V_{DS} = 30 \text{ V}, V_{CC} = 5.5 \text{ V}$		0.3	5	μА
I _{DSX}	Off-state drain current	V _{DS} = 30 V, V _{CC} =5.5 V or 0 V T _C = 125 °C		0.6	8	μА
	Static drain source on	$I_D = 50 \text{ mA}, V_{CC} = 4.5 \text{ V}$		4.5	6	W
R _{DS(on)}	state resistance (See <i>Note 5</i> , <i>Note 6</i> and <i>Figure 14</i> ,	$I_D = 50 \text{ mA}, V_{CC} = 4.5 \text{ V}$ $T_C = 125 \text{ °C}$		6.5	9	W
	Figure 16)	I _D = 100 mA, V _{CC} = 4.5 V		4.5	6	W

3.2 Switching characteristics

Table 6. Switching characteristics ($V_{CC} = 5 \text{ V}$, $T_{C} = 25 ^{\circ}\text{C}$, unless otherwise specified.)


Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PHL}	Propagation delay time, high to low level output from G			80		ns
t _{PLH}	Propagation delay time, low to high level output from G	$C_L = 30 \text{ pF}, I_D = 75 \text{ mA}$ (See Figure 4, Figure 5,		130		ns
t _r	Rise time, drain output	Figure 6, Figure 7, Figure 20)		60		ns
t _f	Fall time, drain output			50		ns
t _{pd}	propagation delay time			20		ns
t _a	Reverse recovery current rise time	I _F = 100 mA, di/dt = 10 A/μs (See <i>Figure 5</i> , <i>Figure 6</i> , and		39		ns
t _{rr}	Reverse recovery time	Figure 9, Figure 10)		115		ns

Note: 1 All voltage value are with respect to GND

- 2 Each power DMOS source is internally connected to GND
- 3 Pulse duration \leq 100 μ s and duty cycle \leq 2 %
- 4 Drain supply voltage = 15 V, starting junction temperature (T_{JS}) = 25 °C. L = 1.5 H and I_{AS} = 200 mA (see Fig. 11 and 12)
- 5 Technique should limit T_J T_C to 10 °C maximum
- 6 These parameters are measured with voltage sensing contacts separate from the currentcarrying contacts.
- Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at $T_C = 85$ °C.

Logic diagram STPIC6C595

4 Logic diagram

5 Typical operating circuit

Figure 4. Typical operation mode test circuits

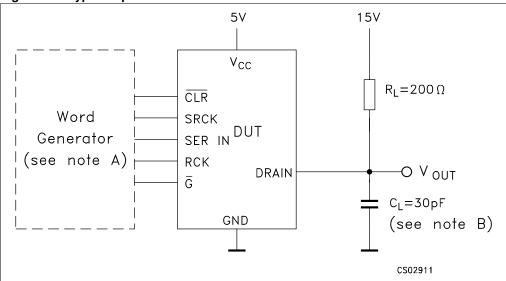
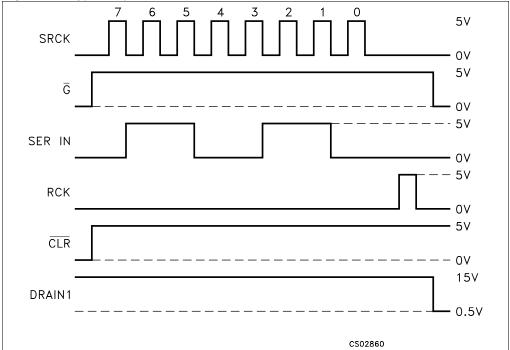



Figure 5. Typical operation mode waveforms

Note: 1 A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulse repetition rate (PRR) = 5 kHz, $Z_O = 50 \Omega$

2 B) C_1 includes probe and jig capacitance.

5٧ 15V v_{cc} $R_L = 200 \Omega$ $\overline{\mathsf{CLR}}$ Word SRCK SER IN DUT Generator (see note A) RCK O V out DRAIN G $C_L = 30pF$ GND (see note B) CS02911

Figure 6. Typical operation mode test circuits

Figure 7. Switching time waveform

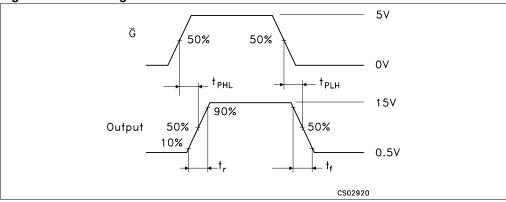
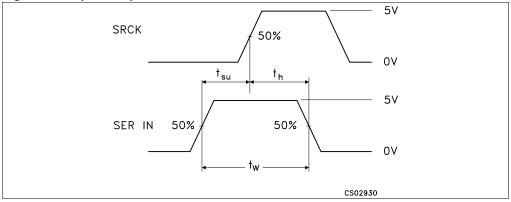



