Single Digitally Controlled (XDCP ${ }^{\text {TM }}$) Potentiometer

FEATURES

- Solid-State Potentiometer
- SPI serial interface
- Register oriented format
-Direct read/write/transfer wiper positions
-Store as many as four positions per potentiometer
- Power supplies
$-V_{C C}=2.7 \mathrm{~V}$ to 5.5 V
$-\mathrm{V}+=2.7 \mathrm{~V}$ to 5.5 V
$-\mathrm{V}-=-2.7 \mathrm{~V}$ to -5.5 V
- Low power CMOS
-Standby current < $1 \mu \mathrm{~A}$
- High reliability
-Endurance-100,000 data changes per bit per register
-Register data retention-100 years
- 8-bytes of nonvolatile EEPROM memory
- $10 \mathrm{k} \Omega$ or $2.5 \mathrm{k} \Omega$ resistor arrays
- Resolution: 64 taps each pot
- 14-lead TSSOP, 16-lead SOIC, and 16-pin plastic DIP packages

DESCRIPTION

The X9420 integrates a single digitally controlled potentiometers (XDCP) on a monolithic CMOS integrated microcircuit.

The digitally controlled potentiometer is implemented using 63 resistive elements in a series array. Between each element are tap points connected to the wiper terminal through switches. The position of the wiper on the array is controlled by the user through the SPI bus interface. The potentiometer has associated with it a volatile Wiper Counter Register (WCR) and 4 nonvolatile Data Registers (DR0:DR3) that can be directly written to and read by the user. The contents of the WCR controls the position of the wiper on the resistor array through the switches. Power-up recalls the contents of DR0 to the WCR.

The XDCP can be used as a three-terminal potentiometer or as a two-terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing.

BLOCK DIAGRAM

PIN DESCRIPTIONS

Host Interface Pins

Serial Output (SO)

SO is a push/pull serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out by the falling edge of the serial clock.

Serial Input

SI is the serial data input pin. All opcodes, byte addresses and data to be written to the potentiometer and pot register are input on this pin. Data is latched by the rising edge of the serial clock.

Serial Clock (SCK)

The SCK input is used to clock data into and out of the X9420.

Chip Select (CS)

When CS is HIGH, the X9420 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device will be in the standby state. CS LOW enables the X9420, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on $\overline{\mathrm{CS}}$ is required prior to the start of any operation.

Hold ($\overline{\text { HOLD }}$)

$\overline{\text { HOLD }}$ is used in conjunction with the $\overline{\mathrm{CS}}$ pin to select the device. Once the part is selected and a serial sequence is underway, $\overline{H O L D}$ may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, HOLD must be brought LOW while SCK is LOW. To resume communication, $\overline{\mathrm{HOLD}}$ is brought HIGH, again while SCK is LOW. If the pause feature is not used, HOLD should be held HIGH at all times.

Device Address (A_{0})

The address inputs is used to set the least significant bit of the 8 -bit slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9420. A maximum of 2 devices may occupy the SPI serial bus.

Potentiometer Pins

$\mathbf{V}_{\mathbf{H}} / \mathbf{R}_{\mathbf{H}}, \mathbf{V}_{\mathbf{L}} / \mathbf{R}_{\mathrm{L}}$
The V_{H} / R_{H} and V_{L} / R_{L} input are equivalent to the terminal connections on either end of a mechanical potentiometer.

$\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$

The wiper output is equivalent to the wiper output of a mechanical potentiometer.

Hardware Write Protect Input ($\overline{\mathrm{WP}}$)

The $\overline{W P}$ pin when LOW prevents nonvolatile writes to the Data Registers. Writing to the Wiper Counter Register is not restricted.

Analog Supplies ($\mathbf{V}_{+}, \mathrm{V}_{-}$)

The analog supplies V_{+}, V - are the supply voltages for the XDCP analog section.

System/Digital Supply (V_{CC})

V_{CC} is the supply voltage for the system/digital section. V_{SS} is the system ground.

PIN CONFIGURATION

PIN NAMES

Symbol	Description
SCK	Serial Clock
SI, SO	Serial Data
A 0	Device Address
$\mathrm{V}_{\mathrm{H}} / R_{\mathrm{H}}$,	Potentiometer Pins (terminal equivalent)
$\mathrm{V}_{\mathrm{L}} / R_{\mathrm{L}}$	

PRINCIPLES OF OPERATION

The X9420 is a highly integrated microcircuit incorporating a resistor array and associated registers and counter and the serial interface logic providing direct communication between the host and the XDCP potentiometer.

