Quad Digitally-Controlled (XDCP ${ }^{\text {TM }}$) Potentiometer

FEATURES

- Four potentiometers in one package
- 256 resistor taps-0.4\% resolution
- SPI Serial Interface for write, read, and transfer operations of the potentiometer
- Wiper resistance: 100Ω typical @ VCC $=5 \mathrm{~V}$
- 4 Non-volatile data registers for each potentiometer
- Non-volatile storage of multiple wiper positions
- Standby current < $5 \mu \mathrm{~A}$ max
- V_{C} : 2.7V to 5.5V Operation
- $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ versions of total resistance
- 100 yr. data retention
- Single supply version of X9250
- Endurance: 100,000 data changes per bit per register
- 24 Ld SOIC, 24 Ld TSSOP
- Low power CMOS
- Pb-free plus anneal available (RoHS compliant)

DESCRIPTION

The X9251 integrates four digitally controlled potentiometers (XDCP) on a monolithic CMOS integrated circuit.

The digitally controlled potentiometers are implemented with a combination of resistor elements and CMOS switches. The position of the wipers are controlled by the user through the SPI bus interface. Each potentiometer has associated with it a volatile Wiper Counter Register (WCR) and four non-volatile Data Registers that can be directly written to and read by the user. The content of the WCR controls the position of the wiper. At power-up, the device recalls the content of the default Data Registers of each DCP (DR00, DR10, DR20, and DR30) to the corresponding WCR.

The XDCP can be used as a three-terminal potentiometer or as a two terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing.

FUNCTIONAL DIAGRAM

Ordering Information

PART NUMBER	PART MARKING	$\mathrm{V}_{\text {Cc }}$ LIMITS (V)	POTENTIOMENTER ORGANIZATION (k Ω)	TEMP RANGE (${ }^{\circ}$ C)	PACKAGE
X9251UP24I	X9251UP I	$5 \pm 10 \%$	50	-40 to +85	24 Ld PDIP
X9251US24*	X9251US			0 to 70	24 Ld SOIC (300MIL)
X9251US24Z* (Note)	X9251US Z			0 to 70	24 Ld SOIC (300MIL) (Pb-Free)
X9251US24I*	X9251US I			-40 to +85	24 Ld SOIC (300MIL)
X9251US24IZ* (Note)	X9251US Z I			-40 to +85	24 Ld SOIC (300MIL) (Pb-Free)
X9251UV24	X9251UV			0 to 70	24 Ld TSSOP (4.4mm)
X9251UV24Z (Note)	X9251UV Z			0 to 70	24 Ld TSSOP (4.4mm) (Pb-free)
X9251UV24I	X9251UV I			-40 to +85	24 Ld TSSOP (4.4mm)
X9251UV24IZ (Note)	X9251UV Z I			-40 to +85	24 Ld TSSOP (4.4mm) (Pb-free)
X9251TP24I			100	-40 to +85	24 Ld PDIP
X9251TS24*	X9251TS			0 to 70	24 Ld SOIC (300MIL)
X9251TS24Z* (Note)	X9251TS Z			0 to 70	24 Ld SOIC (300MIL) (Pb-Free)
X9251TS24I*	X9251TS I			-40 to +85	24 Ld SOIC (300MIL)
X9251TS24IZ* (Note)	X9251TS Z I			-40 to +85	24 Ld SOIC (300MIL) (Pb-Free)
X9251TV24	X9251TV			0 to 70	24 Ld TSSOP (4.4mm)
X9251TV24Z (Note)	X9251TV Z			0 to 70	24 Ld TSSOP (4.4mm) (Pb-free)
X9251TV24I	X9251TV I			-40 to +85	24 Ld TSSOP (4.4mm)
X9251TV24IZ (Note)	X9251TV Z I			-40 to +85	24 Ld TSSOP (4.4mm) (Pb-free)
X9251US24-2.7*	X9251US F	2.7 to 5.5	50	0 to 70	24 Ld SOIC (300MIL)
X9251US24Z-2.7* (Note)	X9251US Z F			0 to 70	24 Ld SOIC (300MIL) (Pb-Free)
X9251US24I-2.7*	X9251US G			-40 to +85	24 Ld SOIC (300MIL)
X9251US24IZ-2.7* (Note)	X9251US Z G			-40 to +85	24 Ld SOIC (300MIL) (Pb-Free)
X9251UV24-2.7	X9251UV F			0 to 70	24 Ld TSSOP (4.4mm)
X9251UV24Z-2.7 (Note)	X9251UV Z F			0 to 70	24 Ld TSSOP (4.4mm) (Pb-free)
X9251UV24I-2.7	X9251UV G			-40 to +85	24 Ld TSSOP (4.4mm)
X9251UV24IZ-2.7 (Note)	X9251UV Z G			-40 to +85	24 Ld TSSOP (4.4mm) (Pb-free)
X9251TS24-2.7*	X9251TS F		100	0 to 70	24 Ld SOIC (300MIL)
X9251TS24Z-2.7* (Note)	X9251TS Z F			0 to 70	24 Ld SOIC (300MIL) (Pb-Free)
X9251TS24I-2.7*	X9251TS G			-40 to +85	24 Ld SOIC (300MIL)
X9251TS24IZ-2.7* (Note)	X9251TS Z G			-40 to +85	24 Ld SOIC (300MIL) (Pb-Free)
X9251TV24-2.7	X9251TV F			0 to 70	24 Ld TSSOP (4.4mm)
X9251TV24Z-2.7 (Note)	X9251TV Z F			0 to 70	24 Ld TSSOP (4.4mm) (Pb-free)
X9251TV24I-2.7	X9251TV G			-40 to +85	24 Ld TSSOP (4.4mm)
X9251TV24IZ-2.7 (Note)	X9251TV Z G			-40 to +85	24 Ld TSSOP (4.4mm) (Pb-free)

