APPENDIX A ELECTRICAL CHARACTERISTICS

Table A-1. Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	- 0.3 to + 7.0	٧
Input Voltage	Vin	- 0.3 to + 7.0	٧
Operating Temperature Range MC68HC(7)11ExC MC68HC(7)11ExV MC68HC(7)11ExV MC68HC(7)11ExM MC68HC811E2 MC68HC811E2C MC68HC811E2V MC68HC811E2V MC68HC811E2M MC68HC811E2M	TA	T _L to T _H 0 to + 70 - 40 to + 85 - 40 to + 105 - 40 to + 125 0 to + 70 - 40 to + 85 - 40 to + 105 - 40 to + 105 - 40 to + 125 - 20 to + 70	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	°C
Current Drain per Pin* Excluding V _{DD} , V _{SS} , AV _{DD} , V _{RH} , and V _{RL}	ID	25	mA

^{*}One pin at a time, observing maximum power dissipation limits.

Internal circuitry protects the inputs against damage caused by high static voltages or electric fields; however, normal precautions are necessary to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Extended operation at the maximum ratings can adversely affect device reliability. Tying unused inputs to an appropriate logic voltage level (either GND or V_{DD}) enhances reliability of operation.

Table A-2. Thermal Characteristics

Characteristic		Symbol	Value	Unit
Average Junction Temperature		TJ	$T_A + (P_D \times \Theta_{JA})$	°C
Ambient Temperature		TA	User-determined	°C
Package Thermal Resistance (Junction- 48-Pin Plastic DIP (MC68HC811E2 of 56-Pin Plastic SDIP 52-Pin Plastic Leaded Chip Carrier 52-Pin Plastic Thin Quad Flat Pack (64-Pin Quad Flat Pack	only)	⊖ЈА	50 50 50 85 85	*C/W
Total Power Dissipation	(Note 1)	PD	P _{INT} + P _{I/O} K / (T _J + 273°C)	w
Device Internal Power Dissipation		PINT	I _{DD} × V _{DD}	W
I/O Pin Power Dissipation	(Note 2)	Pivo	User-determined	w
A Constant	(Note 3)	к	P _D ×(T _A +273°C)+ _{GJA} ×P _D ²	W.ªC

NOTES:

- 1. This is an approximate value, neglecting PI/O.
- For most applications P_{I/O}
 « P_{INT} and can be neglected.
- K is a constant pertaining to the device. Solve for K with a known T_A and a measured P_D (at equilibrium).
 Use this value of K to solve for P_D and T_J iteratively for any value of T_A.

M68HC11 E SERIES TECHNICAL DATA APPENDIX A ELECTRICAL CHARACTERISTICS MOTOROLA

Table A-3. DC Electrical Characteristics

 $V_{DD} = 5.0 \text{ Vdc} \pm 10\%$, $V_{SS} = 0 \text{ Vdc}$, $T_A = T_L \text{ to } T_H$, unless otherwise noted

Characteristics	Symbol	Min	Max	Unit
Output Voltage (Note 1) All Outputs except XTAL All Outputs Except XTAL, RESET, and MODA I _{Load} = ± 10.0 μA	V _L V _{OH}	V _{DD} - 0.1	0.1	٧
Output High Voltage (Note 1) All Outputs Except XTAL, RESET, and MODA I _{Load} = -0.8 mA, V _{DD} = 4.5 V	Voн	V _{DO} - 0.8	_	٧
	+ ,,			
Output Low Voltage All Outputs Except XTAL ILoad = 1.6 mA	VoL	_	0.4	v
Input High Voltage All Inputs Except RESET RESET	ViH	0.7 × V _{DD} 0.8 × V _{DD}	V _{DD} + 0.3 V _{DD} + 0.3	٧
Input Low Voltage All Inputs	V _{IL}	V _{SS} - 0.3	0.2 × V _{DD}	٧
I/O Ports, Three-State Leakage PA7, PA3, PC[7:0], PD[5:0], AS/STRA, Vin = V _{IH} or V _{IL} MODA/LIR, RESET	loz	_	±10	μА
Input Leakage Current (Note 2) V _{in} = V _{DD} or V _{SS} PA[2:0], IRQ, XIRQ V _{in} = V _{DD} or V _{SS} MODB/V _{STBY}	lin		±1 ±10	μ Α μ Α
RAM Standby Voltage Power down	V _{SB}	4.0	V _{DD}	٧
RAM Standby Current Power down	IsB		10	μА
Input Capacitance PA[2:0], PE[7:0], IRQ, XIRQ, EXTAL PA7, PA3, PC[7:0], PD[5:0], AS/STRA, MODA/LIR, RESET	Cin	=	8 12	pF pF
Output Load Capacitance All Outputs Except PD[4:1] PD[4:1]	Q.	=	90 100	pF pF
Maximum Total Supply Current (Note 3) RUN:	IDD			
Single-Chip Mode 2 MHz 3 MHz	"55	_	15 27	mA mA
Expanded Multiplexed Mode 2 MHz		_	27	mA
3 MHz WAIT: (All Peripheral Functions Shut Down)	WIDD	_	35	mA.
Single-Chip Mode 2 MHz 3 MHz	**100	_	6 15	mA mA
Expanded Multiplexed Mode 2 MHz 3 MHz		=	10 20	mA mA
STOP:	SIDD			
Single-Chip Mode, No Clocks - 40 to + 85 > + 85 to + 105 > +105 to + 125		=	25 50 100	μА
Maximum Power Dissipation	PD			
Single-Chip Mode 2 MHz 3 MHz			85 150	Wm Wm
Expanded Multiplexed Mode 2 MHz 3 MHz		_	150 195	Wm

NOTES:

- 1. VOH specification for RESET and MODA is not applicable because they are open-drain pins. VOH specification not applicable to ports C and D in wired-OR mode.
- 2. Refer to A/D specification for leakage current for port E.
- 3. EXTAL is driven with a square wave, and

 t_{cyc} = 500 ns for 2 MHz rating; t_{cyc} = 333 ns for 3 MHz rating; $V_{IL} \le 0.2 \text{ V}$;

VIH ≥ VDD - 0.2 V; No dc loads.

