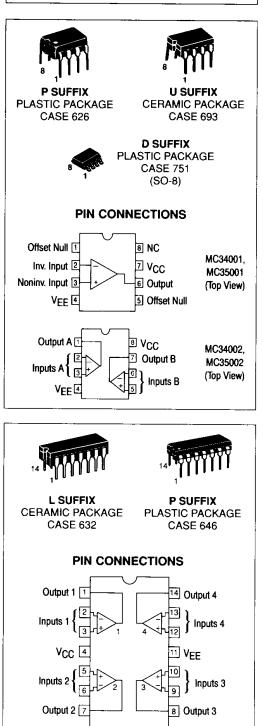
MOTOROLA SEMICONDUCTORI TECHNICAL DATA

JFET Input Operational Amplifiers

These low cost JFET Input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC35001/35002/35004 series are specified over the military operating temperature range of -55° to $+125^{\circ}$ C and the MC34001/34002/34004 series are specified from 0° to $+70^{\circ}$ C.


- Input Offset Voltage Options of 5.0 mV and 10 mV Maximum
- Low Input Bias Current: 40 pA
- Low Input Offset Current: 10 pA
- Wide Gain Bandwidth: 4.0 MHz
- High Slew Rate: 13 V/μs
- Low Supply Current: 1.4 mA per Amplifier
- High Input Impedance: $10^{12} \Omega$
- High Common Mode and Supply Voltage Rejection Ratios: 100 dB
- Industry Standard Pinouts

ORDERING INFORMATION

Op Amp Function	Device	Temperature Range	Package		
	MC34001BD, D		SO-8		
Single	MC34001BP, P	0° to+ 70°C	Plastic DIP		
	MC34001BU, U		Ceramic DIP		
	MC34002BD, D	0° to +70°C	SO-8		
Dual	MC34002BP, P		Plastic DIP		
	MC35002BU, U	-55° to +125°C	SO-8 Plastic DIP Ceramic DIP SO-8 Plastic DIP Ceramic DIP Ceramic DIP Plastic DIP		
	MC34004BL, L	0° to +70°C	Ceramic DIP		
Quad	MC34004BP, P		Plastic DIP		
	MC35004BL, L	-55° to +125°C	Ceramic DIP		

MC34001, MC35001 MC34002, MC35002 MC34004, MC35004

JFET INPUT OPERATIONAL AMPLIFIERS

MC34004, MC35004 (Top View)

MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

MAXIMUM RATINGS

Rating	Symbol	MC35001 MC35002 MC35004	MC34001 MC34002 MC34004	Unit V	
Supply Voltage	V _{CC} , V _{EE}	<u>+22</u>	±18		
Differential Input Voltage (Note 1)	VID	±40	±30	v	
Input Voltage Range	VIDR	±20	±16	v	
Open Short Circuit Duration	tsc	Conti	-		
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C	
Operating Junction Temperature Ceramic Package Plastic Package	Тј	150 —	150 150	°C	
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150	-65 to +150 -55 to +125	°C	

NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C, unless otherwise noted.)

