intersil

36V Rad Hard Dual Precision Operational Amplifier

ISL70227SEH

The ISL70227SEH is a high precision dual operational amplifier featuring very low noise, low offset voltage, low input bias current and low temperature drift. These features plus its radiation tolerance make the ISL70227SEH the ideal choice for applications requiring both high DC accuracy and AC performance. The combination of precision, low noise, and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts.

Applications for these amplifiers include precision and analytical instrumentation, active filters, and power supply controls.

The ISL70227SEH is available in a 10 lead hermetic ceramic flatpack and operates over the extended temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Applications

- Power Supply Control
- Industrial Controls
- Active Filter Blocks
- Data Acquisition

Features

- Electrically Screened to DLA SMD\# 5962-12223
- Wide Supply Range .4.5V to 42V Max.
- Very Low Voltage Noise 2.5nV/VHz, Typ.
- Gain-bandwidth Product . 10MHz
- Superb Offset Drift . $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, Max
- Operating Temperature Range. $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low Input Voltage Offset. 10رV, Typ.
- Input Bias Current . 1nA, Typ.
- Unity Gain Stable
- No Phase Reversal
- Radiation Tolerance
- SEL/SEB LET ${ }_{\text {TH }}$. $86 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$
- High Dose Rate. 100krad(Si)
- Low Dose Rate 100krad(Si)*
* Product capability established by initial characterization. The EH version is acceptance tested on a wafer by wafer basis to $50 \mathrm{krad}(\mathrm{Si})$ at low dose rate.

Related Literature

- AN1669, "ISL70227SRH Evaluation Board User's Guide"
- AN1756, "Single Events Effects Testing of the ISL70227RH, Dual 36V Rad Hard Precision Operational Amplifiers"

FIGURE 2. OFFSET VOLTAGE vs LOW DOSE RADIATION

Ordering Information

ORDERING NUMBER (Notes 1, 2)	PART MARKING	TEMP RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE (Pb-free)	
D962R1222301VXA	ISL70227SEHVF	-55 to +125	10 Ld Flatpack	
ISL70227SEHF/PROTO	ISL70227 SEHF/PROTO	-55 to +125	10 Ld Flatpack	
5962R1222301V9A	ISL70227SEHVX	-55 to +125	Die	K10.A
ISL70227SEHX/SAMPLE	ISL70227SEHVX/SAMPLE	-55 to +125	Die	
ISL70227MHEVAL1Z	Evaluation Board			

NOTES:

1. These Intersil Pb-free Hermetic packaged products employ 100% Au plate -e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations.
2. For Moisture Sensitivity Level (MSL), please see device information page for ISL70227SEH. For more information on MSL please see techbrief TB363.

Pin Configuration

ISL70227SEH
(10 LD FLATPACK) TOP VIEW

Pin Descriptions

PIN NUMBER	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION		
3	+IN A	Circuit 1	Amplifier A non-inverting input		
5	V-	Circuit 3	Negative power supply		
7	+IN B	Circuit 1	Amplifier B non-inverting input		
8	-IN B	Circuit 1	Amplifier B inverting input		
9	OUT B	Circuit 2	Amplifier B output		
10	V+	Circuit 3	Positive power supply		
1	OUT A	Circuit 2	Amplifier A output		
2	-IN A	Circuit 1	Amplifier A inverting input		
4,6	NC	-	Not Connected - This pin is not electrically connected internally.		
CIRCUIT 1 CIRCUIT 2 V+ CIRCUIT 3					