*Add "T1" suffix for tape and reel.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

CIRCUIT LEVEL APPLICATIONS

- Vary the gain of a voltage amplifier
- Provide programmable dc reference voltages for comparators and detectors
- Control the volume in audio circuits
- Trim out the offset voltage error in a voltage amplifier circuit
- Set the output voltage of a voltage regulator
- Trim the resistance in Wheatstone bridge circuits
- Control the gain, characteristic frequency and Q-factor in filter circuits
- Set the scale factor and zero point in sensor signal conditioning circuits
- Vary the frequency and duty cycle of timer ICs
- Vary the dc biasing of a pin diode attenuator in RF circuits
- Provide a control variable (I, V, or R) in feedback circuits

SYSTEM LEVEL APPLICATIONS

- Adjust the contrast in LCD displays
- Control the power level of LED transmitters in communication systems
- Set and regulate the DC biasing point in an RF power amplifier in wireless systems
- Control the gain in audio and home entertainment systems
- Provide the variable DC bias for tuners in RF wireless systems
- Set the operating points in temperature control systems
- Control the operating point for sensors in industrial systems
- Trim offset and gain errors in artificial intelligent systems

PIN CONFIGURATION

	SOIC/TSSOP				
SO \square	1		24	\square	HOLD
AO \square	2		23		SCK
RW3 \square	3		22		$\mathrm{R}_{\mathrm{L} 2}$
$\mathrm{R}_{\mathrm{H} 3} \square$	4		21		$\mathrm{R}_{\mathrm{H} 2}$
$\mathrm{R}_{\mathrm{L} 3} \square$	5		20		RW2
NC \square	6		19		NC
$\mathrm{V}_{\mathrm{CC}} \square$		X9251	18		$\mathrm{V}_{S S}$
$\mathrm{R}_{\mathrm{LO}} \square$	8		17		$\mathrm{R}_{\mathrm{W} 1}$
R_{HO}	9		16		$\mathrm{R}_{\mathrm{H} 1}$
RWo \square	10		15		$\mathrm{R}_{\mathrm{L} 1}$
$\overline{\mathrm{CS}} \square$	11		14		A1
$\overline{\mathrm{WP}} \square$	12		13		SI