Serial Interface

The X9420 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked in on the rising SCK. $\overline{\mathrm{CS}}$ must be LOW and the $\overline{\text { HOLD }}$ and $\overline{W P}$ pins must be HIGH during the entire operation.

The SO and SI pins can be connected together, since they have three state outputs. This can help to reduce system pin count.

Array Description

The X 9420 is comprised of one resistor array containing 63 discrete resistive segments that are connected in series. The physical ends of each array are equivalent to the fixed terminals of a mechanical potentiometer ($\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}$ and $\mathrm{V}_{\mathrm{L}} / R_{\mathrm{L}}$ inputs).

At both ends of the array and between each resistor segment is a CMOS switch connected to the wiper $\left(\mathrm{V}_{\mathrm{W}} / R_{\mathrm{W}}\right)$ output. Within the individual array only one switch may be turned on at a time.

These switches are controlled by a Wiper Counter Register (WCR). The six bits of the WCR are decoded to select, and enable, one of sixty-four switches. The block diagram of the potentiometer is shown in Figure 1.

Wiper Counter Register (WCR)

The X9420 contains a Wiper Counter Register. The WCR can be envisioned as a 6-bit parallel and serial load counter with its outputs decoded to select one of sixty-four switches along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the Write Wiper Counter Register instruction (serial load); it may be written indirectly by transferring the contents of one of four associated data registers via the XFR Data Register instruction (parallel load); it can be modified one step at a time by the Increment/ Decrement instruction. Finally, it is loaded with the contents of its data register zero (DRO) upon power-up.

The Wiper Counter Register is a volatile register; that is, its contents are lost when the X9420 is powereddown. Although the register is automatically loaded with the value in DR0 upon power-up, this may be different from the value present at power-down.

Data Registers

The potentiometer has four 6-bit nonvolatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four Data Registers and the WCR. It should be noted all operations changing data in one of the Data Registers is a nonvolatile operation and will take a maximum of 10 ms .

If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data.

Register Descriptions

Table 1. Data Registers, (6-bit), Nonvolatile

0	0	D5	D4	D3	D2	D1	D0
(MSB)							

There are four 6-bit Data Registers associated with the potentiometer.

- \{D5~D0\}: These bits are for general purpose Nonvolatile data storage or for storage of up to four different wiper values.

Table 2. Wiper Counter Register, (6-bit), Volatile

0	0	WP5	WP4	WP3	WP2	WP1	WP0
(MSB)							

- \{WP5~WP0\}: These bits specify the wiper position of the potentiometer.

Figure 1. Detailed Potentiometer Block Diagram

Write in Process

The contents of the Data Registers are saved to nonvolatile memory when the $\overline{\mathrm{CS}}$ pin goes from LOW to HIGH after a complete write sequence is received by the device. The progress of this internal write operation can be monitored by a Write In Process bit (WIP). The WIP bit is read with a Read Status command.

INSTRUCTIONS

Address/Identification (ID) Byte

The first byte sent to the X9420 from the host, following a $\overline{\mathrm{CS}}$ going HIGH to LOW, is called the Address or Identification byte. The most significant four bits of the slave address are a device type identifier, for the X9420 this is fixed as $0101[\mathrm{~B}]$ (refer to Figure 2).

The least significant bit in the ID byte selects one of two devices on the bus. The physical device address is defined by the state of the A_{0} input pin. The X9420 compares the serial data stream with the address input state; a successful compare of the address bit is required for the X9420 to successfully continue the command sequence. The A_{0} input can be actively driven by a CMOS input signal or tied to V_{CC} or V_{SS}.

The remaining three bits in the ID byte must be set to 110 .

Figure 2. Address/Identification Byte Format

Instruction Byte

The next byte sent to the X9420 contains the instruction and register pointer information. The four most significant bits are the instruction. The next two bits point to one of four data registers. The format is shown below in Figure 3.

Figure 3. Instruction Byte Format

The four high order bits of the instruction byte specify the operation. The next two bits (R_{1} and R_{0}) select one of the four registers that is to be acted upon when a register oriented instruction is issued. The last two bits are defined as 0 .