Absolute Maximum Ratings	
Maximum Supply Voltage . 42 4 V	
Maximum Supply Voltage (LET $=86.4 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$) $\ldots \ldots \ldots \ldots . .36 \mathrm{~V}$	
Maximum Differential Input Current	20mA
Maximum Differential Input Voltage . 0.5 FV	
Min/Max Input Voltage . $\mathrm{V}_{-}-0.5 \mathrm{~V}$ to $\mathrm{V}_{+}+0.5 \mathrm{~V}$	
Max/Min Input Current for	
Input Voltage > $\mathrm{V}+$ or < V-	$\pm 20 \mathrm{~mA}$
Output Short-Circuit Duration	
ESD Tolerance	
Human Body Model (Tested per MIL-PRF-883 3015.7).	2kV
Machine Model (Tested per JESD22-A115-A).	300 V
Charged Device Model (Tested per CDM-22CIOID).	
electrically Isolated PR40 Process	

Thermal Information

Recommended Operating Conditions

Ambient Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Maximum Operating Junction Temperature $+150^{\circ} \mathrm{C}$ Supply Voltage
$4.5 \mathrm{~V}(\pm 2.25 \mathrm{~V})$ to $30 \mathrm{~V}(\pm 15 \mathrm{~V})$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:
3. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
4. For θ_{JC}, the "case temp" location is the center of the ceramic on the package underside.

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=\mathrm{OV}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	TYP	MAX (Note 5)	UNIT
V_{OS}	Offset Voltage		-75	-10	75	$\mu \mathrm{V}$
			-100		100	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Offset Voltage Drift		-1	. 1	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{OS}	Input Offset Current		-10	1	10	nA
			-12		12	nA
I_{B}	Input Bias Current		-10	1	10	nA
			-12		12	nA
V_{CM}	Input Voltage Range	Guaranteed by CMRR	-13		13	V
			-12		12	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-13 \mathrm{~V}$ to +13 V	115	120		dB
		$\mathrm{V}_{\mathrm{CM}}=-12 \mathrm{~V}$ to +12 V	115			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	110	117		dB
		$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	110			dB
$\mathrm{A}_{\mathrm{VOL}}$	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-13 \mathrm{~V} \text { to }+13 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	1000	1500		V / mV
V_{OH}	Output Voltage High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	13.5	13.65		V
			13.2			V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	13.4	13.5		V
			13.1			V
V_{OL}	Output Voltage Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground		-13.65	-13.5	V
					-13.2	V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$, to ground		-13.5	-13.4	V
					-13.1	V

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=\mathrm{OV}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	TYP	MAX (Note 5)	UNIT
I_{S}	Supply Current/Amplifier			2.2	2.8	mA
					3.7	mA
$\mathrm{I}_{\text {SC }}$	Short-Circuit	$\mathrm{R}_{\mathrm{L}}=0 \Omega$ to ground		± 45		mA
$\mathrm{V}_{\text {SUPPLY }}$	Supply Voltage Range	Guaranteed by PSRR	± 2.25		± 15	V
AC SPECIFICATIONS						
GBW	Gain Bandwidth Product			10		MHz
$e_{\text {np-p }}$	Voltage Noise	0.1 Hz to 10 Hz		85		$n V_{\text {P-P }}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{~Hz}$		3		$n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=100 \mathrm{~Hz}$		2.8		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$		2.5		$n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{kHz}$		2.5		$n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$
in	Current Noise Density	$\mathrm{f}=10 \mathrm{kHz}$		0.4		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
THD + N	Total Harmonic Distortion + Noise	$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$		0.00022		\%

TRANSIENT RESPONSE

SR	Slew Rate	$A_{V}=10, R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\text {P-P }}$	± 2.5	± 3.6		V/ $\mu \mathrm{s}$
			± 2.0			V/ $\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$, Small Signal	Rise Time 10% to 90% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{mV}_{\text {P-PP }} \\ & R_{f}=R_{g}=2 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		36	100	ns
					100	ns
	Fall Time 90% to 10% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{mV}_{\text {P.PP }} \\ & R_{f}=R_{g}=2 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		38	100	ns
					100	ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1% 10V Step; 10% to $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=10 V_{P-P}, \\ & R_{g}=R_{f}=10 \mathrm{k}, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		3.4		$\mu \mathrm{s}$
	Settling Time to 0.01\% 10V Step; 10% to $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{O U T}=10 V_{P-P} \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		3.8		$\mu \mathrm{s}$
t_{OL}	Output Overload Recovery Time	$\begin{aligned} & A_{\mathrm{V}}=100, \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		1.7		$\mu \mathrm{s}$
OS+	Positive Overshoot	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=10 V_{P-P} R_{f}=0 \Omega \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		20		\%
					35	\%
OS-	Negative Overshoot	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=10 V_{P-P}, R_{f}=0 \Omega \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		20		\%
					35	\%

