# **ST-NXP Wireless**

## **IMPORTANT NOTICE**

Dear customer,

As from August 2<sup>nd</sup> 2008, the wireless operations of NXP have moved to a new company, ST-NXP Wireless.

As a result, the following changes are applicable to the attached document.

- Company name NXP B.V. is replaced with ST-NXP Wireless.
- **Copyright** the copyright notice at the bottom of each page "© NXP B.V. 200x. All rights reserved", shall now read: "© ST-NXP Wireless 200x All rights reserved".
- Web site <u>http://www.nxp.com</u> is replaced with <u>http://www.stnwireless.com</u>
- **Contact information** the list of sales offices previously obtained by sending an email to <u>salesaddresses@nxp.com</u>, is now found at <u>http://www.stnwireless.com</u> under Contacts.

If you have any questions related to the document, please contact our nearest sales office. Thank you for your cooperation and understanding.

ST-NXP Wireless

**ST-NXP Wireless** 



**Product data sheet** 

## 1. General description

The ISP1102A Universal Serial Bus (USB) transceiver is fully compliant with <u>Ref. 1</u> <u>"Universal Serial Bus Specification Rev. 2.0"</u>. The ISP1102A can transmit and receive USB data at full-speed (12 Mbit/s).

The transceiver allows USB Application-Specific Integrated Circuits (ASICs) and Programmable Logic Devices (PLDs) with power supply voltages from 1.65 V to 3.6 V to interface with the physical layer of the USB. The transceiver has an integrated 5 V-to-3.3 V voltage regulator for direct powering through USB supply line V<sub>BUS</sub>. The transceiver has an integrated voltage detector to detect the presence of the V<sub>BUS</sub> voltage (V<sub>CC(5V0)</sub>). When V<sub>CC(5V0)</sub> or VREG3V3 is lost, the DP and DM pins can be shared with other serial protocols.

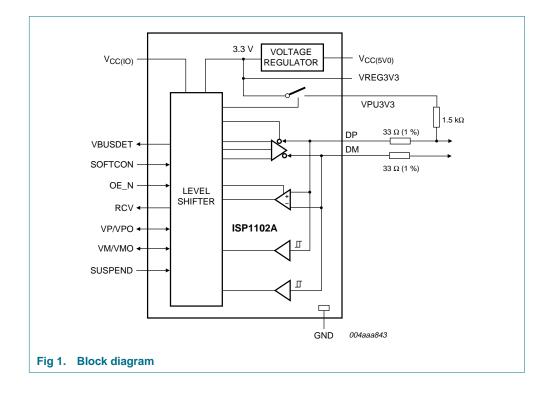
The transceiver is a bidirectional differential interface and is available in HBCC16 package.

The transceiver is ideal for use in portable electronic devices, such as mobile phones, digital still cameras, Personal Digital Assistants (PDAs) and Information Appliances (IAs).

## 2. Features

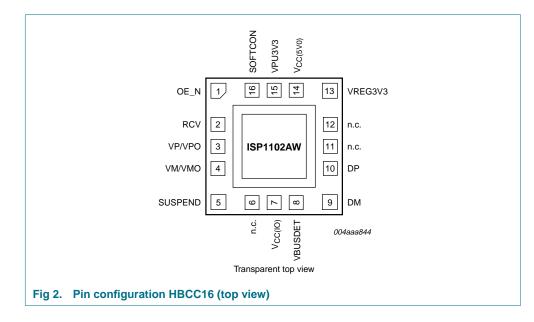
- Complies with Ref. 1 "Universal Serial Bus Specification Rev. 2.0"
- Supports data transfer at full-speed (12 Mbit/s)
- Integrated 5 V-to-3.3 V voltage regulator to power through USB line V<sub>BUS</sub>
- V<sub>BUS</sub> voltage presence indication on pin VBUSDET
- VP and VM pins function in bidirectional mode, allowing pin count saving for the ASIC interface
- Used as USB device transceiver or USB host transceiver
- Stable RCV output during Single-Ended Zero (SE0) condition
- Two single-ended receivers with hysteresis
- Low-power operation
- Supports I/O voltage range from 1.65 V to 3.6 V
- ±12 kV ElectroStatic Discharge (ESD) protection at the DP, DM, V<sub>CC(5V0)</sub> and GND pins
- Full industrial operating temperature range from –40 °C to +85 °C
- Available in HBCC16 lead-free and halogen-free package




## 3. Applications

- Portable electronic devices, such as:
  - Mobile phone
  - Digital still camera
  - Personal Digital Assistant (PDA)
  - Information Appliance (IA)

## 4. Ordering information


| Type number | Package |                                                                                              |          |  |  |  |  |
|-------------|---------|----------------------------------------------------------------------------------------------|----------|--|--|--|--|
|             | Name    | Description                                                                                  | Version  |  |  |  |  |
| ISP1102AW   | HBCC16  | plastic thermal enhanced bottom chip carrier; 16 terminals; body $3 \times 3 \times 0.65$ mm | SOT639-2 |  |  |  |  |

## 5. Block diagram



## 6. Pinning information

## 6.1 Pinning



## 6.2 Pin description

| Table 2.              | Pin description |                     |                                                                                                                                                                                                                                              |
|-----------------------|-----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol <sup>[1]</sup> | Pin             | Type <sup>[2]</sup> | Description                                                                                                                                                                                                                                  |
| OE_N                  | 1               | I                   | input for output enable (CMOS level with respect to $V_{CC(IO)}\!$ , active LOW); enables the transceiver to transmit data on the USB bus                                                                                                    |
|                       |                 |                     | input pad; push pull; CMOS                                                                                                                                                                                                                   |
| RCV                   | 2               | 0                   | differential data receiver output (CMOS level with respect to $V_{CC(IO)}$ ); driven LOW when input SUSPEND is HIGH; the output state of RCV is preserved and stable during an SE0 condition                                                 |
|                       |                 |                     | output pad; push pull; 4 mA output drive; CMOS                                                                                                                                                                                               |
| VP/VPO                | 3               | I/O                 | single-ended DP receiver output VP (CMOS level with respect to $V_{CC(IO)}$ ); for external detection of SE0, error conditions, speed of connected device; this pin also acts as drive data input VPO; see <u>Table 3</u> and <u>Table 4</u> |
|                       |                 |                     | bidirectional pad; push-pull input; 3-state output; 4 mA output drive; CMOS                                                                                                                                                                  |
| VM/VMO                | 4               | I/O                 | single-ended DM receiver output VM (CMOS level with respect to $V_{CC(IO)}$ ); for external detection of SE0, error conditions, speed of connected device; this pin also acts as drive data input VMO; see <u>Table 3</u> and <u>Table 4</u> |
|                       |                 |                     | bidirectional pad; push-pull input; 3-state output; 4 mA output drive; CMOS                                                                                                                                                                  |
| SUSPEND               | 5               | I                   | suspend input (CMOS level with respect to $V_{CC(IO)}$ ); a HIGH level enables low-power state while the USB bus is inactive and drives output RCV to a LOW level                                                                            |
|                       |                 |                     | input pad; push pull; CMOS                                                                                                                                                                                                                   |
| n.c.                  | 6               | -                   | not connected                                                                                                                                                                                                                                |