PIN ASSIGNMENTS

Pin (SOIC)	Symbol	Function
1	SO	Serial Data Output for SPI bus
2	A 0	Device Address for SPI bus. (See Note 1)
3	$\mathrm{R}_{\mathrm{W} 3}$	Wiper Terminal of DCP3
4	$\mathrm{R}_{\mathrm{H} 3}$	High Terminal of DCP3
5	$\mathrm{R}_{\mathrm{L} 3}$	Low Terminal of DCP3
7	$\mathrm{~V}_{\mathrm{CC}}$	System Supply Voltage
8	$\mathrm{R}_{\mathrm{L} 0}$	Low Terminal of DCP0
9	$\mathrm{R}_{\mathrm{H} 0}$	High Terminal of DCP0
10	$\mathrm{R}_{\mathrm{W} 0}$	Wiper Terminal of DCP0
11	$\overline{\mathrm{CS}}$	SPI bus. Chip Select active low input
12	$\overline{\mathrm{WP}}$	Hardware Write Protect - active low
13	SI	Serial Data Input for SPI bus
14	A 1	Device Address for SPI bus. (See Note 1)
15	$\mathrm{R}_{\mathrm{L} 1}$	Low Terminal of DCP1
16	$\mathrm{R}_{\mathrm{H} 1}$	High Terminal of DCP1
17	$\mathrm{R}_{\mathrm{W} 1}$	Wiper Terminal of DCP1
18	$\mathrm{~V}_{\mathrm{SS}}$	System Ground
20	$\mathrm{R}_{\mathrm{W} 2}$	Wiper Terminal of DCP2
21	$\mathrm{R}_{\mathrm{H} 2}$	High Terminal of DCP2
22	$\mathrm{R}_{\mathrm{L} 2}$	Low Terminal of DCP2
23	SCK	Serial Clock for SPI bus
24	$\overline{\text { HOLD }}$	Device select. Pauses the SPI serial bus.
619	NC	No Connect
19		

Note 1: A0-A1 device address pins must be tied to a logic level.

PIN DESCRIPTIONS

Bus Interface Pins

SERIAL OUTPUT (SO)

SO is a serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out by the falling edge of the serial clock.

SERIAL INPUT (SI)

SI is the serial data input pin. All opcodes, byte addresses and data to be written to the device registers are input on this pin. Data is latched by the rising edge of the serial clock.

SERIAL CLOCK (SCK)

The SCK input is used to clock data into and out of the X9251.

HOLD (HOLD)

$\overline{\text { HOLD }}$ is used in conjunction with the $\overline{\mathrm{CS}}$ pin to select the device. Once the part is selected and a serial sequence is underway, $\overline{H O L D}$ may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, HOLD must be brought LOW while SCK is LOW. To resume communication, HOLD is brought HIGH, again while SCK is LOW. If the pause feature is not used, HOLD should be held HIGH at all times.

DEVICE ADDRESS (A1 - A0)

The address inputs are used to set the two least significant bits of the slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9251. Device pins A1 - A0 must be tie to a logic level which specify the internal address of the device, see Figures 2, 3, 4, 5 and 6.

CHIP SELECT (CS)

When CS is HIGH, the X9251 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device is in the standby state. CS LOW enables the X9251, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on $\overline{\mathrm{CS}}$ is required prior to the start of any operation.

Potentiometer Pins

$\mathbf{R}_{\mathbf{H}}, \mathbf{R}_{\mathrm{L}}$

The R_{H} and R_{L} pins are equivalent to the terminal connections on a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_{H} and R_{L} such that $R_{H 0}$ and $R_{L O}$ are the terminals of DCPO and so on.

R_{W}

The wiper pin are equivalent to the wiper terminal of a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_{W} such that Rwo is the terminals of DCPO and so on.

Supply Pins

SYSTEM SUPPLY VOLTAGE (V_{CC}) AND SUPPLY GROUND (VSS)

The V_{CC} pin is the system supply voltage. The V_{SS} pin is the system ground.

Other Pins

No CONNECT

No connect pins should be left floating. This pins are used for Intersil manufacturing and testing purposes.