MOTOROLA A-2

APPENDIX A **ELECTRICAL CHARACTERISTICS**

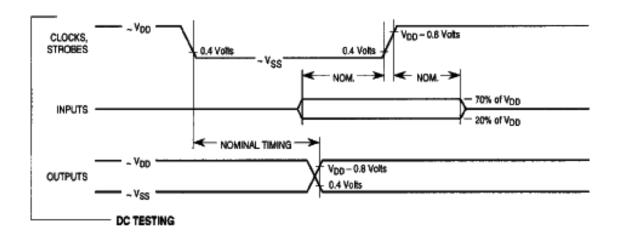
Table A-3a. DC Electrical Characteristics (MC68L11E9)

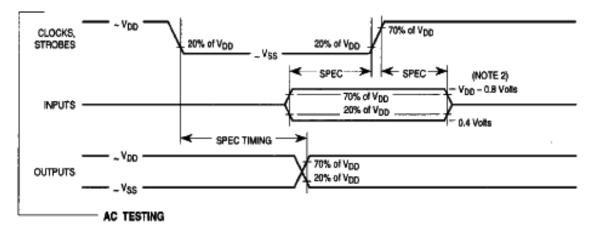
 $V_{DD} = 3.0 \text{ Vdc}$ to 5.5 Vdc, $V_{SS} = 0 \text{ Vdc}$, $T_A = T_L$ to T_H , unless otherwise noted

Cha	racteristic	Symbol	Min	Max	Unit
Output Voltage (Note 1) All Outputs I ILoad = ± 10.0 μA	All Outputs except XTAL Except XTAL, RESET, and MODA	V _{OL} V _{OH}	V _{DD} = 0.1	0.1	V
Output High Voltage (Note 1 $I_{LOBd} = -0.5$ mA, $V_{DD} = I_{LOBd} = -0.8$ mA, $V_{DD} = -0.8$	RESET, and MODA	VoH	V _{DD} - 0.8	_	V
Output Low Voltage I _{Load} = 1.6 mA, V _{DD} = 5 I _{Load} = 1.0 mA, V _{DD} = 3	All Outputs Except XTAL 5.0 V	VOL	_	0.4	V
Input High Voltage	All Inputs Except RESET	ViH	0.7 × V _{DD} 0.8 × V _{DD}	V _{DD} + 0.3 V _{DD} + 0.3	V
Input Low Voltage	All Inputs	VL	V _{SS} - 0.3	$0.2 \times V_{DD}$	٧
I/O Ports, Three-State Leak $V_{in} = V_{iH} \text{ or } V_{iL}$	PA7, PA3, PC[7:0], PD[5:0], AS/STRA, MODA/LIR, RESET	loz	_	±10	μА
Input Leakage Current (Note V _{in} = V _{DD} or V _{SS} V _{in} = V _{DD} or V _{SS}	PA[2:0], IRQ, XIRQ MODB/V _{STBY}	lin	_	±1 ±10	μ Α μ Α
RAM Standby Voltage	Power down	VsB	2.0	V _{DD}	٧
RAM Standby Current	Power down	ISB	_	10	μA
Input Capacitance PA[2:0], PE[7:0], IRQ, XIRQ, EXTAL PA7, PA3, PC[7:0], PD[5:0], AS/STRA, MODA/LIR, RESET	C _{in}	=	8 12	pF pF
Output Load Capacitance	All Outputs Except PD[4:1] PD[4:1]	٩	=	90 100	pF pF

Characteristic		Symbol	1 MHz	2 MHz	Unit
Maximum Total Supply Current (Note 3)					
RUN:		IDD			
Single-Chip Mode	$V_{DD} = 5.5 \text{ V}$		8	15	mA
	$V_{DD} = 3.0 \text{ V}$		4	8	mA.
Expanded Multiplexed Mode	V _{DD} = 5.5 V		14	27	mA
	V _{DO} = 3.0 V		7	14	mA.
WAIT: (All Peripheral Functions Shut		W _{IDD}	•		****
Single-Chip Mode	V _{DD} = 5.5 V		3	6	mA
omigic on princes	V _{DD} = 3.0 V		1.5	6 3	mA
Expanded Multiplexed Mode	$V_{DD} = 5.5 \text{ V}$		5	10	mA
Experience Mempresses tribue	V _{DD} = 3.0 V		2.5	5	mA
STOP:	V DD = 3.0 V	B	2.0	"	11100
Single-Chip Mode, No Clocks	$V_{DD} = 5.5 \text{ V}$	SIDD	50	50	
Single-Crilp Mode, 140 Clocks			25	25	μA
	$V_{DD} = 3.0 \text{ V}$		25	20	μА
Maximum Power Dissipation		P _D			
Single-Chip Mode	$V_{DD} = 5.5 \text{ V}$		44	85	mW
	$V_{DD} \approx 3.0 \text{ V}$		12	24	mW
Expanded Multiplexed Mode	$V_{DD} = 5.5 \text{ V}$		77	150	mW.
•	$V_{DD} = 3.0 \text{ V}$		21	42	mW

NOTES:


- V_{OH} specification for RESET and MODA is not applicable because they are open-drain pins. V_{OH} specification not applicable to ports C and D in wired-OR mode.
- 2. Refer to A/D specification for leakage current for port E.
- 3. EXTAL is driven with a square wave, and


l_{cyc} = 1000 ns for 1 MHz rating;

 t_{CyC} = 500 ns for 2 MHz rating; $V_{\text{IL}} \le 0.2 \text{ V}$; $V_{\text{IH}} \ge V_{\text{DD}} - 0.2 \text{ V}$; No dc loads.

M68HC11 E SERIES

APPENDIX A TECHNICAL DATA ELECTRICAL CHARACTERISTICS MOTOROLA

NOTES:

- 1. Full test loads are applied during all DC electrical tests and AC timing measurements.
- During AC timing measurements, inputs are driven to 0.4 volts and V_{BD} = 0.8 volts while timing measurements are taken at the 20% and 70% of V_{DD} points.

TEST WET-4005 2

Figure A-1. Test Methods

MOTOROLA A-4 APPENDIX A
ELECTRICAL CHARACTERISTICS

Table A-4. Control Timing

 $V_{DD} = 5.0 \text{ Vdc} \pm 10\%$, $V_{SS} = 0 \text{ Vdc}$, $T_A = T_L \text{ to } T_H$

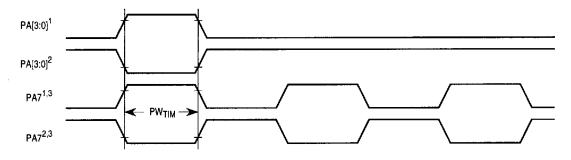
Characteristic	Symbol	1.0	MHz	2.0	MHz	3.0	MHz	Unit
		Min	Max	Min	Max	Min	Max	
Frequency of Operation	10	dc	1.0	dc	2.0	dc	3.0	MHz
E-Clock Period	t _{cyc}	1000	_	500	_	333	_	ns
Crystal Frequency	fXTAL		4.0		8.0	_	12.0	MHz
External Oscillator Frequency	4 fo	dc	4.0	dc	8.0	dc	12.0	MHz
Processor Control Setup Time tpcsu = 1/4 t _{cyc} + 50 ns	tpcsu	300		175	-	133	-	ns
Reset Input Pulse Width To Guarantee External Reset Vector Minimum Input Time (Can Be Preempted by Internal Reset)	PWRSTL	8	_	8	=	8	-	l _{cyc}
Mode Programming Setup Time	1 _{MPS}	2	_	2	_	2	_	t _{cyc}
Mode Programming Hold Time	[‡] MPH	10		10	_	10	_	ns
Interrupt Pulse Width, IRQ Edge-Sensitive Mode PWIRQ = t _{cyc} + 20 ns	PWIRQ	1020	_	520		353	_	ns
Wait Recovery Startup Time	twrs	_	4	_	4	_	4	lcyc
Timer Pulse Width Input Capture Pulse Accumulator Input PWTIM = t _{CyC} + 20 ns	PW _{TIM}	1020	_	520	· –	353	-	ns

