

DS077-1 (v1.0) November 15, 2001

Spartan-IIE 1.8V FPGA Family: Introduction and Ordering Information

Preliminary Product Specification

Introduction

The Spartan[™]-IIE 1.8V Field-Programmable Gate Array family gives users high performance, abundant logic resources, and a rich feature set, all at an exceptionally low price. The five-member family offers densities ranging from 50,000 to 300,000 system gates, as shown in Table 1. System performance is supported beyond 200 MHz.

Spartan-IIE devices deliver more gates, I/Os, and features per dollar than other FPGAs by combining advanced process technology with a streamlined architecture based on the proven Virtex[™]-E platform. Features include block RAM (to 64K bits), distributed RAM (to 98,304 bits), 19 selectable I/O standards, and four DLLs (Delay-Locked Loops). Fast, predictable interconnect means that successive design iterations continue to meet timing requirements.

The Spartan-IIE family is a superior alternative to mask-programmed ASICs. The FPGA avoids the initial cost, lengthy development cycles, and inherent risk of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary (impossible with ASICs).

Features

- Second generation ASIC replacement technology
 - Densities as high as 6,912 logic cells with up to 300,000 system gates
 - Streamlined features based on Virtex-E architecture
 - Unlimited in-system reprogrammability
 - Very low cost

Table	1:	Spartan-IIE	FPGA	Family	Members
rabio	•••	opartan n=			

- System level features
 - SelectRAM+[™] hierarchical memory:
 - 16 bits/LUT distributed RAM
 - Configurable 4K-bit true dual-port block RAM
 - Fast interfaces to external RAM
 - Fully 3.3V PCI compliant to 64 bits at 66 MHz and CardBus compliant
 - Low-power segmented routing architecture
 - Full readback ability for verification/observability
 - Dedicated carry logic for high-speed arithmetic
 - Efficient multiplier support
 - Cascade chain for wide-input functions
 - Abundant registers/latches with enable, set, reset
 - Four dedicated DLLs for advanced clock control
 - Four primary low-skew global clock distribution nets
 - IEEE 1149.1 compatible boundary scan logic
- Versatile I/O and packaging
 - Low cost packages available in all densities
 - Family footprint compatibility in common packages
 - 19 high-performance interface standards, including LVDS and LVPECL
 - Up to 120 differential I/O pairs that can be input, output, or bidirectional
 - Zero hold time simplifies system timing
- Fully supported by powerful Xilinx ISE development system
 - Fully automatic mapping, placement, and routing
 - Integrated with design entry and verification tools

Device	Logic Cells	Typical System Gate Range (Logic and RAM)	CLB Array (R x C)	Total CLBs	Maximum Available User I/O	Maximum Differential I/O Pairs	Distributed RAM Bits	Block RAM Bits
XC2S50E	1,728	23,000 - 50,000	16 x 24	384	182	84	24,576	32K
XC2S100E	2,700	37,000 - 100,000	20 x 30	600	202	86	38,400	40K
XC2S150E	3,888	52,000 - 150,000	24 x 36	864	263	114	55,296	48K
XC2S200E	5,292	71,000 - 200,000	28 x 42	1,176	289	120	75,264	56K
XC2S300E	6,912	93,000 - 300,000	32 x 48	1,536	329	120	98,304	64K

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DS077-1 (v1.0) November 15, 2001 **Preliminary Product Specification** Downloaded from Elcodis.com electronic components distributor www.xilinx.com 1-800-255-7778

General Overview

The Spartan-IIE family of FPGAs have a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), surrounded by a perimeter of programmable Input/Output Blocks (IOBs). There are four Delay-Locked Loops (DLLs), one at each corner of the die. Two columns of block RAM lie on opposite sides of the die, between the CLBs and the IOB columns. These functional elements are interconnected by a powerful hierarchy of versatile routing channels (see Figure 1).

Spartan-IIE FPGAs are customized by loading configuration data into internal static memory cells. Unlimited reprogramming cycles are possible with this approach. Stored values in these cells determine logic functions and interconnections implemented in the FPGA. Configuration data can be read from an external serial PROM (master serial mode), or written into the FPGA in slave serial, slave parallel, or Boundary Scan modes. The Xilinx XC17S00A PROM family is recommended for serial configuration of Spartan-IIE FPGAs. The XC18V00 reprogrammable PROM family is recommended for parallel or serial configuration.