HARDWARE WRITE PROTECT INPUT ($\overline{\mathrm{WP}}$)

The WP pin when LOW prevents non-volatile writes to the Data Registers.

PRINCIPLES OF OPERATION

The X9251 is an integrated circuit incorporating four DCPs and their associated registers and counters, and a serial interface providing direct communication between a host and the potentiometers.

DCP Description

Each DCP is implemented with a combination of resistor elements and CMOS switches. The physical ends of each DCP are equivalent to the fixed terminals of a mechanical potentiometer (R_{H} and R_{L} pins). The RW pin is an intermediate node, equivalent to the wiper terminal of a mechanical potentiometer.

The position of the wiper terminal within the DCP is controlled by an 8 -bit volatile Wiper Counter Register (WCR).

Figure 1. Detailed Potentiometer Block Diagram

One of Four Potentiometers

Power Up and Down Recommendations.

There are no restrictions on the power-up or powerdown conditions of V_{CC} and the voltages applied to the potentiometer pins provided that V_{CC} is always more positive than or equal to $\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$, and V_{W}, i.e., $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{W}}$. The V_{CC} ramp rate specification is always in effect.

Wiper Counter Register (WCR)

The X9251 contains four Wiper Counter Registers, one for each potentiometer. The Wiper Counter Register can be envisioned as a 8 -bit parallel and serial load counter with its outputs decoded to select one of 256 wiper positions along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the Write Wiper Counter Register instruction (serial load); it may be written indirectly by transferring the contents of one of four associated data registers via the XFR Data Register instruction (parallel load); it can be modified one step at a time by the Increment/Decrement instruction (See Instruction section for more details). Finally, it is loaded with the contents of its Data Register zero (DR\#0) upon power-up. (See Figure 1.)
The wiper counter register is a volatile register; that is, its contents are lost when the X9251 is powered-down. Although the register is automatically loaded with the value in DR\#O upon power-up, this may be different
from the value present at power-down. Power-up guidelines are recommended to ensure proper loadings of the DR\#0 value into the WCR\#.

Data Registers (DR)

Each of the four DCPs has four 8-bit non-volatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four Data Registers and the associated Wiper Counter Register. All operations changing data in one of the Data Registers is a non-volatile operation and takes a maximum of 10 ms .

If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data.

Bits [7:0] are used to store one of the 256 wiper positions or data (0~255).

Status Register (SR)

This 1-bit Status Register is used to store the system status.

WIP: Write In Progress status bit, read only.

- When WIP=1, indicates that high-voltage write cycle is in progress.
- When WIP=0, indicates that no high-voltage write cycle is in progress.

Table 1. Wiper counter Register, WCR (8-bit), WCR[7:0]: Used to store the current wiper position (Volatile).

WCR7	WCR6	WCR5	WCR4	WCR3	WCR2	WCR1	WCR0

Table 2. Data Register, DR (8-bit), DR[7:0]: Used to store wiper positions or data (Non-volatile).

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
(MSB)							

SERIAL INTERFACE

The X9251 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked in, on the rising SCK. $\overline{\mathrm{CS}}$ must be LOW and the $\overline{\text { HOLD }}$ and $\overline{\mathrm{WP}}$ pins must be HIGH during the entire operation.

The SO and SI pins can be connected together, since they have three state outputs. This can help to reduce system pin count.

IDENTIFICATION BYTE

The first byte sent to the X9251 from the host, following a $\overline{\mathrm{CS}}$ going HIGH to LOW, is called the Identification Byte. The most significant four bits of the Identification Byte are a Device Type Identifier, ID[3:0]. For the X9251, this is fixed as 0101 (refer to Table 3).

The least significant four bits of the Identification Byte are the Slave Address bits, AD[3:0]. For the X9251, A3 is $0, A 2$ is $0, A 1$ is the logic value at the input pin A1, and $A 0$ is the logic value at the input pin A0. Only the device which Slave Address matches the incoming bits sent by the master executes the instruction. The A1 and A0 inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS}.