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over a total ionizing dose of $100 \mathrm{krad}(\mathbf{S i})$ with exposure at a high dose rate of $50-300 \mathrm{krad}(\mathbf{S i}) / \mathrm{s}$; and over a total ionizing dose of $50 \mathrm{krad}(\mathbf{S i})$ with exposure at a low dose rate of $<10 \mathrm{mrad}(\mathbf{S i}) / \mathrm{s}$.

AC SPECIFICATIONS

GBW	Gain Bandwidth Product		10	MHz
$\mathrm{e}_{\text {np-p }}$	Voltage Noise	0.1 Hz to 10 Hz	85	$n \mathrm{~V}_{\text {- }}$ P
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{~Hz}$	3	$\mathrm{nV} / \mathrm{V}_{\mathrm{Hz}}$
e_{n}	Voltage Noise Density	$\mathrm{f}=100 \mathrm{~Hz}$	2.8	$\mathrm{nV} / \mathrm{V} \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	2.5	$\mathrm{nV} / \mathrm{V} \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	2.5	$\mathrm{nV} / \mathrm{V} \mathrm{Hz}$
in	Current Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	0.4	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
THD + N	Total Harmonic Distortion + Noise	$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	0.00022	\%

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over a total ionizing dose of $100 \mathrm{krad}(\mathbf{S i})$ with exposure at a high dose rate of $50-300 \mathrm{krad}(\mathbf{S i}) / \mathrm{s}$; and over a total ionizing dose of $50 \mathrm{krad}(\mathbf{S i})$ with exposure at a low dose rate of $<10 \mathrm{mrad}(\mathrm{Si}) / \mathrm{s}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 5) } \end{gathered}$	TYP	MAX (Note 5	UNIT
TRANSIENT RESPONSE						
SR	Slew Rate	$A_{V}=10, R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\text {P-P }}$	± 2.5	± 3.6		V/ $\mu \mathrm{s}$
			± 2.0			V/ $\mu \mathrm{s}$
t_{r}, t_{f}, Small Signal	Rise Time 10% to 90% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{mV}_{\text {P-PP }} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		36	100	ns
					100	ns
	Fall Time 90% to 10% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}, \\ & R_{f}=R_{g}=2 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$			100	ns
					100	ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\% 10V Step; 10\% to $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{\mathrm{V}}=-1, V_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }} \\ & R_{g}=R_{f}=10 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } V_{\mathrm{CM}} \end{aligned}$		3.4		$\mu \mathrm{s}$
	Settling Time to 0.01\% 10V Step; 10% to $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{O U T}=10 V_{P-P} \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		3.8		$\mu \mathrm{s}$
t_{OL}	Output Overload Recovery Time	$\begin{aligned} & A_{V}=100, V_{I N}=0.2 \mathrm{~V}, \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		1.7		$\mu \mathrm{s}$
OS+	Positive Overshoot	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=10 V_{P-P,} R_{f}=0 \Omega \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		20		\%
					35	\%
OS-	Negative Overshoot	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=10 V_{P-P}, R_{f}=0 \Omega \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		20		\%
					35	\%

