FEATURES

725 MHz Gain Bandwidth - AD849
175 MHz Gain Bandwidth - AD848
4.8 mA Supply Current

300 V/ $\mu \mathrm{s}$ Slew Rate
80 ns Settling Time to $\mathbf{0 . 1 \%}$ for a 10 V Step - AD849
Differential Gain: AD848 = 0.07\%, AD849 = 0.08\%
Differential Phase: AD848 $=0.08^{\circ}$, AD849 $=0.04^{\circ}$
Drives Capacitive Loads

DC PERFORMANCE

$3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Voltage Noise - AD849
85 V/mV Open Loop Gain into a 1 k Load - AD849
1 mV max Input Offset Voltage
Performance Specified for $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Operation Available in Plastic, Hermetic Cerdip and Small Outline Packages. Chips and MIL-STD-883B Parts Available.
Available in Tape and Reel in Accordance with EIA-481A Standard

APPLICATIONS

Cable Drivers
8- and 10-Bit Data Acquisition Systems
Video and R_{F} Amplification
Signal Generators

CONNECTION DIAGRAMS

Plastic (N),
Small Outline (R) and
Cerdip (Q) Packages

20-Terminal LCC Pinout

APPLICATIONS HIGHLIGHTS

1. T he high slew rate and fast settling time of the AD 848 and AD 849 make them ideal for video instrumentation circuitry, low noise pre-amps and line drivers.
2. In order to meet the needs of both video and data acquisition applications, the AD 848 and AD 849 are optimized and tested for $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ power supply operation.
3. Both amplifiers offer full power bandwidth greater than 20 MHz (for 2 V p-p with $\pm 5 \mathrm{~V}$ supplies).
4. The AD 848 and AD 849 remain stable when driving any capacitive load.
5. Laser wafer trimming reduces the input offset voltage to 1 mV maximum on all grades, thus eliminating the need for external offset nulling in many applications.
6. The AD 848 is an enhanced replacement for the LM 6164 series and can function as a pin-for-pin replacement for many high speed amplifiers such as the H A 2520/2/5 and EL 2020 in applications where the gain is 5 or greater.

REV. B

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD848/AD849-SPECIFICATONS
 (@ $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

NOTES

${ }^{1}$ Input offset voltage specifications are guaranteed after 5 minutes at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
${ }^{2}$ F ull power bandwidth $=$ slew rate/ $2 \pi \mathrm{~V}_{\text {peak }}$. Refer to Figure 1 .
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. All others are guaranteed but not necessarily tested. Specifications subject to change without notice.