INSTRUCTION BYTE

The next byte sent to the X9251 contains the instruction and register pointer information. The four most significant bits are used provide the instruction opcode ([[3:0]). The RB and RA bits point to one of the four Data Registers of each associated XDCP. The least two significant bits point to one of four Wiper Counter Registers or DCPs. The format is shown below in Table 4.

Table 3. Identification Byte Format

ID3	ID2	ID1	ID0	A3	A2	A1	A0
0	1	0	1	0	0	Pin A1 Identifier	Pin A0 Logic Value
Logic Value							
(MSB)							

Table 4. Instruction Byte Format

| Instruction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Opcode |

Data Register Selection

Register	RB	RA
DR\#0	0	0
DR\#1	0	1
DR\#2	1	0
DR\#3	1	1

\#: $0,1,2$, or 3
Table 5. Instruction Set

| Instruction | | | | | | | Operation |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Note: $\quad 1 / 0=$ data is one or zero

Instructions

Four of the nine instructions are three bytes in length. These instructions are:

- Read Wiper Counter Register - read the current wiper position of the selected potentiometer,
- Write Wiper Counter Register - change current wiper position of the selected potentiometer,
- Read Data Register - read the contents of the selected Data Register,
- Write Data Register - write a new value to the selected Data Register,
- Read Status - this command returns the contents of the WIP bit which indicates if the internal write cycle is in progress.
The basic sequence of the three byte instructions is illustrated in Figure 3. These three-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action is delayed by twRL. A transfer from the WCR (current wiper position), to a Data Register is a write to non-volatile memory and takes a minimum of $t_{W R}$ to complete. The transfer can occur between one of the four potentiometer's WCR, and one of its associated registers, DRs; or it may occur globally, where the transfer occurs between all potentiometers and one associated register. The Read Status Register instruction is the only unique format (See Figure 5).
Four instructions require a two-byte sequence to complete. These instructions transfer data between the host and the X9251; either between the host and one of the data registers or directly between the host and the Wiper Counter Register. These instructions are:
- XFR Data Register to Wiper Counter Register This transfers the contents of one specified Data Register to the associated Wiper Counter Register.
- XFR Wiper Counter Register to Data Register This transfers the contents of the specified Wiper Counter Register to the specified associated Data Register.
- Global XFR Data Register to Wiper Counter Register - This transfers the contents of all specified Data Registers to the associated Wiper Counter Registers.
- Global XFR Wiper Counter Register to Data Register - This transfers the contents of all Wiper Counter Registers to the specified associated Data Registers.

INCREMENT/DECREMENT COMMAND

The final command is Increment/Decrement (See Figures 6 and 7). The Increment/Decrement command is different from the other commands. Once the command is issued and the X9251 has responded with an Acknowledge, the master can clock the selected wiper up and/or down in one segment steps; thereby, providing a fine tuning capability to the host. For each SCK clock pulse ($\mathrm{t}_{\text {HIGH }}$) while SI is HIGH, the selected wiper moves one wiper position towards the R_{H} terminal. Similarly, for each SCK clock pulse while SI is LOW, the selected wiper moves one wiper position towards the R_{L} terminal. A detailed illustration of the sequence and timing for this operation are shown. See Instruction format for more details.

Figure 2. Two-Byte Instruction Sequence

Figure 3. Three-Byte Instruction Sequence SPI Interface; Write Case

Figure 4. Three-Byte Instruction Sequence SPI Interface, Read Case

Figure 5. Three-Byte Instruction Sequence (Read Status Register

Figure 6. Increment/Decrement Instruction Sequence

Figure 7. Increment/Decrement Timing Spec

INSTRUCTION FORMAT

Read Wiper Counter Register (WCR)

	Device Type Identifier				Device Addresses				Instruction Opcode				WCR Addresses				Wiper Position (Sent by X9251 on SO)								$\overline{\mathrm{CS}}$ Rising Edge
Falling Edge	0	1	0	1	0	0	A1	A0	1	0	0	1	0	0	0	0	W C R R 7	W C R 6	W C R 5	W C R 4	W C R 3	R	1	0	