Two of the eight instructions are two bytes in length and end with the transmission of the instruction byte. These instructions are:

- XFR Data Register to Wiper Counter Register This instruction transfers the contents of one specified Data Register to the Wiper Counter Register.
- XFR Wiper Counter Register to Data Register-This instruction transfers the contents of the Wiper Counter Register to the specified associated Data Register.
The basic sequence of the two byte instructions is illustrated in Figure 4. These two-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action will be delayed by twRL. A transfer from the WCR (current wiper position), to a Data Register is a write to nonvolatile memory and takes a minimum of twR to complete. The transfer can occur between the potentiometer and one of its associated registers.

Five instructions require a three-byte sequence to complete. These instructions transfer data between the host and the X9420; either between the host and one of the Data Registers or directly between the host and the WCR. These instructions are:

- Read Wiper Counter Register-read the current wiper position of the pot,
- Write Wiper Counter Register-change current wiper position of the pot,
- Read Data Register-read the contents of the selected data register;
- Write Data Register-write a new value to the selected data register.
- Read Status-This command returns the contents of the WIP bit which indicates if the internal write cycle is in progress.
The sequence of these operations is shown in Figure 5 and Figure 6.

The final command is Increment/Decrement. It is different from the other commands, because it's length is indeterminate. Once the command is issued, the master can clock the wiper up and/or down in one resistor segment steps; thereby, providing a fine tuning capability to the host. For each SCK clock pulse (thIGH) while SI is HIGH, the selected wiper will move one resistor segment towards the $\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}$ terminal. Similarly, for each SCK clock pulse while SI is LOW, the selected wiper will move one resistor segment towards the $\mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}$ terminal. A detailed illustration of the sequence and timing for this operation are shown in Figure 7 and Figure 8.

Figure 4. Two-Byte Instruction Sequence

Figure 5. Three-Byte Instruction Sequence (Write)

Figure 6. Three-Byte Instruction Sequence (Read)

Figure 7. Increment/Decrement Instruction Sequence

Figure 8. Increment/Decrement Timing Limits

Table 3. Instruction Set

Instruction	Instruction Set								Operation
	I_{3}	I_{2}	I_{1}	I_{0}	R_{1}	R_{0}			
Read Wiper Counter Register	1	0	0	1	0	0	0	0	Read the contents of the Wiper Counter Register
Write Wiper Counter Register	1	0	1	0	0	0	0	0	Write new value to the Wiper Counter Register
Read Data Register	1	0	1	1	R_{1}	R_{0}	0	0	Read the contents of the Data Register pointed to by $\mathrm{R}_{1}-\mathrm{R}_{0}$
Write Data Register	1	1	0	0	R_{1}	R_{0}	0	0	Write new value to the Data Register pointed to by $R_{1}-R_{0}$
XFR Data Register to Wiper Counter Register	1	1	0	1	R_{1}	R_{0}	0	0	Transfer the contents of the Data Register pointed to by R_{1} - R_{0} to the Wiper Counter Register
XFR Wiper Counter Register to Data Register	1	1	1	0	R_{1}	R_{0}	0	0	Transfer the contents of the Wiper Counter Register to the Data Register pointed to by R_{1} - R_{0}
Increment/Decrement Wiper Counter Register	0	0	1	0	0	0	0	0	Enable Increment/decrement of the Wiper Counter Register
Read Status (WIP bit)	0	1	0	1	0	0	0	1	Read the status of the internal write cycle, by checking the WIP bit.

Instruction Format

Notes: (1) "A1 ~ A0": stands for the device addresses sent by the master.
(2) WPx refers to wiper position data in the Wiper Counter Register
"l": stands for the increment operation, SI held HIGH during active SCK phase (high).
(3) "D": stands for the decrement operation, SI held LOW during active SCK phase (high).

Read Wiper Counter Register (WCR)

$\overline{\mathrm{CS}}$	device type identifier				device addresses				instruction opcode								wiper position (sent by X9420 on SO)							$\overline{\mathrm{CS}}$ Rising Edge
Falling Edge	0	1	0	1	1	1	0	A 0	1	0	0	1	0	0	0	0	0	0	W P 5	4		,		

Write Wiper Counter Register (WCR)

$\overline{\mathrm{CS}}$	device type identifier				device addresses				instruction opcode						Data Byte (sent by Host on SI)							$\overline{\mathrm{CS}}$ Rising Edge
Falling Edge	0	1	0	1	1	1	0	A 0	1	0	1	0	0	0	0	0	5	W	W P 2	1	W	

Read Data Register (DR)

Read the contents of the Register pointed to by R1-R0.