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 5 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 5) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 5) } \end{gathered}$	UNIT
$\mathrm{V}_{\text {OS }}$	Offset Voltage			-10		$\mu \mathrm{V}$
TCV ${ }_{\text {os }}$	Offset Voltage Drift			. 1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l_{os}	Input Offset Current			1		nA
I_{B}	Input Bias Current			1		nA
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-3 \mathrm{~V}$ to +3 V		120		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$		125		dB
$A_{\text {vol }}$	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-3 \mathrm{~V} \text { to }+3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$		1500		V/mV
V_{OH}	Output Voltage High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground		3.65		v
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground		3.5		v
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground		-3.65		v
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground		-3.5		v
I_{s}	Supply Current/Amplifier			2.2		mA
$l_{\text {sc }}$	Short-Circuit			± 45		mA

ISL70227SEH

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	TYP	MAX (Note 5)	UNIT
AC SPECIFICATIONS						
GBW	Gain Bandwidth Product			10		MHz
THD + N	Total Harmonic Distortion + Noise	$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{Vo}=2.5 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$		0.0034		\%
TRANSIENT RESPONSE						
SR	Slew Rate	$A_{V}=10, R_{L}=2 \mathrm{k} \Omega$		± 3.6		$\mathrm{V} / \mu \mathrm{s}$
t_{r}, t_{f}, Small Signal	Rise Time 10% to 90% of $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{O U T}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & R_{f}=R_{\mathrm{g}}=2 \mathrm{k} \Omega, R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		36		ns
	Fall Time 90% to 10% of $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{O U T}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & R_{\mathrm{f}}=R_{\mathrm{g}}=2 \mathrm{k} \Omega, R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		38		ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%	$\begin{aligned} & A_{V}=-1, V_{O U T}=4 V_{P-P} \\ & R_{f}=R_{g}=2 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega \text { to } V_{C M} \end{aligned}$		1.6		$\mu \mathrm{s}$
	Settling Time to 0.01\%	$\begin{aligned} & A_{V}=-1, V_{O U T}=4 V_{P-P} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$		4.2		$\mu \mathrm{s}$

NOTE:
5. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

High Dose Rate Post Radiation Characteristics $\mathrm{v}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=\mathrm{ov}, \mathrm{v}_{\mathrm{O}}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=\mathrm{O}$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 50 to $300 \mathrm{rad}(\mathbf{S i}) / \mathrm{s}$. This data is intended to show typical parameter shifts due to high dose rate radiation. These are not limits nor are they guaranteed.

PARAMETER	DESCRIPTION	CONDITIONS	50k RAD	75k RAD	100k RAD	UNIT
V_{OS}	Offset Voltage		34	30	30	$\mu \mathrm{V}$
I_{OS}	Input Offset Current		-1	-1	-2	nA
I_{B}	Input Bias Current		-1	-2	-3	nA
CMRR	Common-Mode Rejection Ration	$\mathrm{V}_{\mathrm{CM}}=-13 \mathrm{~V}$ to +13 V	155	155	155	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	116	116	116	dB
$\mathrm{A}_{\mathrm{VOL}}$	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-13 \mathrm{~V} \text { to }+13 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	3500	3500	3500	V/mV
$\mathrm{I}_{\text {S }}$	Supply Current/Amplifier		2.2	2.2	2.2	mA

Low Dose Rate Post Radiation Characteristics $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. This data is typical test data post radiation exposure at a rate of $10 \mathrm{mrad}(\mathbf{S i}) / \mathrm{s}$. This data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed.

FIGURE 3. OFFSET VOLTAGE vs RADIATION

FIGURE 5. NEGATIVE INPUT BIAS CURRENT vs RADIATION

FIGURE 4. POSItIVE INPUT BIAS CURRENT vs RADIATION

FIGURE 6. OFFSET CURRENT vs RADIATION

FIGURE 7. TOTAL SUPPLY CURRENT vs RADIATION

Typical Performance Curves $v_{S}= \pm 15 v, v_{C M}=o v, R_{L}=O$ pen, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

FIGURE 8. INPUT NOISE VOLTAGE 0.1 Hz TO 10 Hz

FIGURE 10. INPUT NOISE CURRENT SPECTRAL DENSITY

FIGURE 12. CMRR vs FREQUENCY, $\mathrm{V}_{\mathrm{S}}= \pm 2.25, \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 9. INPUT NOISE VOLTAGE SPECTRAL DENSITY