Figure 8. Input setup and hold waveform

Note: 1 A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulse repetition rate (PRR) = 5 kHz, $Z_O = 50 \Omega$

2 B) C_L includes probe and jig capacitance.

577

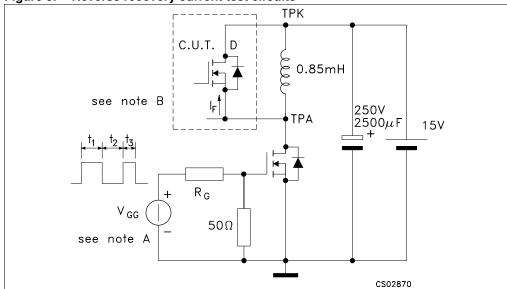
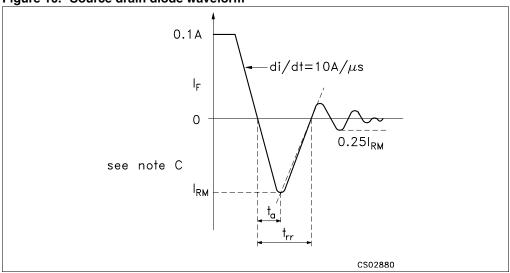



Figure 9. Reverse recovery current test circuits

Figure 10. Source drain diode waveform

- Note:
- 1 A) The V_{GG} amplitude and R_G are adjusted for di/dt = 10 A/ μ s. A V_{GG} double-pulse train is used to set I_F = 0.1 A. where t_1 = 10 μ s, t_2 = 7 μ s and t_3 = 3 μ s
- 2 B) The drain terminal under test is connected to the TPK test point. All other terminals are connected together and connected to the TPA test point.
- 3 C) I_{RM} = maximum recovery current.

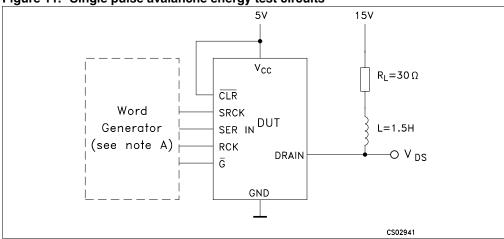
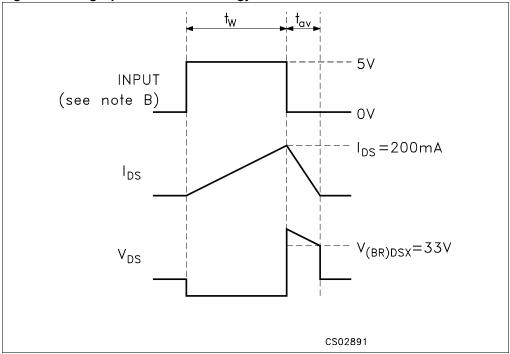



Figure 11. Single pulse avalanche energy test circuits

Note: 1 A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $Z_O = 50 \Omega$

B) Input pulse duration, t_W is increased until peak current $I_{AS} = 200$ mA. Energy test level is defined as $E_{AS} = (I_{AS} \times V_{(BR)DSX} \times t_{AV})/2 = 30$ mJ.

6 Typical performance and characteristics

(unless otherwise specified T_J = 25 °C)

Figure 13. Max continuous drain current Figure 14. Static drain-source on-state vs number of outputs resistance vs drain current conducting simultaneously

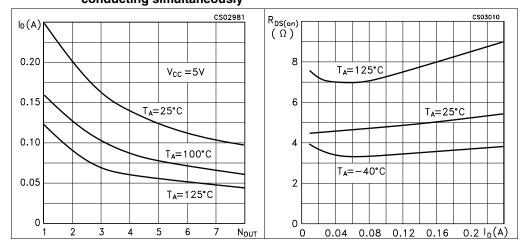


Figure 15. Maximum peak drain current vs number of outputs conducting simultaneously

Figure 16. Static drain-source on-state resistance vs logic supply voltage

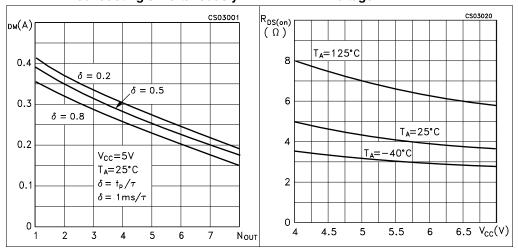
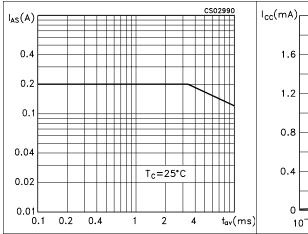