C	device type identifier				device addresses				instruction opcode				register addresses				$\begin{gathered} \text { Data Byte } \\ \text { (sent by X9420 on SO) } \end{gathered}$						$\overline{\mathrm{CS}}$ Rising Edge	
Falling Edge	0	1	0	1	1	1	0	A 0	1	0	1	1	R 1	R 0	0	0	0	0	W P P P 5		W			

Write Data Register (DR)

Write a new value to the Register pointed to by R1-R0.

CS	device type identifier				device addresses				instruction opcode				register addresses				Data Byte (sent by host on SI)								$\overline{C S}$ Rising Edge	HIGH-VOLTAGE WRITE CYCLE
Falling Edge	0	1	0	1	1	1	0	A 0	1	1	0	0	R 1	R 0	0	0	0	0	W	P		W 2	P			

Transfer Data Register (DR) to Wiper Counter Register (WCR)

Transfer the contents of the Register pointed to by R1-R0 to the WCR.

	device type identifier					device addresses				instruction opcode				register addresses				$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0			1	1	0		1	1	0	1	1	R 0	0	0	

Transfer Wiper Counter Register (WCR) to Data Register (DR)

$\overline{\mathrm{CS}}$	device type identifier				device addresses				instruction opcode				register addresses				$\overline{\mathrm{CS}}$ Rising Edge	HIGH-VOLTAGE WRITE CYCLE
Edge	0	1	0	1	1	1	0	A 0	1	1	1	0	R	0	0	0		

Increment/Decrement Wiper Counter Register (WCR)

$\overline{\mathrm{CS}}$	device type identifier				device addresses				instruction opcode								increment/decrement (sent by master on SDA)					$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0	1	1	1	0	A 0	0	0	1	0	0		0	0	I/D	I/D		I/D	I/D	

Read Status

$\overline{\mathrm{CS}}$	device type identifier				device addresses				instruction opcode								$\begin{gathered} \text { Data Byte } \\ \text { (sent by X9420 on SO) } \end{gathered}$								$\overline{\mathrm{CS}}$ Rising Edge
Falling Edge	0	1	0	1	1	1	0	A 0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	W 1 P	

ABSOLUTE MAXIMUM RATINGS

Temperature under bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage on SCK, SCL or any address input with respect to V_{SS} \qquad -1 V to +7 V Voltage on V_{+}(referenced to V_{SS}). \qquad .10 V Voltage on V - (referenced to V_{SS}) \qquad -10V ($\mathrm{V}+$) - (V -) \qquad 12V Any $\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}, \mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$ V- to $\mathrm{V}+$ Lead temperature (soldering, 10 seconds) \qquad $300^{\circ} \mathrm{C}$ IW (10 seconds). \qquad $\pm 6 \mathrm{~mA}$

RECOMMENDED OPERATING CONDITIONS

Temp	Min.	Max.
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ANALOG CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)

Symbol	Parameter						Test Conditions
			Min.	Typ.	Max.	Units	
RTOTAL	End to End Resistance				± 20	\%	
	Power Rating				50	mW	$25^{\circ} \mathrm{C}$, each pot
IW	Wiper Current				± 3	mA	
R_{W}	Wiper Resistance			150	250	Ω	$\begin{aligned} & \text { Wiper Current }= \pm 1 \mathrm{~mA}, \\ & \mathrm{~V}+/ \mathrm{V}-= \pm 3 \mathrm{~V} \end{aligned}$
				40	100	Ω	$\begin{aligned} & \text { Wiper Current }= \pm 1 \mathrm{~mA}, \\ & \mathrm{~V}+\mathrm{V}-= \pm 5 \mathrm{~V} \end{aligned}$
Vv+	Voltage on V+ Pin	X9420	+4.5		+5.5	V	
		X9420-2.7	+2.7		+5.5		
Vv-	Voltage on V- Pin	X9420	-5.5		-4.5	V	
		X9420-2.7	-5.5		-2.7		
$\mathrm{V}_{\text {TERM }}$	Voltage on any $\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}, \mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$		V-		V+	V	
	Noise			-140		dBV	Ref: 1kHz
	Resolution ${ }^{(4)}$			1.6		\%	See Note 5
	Absolute Linearity ${ }^{(1)}$				± 1	Mi ${ }^{(3)}$	$\mathrm{V}_{\mathrm{w}(\mathrm{n}) \text { (actual) }}-\mathrm{V}_{\mathrm{w}(\mathrm{n}) \text { (expected) }}$
	Relative Linearity ${ }^{(2)}$				± 0.2	Mi ${ }^{(3)}$	$\mathrm{V}_{\mathrm{w}(\mathrm{n}+1)}-\left[\mathrm{V}_{\mathrm{w}(\mathrm{n})+\mathrm{Ml}}\right]$
	Temperature Coefficient of RTOTAL			± 300		ppm $/{ }^{\circ} \mathrm{C}$	See Note 5
	Ratiometric Temperature Coefficient				± 20	ppm $/{ }^{\circ} \mathrm{C}$	See Note 5
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$	Potentiometer Capacitances			10/10/25		pF	See Circuit \#3
I_{AL}	Rh, RI, Rw leakage current			0.1	10	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}$ - to V . . Device is in stand-by mode.