NOTES:

- RESET is recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt. Refer to SECTION 5 RESETS AND INTERRUPTS for further detail.
- All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

M68HC11 E SERIES TECHNICAL DATA APPENDIX A
ELECTRICAL CHARACTERISTICS

MOTOROLA A-5

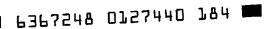

Table A-4a. Control Timing (MC68L11E9)

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H

Characteristic	Symbol	1.0	MHz	2.0	MHz	Unit
		Min	Max	Min	Max	
Frequency of Operation	fo	dc	1.0	dc	2.0	MHz
E-Clock Period	t _{cyc}	1000	-	500	_	ns
Crystal Frequency	fXTAL	_	4.0	_	8.0	MHz
External Oscillator Frequency	4 f _o	dc	4.0	dc	8.0	MHz
Processor Control Setup Time tPCSU = 1/4 t _{CyC} + 75 ns	t _{PCSU}	325	_	200	_	ns
Reset Input Pulse Width To Guarantee External Reset Vector Minimum Input Time (Can Be Preempted by Internal Reset)	PW _{RSTL}	8	_	8 1	<u> </u>	t _{cyc}
Mode Programming Setup Time	t _{MPS}	2		2	_	t _{cyc}
Mode Programming Hold Time	^t MPH	10	_	10		ns
Interrupt Pulse Width, IRQ Edge-Sensitive Mode PWIRQ = t _{cyc} + 20 ns	PW _{IRQ}	1020		520	_	ns
Wait Recovery Startup Time	twrs	_	4	_	4	t _{cyc}
Timer Pulse Width, Input Capture Pulse Accumulator Input PW _{TIM} = t _{cyc} + 20 ns	PW _{TIM}	1020	_	520	-	ns

NOTES:

- RESET is recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt. Refer to SECTION 5 RESETS AND INTERRUPTS for further detail.
- 2. All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.


NOTES:

- 1. Rising edge sensitive input
- 2. Falling edge sensitive input
- 3. Maximum pulse accumulator clocking rate is E-clock frequency divided by 2.

TIMER INPUTS TIM

Figure A-2. Timer Inputs

MOTOROLA A-6 APPENDIX A
ELECTRICAL CHARACTERISTICS

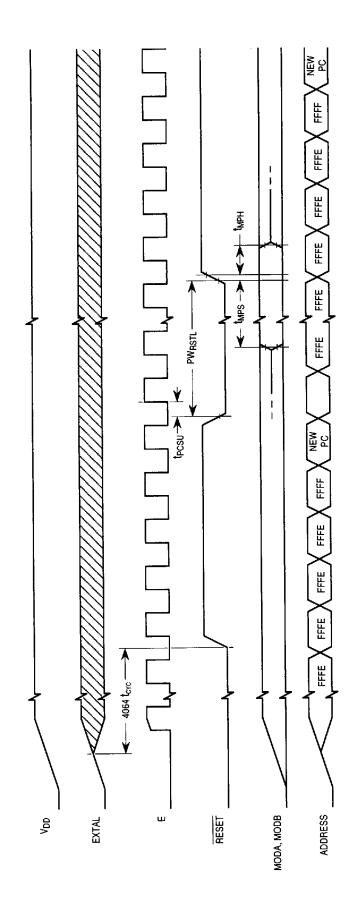


Figure A-3. POR External Reset Timing Diagram

POR EXT RESET TIM

M68HC11 E SERIES TECHNICAL DATA APPENDIX A ELECTRICAL CHARACTERISTICS

MOTOROLA A-7

■ 6367248 0127441 010 **■**

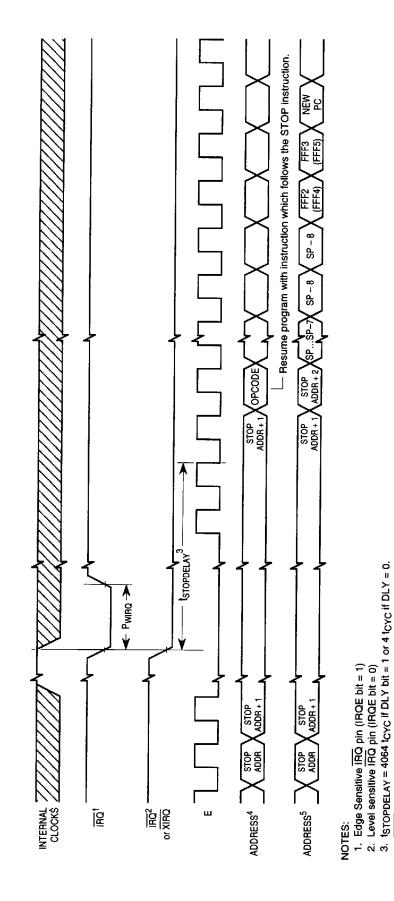


Figure A-4. STOP Recovery Timing Diagram

STOP RECOVERY TIM

MOTOROLA APPENDIX A **ELECTRICAL CHARACTERISTICS**

M68HC11 E SERIES **TECHNICAL DATA**

 \overline{XIRQ} with X bit in CCR = 1. \overline{IRQ} or \overline{XIRQ} with X bit in CCR = 0).

6367248 0127442 **T57**

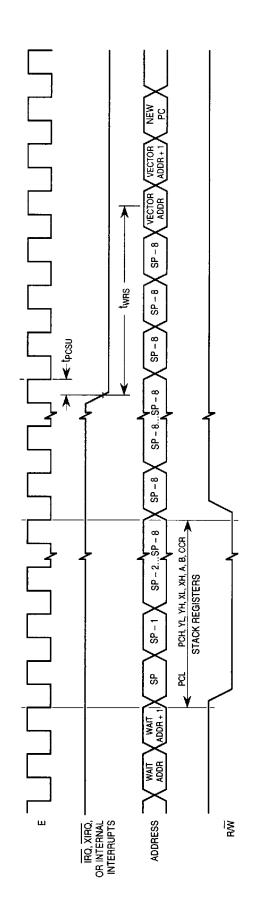


Figure A-5. WAIT Recovery from Interrupt Timing Diagram

WAIT RECOVERY TIM

NOTE: RESET also causes recovery from WAIT.