Write Wiper Counter Register (WCR)

Read Data Register (DR)

	Device Type Identifier				Device Addresses				Instruction Opcode				DR and WCR Addresses				Data Byte(Sent by X9271 on SO)							
Edge	0	1	0	1	0	0	A1	A0	1	0	1	1	RB	RA	P1	P0	D	D	D	D				

Write Data Register (DR)

	Device Type Identifier				Device Addresses				Instruction Opcode				DR and WCR Addresses				Data Byte (Sent by Host on SI)								$\overline{\mathrm{CS}}$ Rising Edge	
Falling Edge	0	1	0	1	0	0	A1	A0	1	1	0	0	RB	RA	P1	P0	D	$\begin{aligned} & D \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{aligned} & D \\ & 0 \end{aligned}$		

Global Transfer Data Register (DR) to Wiper Counter Register (WCR)

Falling	Device Type Identifier				Device Addresses				Instruction Opcode				$\overline{\mathrm{DR}}$ Addresses				$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0	1	0	0	A1	A0	0	0	0	1	RB	RA	0		

Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master.
(2) WPx refers to wiper position data in the Counter Register
(2) "I": stands for the increment operation, SI held HIGH during active SCK phase (high).
(3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high).

Global Transfer Wiper Counter Register (WCR) to Data Register (DR)

$\overline{\mathrm{CS}}$ Falling	Device Type Identifier				Device Addresses				Instruction Opcode				DR Addresses				$\overline{\mathrm{CS}}$ Rising Edge	HIGH-VOLTAGE WRITE CYCLE
Edge	0	1	0	1	0	0	A1	A0	1	0	0	0	RB	RA	0	0		

Transfer Wiper Counter Register (WCR) to Data Register (DR)

$\overline{\mathrm{CS}}$ Falling	Device Type Identifier				Device Addresses				Instruction Opcode				DR and WCR Addresses				CS Rising Edge	HIGH-VOLTAGE WRITE CYCLE
Edge	0	1	0	1	0	0	A1	A0	1	1	1	0	RB	RA	0	0		

Transfer Data Register (DR) to Wiper Counter Register (WCR)

Fa	Identifier				Device Addresses				struction Opcode				R and WCR Addresses				$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0	1	0	0	A1	A0	1				RB	RA	0		

Increment/Decrement Wiper Counter Register (WCR)

	Device Type Identifier			Device Addresses				Opcode				WCR Addresses				Increment/Decrement (Sent by Master on SI)				$\overline{\mathrm{CS}}$ Rising Edge	
-	0					A1	A0	0	0	1	0	X	X	0	0	I/D	I/D				

Read Status Register (SR)

Falling	Device Type Identifier				Device Addresses				Opcode				WCR Addresses				Data Byte(Sent by X9251 on SO)								$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0	1	0	0	A1	A0	0			1	0	0	0	1	0	0	0	0	0	0	0	WIP	

Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master.
(2) WPx refers to wiper position data in the Counter Register
(2) "l": stands for the increment operation, SI held HIGH during active SCK phase (high).
(3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high).

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

Temp	Min.	Max.
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; the functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Device	Supply Voltage $\left(\mathbf{V}_{\mathbf{C C}}\right)$ Limits $^{(4)}$
X 9251	$5 \mathrm{~V} \pm 10 \%$
$\mathrm{X} 9251-2.7$	2.7 V to 5.5 V

ANALOG CHARACTERISTICS (Over recommended industrial operating conditions unless otherwise stated.)