FIGURE 11. PSRR vs FREQUENCY, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 13. $\mathrm{V}_{0 S}$ vs TEMPERATURE

Typical Performance Curves $v_{S}= \pm 15 v, V_{C M}=o v, R_{L}=$ open, $T_{A}=+25^{\circ} C$, unless otherwise specified. (Continued)

FIGURE 14. $\mathrm{I}_{\mathrm{B}+}$ vs TEMPERATURE

FIGURE 16. I_{OS} vs TEMPERATURE

FIGURE 18. $\mathrm{V}_{\mathbf{O H}}$ vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 5} \mathrm{V}$

FIGURE 15. $\mathrm{I}_{\mathrm{B} \text { - }}$ vs TEMPERATURE

FIGURE 17. SUPPLY CURRENT vs TEMPERATURE

FIGURE 19. V_{OL} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Typical Performance Curves $v_{S}= \pm 15 v, V_{C M}=O V, R_{L}=$ open, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

FIGURE 20. V_{OH} vs OUTPUT CURRENT

FIGURE 22. V_{oL} vs OUTPUT CURRENT

FIGURE 24. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

FIGURE 21. OPEN-LOOP GAIN, PHASE vs FREQUENCY, $R_{L}=10 \mathrm{k} \Omega$, $C_{L}=10 \mathrm{pF}$

FIGURE 23. OPEN-LOOP GAIN, PHASE vs FREQUENCY, $R_{L}=10 \mathrm{k} \Omega$, $C_{L}=100 \mathrm{pF}$

FIGURE 25. GAIN vs FREQUENCY vs TEMPERATURE

Typical Performance Curves $V_{S}= \pm 15 V, V_{C M}=o v, R_{L}=$ open, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

FIGURE 26. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE $\mathbf{R}_{f} / \mathbf{R}_{\mathbf{g}}$

FIGURE 28. GAIN vs FREQUENCY vs C_{L}

FIGURE 30. LARGE SIGNAL 10 V STEP RESPONSE, $\mathbf{V}_{\mathbf{S}}=\mathbf{\pm 1 5 \mathrm { V }}$

FIGURE 27. GAIN vs FREQUENCY vs R_{L}

FIGURE 29. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

FIGURE 31. LARGE SIGNAL 10V STEP RESPONSE, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ vs TEMPERATURE

Typical Performance Curves $V_{S}= \pm 15 V, V_{C M}=O V, R_{L}=$ open, $T_{A}=+25^{\circ} C$, unless otherwise specified. (Continued)

FIGURE 32. LARGE SIGNAL TRANSIENT RESPONSE vs R_{L}, $V_{S}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 34. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, $V_{S}= \pm 15 \mathrm{~V}$

FIGURE 33. SMALL SIGNAL TRANSIENT RESPONSE,
$V_{S}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 35. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,
$V_{S}= \pm 15 \mathrm{~V}$

FIGURE 36. \% OVERSHOOT vs LOAD CAPACITANCE, $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 5 V}$

Applications Information

Functional Description

The ISL70227SEH is a dual, low noise 10 MHz BW precision op amp fabricated in a new precision 40 V complementary bipolar DI process. A super-beta NPN input stage with input bias current cancellation provides low input bias current (1nA typical), low input offset voltage ($10 \mu \mathrm{~V}$ typ), low input noise voltage $(3 \mathrm{nV} / \sqrt{ } \mathrm{Hz})$, and low $1 / \mathrm{f}$ noise corner frequency $(5 \mathrm{~Hz})$. These amplifiers also feature high open loop gain $(1500 \mathrm{~V} / \mathrm{mV})$ for excellent CMRR (120dB) and THD+N performance (0.0002% @ $3.5 \mathrm{~V}_{\text {RMS }}, 1 \mathrm{kHz}$ into $2 \mathrm{k} \Omega$). A complimentary bipolar output stage enables high capacitive load drive without external compensation.