M68HC11 E SERIES TECHNICAL DATA APPENDIX A
ELECTRICAL CHARACTERISTICS

MOTOROLA A-9

■ 6367248 0127443 993 ■

Figure A-6. Interrupt Timing Diagram

INTERRUPT TIM

MOTOROLA A-10 APPENDIX A ELECTRICAL CHARACTERISTICS

M68HC11 E SERIES TECHNICAL DATA

NOTES: 1. Edge sensitive $\overline{\text{IRQ}}$ pin (IRQE bit = 1) 2. Level sensitive $\overline{\text{IRQ}}$ pin (IRQE bit = 0)

■ 6367248 0127444 82T **■**

Table A-5. Peripheral Port Timing

 V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H

Characteristic	Symbol	1.0	MHz	2.0	MHz	3.0	MHz	Unit	
		Min	Max	Min	Max	Min	Max		
Frequency of Operation (E-Clock Frequency)	fo	dc	1.0	dc	2.0	dc	3.0	MHz	
E-Clock Period	t _{cyc}	1000	_	500		333	_	ns	
Peripheral Data Setup Time MCU Read of Ports A, C, D, and E	t _{PDSU}	100	_	100		100		ns	
Peripheral Data Hold Time MCU Read of Ports A, C, D, and E	t _{PDH}	50	_	50	_	50	_	ns	
Delay Time, Peripheral Data Write MCU Write to Port A MCU Writes to Ports B, C, and D tpwD = 1/4 t _{cyc} + 100 ns	t _{PWD}	-	200 350	_	200 225	_	200 183	ns ns	
Input Data Setup Time (Port C)	t _{IS}	60	_	60		60	_	ns	
Input Data Hold Time (Port C)	t _{IH}	100	_	100	_	100	_	ns	
Delay Time, E Fall to STRB t _{DEB} = 1/4 t _{cyc} + 100 ns	t _{DEB}	_	350	_	225		183	ns	
Setup Time, STRA Asserted to E Fall (Note 1)	tAES	0	_	0	_	0	_	ns	
Delay Time, STRA Asserted to Port C Data Output Valid	t _{PCD}	_	100	_	100	_	100	ns	
Hold Time, STRA Negated to Port C Data	^t PCH	10	_	10	_	10	_	ns	
Three-State Hold Time	tPCZ	_	150	_	150		150	ns	

NOTES:

- 1. If this setup time is met, STRB acknowledges in the next cycle. If it is not met, the response may be delayed one more cycle.
- 2. Port C and D timing is valid for active drive (CWOM and DWOM bits not set in PIOC and SPCR registers respectively).
- 3. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted.

M68HC11 E SERIES
TECHNICAL DATA

APPENDIX A
ELECTRICAL CHARACTERISTICS

MOTOROLA

Table A-5a. Peripheral Port Timing (MC68L11E9)

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H

Characteristic	Symbol	1.0	MHz	2.0	Unit	
		Min	Max	Min	Max	
Frequency of Operation (E-Clock Frequency)	fo	dc	1.0	dc	2.0	MHz
E-Clock Period	t _{cyc}	1000		500	_	ns
Peripheral Data Setup Time MCU Read of Ports A, C, D, and E	^t PDSU	100	_	100	_	ns
Peripheral Data Hold Time MCU Read of Ports A, C, D, and E	tPDH	50		50	_	ns
Delay Time, Peripheral Data Write MCU Write to Port A MCU Writes to Ports B, C, and D $t_{PWD} = 1/4\ t_{cyc} + 150\ ns$	tPWD	<u>-</u>	250 400	<u> </u>	250 275	ns ns
Input Data Setup Time (Port C)	t _{IS}	60	_	60	_	ns
input Data Hold Time (Port C)	ŧн	100	_	100	_	ns
Delay Time, E Fall to STRB t _{DEB} = 1/4 t _{cyc} + 150 ns	t _{DEB}	_	400	_	275	ns
Setup Time, STRA Asserted to E Fall (Note 1)	t _{AES}	0		0	_	ns
Delay Time, STRA Asserted to Port C Data Output Valid	tPCD	_	100		100	ns
Hold Time, STRA Negated to Port C Data	tpch	10		10	_	ns
Three-State Hold Time	tPCZ	_	150	_	150	ns

NOTES:

- If this setup time is met, STRB acknowledges in the next cycle. If it is not met, the response may be delayed one more cycle.
- Port C and D timing is valid for active drive (CWOM and DWOM bits not set in PIOC and SPCR registers respectively).
- 3. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted.

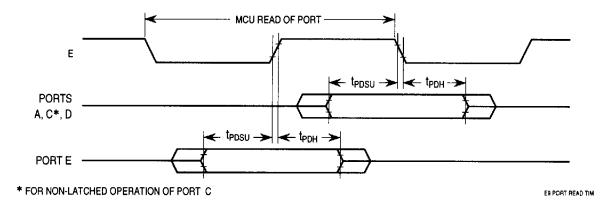


Figure A-7. Port Read Timing Diagram

MOTOROLA A-12 APPENDIX A
ELECTRICAL CHARACTERISTICS

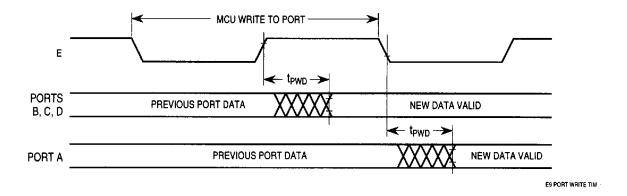
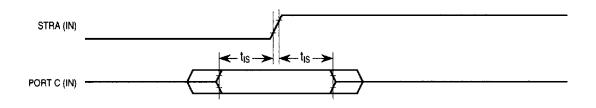



Figure A-8. Port Write Timing Diagram

SIMPLE INPUT STROBE TIM

Figure A-9. Simple Input Strobe Timing Diagram

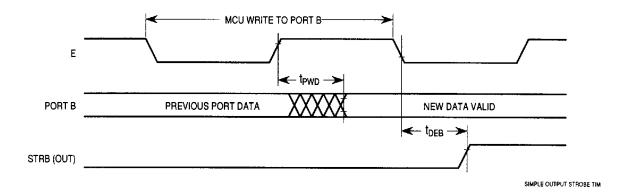
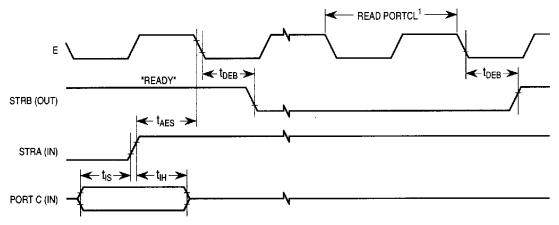
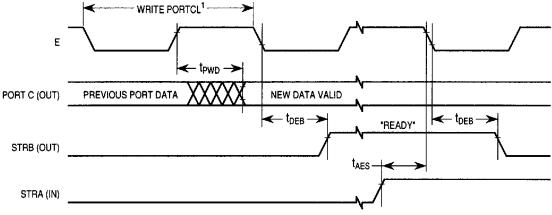