Symbol	Parameter	Limits				Test Conditions
		Min.	Typ.	Max.	Units	
RTOTAL	End to End Resistance		100		k Ω	T version
RTOTAL	End to End Resistance		50		$\mathrm{k} \Omega$	U version
	End to End Resistance Tolerance			± 20	\%	
	Power Rating			50	mW	$25^{\circ} \mathrm{C}$, each pot
IW	Wiper Current			± 3	mA	
R_{W}	Wiper Resistance			300	Ω	$\mathrm{I}_{\mathrm{W}}=\frac{\mathrm{V}\left(\mathrm{~V}_{\mathrm{CC}}\right)}{\mathrm{R}_{\mathrm{TOTAL}}} @ \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$
				150	Ω	$\mathrm{I}_{\mathrm{W}}=\frac{\mathrm{V}\left(\mathrm{~V}_{\mathrm{CC}}\right)}{\mathrm{R}_{\mathrm{TOTAL}}} @ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
$\mathrm{V}_{\text {TERM }}$	Voltage on any R_{H} or R_{L} Pin	V_{SS}		V_{CC}	V	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$
	Noise		-120		$\mathrm{dBV} / \sqrt{\mathrm{Hz}}$	Ref: 1V
	Resolution		0.4		\%	
	Absolute Linearity ${ }^{(1)}$	-1		+1	M ${ }^{(3)}$	$\mathrm{R}_{\mathrm{w}(\mathrm{n}) \text { (actual) }}-\mathrm{R}_{\mathrm{w}(\mathrm{n}) \text { (expected) }}{ }^{(5)}$
	Relative Linearity ${ }^{(2)}$	-0.6		+0.6	M ${ }^{(3)}$	$\mathrm{R}_{\mathrm{w}(\mathrm{n}+1)}-\left[\mathrm{R}_{\mathrm{w}(\mathrm{n})+\mathrm{Ml}}\right]^{(5)}$
	Temperature Coefficient of RTOTAL		± 300		ppm $/{ }^{\circ} \mathrm{C}$	
	Ratiometric Temp. Coefficient	-20		+20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{L} / \mathrm{C}_{\mathrm{W}}$	Potentiometer Capacitances		10/10/25		pF	See Macro model

Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer.
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size.
(3) $\mathrm{MI}=\mathrm{RTOT} / 255$ or $\left(\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{L}}\right) / 255$, single pot
(4) During power up $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$, and V_{W}.
(5) $n=0,1,2, \ldots, 255 ; m=0,1,2, \ldots, 254$.
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)

Symbol	Parameter				Limits				Test Conditions

ENDURANCE AND DATA RETENTION

Parameter	Min.	Units
Minimum endurance	100,000	Data changes per bit per register
Data retention	100	years

CAPACITANCE

Symbol	Test	Max.	Units	Test Conditions
$\mathrm{C}_{\text {IN/OUT }}{ }^{(6)}$	Input / Output capacitance (SI)	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}{ }^{(6)}$	Output capacitance (SO)	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}{ }^{(6)}$	Input capacitance (AO, A1, $\overline{\mathrm{CS}}, \overline{\mathrm{WP}}, \overline{\mathrm{HOLD}}$, and SCK)	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

POWER-UP TIMING

Symbol	Parameter	Min.	Max.	Units
$\mathrm{t}_{\mathrm{r}} \mathrm{V}_{\mathrm{CC}}{ }^{(6)}$	$\mathrm{V}_{\text {CC }}$ Power-up rate	0.2	50	$\mathrm{~V} / \mathrm{ms}$
$\mathrm{t}_{\text {PUR }}{ }^{(7)}$	Power-up to initiation of read operation		1	ms
tpuw $^{(7)}$	Power-up to initiation of write operation		50	ms

A.C. TEST CONDITIONS

Input Pulse Levels	$\mathrm{V}_{\mathrm{CC}} \times 0.1$ to $\mathrm{V}_{\mathrm{CC}} \times 0.9$
Input rise and fall times	10 ns
Input and output timing level	$\mathrm{V}_{\mathrm{CC}} \times 0.5$

Notes: (6) This parameter is not 100% tested
(7) $t_{\text {PUR }}$ and tPUW are the delays required from the time the (last) power supply $\left(\mathrm{V}_{\mathrm{CC}}{ }^{-}\right)$is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested.