Notes: (1) Absolute Linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer.
(2) Relative Linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size.
(3) $\mathrm{MI}=\mathrm{RTOT} / 63$ or $\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right) / 63$, single pot.
(4) Typical = Individual array resolution.
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Limits				Test Conditions
		Min.	Typ.	Max.	Units	
${ }^{\text {I CC1 }}$	$\mathrm{V}_{\text {CC }}$ Supply Current (Active)			400	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{f}_{\mathrm{ScK}}=2 \mathrm{MHz}, \mathrm{SO}=\text { Open, } \\ & \text { Other Inputs }=\mathrm{V}_{\mathrm{SS}} \end{aligned}$
ICC2	$\mathrm{V}_{\text {CC }}$ Supply Current (Non-volatile Write)			1	mA	$\begin{aligned} & \mathrm{fScK}=2 \mathrm{MHz}, \mathrm{SO}=\text { Open, } \\ & \text { Other Inputs }=\mathrm{V}_{\mathrm{SS}} \end{aligned}$
$I_{\text {SB }}$	$\mathrm{V}_{\text {CC }}$ Current (Standby)			1	$\mu \mathrm{A}$	SCK $=$ SI $=\mathrm{V}_{\text {SS }}$, Addr. $=\mathrm{V}_{\text {SS }}$
lı	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$
ILO	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\text {CC }} \times 0.7$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
V_{IL}	Input LOW Voltage	-0.5		$\mathrm{V}_{\text {CC }} \times 0.1$	V	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\mathrm{IOL}=3 \mathrm{~mA}$

ENDURANCE AND DATA RETENTION

Parameter	Min.	Units
Minimum Endurance	100,000	Data Changes per Bit per Register
Data Retention	100	Years

CAPACITANCE

Symbol	Test	Max.	Units	Test Conditions
$\mathrm{C}_{\mathrm{OUT}}{ }^{(5)}$	Output Capacitance (SO)	8	pF	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{IN}}{ }^{(5)}$	Input Capacitance (A0, SI, and SCK)	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

POWER-UP TIMING

Symbol	Parameter	Max.	Max.	Units
tpur $^{(6)}$	Power-up to Initiation of Read Operation	1	1	ms
tpuw $^{(6)}$	Power-up to Initiation of Write Operation	5	5	ms
$\mathrm{t}_{\mathrm{R}} \mathrm{V}_{\mathrm{CC}}$	V_{CC} Power-up Ramp	0.2	50	$\mathrm{~V} / \mathrm{msec}$

POWER-UP REQUIREMENTS (Power-up sequencing can affect correct recall of the wiper registers)
The preferred power-on sequence is as follows: First V_{CC}, then $\mathrm{V}+$ and V -, and then the potentiometer pins, $\mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{L}}$, and R_{W}. Voltage should not be applied to the potentiometer pins before V_{+}or V - is applied. The V_{CC} ramp rate specification should be met, and any glitches or slope changes in the V_{CC} line should be held to $<100 \mathrm{mV}$ if possible. If V_{CC} powers down, it should be held below 0.1 V for more than 1 second before powering up again in order for proper wiper register recall. Also, V_{CC} should not reverse polarity by more than 0.5 V . Recall of wiper position will not be complete until $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}+$ and V - reach their final value.
Notes: (5) This parameter is periodically sampled and not 100% tested.
(6) tPUR and tPUW are the delays required from the time the third (last) power supply (V_{C}, V_{+}or V -) is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested.