Figure A-10. Simple Output Strobe Timing Diagram

M68HC11 E SERIES TECHNICAL DATA APPENDIX A ELECTRICAL CHARACTERISTICS

MOTOROLA A-13

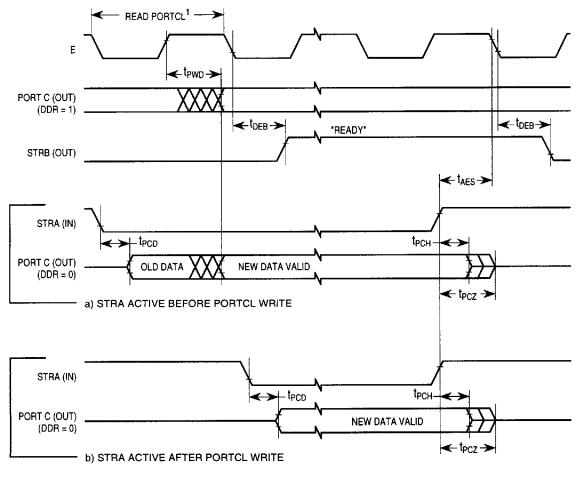


NOTES:

- 1. After reading PIOC with STAF set
- 2. Figure shows rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

PORT C INPUT HNDSHK TIM

Figure A-11. Port C Input Handshake Timing Diagram



- NOTES:
- 1. After reading PIOC with STAF set
- 2. Figure shows rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

PORT COUTPUT HNDSHK TIM

Figure A-12. Port C Output Handshake Timing Diagram

MOTOROLA A-14 APPENDIX A
ELECTRICAL CHARACTERISTICS

NOTES:

- 1. After reading PIOC with STAF set
- 2. Figure shows rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

3-STATE VAR OUTPUT HNDSHK TIM

Figure A-13. Three-State Variation of Output Handshake Timing Diagram (STRA Enables Output Buffer)

M68HC11 E SERIES TECHNICAL DATA APPENDIX A ELECTRICAL CHARACTERISTICS

MOTOROLA A-15

Table A-6. Analog-To-Digital Converter Characteristics

 $V_{DD} = 5.0 \text{ Vdc} \pm 10\%, \ V_{SS} = 0 \text{ Vdc}, \ T_A = T_L \text{ to } T_{H_1}, 750 \text{ kHz} \leq E \leq 3.0 \text{ MHz}, \text{ unless otherwise noted}$

Characteristic	Parameter	Min	Absolute	2.0 MHz	3.0 MHz	Unit
				Max	Max	
Resolution	Number of Bits Resolved by A/D Converter		8			Bits
Non-Linearity	Maximum Deviation from the Ideal A/D Transfer Characteristics		_	± 1/2	±1	LSB
Zero Error	Difference Between the Output of an Ideal and an Actual for Zero Input Voltage	_	_	± 1/2	± 1	LSB
Full Scale Error	Difference Between the Output of an Ideal and an Actual A/D for Full-Scale Input Voltage	_	_	± 1/2	±1	LSB
Total Unadjusted Error	Maximum Sum of Non-Linearity, Zero Error, and Full-Scale Error	_		± 1/2	± 1 1/2	LSB
Quantization Error	Uncertainty Because of Converter Resolution	_	_	± 1/2	± 1/2	LSB
Absolute Accuracy	Difference Between the Actual Input Voltage and the Full-Scale Weighted Equivalent of the Binary Output Code, All Error Sources Included	_		±1	±2	LSB
Conversion Range	Analog Input Voltage Range	V _{RL}	_	V _{RH}	V _{RH}	٧
V _{RH}	Maximum Analog Reference Voltage (Note 2)	V _{RL}	_	V _{DD} + 0.1	V _{DD} + 0.1	٧
V _{RL}	Minimum Analog Reference Voltage (Note 2)	V _{SS} -0.1	_	V _{RH}	V _{RH}	٧
ΔV _R	Minimum Difference between V _{RH} and V _{RL} (Note 2)	3	_	_	_	٧
Conversion Time	Total Time to Perform a Single Analog-to-Digital Conversion:					
	E Clock		32	_		t _{cyc}
	Internal RC Oscillator	_	_	t _{cyc} + 32	t _{cyc} + 32	μs
Monotonicity	Conversion Result Never Decreases with an Increase in Input Voltage and has no Missing Codes		Guaranteed			
Zero Input Reading	Conversion Result when V _{in} = V _{RL}	00			<u>—</u>	Hex
Full Scale Reading	Conversion Result when V _{in} = V _{RH}	_	_	FF ·	FF	Hex
Sample	Analog Input Acquisition Sampling Time:			, teli aar isi b		
Acquisition Time	E Clock	_	12	_	_	t _{cyc}
	Internal RC Oscillator	_	_	12	12	μs
Sample/Hold Capacitance	Input Capacitance During Sample PE[7:0]	_	20 (Тур)	_	_	рF
Input Leakage	Input Leakage on A/D Pins PE[7:0]		_	400	400	nΑ
	V_{RL} , V_{RH}		_ 7	1.0	1.0	μ Α

NOTES:

- 1. Source impedances greater than 10 $k\Omega$ affect accuracy adversely because of input leakage.
- 2. Performance verified down to 2.5 V Δ V_R, but accuracy is tested and guaranteed at Δ V_R = 5 V \pm 10%.

MOTOROLA

APPENDIX A

M68HC11 E SERIES
TECHNICAL DATA

A-16

ELECTRICAL CHARACTERISTICS

Table A-6a. Analog-To-Digital Converter Characteristics (MC68L11E9)

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_{H_1} 750 kHz \leq E \leq 2.0 MHz, unless otherwise noted