Figure 17. Peak avalanche current vs time duration of avalanche

Figure 18. Supply current vs frequency

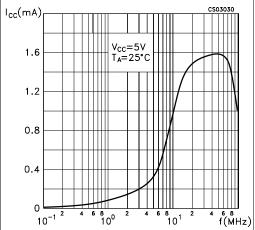
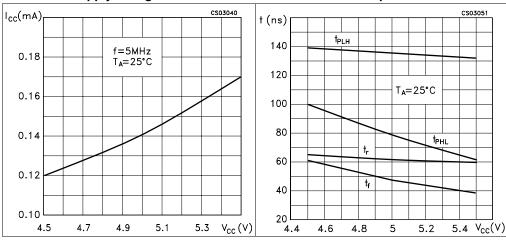



Figure 19. Supply current vs supply voltage

Figure 20. Switching time vs case temperature

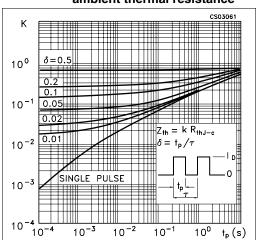
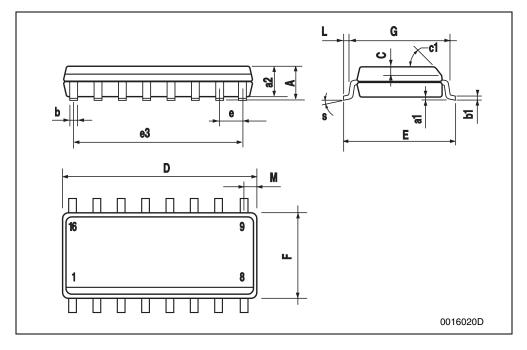
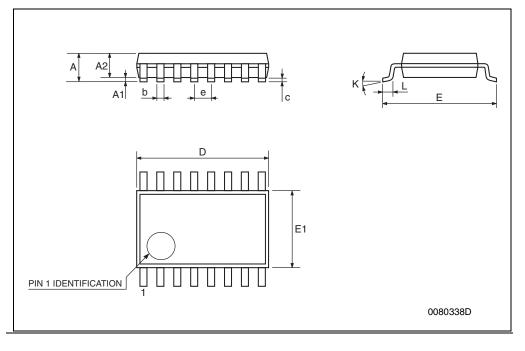


Figure 21. Normalized junction to ambient thermal resistance

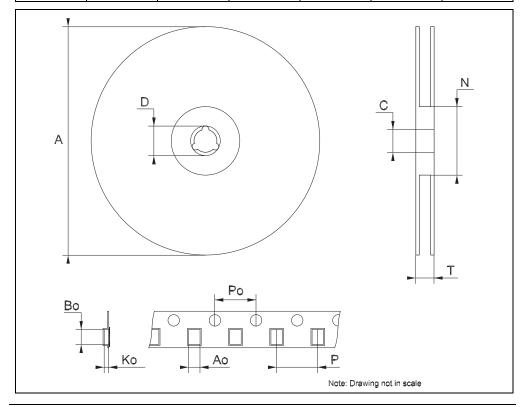

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

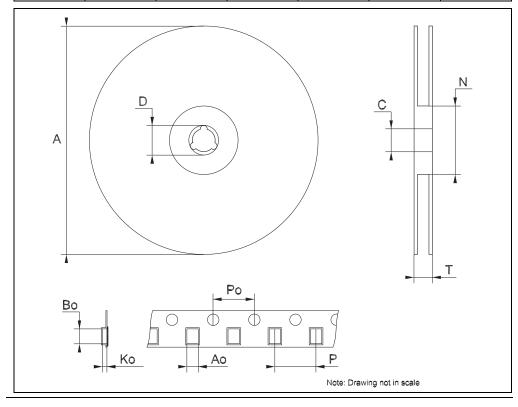
477


SO-16 MECHANICAL DATA

D.114		mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S		•	8° (ı	max.)		1


TSSOP16 MECHANICAL DATA

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0079
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030


Tape & Reel SO-16 MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.45		6.65	0.254		0.262	
Во	10.3		10.5	0.406		0.414	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Tape & Reel TSSOP16 MECHANICAL DATA

DIM.	mm.				inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ko	1.6		1.8	0.063		0.071
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

STPIC6C595 Revision history

8 Revision history

Table 7. Document revision history

Date	Revision	Changes		
07-Jul-2004	2	Update Figure 3		
07-May-2007	May-2007 3 Document reformatted, tube package deleted			
21-May-2008	4	Update: tsu and ThL values in Table 4, ESD value on cover page		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477