Model	Conditions	$\mathrm{V}_{\text {s }}$	AD849			AD849A/S			Units
			Min	Typ	Max	Min	Typ	Max	
INPUT OFFSET VOLTAGE ${ }^{1}$ Offset Drift	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \\ & 1.3 \\ & 1.3 \end{aligned}$		0.1 0.1	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 1.0 \\ & 1.0 \end{aligned}$	mV mV mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
INPUT BIAS CURRENT	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$		3.3	$\begin{aligned} & 6.6 \\ & 7.2 \end{aligned}$		3.3	$\begin{aligned} & 6.6 / 5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
INPUT OFFSET CURRENT Offset Current D rift	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 300 \\ & 400 \end{aligned}$			$\begin{aligned} & 300 \\ & 400 \end{aligned}$	nA nA $\mathrm{nA} /{ }^{\circ} \mathrm{C}$
OPEN LOOP GAIN	$\begin{aligned} & \mathrm{V}_{0}= \pm 2.5 \mathrm{~V} \\ & \mathrm{R}_{\text {LOAD }}=500 \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \mathrm{R}_{\text {LOAD }}=150 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$	$\pm 5 \mathrm{~V}$ $\pm 15 \mathrm{~V}$	30 20 45 30	50 32 85		30 20/15 45 30/25	50 32 85		V / mV V / mV V / mV V / mV V / mV
DYNAMIC PERFORMANCE Gain Bandwidth Full Power Bandwidth ${ }^{2}$ Slew Rate Settling Time to 0.1\% Phase M argin	$\begin{aligned} & \mathrm{A}_{\mathrm{VCL}} \geq 25 \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp} \mathrm{p}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{LOAD}}=1 \mathrm{k} \Omega \\ & -2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \\ & 10 \mathrm{~V} \text { Step, } \mathrm{A}_{\mathrm{V}}=-24 \\ & \mathrm{C}_{\text {LOAD }}=10 \mathrm{pF} \\ & \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \\ & \pm 5 \mathrm{~V} \\ & \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	225	520 725 20 4.7 200 300 65 80 60		225	520 725 20 4.7 200 300 65 80 60		M Hz MHz M Hz M Hz V/ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{S}$ ns ns D egrees
DIFFERENTIAL GAIN	$\mathrm{f}=4.4 \mathrm{M} \mathrm{Hz}$	$\pm 15 \mathrm{~V}$		0.08			0.08		\%
DIFFERENTIAL PHASE	$\mathrm{f}=4.4 \mathrm{M} \mathrm{Hz}$	$\pm 15 \mathrm{~V}$		0.04			0.04		D egrees
COMMON-MODE REJECTION	$\begin{aligned} & \mathrm{V}_{C M}= \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{C M}= \pm 12 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 100 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 115 \\ & 115 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
POWER SUPPLY REJECTION	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		$\begin{aligned} & \hline 98 \\ & 94 \\ & \hline \end{aligned}$	120		$\begin{aligned} & 98 \\ & 94 \\ & \hline \end{aligned}$	120		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
INPUT VOLTAGE NOISE	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		3			3		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
INPUT CURRENT NOISE	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		1.5			1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
INPUT COMMON-MODE voltage range		$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +4.3 \\ & -3.4 \\ & +14.3 \\ & -13.4 \\ & \hline \end{aligned}$			$\begin{aligned} & +4.3 \\ & -3.4 \\ & +14.3 \\ & -13.4 \\ & \hline \end{aligned}$		$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
OUTPUT VOLTAGE SWING	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=500 \Omega \\ & \mathrm{R}_{\text {LOAD }}=150 \Omega \\ & \mathrm{R}_{\text {LOAD }}=50 \Omega \\ & \mathrm{R}_{\text {LAAD }}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\text {LOAD }}=500 \Omega \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \\ & \\ & 12 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3 \\ & 1.4 \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 2.5 \\ & \\ & 12 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3 \\ & 1.4 \end{aligned}$		$\begin{aligned} & \pm V \\ & \pm V \\ & \pm V \\ & \pm V \\ & \pm V \end{aligned}$
SHORT CIRCUIT CURRENT		$\pm 15 \mathrm{~V}$		32			32		mA
INPUT RESISTANCE				25			25		$\mathrm{k} \Omega$
INPUT CAPACITANCE				1.5			1.5		pF
OUTPUT RESISTANCE	Open Loop			15			15		Ω
POWER SUPPLY Operating Range Quiescent Current	$\begin{aligned} & T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	± 4.5	$\begin{aligned} & 4.8 \\ & 5.1 \end{aligned}$	$\begin{aligned} & \pm \mathbf{1 8} \\ & \mathbf{6 . 0} \\ & 7.4 \\ & 6.8 \\ & 8.0 \end{aligned}$	± 4.5	4.8 5.1	$\begin{aligned} & \pm 18 \\ & 6.0 \\ & 7.4 / 8.3 \\ & 6.8 \\ & 8.0 / 9.0 \end{aligned}$	V mA mA mA mA

NOTES
${ }^{1}$ Input offset voltage specifications are guaranteed after 5 minutes at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
${ }^{2}$ Full power bandwidth $=$ slew rate/ $2 \pi \mathrm{~V}_{\text {PEAK }}$. Refer to Figure 1.
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. All others are guaranteed but not necessarily tested. Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

METALIZATION PHOTOGRAPH

C ontact factory for latest dimensions. (AD 848 and AD 849 are identical except for the part number in the upper right.) Dimensions shown in inches and (mm).

ORDERING GUIDE

	Gain Bandwidth MHz	Min Stable Gain	Max Offset Voltage mV	Temperature Range- ${ }^{\circ}$ C	Package Option ${ }^{1}$
AD 848JN	175	5	1	0 to +70	$\mathrm{N}-8$
AD 848JR	175	5	1	0 to +70	R-8
AD 848JCH IPS	175	5	1	0 to +70	D ie Form
AD 848AQ	175	5	1	-40 to +85	Q-8
AD 848SQ	175	5	1	-55 to +125	Q-8
AD 848SQ/883B	175	5	1	-55 to +125	Q-8
AD 848SE/883B	175	5	1	-55 to +125	E-20A
AD 849JN	725	25	1	0 to +70	N-8
AD 849JR 2	725	25	1	0 to +70	R-8
AD 849AQ	725	25	0.75	-40 to +85	Q-8
AD 849SQ	725	25	0.75	-55 to +125	Q-8
AD 849SQ/883B	725	25	0.75	-55 to +125	Q-8
AD 847J/A/S	50	1	1	See AD 847 D ata Sheet	