		MC35001/35002/35004			MC34001/34002/34004			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k) MC3500XB, MC3400XB MC3500X, MC3400X	VIO	-	3.0 5.0	5.0 10	_	3.0 5.0	5.0 10	mV
Average Temperature Coefficient of Input Offset Voltage $R_S \le 10 \text{ k}, T_A = T_{low}$ to T_{high} (Note 2)	Δνιο/Δτ		10		—	10	—	μV/°C
Input Offset Current (V _{CM} = 0) (Note 3) MC3500XB, MC3400XB MC3500X, MC3400X	liO		10 25	50 100	_	25 25	100 100	рА
Input Bias Current (V _{CM} = 0) (Note 3) MC3500XB, MC3400XB MC3500X, MC3400X	lIB	_	40 50	100 200		50 50	200 200	рА
Input Resistance	ri	—	10 ¹²	_		10 ¹²	-	Ω
Common Mode Input Voltage Range	VICR	±11 —	+15 -12	_	±11 —	+15 -12	_	V
Large Signal Voltage Gain (V _O = ±10 V, R _L = 2.0 k) MC3500XB, MC3400XB MC3500X, MC3400X	Avol	50 25	150 100	_	50 25	150 100	_	V/mV
Output Voltage Swing $(R_L \ge 10 \text{ k})$ $(R_L \ge 2.0 \text{ k})$	Vo	±12 ±10	±14 ±13	_	±12 ±10	±14 ±13	_	V
Common Mode Rejection Ratio (R _S ≤ 10 k) MC3500XB, MC3400XB MC3500X, MC3400X	CMRR	80 —	100	=	80 70	100 100	_	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k) (Note 4) MC3500XB, MC3400XB MC3500X, MC3400X	PSRR	80 70	100 100	=	80 70	100 100	_	dB
Supply Current (Each Amplifier) MC3500XB, MC3400XB MC3500X, MC3400X	ID		1.4 1.4	2.5 2.7	=	1.4 1.4	2.5 2.7	mA
Slew Rate (A _V = 1.0)	SR	-	13	_	<u> </u>	13	-	V/µs
Gain-Bandwidth Product	GBW	_	4.0		- 1	4.0	-	MHz
Equivalent Input Noise Voltage (R _S = 100 Ω, f = 1000 Hz)	θn	—	25	-	- "	25	-	nV/vHz
Equivalent Input Noise Current (f = 1000 Hz)	in	_	0.01			0.01	1 —	pA/ vHz

MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

MC34001, MC35001, MC34002, MC35002, MC34004, MC35004

		MC35001/35002/35004			MC34001/34002/34004			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k) MC3500XB, MC3400XB MC3500X, MC3400X	VIO		=	7.0 14	_	_	7.0 13	mV
Input Offset Current (V _{CM} = 0) (Note 3) MC3500XB, MC3400XB MC3500X, MC3400X	lio			40 40			4.0 4.0	nA
Input Bias Current (V _{CM} = 0) (Note 3) MC3500XB, MC3400XB MC3500X, MC3400X	liΒ			50 50		=	8.0 8.0	nA
Common Mode Input Voltage Range	VICR	±11			±11	-	_	v
Large Signal (V _O = ±10 V, R _L = 2.0 k) MC3500XB, MC3400XB MC3500X, MC3400X	Avol	25 15	_	_	25 15			V/mV
Output Voltage Swing $(R \ge 10 \text{ k})$ $(R \ge 2.0 \text{ k})$	vo	±12 ±10		=	±12 ±10		_	v
Common Mode Rejection Ratio (R _S ≤ 10 k) MC3500XB, MC3400XB MC3500X, MC3400X	CMRR	80 70	=	_	80 70	-		dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k) (Note 4) MC3500XB, MC3400XB MC3500X, MC3400X	PSRR	80 70	=	_	80 70	=		dB
Supply Current (Each Amplifier) MC3500XB, MC3400XB MC3500X, MC3400X	ID	_		2.8 3.0	_		2.8 3.0	mA

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = T_{low} to T_{high} [Note 2].)

NOTES: 2. T_{low} = -55°C for MC35001/35001B MC35002/35002B MC35004/35004B = 0°C for MC34001/34001B MC34002/35002B

MC34004/34004B

Thigh = +125°C for MC35001/35001B MC35002/35002B MC35004/35004B = +70°C for MC34001/34001B MC34002/35002B MC34004/34004B

The input bias currents approximately double for every 10°C rise in junction temperature, TJ. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum.

4. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

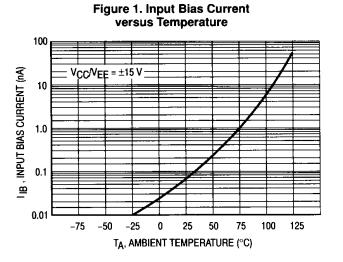


Figure 2. Output Voltage Swing versus Frequency

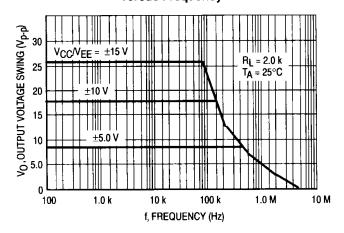


Figure 3. Output Voltage Swing versus Load Resistance

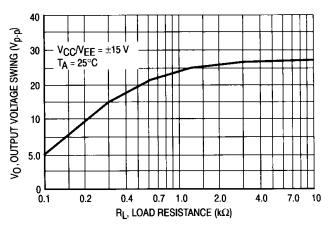
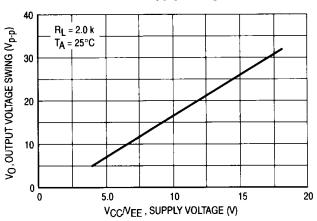



Figure 4. Output Voltage Swing versus Supply Voltage

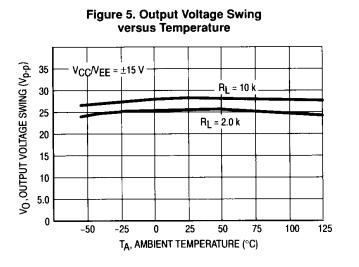
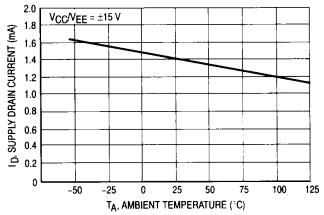
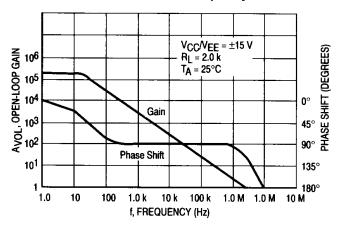




Figure 6. Supply Current per Amplifier versus Temperature

MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

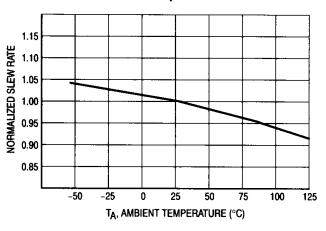
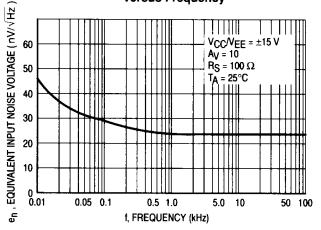
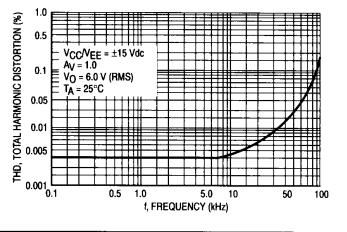
MC34001, MC35001, MC34002, MC35002, MC34004, MC35004

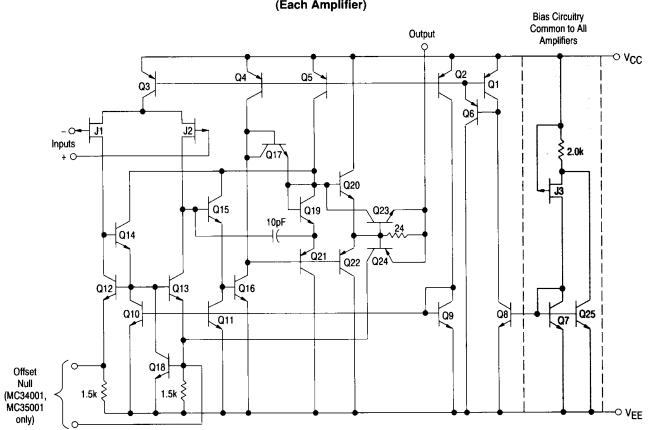
Figure 7. Large-Signal Voltage Gain and Figur Phase Shift versus Frequency