Operating Voltage Range

The devices are designed to operate over the $4.5 \mathrm{~V}(\pm 2.25 \mathrm{~V})$ to $36 \mathrm{~V}(\pm 18 \mathrm{~V})$ range and are fully characterized at $30 \mathrm{~V}(\pm 15 \mathrm{~V})$. Parameter variation with operating voltage is shown in the "Typical Performance Curves" beginning on page 9.

Input ESD Diode Protection

The input terminals ($\mathrm{IN}+$ and IN -) have internal ESD protection diodes to the positive and negative supply rails, and an additional anti-parallel diode pair across the inputs (see Figures 37 and 38).

FIGURE 37. INPUT ESD DIODE CURRENT LIMITING - UNITY GAIN
For unity gain applications (see Figure 37) where the output is connected directly to the non-inverting input a current limiting resistor ($\mathrm{R}_{\text {IN }}$) will be needed under the following conditions to protect the anti-parallel differential input protection diodes.

- The amplifier input is supplied from a low impedance source.
- The input voltage rate-of-rise ($\mathrm{dV} / \mathrm{dt}$) exceeds the maximum slew rate of the amplifier $(\pm 3.6 \mathrm{~V} / \mu \mathrm{s})$.
If the output lags far enough behind the input, the anti-parallel input diodes can conduct. For example, if an input pulse ramps from 0 V to +10 V in $1 \mu \mathrm{~s}$, then the output of the ISL70227SEH will reach only +3.6 V (slew rate $=3.6 \mathrm{~V} / \mu \mathrm{s}$) while the input is at 10 V , The input differential voltage of 6.4 V will force input ESD diodes to conduct, dumping the input current directly into the output stage and the load. The resulting current flow can cause permanent damage to the ESD diodes. The ESD diodes are rated to 20 mA , and in the previous example, setting $R_{\text {IN }}$ to 1 k resistor (see Figure 37) would limit the current to $<6.4 \mathrm{~mA}$, and provide additional protection up to $\pm 20 \mathrm{~V}$ at the input.
In applications where one or both amplifier input terminals are at risk of exposure to high voltage, current limiting resistors may be needed at each input terminal (see Figure $38 \mathrm{R}_{\mathrm{IN}}+, \mathrm{R}_{\mathrm{IN}}$) to limit current through the power supply ESD diodes to 20 mA .

FIGURE 38. INPUT ESD DIODE CURRENT LIMITING - DIFFERENTIAL INPUT

Output Current Limiting

The output current is internally limited to approximately $\pm 45 \mathrm{~mA}$ at $+25^{\circ} \mathrm{C}$ and can withstand a short circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only one amplifier at a time. Continuous operation under these conditions may degrade long term reliability.

Output Phase Reversal

Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL70227SEH are immune to output phase reversal, even when the input voltage is 1 V beyond the supplies.

Power Dissipation

It is possible to exceed the $+150^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature ($\mathrm{T}_{\text {JMAX }}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:
$\mathbf{T}_{\text {JMAX }}=\mathbf{T}_{\text {MAX }}+\theta_{\text {JA }} \times$ PD $_{\text {MAXTOTAL }}$
where:

- $P_{\text {dmaxtotal }}$ is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\text {MAX }}$)
- PD $_{\text {MAX }}$ for each amplifier can be calculated using Equation 2:
$P D_{\text {MAX }}=v_{S_{S}} \times I_{\text {qMAX }}+\left(v_{S}-v_{\text {OUTMAX }}\right) \times \frac{V_{\text {OUTMAX }}}{R_{L}}$
where:
- $\mathrm{T}_{\text {MAX }}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package
- $\mathrm{PD}_{\text {MAX }}=$ Maximum power dissipation of one amplifier
- $\mathrm{V}_{\mathrm{S}}=$ Total supply voltage
- $I_{q M A X}=$ Maximum quiescent supply current of one amplifier
- $\mathrm{V}_{\text {OUtMAX }}=$ Maximum output voltage swing of the application
- $\mathrm{R}_{\mathrm{L}}=$ Load resistance