ISP1102A\_1

Product data sheet

## **NXP Semiconductors**

# **ISP1102A**

Advanced USB transceiver

| Table 2.              | Pin description    | continuea           |                                                                                                                                                                                                                                                           |
|-----------------------|--------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol <sup>[1]</sup> | Pin                | Type <sup>[2]</sup> | Description                                                                                                                                                                                                                                               |
| V <sub>CC(IO)</sub>   | 7                  | -                   | supply voltage for digital I/O pins (1.65 V to 3.6 V); when V <sub>CC(IO)</sub> is not connected, the DP and DM pins are in 3-state; this supply pin is totally independent of V <sub>CC(5V0)</sub> and VREG3V3 and must never exceed the VREG3V3 voltage |
| VBUSDET               | 8                  | 0                   | V <sub>BUS</sub> indicator output (CMOS level with respect to V <sub>CC(IO)</sub> )                                                                                                                                                                       |
|                       |                    |                     | <ul> <li>When V<sub>BUS</sub> &gt; 4.1 V, then VBUSDET = HIGH</li> </ul>                                                                                                                                                                                  |
|                       |                    |                     | <ul> <li>When V<sub>BUS</sub> &lt; 3.6 V, then VBUSDET = LOW</li> </ul>                                                                                                                                                                                   |
|                       |                    |                     | <ul> <li>When SUSPEND = HIGH, then the VBUSDET function is invalid</li> </ul>                                                                                                                                                                             |
|                       |                    |                     | Connect a 1 $\mu\text{F}\xspace$ to 10 $\mu\text{F}$ decoupling capacitor (4.7 $\mu\text{F}$ capacitor is used on the ISP1102 evaluation board)                                                                                                           |
|                       |                    |                     | output pad; push pull; 4 mA output drive; CMOS                                                                                                                                                                                                            |
| DM                    | 9                  | AI/O                | negative USB data bus connection (analog, differential)                                                                                                                                                                                                   |
| DP                    | 10                 | AI/O                | positive USB data bus connection (analog, differential)                                                                                                                                                                                                   |
| n.c.                  | 11                 | -                   | not connected                                                                                                                                                                                                                                             |
| n.c.                  | 12                 | -                   | not connected                                                                                                                                                                                                                                             |
| VREG3V3               | 13                 | -                   | internal regulator option: regulated supply voltage output (3.0 V to 3.6 V) during 5 V operation; a decoupling capacitor of at least 0.1 $\mu$ F is required                                                                                              |
|                       |                    |                     | regulator bypass option: used as a supply voltage input (3.3 V $\pm$ 10 %) for 3.3 V operation                                                                                                                                                            |
| V <sub>CC(5V0)</sub>  | 14                 | -                   | internal regulator option: supply voltage input (4.0 V to 5.5 V); can directly be connected to USB line $V_{\text{BUS}}$                                                                                                                                  |
|                       |                    |                     | regulator bypass option: connect to VREG3V3                                                                                                                                                                                                               |
| VPU3V3                | 15                 | -                   | pull-up supply voltage (3.3 V $\pm$ 10 %); connect an external 1.5 k $\Omega$ resistor on DP (full-speed)                                                                                                                                                 |
|                       |                    |                     | This pin function is controlled by the SOFTCON input:                                                                                                                                                                                                     |
|                       |                    |                     | SOFTCON = LOW — VPU3V3 floating (high-Z); ensures zero pull-up current                                                                                                                                                                                    |
|                       |                    |                     | SOFTCON = HIGH — VPU3V3 = 3.3 V; internally connected to VREG3V3                                                                                                                                                                                          |
| SOFTCON               | 16                 | I                   | software controlled USB connection input; a HIGH level applies 3.3 V to pin VPU3V3, which is connected to an external 1.5 k $\Omega$ pull-up resistor; this allows USB connect or disconnect signaling to be controlled by software                       |
|                       |                    |                     | input pad; push pull; CMOS                                                                                                                                                                                                                                |
| GND                   | exposed<br>die pad | -                   | ground supply; down bonded to the exposed die pad (heat sink); to be connected to the PCB ground                                                                                                                                                          |

## Table 2. Pin description ...continued

[1] Symbol names with an underscore N (for example, OE\_N) indicate active LOW signals.

 $\label{eq:loss} \begin{tabular}{ll} [2] & I = input; \ O = output; \ I/O = digital \ input/output; \ AI/O = analog \ input/output. \end{tabular}$ 

## 7. Functional description

| Table 3. | Function se | election                 |                         |           |           |                                                            |
|----------|-------------|--------------------------|-------------------------|-----------|-----------|------------------------------------------------------------|
| SUSPEND  | OE_N        | DP, DM                   | RCV                     | VP/VPO    | VM/VMO    | Function                                                   |
| LOW      | LOW         | driving or receiving     | active                  | VPO input | VMO input | normal driving (differential receiver active)              |
| LOW      | HIGH        | receiving <sup>[1]</sup> | active                  | VP output | VM output | receiving                                                  |
| HIGH     | LOW         | driving                  | inactive <sup>[2]</sup> | VPO input | VMO input | driving during suspend<br>(differential receiver inactive) |
| HIGH     | HIGH        | high-Z <sup>[1]</sup>    | inactive <sup>[2]</sup> | VP output | VM output | low-power state                                            |

#### 7.1 Function selection

[1] Signal levels on the DP and DM pins are determined by other USB devices and external pull-up or pull-down resistors.

[2] In suspend mode (SUSPEND = HIGH), the differential receiver is inactive and output RCV is always LOW. The resume signaling is detected through single-ended receivers VP/VPO and VM/VMO.

#### 7.2 Operating functions

| Table 4. | Driving function using differential input data interface (pin OE_N = LOW) |                      |  |  |
|----------|---------------------------------------------------------------------------|----------------------|--|--|
| VM/VMO   | VP/VPO                                                                    | Data                 |  |  |
| LOW      | LOW                                                                       | SE0                  |  |  |
| LOW      | HIGH                                                                      | differential logic 1 |  |  |
| HIGH     | LOW                                                                       | differential logic 0 |  |  |
| HIGH     | HIGH                                                                      | illegal state        |  |  |

#### Table 5. Receiving function (pin OE\_N = HIGH)

| ······································ |         |        |        |  |  |  |
|----------------------------------------|---------|--------|--------|--|--|--|
| DP, DM                                 | RCV     | VP/VPO | VM/VMO |  |  |  |
| Differential logic 0                   | LOW     | LOW    | HIGH   |  |  |  |
| Differential logic 1                   | HIGH    | HIGH   | LOW    |  |  |  |
| SE0                                    | RCV*[1] | LOW    | LOW    |  |  |  |

[1] RCV\* denotes the signal level on output RCV just before the SE0 state occurs. This level is stable during the SE0 period.