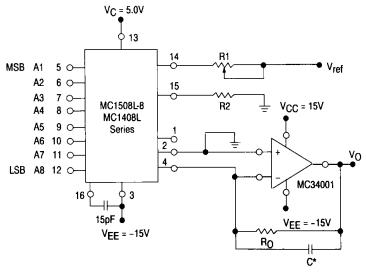
1000 $V_{CC}V_{EE} = \pm 15 V$ $V_{O} = \pm 10 V$ $R_{L} = 2.0 k$ $R_{L} = 2.0 k$ R_{L}

Figure 8. Large-Signal Voltage Gain versus Temperature

Figure 9. Normalized Slew Rate versus Temperature


Figure 10. Equivalent Input Noise Voltage versus Frequency



MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

Representative Circuit Schematic (Each Amplifier)

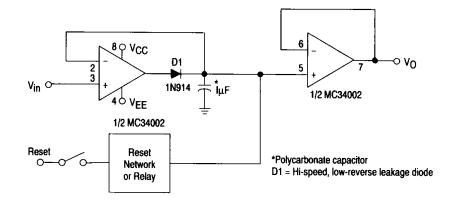
Figure 12. Output Current to Voltage Transformation for a D-to-A Converter

Settling time to within 1/2 LSB $(\pm 19.5~mV)$ is approximately 4.0 μs _ from the time all bits are switched.

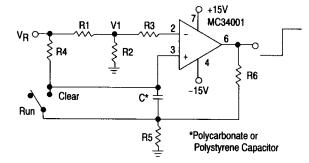
*The value of C may be selected to minimize overshoot and ringing (C $\,\approx\,$ 68 pF)

Theoretical VO

$$V_{0} = \frac{V_{ref}}{R1} \left(R_{0} \right) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$


Adjust $V_{ref},\,R_1$ or R_O so that V_O with all digital inputs at high level is equal to 9.961 V.

$$\begin{aligned} & \mathsf{V}_{\mathsf{ref}} = 2.0 \; \mathsf{Vdc} \\ & \mathsf{R}_{\mathsf{I}} = \mathsf{R}_{2} \approx 1.0 \; \mathsf{k}\Omega \\ & \mathsf{R}_{\mathsf{O}} = 5.0 \; \mathsf{k}\Omega \\ & \mathsf{V}_{\mathsf{O}} = \; \frac{2.0 \; \mathsf{V}}{1.0 \; \mathsf{k}} \; \left(5 \; \mathsf{k} \right) \; \left[\; \frac{1}{2} + \frac{1}{4} \; + \; \frac{1}{8} \; + \; \frac{1}{16} \; + \; \frac{1}{32} \; + \; \frac{1}{64} \; + \; \frac{1}{128} \; + \; \frac{1}{256} \right] \\ & = \; 10 \; \mathsf{V} \; \left[\; \frac{255}{256} \; \right] \; = \; 9.961 \; \mathsf{V} \end{aligned}$$


MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

MC34001, MC35001, MC34002, MC35002, MC34004, MC35004

Figure 13. Positive Peak Detector

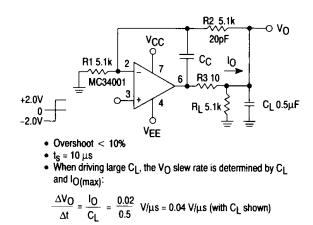
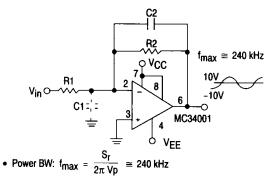


Figure 14. Long Interval RC Timer



Time (t) = R4 Cn (V_R/V_R-V_I), R₃ = R₄, R₅ = 0.1 R₆ If R1 = R2: t = 0.693 R4C

Figure 15. Isolating Large Capacitive Loads

 Parasitic input capacitance (C1 ≅ 3.0 pF plus any additional layout capacitance) interacts with feedback elements and creates undesirable high-frequency pole. To compensate add C2 such that: R2C2 ≅ R1C1.