Characteristic	Parameter	Min	Absolute	Max	Unit	
Resolution	Number of Bits Resolved by A/D Converter	_	8	_	Bits	
Non-Linearity	Maximum Deviation from the Ideal A/D Transfer Characteristics		_	±1	LSB	
Zero Error	Difference Between the Output of an Ideal and an Actual for Zero Input Voltage	_	_	±1	LSB	
Full Scale Error	Difference Between the Output of an Ideal and an Actual A/D for Full-Scale Input Voltage	_	_	±1	LSB	
Total Unadjusted Error	Maximum Sum of Non-Linearity, Zero Error, and Full-Scale Error	· _	_	± 1 1/2	LSB	
Quantization Error	Uncertainty Because of Converter Resolution	<u>—</u>	_	± 1/2	LSB	
Absolute Accuracy		_	±2	LSB		
Conversion Range	Analog Input Voltage Range	V _{RL}	_	V _{RH}	٧	
V _{RH}	Maximum Analog Reference Voltage	V _{RL}	_	V _{DD} + 0.1	٧	
V _{RL}	Minimum Analog Reference Voltage	V _{SS} -0.1		V _{RH}	٧	
ΔVR	Minimum Difference between V _{RH} and V _{RL}	3.0	_		٧	
Conversion Time	Total Time to Perform a Single Analog-to-Digital Conversion:					
	E Clock		32		t _{cyc}	
	Internal RC Oscillator	_	_	t _{cyc} + 32	μs	
Monotonicity	Conversion Result Never Decreases with an Increase in Input Voltage and has no Missing Codes	_	Guaranteed	_		
Zero Input Reading	Conversion Result when V _{in} = V _{RL}	00	_	_	Hex	
Full Scale Reading	Conversion Result when V _{in} = V _{RH}	_	_	FF	Hex	
Sample	Analog Input Acquisition Sampling Time:				·	
Acquisition Time	E Clock		12	_	t _{cyc}	
	Internal RC Oscillator	_	_	12	μs	
Sample/Hold Capacitance	Input Capacitance During Sample PE[7:0]	_	20 (Typ)	_	pF	
Input Leakage	Input Leakage on A/D Pins PE[7:0]	_		400	nA	
	V _{RL} , V _{RH}			1.0	μА	

NOTES:

1. Source impedances greater than 10 k Ω affect accuracy adversely because of input leakage.

M68HC11 E SERIES

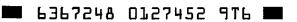
APPENDIX A TECHNICAL DATA ELECTRICAL CHARACTERISTICS **MOTOROLA**

Table A-7. Expansion Bus Timing

 V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H

Num	Characteristic	Symbol	1.0	MHz	2.0	MHz	3.0	MHz	Unit
		-	Min	Max	Min	Max	Min	Max	
	Frequency of Operation (E-Clock Frequency)	fo	dc	1.0	dc	2.0	dc	3.0	MHz
1	Cycle Time	t _{cyc}	1000	_	500	_	333	_	ns
2	Pulse Width, E Low PW _{EL} = 1/2 t _{CVC} - 23 ns (Note 1)	PW _{EL}	477	_	227		146	_	ns
3	Pulse Width, E High PW _{EH} = 1/2 t _{cyc} – 28 ns (Note 1)	PWEH	472		222	_	141		ns
4a 4b	E and AS Rise Time E and AS Fall Time	t _r		20 20		20 20	_	20 15	ns
9	Address Hold Time t _{AH} = 1/8 t _{cyc} – 29.5 ns (Note 1, 2a)	t _{AH}	95.5	_	33		26	_	ns
12	Nonmultiplexed Address Valid Time to E Rise $t_{AV} = PW_{EL} - (t_{ASD} + 80 \text{ ns}) \text{ (Note 1, 2a)}$	t _{AV}	281.5	_	94		54	_	ns
17	Read Data Setup Time	tDSR	30		30	-	30		ns
18	Read Data Hold Time (Max = t _{MAD})	tDHR	0	145.5	0	83	0	51	ns
19	Write Data Delay Time t _{DDW} = 1/8 t _{cyc} + 65.5 ns (Note 1, 2a)	t _{DDW}	_	190.5	_	128		71	ns
21	Write Data Hold Time t _{DHW} = 1/8 t _{cyc} - 29.5 ns (Note 1, 2a)	tDHW	95.5	_	33	_	26	_	ns
22	Multiplexed Address Valid Time to E Rise t _{AVM} = PW _{EL} - (t _{ASD} + 90 ns) (Note 1, 2a)	tAVM	271.5	_	84		54		ns
24	Multiplexed Address Valid Time to AS Fall t _{ASL} = PW _{ASH} - 70 ns (Note 1)	tasl	151		26	_	13	_	ns
25	Multiplexed Address Hold Time t _{AHL} = 1/8 t _{cyc} - 29.5 ns (Note 1, 2b)	tAHL	95.5	_	33	_	31		ns
26	Delay Time, E to AS Rise t _{ASD} = 1/8 t _{cyc} - 9.5 ns (Note 1, 2a)	t _{ASD}	115.5	_	53		31		ns
27	Pulse Width, AS High PW _{ASH} = 1/4 t _{cyc} – 29 ns (Note 1)	PWASH	221	_	96	_	63	_	ns
28	Delay Time, AS to E Rise t _{ASED} = 1/8 t _{cyc} - 9.5 ns (Note 1, 2b)	tASED	115.5	_	53	_	31	_	ns
29	MPU Address Access Time (Note 2a) tACCA = t _{cyc} - (PW _{EL} - t _{AVM}) - t _{DSR} -t _f	[†] ACCA	744.5	_	307		196		ns
35	MPU Access Time tACCE = PWEH - tDSR	t _{ACCE}	—	442	_	192		111	ns
36	Multiplexed Address Delay (Previous Cycle MPU Read) t _{MAD} = t _{ASD} + 30 ns (Note 1, 2a)	t _{MAD}	145.5		83	_	51	_	ns

NOTES:


- 1. Formula only for dc to 2 MHz.
- Input clocks with duty cycles other than 50% affect bus performance. Timing parameters affected by input clock duty cycle are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place of 1/8 t_{cyc} in the above formulas, where applicable:
 - (a) $(1-DC) \times 1/4 t_{cyc}$
 - (b) DC \times 1/4 t_{cyc}

Where:

DC is the decimal value of duty cycle percentage (high time).

3. All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

MOTOROLA A-18 APPENDIX A
ELECTRICAL CHARACTERISTICS

Table A-7a. Expansion Bus Timing (MC68L11E9)