#### 7.3 Power supply configurations

The ISP1102A can be used with various power supply configurations, which can be changed dynamically. Table 7 provides an overview of the power supply configurations.

Normal mode —  $V_{CC(IO)}$  is connected.  $V_{CC(5V0)}$  is connected only, or  $V_{CC(5V0)}$  and VREG3V3 are connected.

For the 5 V operation,  $V_{CC(5V0)}$  is connected to a 5 V source (4.0 V to 5.5 V). The internal voltage regulator then produces 3.3 V for USB connections.

For the 3.3 V operation, both  $V_{CC(5V0)}$  and VREG3V3 are connected to a 3.3 V source (3.0 V to 3.6 V).

 $V_{CC(IO)}$  is independently connected to a voltage source (1.65 V to 3.6 V), depending on the supply voltage of the external circuit.

**Sharing mode** — V<sub>CC(IO)</sub> is connected only, V<sub>CC(5V0)</sub> is < 3.6 V, and VREG3V3 is < 2.4 V. In this mode, the DP and DM pins are 3-stated and the ISP1102A allows external signals of up to 3.6 V to share the DP and DM lines. The internal circuits of the ISP1102A ensure that virtually no current (maximum 10  $\mu$ A) is drawn through the DP and DM lines. The power consumption through pin V<sub>CC(IO)</sub> drops to the low-power (suspended) state level.

Pins VBUSDET and RCV are driven to LOW to indicate this mode. The VBUSDET function is ignored during suspend mode of the ISP1102A.

Some hysteresis is built into the detection of VREG3V3 lost.

Remark: Sharing mode is not possible in the regulator bypass option.

| Table 0. Fill States III Sharing modes |                       |
|----------------------------------------|-----------------------|
| Pin                                    | Sharing mode          |
| V <sub>CC(5V0)</sub>                   | < 3.6 V               |
| VREG3V3                                | < 2.4 V               |
| V <sub>CC(IO)</sub>                    | 1.65 V to 3.6 V input |
| VPU3V3                                 | high-Z (off)          |
| DP, DM                                 | high-Z                |
| VP/VPO, VM/VMO[1]                      | LOW                   |
| RCV                                    | LOW                   |
| VBUSDET                                | LOW                   |
| OE_N, SUSPEND, SOFTCON                 | high-Z                |
|                                        |                       |

#### Table 6. Pin states in sharing modes

[1] VP/VPO and VM/VMO are bidirectional pins.

#### Table 7.Power supply configuration overview

| V <sub>CC(5V0)</sub> | V <sub>CC(IO)</sub> | Configuration | Special characteristics                                                                              |
|----------------------|---------------------|---------------|------------------------------------------------------------------------------------------------------|
| Connected            | connected           | normal mode   | -                                                                                                    |
| < 3.6 V              | connected           | sharing mode  | DP, DM and VPU3V3: high-Z<br>VP/VPO and VM/VMO: driven LOW<br>RCV: driven LOW<br>VBUSDET: driven LOW |

#### 7.4 Power supply input options

The ISP1102A has two power supply input options.

**Internal regulator** — Pin V<sub>CC(5V0)</sub> is connected to 4.0 V to 5.5 V. The internal regulator is used to supply the internal circuitry with 3.3 V (nominal). The VREG3V3 pin becomes a 3.3 V output reference.

**Regulator bypass** — Pins  $V_{CC(5V0)}$  and VREG3V3 are connected to the same supply. The internal regulator is bypassed and the internal circuitry is supplied directly from pin VREG3V3. The voltage range is 3.0 V to 3.6 V to comply with <u>Ref. 1 "Universal Serial</u> Bus Specification Rev. 2.0".

The supply voltage range for each input option is specified in Table 8.

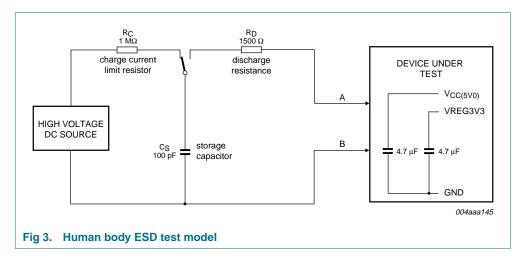

| Input option       | V <sub>CC(5V0)</sub>                                                           | VREG3V3                                     | V <sub>CC(IO)</sub>                                    |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Internal regulator | supply input for internal regulator (4.0 V to 5.5 V)                           | voltage reference output<br>(3.3 V, 300 μA) | supply input for digital I/O pins<br>(1.65 V to 3.6 V) |  |  |  |  |  |
| Regulator bypass   | connected to VREG3V3 with<br>maximum voltage drop of 0.3 V<br>(2.7 V to 3.6 V) | supply input (3.0 V to 3.6 V)               | supply input for digital I/O pins<br>(1.65 V to 3.6 V) |  |  |  |  |  |

 Table 8.
 Power supply input options

## 8. ElectroStatic Discharge (ESD)

#### 8.1 ESD protection

For the HBCC package, the pins that are connected to the USB connector (DP, DM,  $V_{CC(5V0)}$  and GND) have a minimum of ±12 kV ESD protection. The ±12 kV measurement is limited by the test equipment. Capacitors of 4.7  $\mu$ F connected from VREG3V3 to GND and  $V_{CC(5V0)}$  to GND are required to achieve this ±12 kV ESD protection (see Figure 3).



#### 8.2 ESD test conditions

A detailed report on test set up and results is available on request.

## 9. Limiting values

#### Table 9. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol               | Parameter                       | Conditions                                                | Min                  | Мах                  | Unit |
|----------------------|---------------------------------|-----------------------------------------------------------|----------------------|----------------------|------|
| V <sub>CC(5V0)</sub> | supply voltage (5.0 V)          |                                                           | -0.5                 | +6.0                 | V    |
| V <sub>CC(IO)</sub>  | IO supply voltage               |                                                           | -0.5                 | +4.6                 | V    |
| VI                   | input voltage                   |                                                           | -0.5                 | $V_{CC(IO)}$ + 0.5 V | V    |
| l <sub>lu</sub>      | latch-up current                | $V_{I} = -1.8 V$ to +5.4 V                                | -                    | 100                  | mA   |
| V <sub>esd</sub>     | electrostatic discharge voltage | pins DP, DM, $V_{CC(5V0)}$ and GND; $I_{LI} < 3 \; \mu A$ | <u>[1][2]</u> –12000 | +12000               | V    |
|                      |                                 | all other pins; $I_{LI} < 1 \ \mu A$                      | [2] -2000            | +2000                | V    |
| T <sub>stg</sub>     | storage temperature             |                                                           | -40                  | +125                 | °C   |

[1] Testing equipment limits measurement to only ±12 kV. Capacitors needed on V<sub>CC(5V0)</sub> and VREG3V3 (see Section 8).