Spartan-IIE FPGAs are typically used in high-volume applications where the versatility of a fast programmable solution adds benefits. Spartan-IIE FPGAs are ideal for shortening product development cycles while offering a cost-effective solution for high volume production. Spartan-IIE FPGAs achieve high-performance, low-cost operation through advanced architecture and semiconductor technology. Spartan-IIE devices provide system clock rates beyond 200 MHz. Spartan-IIE FPGAs offer the most cost-effective solution while maintaining leading edge performance. In addition to the conventional benefits of high-volume programmable logic solutions, Spartan-IIE FPGAs also offer on-chip synchronous single-port and dual-port RAM (block and distributed form), DLL clock drivers, programmable set and reset on all flip-flops, fast carry logic, and many other features.

Spartan-IIE Family Compared to Spartan-II Family

- Higher density and more I/O
- Higher performance
- Unique pinouts in cost-effective packages
- Differential signaling
 - LVDS, Bus LVDS, LVPECL
- $V_{CCINT} = 1.8V$

•

- Lower power
- 5V tolerance with 100Ω external resistor
- 3V tolerance directly
- PCI, LVTTL, and LVCMOS2 input buffers powered by V_{CCO} instead of V_{CCINT}
- Unique larger bitstream

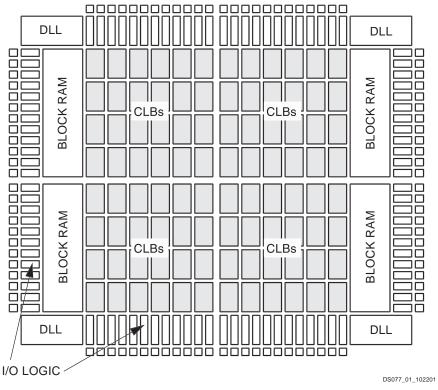


Figure 1: Basic Spartan-IIE Family FPGA Block Diagram

www.xilinx.com 1-800-255-7778

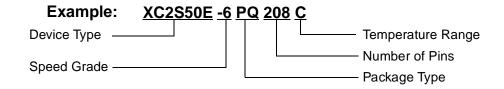
Spartan-IIE Product Availability

Table 2 shows the package and speed grades available for Spartan-IIE family devices. Table 3 shows the maximum

user I/Os available on the device and the number of user I/Os available for each device/package combination.

Table 2: Spartan-IIE Package and Speed Grade Availability

	Pins	144	208	256	456
	Туре	Plastic TQFP	Plastic PQFP	Fine Pitch BGA	Fine Pitch BGA
Device	Code	TQ144	PQ208	FT256	FG456
XC2S50E	-6	C, I	C, I	C, I	-
	-7	(C)	(C)	(C)	-
XC2S100E	-6	C, I	C, I	C, I	C, I
	-7	(C)	(C)	(C)	(C)
XC2S150E	-6	-	(C, I)	(C, I)	(C, I)
	-7	-	(C)	(C)	(C)
XC2S200E	-6	-	C, I	C, I	C, I
	-7	-	(C)	(C)	(C)
XC2S300E	-6	-	C, I	C, I	C, I
	-7	-	(C)	(C)	(C)


Notes:

1. C = Commercial, $T_J = 0^{\circ}$ to +85°C; I = Industrial, $T_J = -40^{\circ}$ C to +100°C

2. Parentheses indicate product not yet released. Contact sales for availability.

	Maximum	Available User I/O According to Package Type					
Device	User I/O	TQ144	PQ208	FT256	FG456		
XC2S50E	182	102	146	182	-		
XC2S100E	202	102	146	182	202		
XC2S150E	263	-	146	182	263		
XC2S200E	289	-	146	182	289		
XC2S300E	329	-	146	182	329		

Ordering Information

Device Ordering Options

Device	Speed Grade		Pa	ckage Type / Number of Pins	Temperature Range (T _J)		
XC2S50E	-6	-6 Standard Performance		144-pin Plastic Thin QFP	C = Commercial	0°C to +85°C	
XC2S100E	-7	Higher Performance	PQ208	208-pin Plastic QFP	I = Industrial	-40°C to +100°C	
XC2S150E	L	1	FT256	256-ball Fine Pitch BGA		1	
XC2S200E			FG456	456-ball Fine Pitch BGA			
XC2S300E							

Revision History

Version No.	Date	Description
1.0	11/15/01	Initial Xilinx release.

The Spartan-IIE Family Data Sheet

DS077-1, Spartan-IIE 1.8V FPGA Family: Introduction and Ordering Information (Module 1)

DS077-2, Spartan-IIE 1.8V FPGA Family: Functional Description (Module 2)

DS077-3, Spartan-IIE 1.8V FPGA Family: DC and Switching Characteristics (Module 3)

DS077-4, Spartan-IIE 1.8V FPGA Family: Pinout Tables (Module 4)

4