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H

Num	Characteristic		Symbol	1.0	1.0 MHz		2.0 MHz	
				Min	Max	Min	Max	1
	Frequency of Operation (E-Clock Frequency)		fo	dc	1.0	dc	2.0	MHz
1	Cycle Time		t _{cyc}	1000	_	500	_	ns
2	Pulse Width, E Low PW _{EL} = 1/2 t _{cyc} – 25 ns		PW _{EL}	475	_	225	_	ns
3	Pulse Width, E High PW _{EH} = 1/2 t _{cyc} – 30 ns		PW _{EH}	470	_	220	_	ns
4A 4B	E and AS Rise Time E and AS Fall Time		t _r t _f	_	25 25	_	25 25	ns ns
9	Address Hold Time t _{AH} = 1/8 t _{cyc} – 30 ns	(Note 1a)	^t AH	95		33	_	ns
12	Nonmultiplexed Address Valid Time to E Rise t _{AV} = PW _{EL} - (t _{ASD} + 80 ns)	(Note 1a)	t _{AV}	275		88		ns
17	Read Data Setup Time		tDSR	30		30	_	ns
18	Read Data Hold Time (Max = t _{MAD})		tDHR	0	150	0	88	ns
19	Write Data Delay Time t _{DDW} = 1/8 t _{cyc} + 70 ns	(Note 1a)	toow	_	195	_	133	ns
21	Write Data Hold Time t _{DHW} = 1/8 t _{cyc} - 30 ns	(Note 1a)	tDHW	95		33		ns
22	Multiplexed Address Valid Time to E Rise $t_{\text{AVM}} = \text{PW}_{\text{EL}} - (t_{\text{ASD}} + 90 \text{ ns})$	(Note 1a)	[†] AVM	265		78		ns
24	Multiplexed Address Valid Time to AS Fall t _{ASL} = PW _{ASH} - 70 ns		†ASL	150		25	_	ns
25	Multiplexed Address Hold Time t _{AHL} = 1/8 t _{cyc} - 30 ns	(Note 1b)	^t AHL	95		33		ns
26	Delay Time, E to AS Rise t _{ASD} = 1/8 t _{cyc} – 5 ns	(Note 1a)	tasd	120		58	_	ns
27	Pulse Width, AS High PW _{ASH} = 1/4 t _{cyc} – 30 ns		PW _{ASH}	220		95	_	ns
28	Delay Time, AS to E Rise t _{ASED} = 1/8 t _{cyc} – 5 ns	(Note 1b)	^t ASED	120		58	_	ns
29	MPU Address Access Time tACCA = t _{cyc} - (PW _{EL} -t _{AVM}) - t _{DSR} -t _f	(Note 1a)	[†] ACCA	735	_	298	_	ns
35	MPU Access Time tacce = PWEH - tdsR		†ACCE	_	440	_	190	ns
36	Multiplexed Address Delay (Previous Cycle MPU Read) t _{MAD} = t _{ASD} + 30 ns	(Note 1a)	^t MAD	150	_	88	-	ns

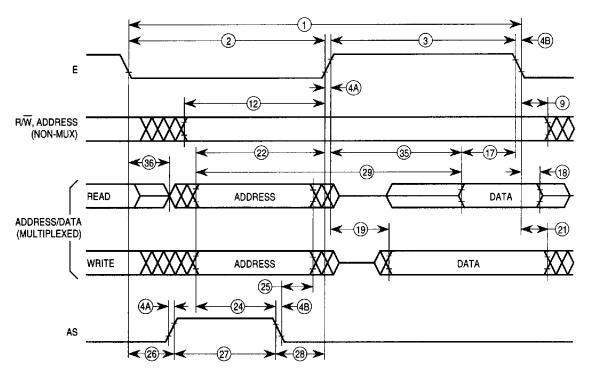
NOTES:

 Input clocks with duty cycles other than 50% affect bus performance. Timing parameters affected by input clock duty cycle are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place of 1/8 t_{cyc} in the above formulas, where applicable:

(a) $(1-DC) \times 1/4 t_{CVC}$

(b) DC \times 1/4 t_{cyc}

Where:


DC is the decimal value of duty cycle percentage (high time).

2. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted.

M68HC11 E SERIES TECHNICAL DATA APPENDIX A
ELECTRICAL CHARACTERISTICS

MOTOROLA A-19

| 6367248 0127453 832 🖿

NOTE: Measurement points shown are 20% and 70% of V_{DD}.

MUX BUS TIM

Figure A-14. Multiplexed Expansion Bus Timing Diagram

MOTOROLA A-20 APPENDIX A
ELECTRICAL CHARACTERISTICS

Table A-8. Serial Peripheral Interface Timing

 V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H

Num	Characteristic	Symbol	2.0 MHz		3.0 MHz		Unit
			Min	Max	Min	Max	
	Operating Frequency Master Slave	f _{op(m)} f _{op(s)}	dc dc	0.5 2.0	dc dc	0.5 3.0	f _{op} MHz
1	Cycle Time Master Slave	t _{cyc(m)}	2.0 500	_	2.0 333	_	t _{cyc}
2	Enable Lead Time Master (Note 2) Slave	^t lead(m) ^t lead(s)	 250		 240	_	ns ns
3	Enable Lag Time Master (Note 2) Slave	t _{lag(m)}	 250		 240	_	ns ns
4	Clock (SCK) High Time Master Slave	t _w (SCKH)m t _w (SCKH)s	340 190	_	227 127	_	ns ns
5	Clock (SCK) Low Time Master Slave	tw(SCKL)m	340 190	_	227 127	_	ns ns
6	Data Setup Time (Inputs) Master Slave	t _{su(m)} t _{su(s)}	100 100	_	100 100	_	ns ns
7	Data Hold Time (Inputs) Master Slave	t _{h(m)}	100 100		100 100	_	ns ns
8	Access Time (Time to Data Active from High-Impedance State) Slave	ta	0	120	0	120	ns
9	Disable Time (Hold Time to High-Impedance State) Slave	t _{dis}	_	240		167	ns
10	Data Valid (After Enable Edge) (Note 3)	t _{v(s)}	_	240		167	ns
11	Data Hold Time (Outputs) (After Enable Edge)	t _{ho}	0	_	0	_	ns
12	Rise Time (20% V _{DD} to 70% V _{DD} , C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	t _{rm}		100 2.0	_	100 2.0	ns µs
13	Fall Time (70% V _{DD} to 20% V _{DD} , C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	t _{fm}		100 2.0	_	100 2.0	ns µs

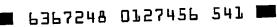
NOTES:

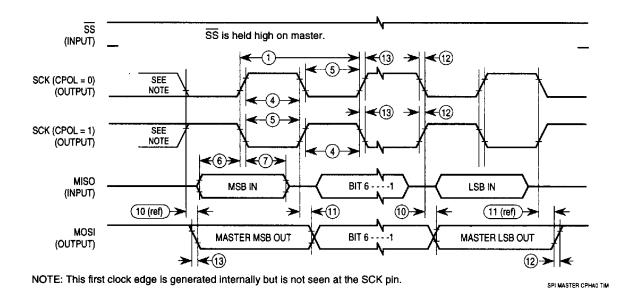
- 1. All timing is shown with respect to 20% $\rm V_{DD}$ and 70% $\rm V_{DD}$, unless otherwise noted.
- 2. Signal production depends on software.
- 3. Assumes 200 pF load on SCK, MOSI, and MISO pins.