[2] Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor (Human Body Model).

## 10. Recommended operating conditions

#### Table 10. Recommended operating conditions

| Symbol               | Parameter                        | Conditions        | Min  | Тур | Max                 | Unit |
|----------------------|----------------------------------|-------------------|------|-----|---------------------|------|
| V <sub>CC(5V0)</sub> | supply voltage (5.0 V)           |                   | 4.0  | 5.0 | 5.5                 | V    |
| V <sub>CC(IO)</sub>  | IO supply voltage                |                   | 1.65 | -   | 3.6                 | V    |
| VI                   | input voltage                    |                   | 0    | -   | V <sub>CC(IO)</sub> | V    |
| V <sub>IA(I/O)</sub> | input voltage on analog I/O pins | on pins DP and DM | 0    | -   | 3.6                 | V    |
| Tj                   | junction temperature             |                   | -40  | -   | +125                | °C   |
| T <sub>amb</sub>     | ambient temperature              |                   | -40  | -   | +85                 | °C   |

## **11. Static characteristics**

#### Table 11. Static characteristics: supply pins

 $V_{CC(5V0)} = 4.0 \text{ V}$  to 5.5 V or  $V_{(VREG3V3)} = 3.0 \text{ V}$  to 3.6 V;  $V_{CC(IO)} = 1.65 \text{ V}$  to 3.6 V;  $V_{GND} = 0 \text{ V}$ ; see <u>Table 8</u> for valid voltage level combinations;  $T_{amb} = -40 \text{ °C}$  to +85 °C; unless otherwise specified.

| Symbol                    | Parameter                                 | Conditions                                                                              | Min          | Тур | Max | Unit |
|---------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|--------------|-----|-----|------|
| V <sub>(VREG3V3)</sub>    | voltage on pin VREG3V3                    | internal regulator option; $I_{load} \le 300 \ \mu A$                                   | [1][2] 3.0   | 3.3 | 3.6 | V    |
| I <sub>CC</sub>           | supply current                            | transmitting and receiving at 12 Mbit/s; $C_L$ = 50 pF on pins DP and DM                | <u>[3]</u>   | 4   | 8   | mA   |
| I <sub>CC(IO)</sub>       | supply current on pin $V_{CC(IO)}$        | transmitting and receiving at 12 Mbit/s                                                 | [3] _        | 1   | 2   | mA   |
| I <sub>CC(idle)</sub>     | idle and SE0 supply current               | idle: $V_{DP} > 2.7 V$ , $V_{DM} < 0.3 V$ ;<br>SE0: $V_{DP} < 0.3 V$ , $V_{DM} < 0.3 V$ | <u>[4]</u> _ | -   | 300 | μΑ   |
| I <sub>CC(IO)static</sub> | static supply current on pin $V_{CC(IO)}$ | idle, SE0 or suspend                                                                    | -            | -   | 20  | μΑ   |
| I <sub>CC(susp)</sub>     | suspend supply current                    | SUSPEND = HIGH                                                                          | [4] _        | -   | 20  | μΑ   |

ISP1102A\_1

Product data sheet

#### Table 11. Static characteristics: supply pins ...continued

 $V_{CC(5V0)} = 4.0 V$  to 5.5 V or  $V_{(VREG3V3)} = 3.0 V$  to 3.6 V;  $V_{CC(IO)} = 1.65 V$  to 3.6 V;  $V_{GND} = 0 V$ ; see <u>Table 8</u> for valid voltage level combinations;  $T_{amb} = -40 \degree C$  to +85  $\degree C$ ; unless otherwise specified.

| Symbol                     | Parameter                                                     | Conditions                                                                                                             | Min   | Тур  | Max | Unit |
|----------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------|------|-----|------|
| I <sub>CC(IO)sharing</sub> | sharing mode supply current on pin $V_{CC(IO)}$               | $V_{CC(5V0)} < 3.6 V$                                                                                                  | -     | -    | 20  | μA   |
| Iload(sharing)DM           | sharing mode load current on pin DM                           | $V_{CC(5V0)}$ < 3.6 V; SOFTCON = LOW; $V_{DM}$ = 3.6 V                                                                 | -     | -    | 10  | μA   |
| Iload(sharing)DP           | sharing mode load current<br>on pin DP                        | $V_{CC(5V0)}$ < 3.6 V; SOFTCON = LOW; $V_{DP}$ = 3.6 V                                                                 | -     | -    | 10  | μA   |
| V <sub>CC(5V0)th</sub>     | supply voltage detection                                      | $1.65~V \leq V_{CC(IO)} \leq 3.6~V$                                                                                    |       |      |     |      |
|                            | threshold (5.0 V)                                             | supply lost                                                                                                            | -     | -    | 3.6 | V    |
|                            |                                                               | supply present                                                                                                         | 4.1   | -    | -   | V    |
| V <sub>CC(5V0)</sub> hys   | supply voltage detection<br>hysteresis (5.0 V)                | V <sub>CC(IO)</sub> = 1.8 V                                                                                            | -     | 70   | -   | mV   |
| V <sub>CC(IO)th</sub>      | supply voltage detection threshold on pin $V_{CC(\text{IO})}$ | $V_{(VREG3V3)} = 2.7 V \text{ to } 3.6 V$                                                                              |       |      |     |      |
|                            |                                                               | supply lost                                                                                                            | -     | -    | 0.5 | V    |
|                            |                                                               | supply present                                                                                                         | 1.4   | -    | -   | V    |
| V <sub>CC(IO)hys</sub>     | supply voltage detection hysteresis on pin $V_{CC(IO)}$       | V <sub>(VREG3V3)</sub> = 3.3 V                                                                                         | -     | 0.45 | -   | V    |
| V <sub>REG(3V3)th</sub>    | regulated supply voltage detection threshold (3.3 V)          | $\begin{array}{l} 1.65 \ V \leq V_{CC(IO)} \leq V_{(VREG3V3)}; \\ 2.7 \ V \leq V_{(VREG3V3)} \leq 3.6 \ V \end{array}$ |       |      |     |      |
|                            |                                                               | supply lost                                                                                                            | -     | -    | 0.8 | V    |
|                            |                                                               | supply present                                                                                                         | 5 2.4 | -    | -   | V    |
| V <sub>REG(3V3)hys</sub>   | regulated supply voltage detection hysteresis (3.3 V)         | V <sub>CC(IO)</sub> = 1.8 V                                                                                            | -     | 0.45 | -   | V    |

[1] I<sub>load</sub> includes the pull-up resistor current through pin VPU3V3.