EQUIVALENT A.C. LOAD CIRCUIT

AC TIMING

Symbol	Parameter	Min.	Max.	Units
fsCK	SPI clock frequency		2	MHz
$\mathrm{t}_{\text {CYC }}$	SPI clock cycle rime	500		ns
twh	SPI clock high rime	200		ns
tWL	SPI clock low time	200		ns
tLEAD	Lead time	250		ns
tLAG	Lag time	250		ns
tSU	SI, SCK, $\overline{\mathrm{HOLD}}$ and $\overline{\mathrm{CS}}$ input setup time	50		ns
t_{H}	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\mathrm{CS}}$ input hold time	50		ns
t_{RI}	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{C S}$ input rise time		2	$\mu \mathrm{s}$
t_{Fl}	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\mathrm{CS}}$ input fall time		2	$\mu \mathrm{s}$
toIS	SO output disable time	0	250	ns
t_{V}	SO output valid time		200	ns
t_{HO}	SO output hold time	0		ns
t_{RO}	SO output rise time		100	ns
t_{FO}	SO output fall time		100	ns
$\mathrm{t}_{\text {HOLD }}$	$\overline{\text { HOLD time }}$	400		ns
$\mathrm{t}_{\mathrm{HSU}}$	$\overline{\text { HOLD }}$ setup time	100		ns
t_{HH}	$\overline{\text { HOLD }}$ hold time	100		ns
t_{HZ}	$\overline{\text { HOLD }}$ low to output in high Z		100	ns
$t_{L Z}$	HOLD high to output in low Z		100	ns
T_{1}	Noise suppression time constant at SI, SCK, $\overline{\mathrm{HOLD}}$ and $\overline{\mathrm{CS}}$ inputs		10	ns
${ }^{\text {t CS }}$	$\overline{\mathrm{CS}}$ deselect time	2		$\mu \mathrm{s}$
tWPASU	$\overline{\mathrm{WP}}, \mathrm{A} 0$ setup time	0		ns
tWPAH	$\overline{\mathrm{WP}}, \mathrm{A} 0$ hold time	0		ns

HIGH-VOLTAGE WRITE CYCLE TIMING

Symbol	Parameter	Typ.	Max.	Units
tWR	High-voltage write cycle time (store instructions)	5	10	ms

XDCP TIMING

Symbol	Parameter	Min.	Max.	Units
t $_{\text {WRPO }}$	Wiper response time after the third (last) power supply is stable	5	10	$\mu \mathrm{~s}$
t $_{\text {WRL }}$	Wiper response time after instruction issued (all load instructions)	5	10	$\mu \mathrm{~s}$

SYMBOL TABLE

WAVEFORM	INPUTS	OUTPUTS
	Must be steady	Will be steady
π / π	May change from Low to High	Will change from Low to High
πI	May change from High to Low	Will change from High to Low
$X X$	Don't Care: Changes Allowed	Changing: State Not Known
	N/A	Center Line is High Impedance

TIMING DIAGRAMS

Input Timing

Output Timing

Hold Timing

XDCP Timing (for All Load Instructions)

Write Protect and Device Address Pins Timing

APPLICATIONS INFORMATION

Basic Configurations of Electronic Potentiometers

Three terminal Potentiometer; Variable voltage divider

Two terminal Variable Resistor; Variable current

Application Circuits

Noninverting Amplifier

$\mathrm{V}_{\mathrm{O}}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{V}_{\mathrm{S}}$

Comparator with Hysterisis

$\mathrm{V}_{\mathrm{UL}}=\left\{\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right\} \mathrm{V}_{\mathrm{O}}$ (max)
$R L_{L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{O}(\min)$

Application Circuits (continued)

$-1 / 2 \leq G \leq+1 / 2$

Inverting Amplifier

$V_{O}=G V_{S}$
$G=-R_{2} / R_{1}$

Filter

$\mathrm{G}_{\mathrm{O}}=1+\mathrm{R}_{2} / \mathrm{R}_{1}$ $f c=1 /(2 \pi R C)$

Equivalent L-R Circuit

Function Generator

frequency $\propto R_{1}, R_{2}, C$ amplitude $\propto R_{A}, R_{B}$

PACKAGING INFORMATION

24-Lead Plastic, TSSOP, Package Code V24

Detail A (20X)

See Detail "A"

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

PACKAGING INFORMATION

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