A.C. TEST CONDITIONS

Input pulse levels	$\mathrm{V}_{\mathrm{CC}} \times 0.1$ to $\mathrm{V}_{\mathrm{CC}} \times 0.9$
Input rise and fall times	10 ns
Input and output timing level	$\mathrm{V}_{\mathrm{CC}} \times 0.5$

EQUIVALENT A.C. LOAD CIRCUIT

AC TIMING

Symbol	Parameter	Min.	Max.	Units
fsck	SSI/SPI Clock Frequency		2.0	MHz
${ }_{\text {t }}^{\text {CYC }}$	SSI/SPI Clock Cycle Time	500		ns
twh	SSI/SPI Clock High Time	200		ns
twL	SSI/SPI Clock Low Time	200		ns
tLEAD	Lead Time	250		ns
tLAG	Lag Time	250		ns
tsu	SI, SCK, HOLD and CS Input Setup Time	50		ns
${ }_{\text {th }}$	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\mathrm{CS}}$ Input Hold Time	50		ns
t_{RI}	SI, SCK, $\overline{\mathrm{HOLD}}$ and $\overline{\mathrm{CS}}$ Input Rise Time		2	$\mu \mathrm{s}$
t_{Fl}	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\text { CS }}$ Input Fall Time		2	$\mu \mathrm{s}$
t ${ }_{\text {IIS }}$	SO Output Disable Time	0	500	ns
tv	SO Output Valid Time		100	ns
t_{HO}	SO Output Hold Time	0		ns
tro	SO Output Rise Time		50	ns
$\mathrm{t}_{\text {FO }}$	SO Output Fall Time		50	ns
thold	HOLD Time	400		ns
$\mathrm{t}_{\mathrm{HSU}}$	$\overline{\text { HOLD Setup Time }}$	100		ns
t_{HH}	HOLD Hold Time	100		ns
t_{HZ}	$\overline{\text { HOLD Low to Output in High Z }}$		100	ns
tLZ	$\overline{\text { HOLD }}$ High to Output in Low Z		100	ns
TI	Noise Suppression Time Constant at SI, SCK, HOLD and CS inputs		20	ns
t_{CS}	$\overline{\text { CS }}$ Deselect Time	2		$\mu \mathrm{s}$
twPASU	WP, A0 and A1 Setup Time	0		ns
tWPAH	WP, A0 and A1 Hold Time	0		ns

HIGH-VOLTAGE WRITE CYCLE TIMING

Symbol	Parameter	Typ.	Max.	Units
tWR	High-voltage Write Cycle Time (Store Instructions)	5	10	ms

XDCP TIMING

Symbol	Parameter	Min.	Max.	Units
tWRPO	Wiper Response Time After The Third (Last) Power Supply Is Stable		10	$\mu \mathrm{~s}$
twRL	Wiper Response Time After Instruction Issued (All Load Instructions)		10	$\mu \mathrm{~s}$
twRID	Wiper Response Time From An Active SCL/SCK Edge (Increment/Decrement Instruction)		450	ns

SYMBOL TABLE

$\left.\begin{array}{|lll|}\hline \text { WAVEFORM } & \text { INPUTS } & \text { OUTPUTS } \\ & \begin{array}{l}\text { Must be } \\ \text { steady }\end{array} & \begin{array}{l}\text { Will be } \\ \text { steady }\end{array} \\ \text { May change } \\ \text { from Low to } \\ \text { High }\end{array} \begin{array}{l}\text { Will change } \\ \text { from Low to } \\ \text { High }\end{array}\right\}$

TIMING DIAGRAMS
Input Timing

Output Timing

Hold Timing

XDCP Timing (for All Load Instructions)

XDCP Timing (for Increment/Decrement Instruction)

Write Protect and Device Address Pins Timing

APPLICATIONS INFORMATION

Electronic potentiometers provide three powerful application advantages: (1) the variability and reliability of a solidstate potentiometer, (2) the flexibility of computer-based digital controls, and (3) the retentivity of nonvolatile memory used for the storage of multiple potentiometer settings or data.

Basic Configurations of Electronic Potentiometers

Three terminal Potentiometer; Variable voltage divider

Two terminal Variable Resistor; Variable current

Basic Circuits

Voltage Regulator

Cascading Techniques

Offset Voltage Adjustment

Comparator with Hysterisis

PACKAGING INFORMATION

16-Lead Hermetic Dual In-Line Package Type D

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

PACKAGING INFORMATION

16-Lead Plastic SOIC (300 Mil Body) Package Type S

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

PACKAGING INFORMATION

14-Lead Plastic, TSSOP, Package Type V

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)

Ordering Information

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0] from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result