[2] The minimum voltage is 2.7 V in suspend mode.

[3] Maximum value characterized only, not tested in production.

[4] Excluding any load current and VPU3V3 or V<sub>SW</sub> source current to the 1.5 kΩ and 15 kΩ pull-up and pull-down resistors (200 μA typ.).

[5] When  $V_{CC(IO)} < 2.7$  V, the minimum value for  $V_{REG(3V3)th} = 2.0$  V for supply present condition.

#### Table 12. Static characteristics: digital pins

 $V_{CC(IO)} = 1.65 \text{ V to } 3.6 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 \degree \text{C} \text{ to } +85 \degree \text{C}; \text{ unless otherwise specified.}$ 

| Symbol             | Parameter                 | Conditions               | Min                           | Тур | Max             | Unit |
|--------------------|---------------------------|--------------------------|-------------------------------|-----|-----------------|------|
| $V_{CC(IO)} = 1.6$ | 5 V to 3.6 V              |                          |                               |     |                 |      |
| Input levels       |                           |                          |                               |     |                 |      |
| V <sub>IL</sub>    | LOW-level input voltage   |                          | -                             | -   | $0.3V_{CC(IO)}$ | V    |
| V <sub>IH</sub>    | HIGH-level input voltage  |                          | 0.6V <sub>CC(IO)</sub>        | -   | -               | V    |
| Output levels      | S                         |                          |                               |     |                 |      |
| V <sub>OL</sub>    | LOW-level output voltage  | I <sub>OL</sub> = 100 μA | -                             | -   | 0.15            | V    |
|                    |                           | $I_{OL} = 2 \text{ mA}$  | -                             | -   | 0.4             | V    |
| V <sub>OH</sub>    | HIGH-level output voltage | I <sub>OH</sub> = 100 μA | $V_{CC(IO)} - 0.15 \text{ V}$ | -   | -               | V    |
|                    |                           | $I_{OH} = 2 \text{ mA}$  | $V_{CC(IO)} - 0.4 V$          | -   | -               | V    |

ISP1102A\_1

**Advanced USB transceiver** 

| Symbol          | Parameter                       | Conditions               | Min           | Тур | Max  | Unit |
|-----------------|---------------------------------|--------------------------|---------------|-----|------|------|
| Capacitan       | се                              |                          |               |     |      |      |
| C <sub>in</sub> | input capacitance               | pin to GND               | -             | -   | 10   | pF   |
| Example 1       | : $V_{CC(IO)}$ = 1.8 V ± 0.15 V |                          |               |     |      |      |
| Input levels    | 3                               |                          |               |     |      |      |
| V <sub>IL</sub> | LOW-level input voltage         |                          | -             | -   | 0.5  | V    |
| V <sub>IH</sub> | HIGH-level input voltage        |                          | 1.2           | -   | -    | V    |
| Output leve     | els                             |                          |               |     |      |      |
| V <sub>OL</sub> | LOW-level output voltage        | I <sub>OL</sub> = 100 μA | -             | -   | 0.15 | V    |
|                 |                                 | $I_{OL} = 2 \text{ mA}$  | -             | -   | 0.4  | V    |
| V <sub>OH</sub> | HIGH-level output voltage       | I <sub>OH</sub> = 100 μA | 1.5           | -   | -    | V    |
|                 |                                 | $I_{OH} = 2 \text{ mA}$  | 1.25          | -   | -    | V    |
| Leakage c       | urrent                          |                          |               |     |      |      |
| I <sub>LI</sub> | input leakage current           |                          | <u>[1]</u> –1 | -   | +1   | μΑ   |
| Example 2       | :: $V_{CC(IO)}$ = 2.5 V ± 0.2 V |                          |               |     |      |      |
| Input levels    | 3                               |                          |               |     |      |      |
| V <sub>IL</sub> | LOW-level input voltage         |                          | -             | -   | 0.7  | V    |
| VIH             | HIGH-level input voltage        |                          | 1.7           | -   | -    | V    |
| Output leve     | els                             |                          |               |     |      |      |
| V <sub>OL</sub> | LOW-level output voltage        | $I_{OL} = 100 \ \mu A$   | -             | -   | 0.15 | V    |
|                 |                                 | $I_{OL} = 2 \text{ mA}$  | -             | -   | 0.4  | V    |
| V <sub>ОН</sub> | HIGH-level output voltage       | $I_{OH} = 100 \ \mu A$   | 2.15          | -   | -    | V    |
|                 |                                 | $I_{OH} = 2 \text{ mA}$  | 1.9           | -   | -    | V    |
| Leakage c       | urrent                          |                          |               |     |      |      |
| ILI             | input leakage current           |                          | <u>[1]</u> –5 | -   | +5   | μA   |
| Example 3       | : $V_{CC(IO)}$ = 3.3 V ± 0.3 V  |                          |               |     |      |      |
| Input levels    | 3                               |                          |               |     |      |      |
| V <sub>IL</sub> | LOW-level input voltage         |                          | -             | -   | 0.9  | V    |
| V <sub>IH</sub> | HIGH-level input voltage        |                          | 2.15          | -   | -    | V    |
| Output leve     | els                             |                          |               |     |      |      |
| V <sub>OL</sub> | LOW-level output voltage        | $I_{OL} = 100 \ \mu A$   | -             | -   | 0.15 | V    |
|                 |                                 | $I_{OL} = 2 \text{ mA}$  | -             | -   | 0.4  | V    |
| V <sub>OH</sub> | HIGH-level output voltage       | I <sub>OH</sub> = 100 μA | 2.85          | -   | -    | V    |
|                 |                                 | $I_{OH} = 2 \text{ mA}$  | 2.6           | -   | -    | V    |
| Leakage c       | urrent                          |                          |               |     |      |      |
| ILI             | input leakage current           |                          | <u>[1]</u> –5 | -   | +5   | μΑ   |

#### Table 12. Static characteristics: digital pins ...continued

[1] If  $V_{CC(IO)} \ge V_{(VREG3V3)}$ , then the leakage current will be higher than the specified value.