M68HC11 E SERIES TECHNICAL DATA APPENDIX A
ELECTRICAL CHARACTERISTICS

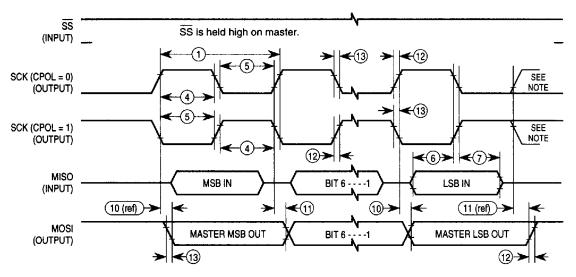
MOTOROLA

Table A-8a. Serial Peripheral Interface Timing (MC68L11E9)


 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_{A} = T_{L} to T_{H}


Num	Characteristic	Symbol	1.0	1.0 MHz		2.0 MHz	
			Min	Max	Min	Max	
	Operating Frequency Master Slave	f _{op(m)} f _{op(s)}	dc dc	0.5 1.0	dc dc	0.5 2.0	f _{op} MHz
1	Cycle Time Master Slave	t _{cyc(m)}	2.0 1000	_	2.0 500		t _{cyc} ns
2	Enable Lead Time Master (Note 2) Slave	^t lead(m) ^t lead(s)	 500		_ 250	_	ns ns
3	Enable Lag Time Master (Note 2) Slave	t _{lag(m)} t _{lag(s)}	 500	_	 250	_	ns ns
4	Clock (SCK) High Time Master Slave	tw(SCKH)m	680 380		340 190	_	ns ns
5	Clock (SCK) Low Time Master Slave	tw(SCKL)m tw(SCKL)s	680 380	<u> </u>	340 190	_	ns ns
6	Data Setup Time (Inputs) Master Slave	t _{su(m)} t _{su(s)}	100 100	_	100 100	_	ns ns
7	Data Hold Time (Inputs) Master Slave	t _{h(m)}	100 100	_	100 100	_	ns ns
8	Access Time (Time to Data Active from High-Imp. State) Slave	ta	0	120	0	120	ns
9	Disable Time (Hold Time to High-Impedance State) Slave	[‡] dis	_	240	_	240	ns
10	Data Valid (After Enable Edge) (Note 3)	t _{v(s)}	_	240	_	240	ns
11	Data Hold Time (Outputs) (After Enable Edge)	t _{ho}	0	_	0	_	ns
12	Rise Time (20% V _{DD} to 70% V _{DD} , C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	t _{rm}		100 2.0	_	100 2.0	ns µs
13	Fall Time (70% V _{DD} to 20% V _{DD} , C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	t _{fm}	_	100 2.0	_	100 2.0	ns µs

NOTES:


- 1. All timing is shown with respect to 20% $\rm V_{DD}$ and 70% $\rm V_{DD}$, unless otherwise noted.
- 2. Signal production depends on software.
- 3. Assumes 100 pF load on all SPI pins.

MOTOROLA A-22 APPENDIX A
ELECTRICAL CHARACTERISTICS

a) SPI Master Timing (CPHA = 0)

NOTE: This last clock edge is generated internally but is not seen at the SCK pin.


SPI MASTER CPHA1 TIM

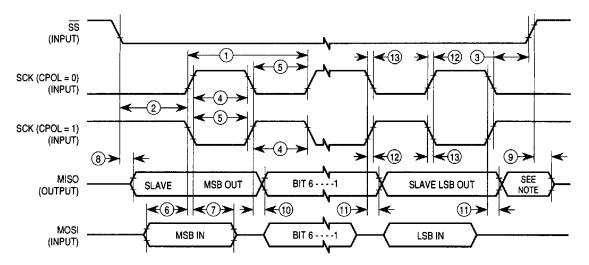
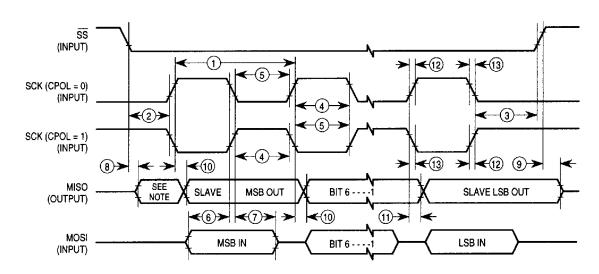

b) SPI Master Timing (CPHA = 1)

Figure A-15. SPI Timing Diagram (1 of 2)

M68HC11 E SERIES TECHNICAL DATA APPENDIX A
ELECTRICAL CHARACTERISTICS

MOTOROLA A-23



NOTE: Not defined but normally MSB of character just received.

SPI SLAVE CPHA0 TIM

a) SPI Slave Timing (CPHA = 0)

NOTE: Not defined but normally LSB of character previously transmitted.

SPI SLAVE CPHA1 TIM

b) SPI Slave Timing (CPHA = 1)

Figure A-15. SPI Timing Diagram (2 of 2)

MOTOROLA A-24 APPENDIX A
ELECTRICAL CHARACTERISTICS

M68HC11 E SERIES TECHNICAL DATA

= 6367248 0127458 314 **=**

Table A-9. EEPROM Characteristics

 $V_{DD} = 5.0 \text{ Vdc} \pm 10\%$, $V_{SS} = 0 \text{ Vdc}$, $T_A = T_L \text{ to } T_H$

Characteristic	Temperature Range				
	- 40 to 85° C	– 40 to 105° C	– 40 to 125° C		
Programming Time <1.0 MHz, RCO Enabled (Note 1) 1.0 to 2.0 MHz, RCO Enabled ≥2.0 MHz (or Anytime RCO Enabled)	10 20 10	15 Must use RCO 15	20 Must use RCO 20	ms	
Erase Time (Note 1) Byte, Row and Bulk	10	10	10	ms	
Write/Erase Endurance (Note 2)	10,000	10,000	10,000	Cycles	
Data Retention (Note 2)	10	10	10	Years	

NOTES:

- The RC oscillator (RCO) must be enabled (by setting the CSEL bit in the OPTION register) for EEPROM
 programming and erasure when the E-clock frequency is below 1.0 MHz.
- 2. Refer to Reliability Monitor Report (current quarterly issue) for current failure rate information.

Table A-9a. EEPROM Characteristics (MC68L11E9)

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H

Charac	Temperature Range – 20 to 70° C	Unit	
Programming Time (Note 1)	3 V, E ≤ 2.0 MHz, RCO Enabled 5 V, E ≤ 2.0 MHz, RCO Enabled	25 10	ms ms
Erase Time (Byte, Row and Bulk) (Note 1)	3 V, E ≤ 2.0 MHz, RCO Enabled 5 V, E ≤ 2.0 MHz, RCO Enabled	25 10	ms ms
Write/Erase Endurance (Note 2)		10,000	Cycles
Data Retention (Note 2)		10	Years

NOTES:

- 1. The RC oscillator (RCO) must be enabled (by setting the CSEL bit in the OPTION register) for EEPROM programming and erasure.
- 2. Refer to Reliability Monitor Report (current quarterly issue) for current failure rate information.

M68HC11 E SERIES TECHNICAL DATA APPENDIX A
ELECTRICAL CHARACTERISTICS

MOTOROLA A-25

6367248 0127459 250 📟