Package Characteristics

Weight of Packaged Device
0.4029 grams (Typical)

Lid Characteristics

Finish: Gold
Case Isolation to Any Lead: $20 \times 10^{9} \Omega$ (min)

Die Characteristics

Die Dimensions

$1565 \mu \mathrm{~m} \times 2125 \mu \mathrm{~m}$ ($62 \mathrm{mils} \times 84 \mathrm{mils}$)
Thickness: $355 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$ (14 mils $\pm 1 \mathrm{mil}$)

Interface Materials

GLASSIVATION
Type: Nitrox
Thickness: 15kÅ

TOP METALLIZATION

Type: AICu (99.5\%/0.5\%)
Thickness: 30kÅ

BACKSIDE FINISH

Silicon

PROCESS

Dielectrically Isolated Complementary Bipolar - PR40

ASSEMBLY RELATED INFORMATION

SUBSTRATE POTENTIAL

Floating

ADDITIONAL INFORMATION

WORST CASE CURRENT DENSITY

$<2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

TABLE 1. DIE LAYOUT X-Y COORDINATES

PAD NAME	PAD NUMBER	$\underset{(\mu \mathrm{m})}{\mathrm{X}}$	$\begin{gathered} Y \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{dX} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} d Y \\ (\mu \mathrm{~m}) \end{gathered}$	BOND WIRES PER PAD
OUT_A	11	0	1530	70	70	1
-IN_A	13	-20.5	976	70	70	1
+IN_A	14	-20.5	732	70	70	1
V-	9	0	0	70	70	1
+IN_B	16	1272.5	595.5	70	70	1
-IN_B	15	1272.5	839.5	70	70	1
OUT_B	12	1259.5	993.5	70	70	1
V+	10	1295.5	1708	70	70	1

NOTE:
6. Origin of coordinates is the centroid of pad 9.

For additional products, see www.intersil.com/product tree
Intersil products are manufactured, assembled and tested utilizing IS09000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	
August 24, 2012	FN7958.1	Initial release.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL70227SEH

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at: http://rel.intersil.com/reports/search.php

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab (dimension k) may be used to identify pin one.
2. If a pin one identification mark is used in addition to a tab, the limits of dimension k do not apply.
3. This dimension allows for off-center lid, meniscus, and glass overrun.
4. Dimensions b1 and c1 apply to lead base metal only. Dimension Mapplies to lead plating and finish thickness. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
5. N is the maximum number of terminal positions.
6. Measure dimension S1 at all four corners.
7. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
8. Dimension Q shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension Q minimum shall be reduced by 0.0015 inch $(0.038 \mathrm{~mm})$ maximum when solder dip lead finish is applied.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: INCH.

K10.A MIL-STD-1835 CDFP3-F10 (F-4A, CONFIGURATION B) 10 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE

SYMBOL	INCHES		MILLIMETERS							
	MIN	MAX	MIN	MAX						
A	0.045	0.115	1.14	2.92	-					
b	0.015	0.022	0.38	0.56	-					
b1	0.015	0.019	0.38	0.48	-					
c	0.004	0.009	0.10	0.23	-					
c1	0.004	0.006	0.10	0.15	-					
D	-	0.290	-	7.37	3					
E	0.240	0.260	6.10	6.60	-					
E1	-	0.280	-	7.11	3					
E2	0.125	-	3.18	-	-					
E3	0.030	-	0.76	-	7					
e	0.050	BSC		1.27	BSC					
k	0.008	0.015	0.20	0.38	2					
L	0.250	0.370	6.35	9.40	-					
Q	0.026	0.045	0.66	1.14	8					
S1	0.005	-	0.13	-	6					
M	-	0.0015	-	0.04	-					
N	10								10	-

Rev. 0 3/07