| Symbol                  | Parameter                             | Conditions                                      |            | Min | Тур | Max | Unit |
|-------------------------|---------------------------------------|-------------------------------------------------|------------|-----|-----|-----|------|
| Input levels            | i i i i i i i i i i i i i i i i i i i |                                                 |            |     |     |     |      |
| Differential r          | eceiver                               |                                                 |            |     |     |     |      |
| V <sub>DI</sub>         | differential input sensitivity        | $ V_{DP} - V_{DM} $                             |            | 0.2 | -   | -   | V    |
| V <sub>CM</sub>         | differential common mode voltage      | includes $V_{DI}$ range                         |            | 0.8 | -   | 2.5 | V    |
| Single-ende             | d receiver                            |                                                 |            |     |     |     |      |
| V <sub>IL</sub>         | LOW-level input voltage               |                                                 |            | -   | -   | 0.8 | V    |
| V <sub>IH</sub>         | HIGH-level input voltage              |                                                 |            | 2.0 | -   | -   | V    |
| V <sub>hys</sub>        | hysteresis voltage                    |                                                 |            | 0.4 | -   | 0.7 | V    |
| Output leve             | ls                                    |                                                 |            |     |     |     |      |
| V <sub>OL</sub>         | LOW-level output voltage              | $R_L$ = 1.5 k $\Omega$ to 3.6 V                 |            | -   | -   | 0.3 | V    |
| V <sub>OH</sub>         | HIGH-level output voltage             | $R_L = 15 \text{ k}\Omega$ to GND               | <u>[1]</u> | 2.8 | -   | 3.6 | V    |
| Leakage cu              | rrent                                 |                                                 |            |     |     |     |      |
| I <sub>LZ</sub>         | off-state leakage current             |                                                 |            | -1  | -   | +1  | μA   |
| Capacitanc              | e                                     |                                                 |            |     |     |     |      |
| C <sub>in</sub>         | input capacitance                     | pin to GND                                      |            | -   | -   | 20  | pF   |
| Resistance              |                                       |                                                 |            |     |     |     |      |
| Z <sub>DRV</sub>        | driver output impedance               | steady-state drive                              | [2]        | 34  | 39  | 44  | Ω    |
| Z <sub>INP</sub>        | input impedance                       |                                                 |            | 10  | -   | -   | MΩ   |
| R <sub>sw(VPU3V3)</sub> | switch-on resistance on pin<br>VPU3V3 |                                                 |            | -   | -   | 10  | Ω    |
| Termination             | 1                                     |                                                 |            |     |     |     |      |
| V <sub>TERM</sub>       | termination voltage                   | for upstream port pull-up<br>(R <sub>PU</sub> ) | [3][4]     | 3.0 | -   | 3.6 | V    |

#### Table 13. Static characteristics: analog I/O pins DP and DM

[1]  $V_{OH(min)} = V_{(VREG3V3)} - 0.2 V.$ 

[2] Includes external resistors of 33  $\Omega\pm$  1 % on both pins DP and DM.

[3] This voltage is available at pins VREG3V3 and VPU3V3.

[4] The minimum voltage is 2.7 V in suspend mode.

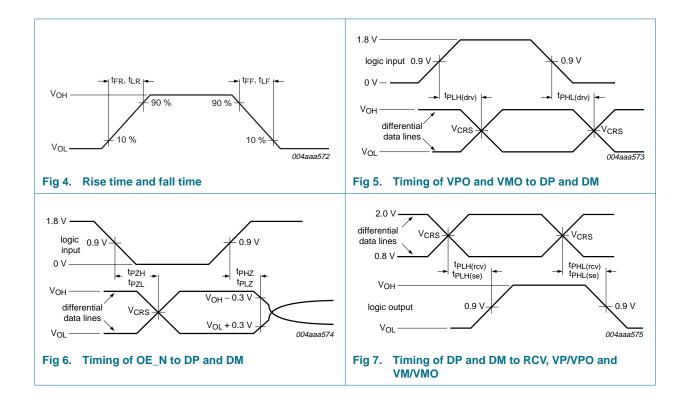
## 12. Dynamic characteristics

#### Table 14. Dynamic characteristics: analog I/O pins DP and DM

 $V_{CC(5V0)} = 4.0 \text{ V}$  to 5.5 V or  $V_{(VREG3V3)} = 3.0 \text{ V}$  to 3.6 V;  $V_{CC(IO)} = 1.65 \text{ V}$  to 3.6 V;  $V_{GND} = 0 \text{ V}$ ; see <u>Table 8</u> for valid voltage level combinations;  $T_{amb} = -40 \degree C$  to +85 °C; unless otherwise specified.

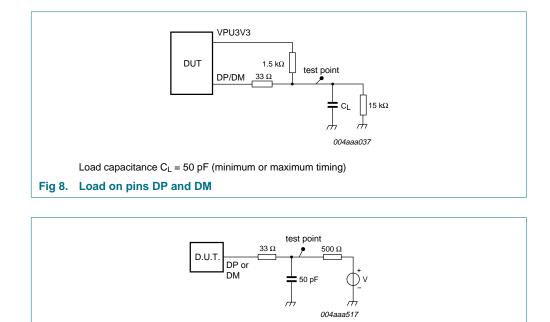
| Symbol          | Parameter                                 | Conditions                                                                                                               | Min | Тур | Max              | Unit                |
|-----------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|-----|------------------|---------------------|
| Driver cha      | racteristics                              |                                                                                                                          |     |     |                  |                     |
| t <sub>FR</sub> | rise time                                 | $C_L = 50 \text{ pF to } 125 \text{ pF}; 10 \% \text{ to}$<br>90 % of  V <sub>OH</sub> - V <sub>OL</sub>  ; see Figure 4 | 4   | -   | 20               | ns                  |
| t <sub>FF</sub> | fall time                                 | C <sub>L</sub> = 50 pF to 125 pF; 90 % to<br>10 % of  V <sub>OH</sub> – V <sub>OL</sub>  ; see <u>Figure 4</u>           | 4   | -   | 20               | ns                  |
| FRFM            | differential rise time/fall time matching | excluding the first transition from Idle state                                                                           | 90  | -   | 111.1            | %                   |
| ISP1102A_1      |                                           |                                                                                                                          |     |     | © NXP B.V. 2007. | All rights reserved |

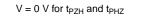
Product data sheet

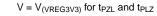

#### Table 14. Dynamic characteristics: analog I/O pins DP and DM ...continued

 $V_{CC(5V0)} = 4.0 \text{ V}$  to 5.5 V or  $V_{(VREG3V3)} = 3.0 \text{ V}$  to 3.6 V;  $V_{CC(IO)} = 1.65 \text{ V}$  to 3.6 V;  $V_{GND} = 0 \text{ V}$ ; see <u>Table 8</u> for valid voltage level combinations;  $T_{amb} = -40 \degree \text{C}$  to +85 °C; unless otherwise specified.

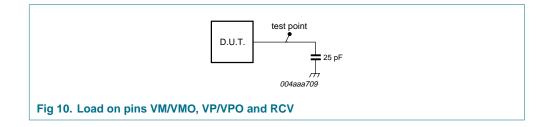
| Symbol                | Parameter                                          | Conditions                                                   | Min             | Тур | Max | Unit |
|-----------------------|----------------------------------------------------|--------------------------------------------------------------|-----------------|-----|-----|------|
| V <sub>CRS</sub>      | output signal crossover voltage                    | excluding the first transition from idle state; see Figure 5 | [ <u>1]</u> 1.3 | -   | 2.0 | V    |
| <b>Driver timir</b>   | ng                                                 |                                                              |                 |     |     |      |
| t <sub>PLH(drv)</sub> | driver propagation<br>delay (LOW to HIGH)          | VPO, VMO to DP, DM; see<br>Figure 5 and Figure 8             | -               | -   | 18  | ns   |
| t <sub>PHL(drv)</sub> | driver propagation delay (HIGH to LOW)             | VPO, VMO to DP, DM; see<br>Figure 5 and Figure 8             | -               | -   | 18  | ns   |
| t <sub>PHZ</sub>      | driver disable delay from HIGH level               | OE_N to DP, DM; see <u>Figure 6</u><br>and <u>Figure 9</u>   | -               | -   | 15  | ns   |
| t <sub>PLZ</sub>      | driver disable delay from LOW level                | OE_N to DP, DM; see <u>Figure 6</u><br>and <u>Figure 9</u>   | -               | -   | 15  | ns   |
| t <sub>PZH</sub>      | driver enable delay to<br>HIGH level               | OE_N to DP, DM; see <u>Figure 6</u><br>and <u>Figure 9</u>   | -               | -   | 15  | ns   |
| t <sub>PZL</sub>      | driver enable delay to<br>LOW level                | OE_N to DP, DM; see <u>Figure 6</u><br>and <u>Figure 9</u>   | -               | -   | 15  | ns   |
| Receiver tin          | mings                                              |                                                              |                 |     |     |      |
| Differential r        | eceiver                                            |                                                              |                 |     |     |      |
| t <sub>PLH(rcv)</sub> | receiver propagation delay (LOW to HIGH)           | DP, DM to RCV; see <u>Figure 7</u> and <u>Figure 10</u>      | -               | -   | 15  | ns   |
| t <sub>PHL(rcv)</sub> | receiver propagation delay (HIGH to LOW)           | DP, DM to RCV; see <u>Figure 7</u> and <u>Figure 10</u>      | -               | -   | 15  | ns   |
| Single-ende           | d receiver                                         |                                                              |                 |     |     |      |
| t <sub>PLH(se)</sub>  | single-ended<br>propagation delay<br>(LOW to HIGH) | DP, DM to VP/VPO, VM/VMO; see Figure 7 and Figure 10         | -               | -   | 18  | ns   |
| t <sub>PHL(se)</sub>  | single-ended<br>propagation delay<br>(HIGH to LOW) | DP, DM to VP/VPO, VM/VMO; see Figure 7 and Figure 10         | -               | -   | 18  | ns   |


[1] Characterized only, not tested. Limits guaranteed by design.


**Advanced USB transceiver** 

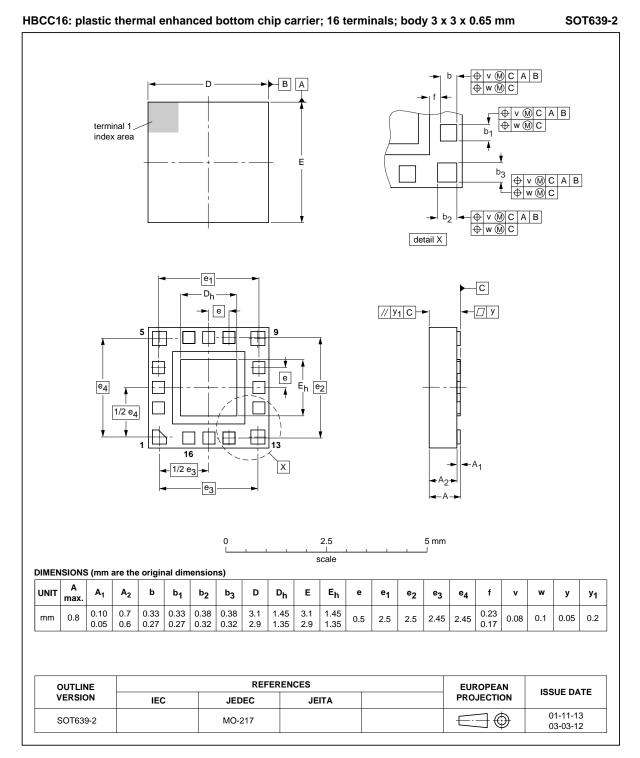






## **13. Test information**








#### Fig 9. Load on pins DP and DM for enable time and disable time



Advanced USB transceiver

## 14. Package outline



#### Fig 11. Package outline SOT639-2 (HBCC16)

ISP1102A\_1

Product data sheet

## **15. Packing information**

The ISP1102AW (HBCC16 package) is delivered on a Type A carrier tape, see Figure 12. The tape dimensions are given in Table 15.

The reel diameter is 330 mm. The reel is made of polystyrene (PS) and is not designed for use in a baking process.

The cumulative tolerance of 10 successive sprocket holes is  $\pm 0.02$  mm. The camber must not exceed 1 mm in 100 mm.



 Table 15.
 Type A carrier tape dimensions for the ISP1102AW

| Dimension | Value        | Unit |
|-----------|--------------|------|
| A0        | 3.3          | mm   |
| B0        | 3.3          | mm   |
| K0        | 1.1          | mm   |
| P1        | 8.0          | mm   |
| W         | $12.0\pm0.3$ | mm   |

## 16. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

#### **16.1 Introduction to soldering**

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

#### 16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus PbSn soldering

#### 16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

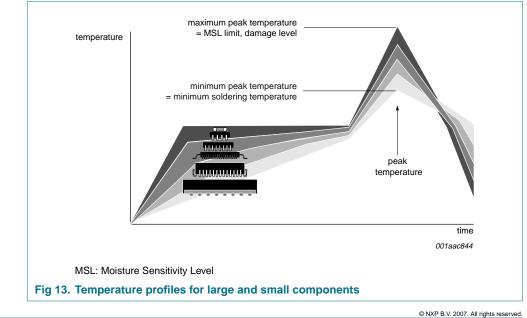
#### 16.4 Reflow soldering

Key characteristics in reflow soldering are:

 Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 13</u>) than a PbSn process, thus reducing the process window

- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 16 and 17

| Package thickness (mm) | Package reflow temperature (°C) |       |  |  |
|------------------------|---------------------------------|-------|--|--|
|                        | Volume (mm <sup>3</sup> )       |       |  |  |
|                        | < 350                           | ≥ 350 |  |  |
| < 2.5                  | 235                             | 220   |  |  |
| ≥ 2.5                  | 220                             | 220   |  |  |


#### Table 16. SnPb eutectic process (from J-STD-020C)

#### Table 17. Lead-free process (from J-STD-020C)

| Package thickness (mm) | Package reflow temperature (°C) |             |        |  |  |
|------------------------|---------------------------------|-------------|--------|--|--|
|                        | Volume (mm <sup>3</sup> )       |             |        |  |  |
|                        | < 350                           | 350 to 2000 | > 2000 |  |  |
| < 1.6                  | 260                             | 260         | 260    |  |  |
| 1.6 to 2.5             | 260                             | 250         | 245    |  |  |
| > 2.5                  | 250                             | 245         | 245    |  |  |

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 13.



Product data sheet

ISP1102A 1

Rev. 01 — 15 February 2007

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

## **17. Abbreviations**

| AcronymDescriptionASICApplication-Specific Integrated CircuitCMOSComplementary Metal-Oxide SemiconductorESDElectroStatic DischargeHBMHuman Body ModelSE0Single-Ended ZeroUSBUniversal Serial Bus | Table 18. | Abbreviations                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|
| CMOS       Complementary Metal-Oxide Semiconductor         ESD       ElectroStatic Discharge         HBM       Human Body Model         SE0       Single-Ended Zero                              | Acronym   | Description                             |
| ESDElectroStatic DischargeHBMHuman Body ModelSE0Single-Ended Zero                                                                                                                                | ASIC      | Application-Specific Integrated Circuit |
| HBM     Human Body Model       SE0     Single-Ended Zero                                                                                                                                         | CMOS      | Complementary Metal-Oxide Semiconductor |
| SE0 Single-Ended Zero                                                                                                                                                                            | ESD       | ElectroStatic Discharge                 |
|                                                                                                                                                                                                  | HBM       | Human Body Model                        |
| USB Universal Serial Bus                                                                                                                                                                         | SE0       | Single-Ended Zero                       |
|                                                                                                                                                                                                  | USB       | Universal Serial Bus                    |

## 18. References

- [1] Universal Serial Bus Specification Rev. 2.0
- [2] Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM) (JESD22-A114D)

## 19. Revision history

| Table 19. Revision history |              |                    |               |            |  |  |  |  |
|----------------------------|--------------|--------------------|---------------|------------|--|--|--|--|
| Document ID                | Release date | Data sheet status  | Change notice | Supersedes |  |  |  |  |
| ISP1102A_1                 | 20070215     | Product data sheet | -             | -          |  |  |  |  |

## 20. Legal information

#### 20.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

#### 20.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

#### 20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nxp.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

#### 20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

## 21. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

ISP1102A\_1 Product data sheet

## 22. Tables

| Table 1.  | Ordering information2                          |
|-----------|------------------------------------------------|
| Table 2.  | Pin description                                |
| Table 3.  | Function selection                             |
| Table 4.  | Driving function using differential input data |
|           | interface (pin OE_N = LOW)5                    |
| Table 5.  | Receiving function (pin OE_N = HIGH)5          |
| Table 6.  | Pin states in sharing modes                    |
| Table 7.  | Power supply configuration overview            |
| Table 8.  | Power supply input options                     |
| Table 9.  | Limiting values                                |
| Table 10. | Recommended operating conditions9              |
| Table 11. | Static characteristics: supply pins            |
| Table 12. | Static characteristics: digital pins10         |
| Table 13. | Static characteristics: analog I/O pins        |
|           | DP and DM12                                    |
| Table 14. | Dynamic characteristics: analog I/O pins       |
|           | DP and DM12                                    |
| Table 15. | Type A carrier tape dimensions for the         |
|           | ISP1102AW17                                    |
| Table 16. | SnPb eutectic process (from J-STD-020C)19      |
| Table 17. | Lead-free process (from J-STD-020C)19          |
| Table 18. | Abbreviations                                  |
| Table 19. | Revision history                               |

continued >>

# 23. Figures

| Fig 1.  | Block diagram                              |
|---------|--------------------------------------------|
| Fig 2.  | Pin configuration HBCC16 (top view)        |
| Fig 3.  | Human body ESD test model                  |
| Fig 4.  | Rise time and fall time14                  |
| Fig 5.  | Timing of VPO and VMO to DP and DM14       |
| Fig 6.  | Timing of OE_N to DP and DM14              |
| Fig 7.  | Timing of DP and DM to RCV, VP/VPO and     |
|         | VM/VMO14                                   |
| Fig 8.  | Load on pins DP and DM15                   |
| Fig 9.  | Load on pins DP and DM for enable time and |
|         | disable time                               |
| Fig 10. | Load on pins VM/VMO, VP/VPO and RCV 15     |
| Fig 11. | Package outline SOT639-2 (HBCC16) 16       |
| Fig 12. | Carrier tape dimensions                    |
| Fig 13. | Temperature profiles for large and small   |
|         | components                                 |

continued >>

## 24. Contents

| 1    | General description 1              |
|------|------------------------------------|
| 2    | Features 1                         |
| 3    | Applications 2                     |
| 4    | Ordering information 2             |
| 5    | Block diagram 2                    |
| 6    | Pinning information                |
| 6.1  | Pinning                            |
| 6.2  | Pin description 3                  |
| 7    | Functional description 5           |
| 7.1  | Function selection 5               |
| 7.2  | Operating functions                |
| 7.3  | Power supply configurations 5      |
| 7.4  | Power supply input options         |
| 8    | ElectroStatic Discharge (ESD) 8    |
| 8.1  | ESD protection                     |
| 8.2  | ESD test conditions 8              |
| 9    | Limiting values 9                  |
| 10   | Recommended operating conditions 9 |
| 11   | Static characteristics 9           |
| 12   | Dynamic characteristics 12         |
| 13   | Test information 15                |
| 14   | Package outline 16                 |
| 15   | Packing information 17             |
| 16   | Soldering 17                       |
| 16.1 | Introduction to soldering 18       |
| 16.2 | Wave and reflow soldering 18       |
| 16.3 | Wave soldering 18                  |
| 16.4 | Reflow soldering 18                |
| 17   | Abbreviations 20                   |
| 18   | References                         |
| 19   | Revision history 20                |
| 20   | Legal information 21               |
| 20.1 | Data sheet status 21               |
| 20.2 | Definitions 21                     |
| 20.3 | Disclaimers                        |
| 20.4 | Trademarks 21                      |
| 21   | Contact information 21             |
| 22   | Tables         22                  |
| 23   | Figures 23                         |
| 24   | Contents 24                        |



Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

#### © NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 February 2007 Document identifier: ISP1102A\_1