NOTES

${ }^{1} \mathrm{E}=\mathrm{LCC} ; \mathrm{N}=$ Plastic DIP; Q = Cerdip; R = Small Outline IC (SOIC).
${ }^{2}$ Plastic SOIC (R) available in tape and reel. AD 848 available in S grade chips. AD 849 available in J and S grade chips.

Figure 1. AD848 Inverting Amplifier Configuration

Figure 1a. AD848 Large Signal Pulse Response

Figure 1b. AD848 Small Signal Pulse Response

OFFSET NULLING

The input voltage of the AD 848 and AD 849 are very low for high speed op amps, but if additional nulling is required, the circuit shown in Figure 3 can be used.
For high performance circuits it is recommended that a resistor (R_{B} in Figures 1 and 2) be used to reduce bias current errors by matching the impedance at each input. The offset voltage error caused by the input currents is decreased by more than an order of magnitude.

Figure 2. AD849 Inverting Amplifier Configuration

Figure 2a. AD849 Large Signal Pulse Response

Figure 2b. AD849 Small Signal Pulse Response

Figure 3. Offset Nulling

Figure 4. Quiescent Current vs. Supply Voltage (AD848 and AD849)

Figure 7. Open Loop Gain vs. Load Resistance (AD848)

Figure 10. Quiescent Current vs. Temperature (AD848 and AD849)

Figure 5. Large Signal Frequency Response (AD848 and AD849)

Figure 8. Open Loop Gain vs. Load Resistance (AD849)

Figure 11. Short Circuit Current Limit vs. Temperature (AD848 and AD849)

Figure 6. Output Voltage Swing vs. Load Resistance (AD848 and AD849)

Figure 9. Output Swing and
Error vs. Settling Time (AD848)

Figure 12. Input Bias Current vs. Temperature (AD848 and AD849)

Figure 13. Open Loop Gain and Phase Margin vs. Frequency (AD848)

Figure 16. Harmonic Distortion vs. Frequency (AD848)

Figure 19. Power Supply Rejection vs. Frequency (AD848)

Figure 14. Open Loop Gain and Phase Margin vs. Frequency (AD849)

Figure 17. Harmonic Distortion vs. Frequency (AD849)

Figure 20. Power Supply Rejection vs. Frequency (AD849)

Figure 15. Normalized Gain Bandwidth Product vs. Temperature (AD848 and AD849)

Figure 18. Slew Rate vs. Temperature (AD848 and AD849)

Figure 21. Common-Mode Rejection vs. Frequency

AD848/AD849- Applications

GROUNDING AND BYPASSING

In designing practical circuits with the AD 848 or AD 849, the user must remember that whenever high frequencies are involved, some special precautions are in order. Circuits must be built with short interconnect leads. A large ground plane should be used whenever possible to provide a low resistance, low inductance circuit path, as well as minimizing the effects of high frequency coupling. Sockets should be avoided because the increased interlead capacitance can degrade bandwidth.

Feedback resistors should be of low enough value to assure that the time constant formed with the capacitances at the amplifier summing junction will not limit the amplifier performance. Resistor values of less than $5 \mathrm{k} \Omega$ are recommended. If a larger resistor must be used, a small ($<10 \mathrm{pF}$) feedback capacitor in parallel with the feedback resistor, R_{F}, may be used to compensate for the input capacitances and optimize the dynamic performance of the amplifier.

Power supply leads should be bypassed to ground as close as possible to the amplifier pins. $0.1 \mu \mathrm{~F}$ ceramic disc capacitors are recommended.

VIDEO LINE DRIVER

The AD 848 functions very well as a low cost, high speed line driver of either terminated or unterminated cables. Figure 22 shows the AD 848 driving a doubly terminated cable.
The termination resistor, R_{T}, (when equal to the characteristic impedance of the cable) minimizes reflections from the far end of the cable. While operating off $\pm 5 \mathrm{~V}$ supplies, the AD 848 maintains a typical slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$, which means it can drive a $\pm 1 \mathrm{~V}, 24 \mathrm{M} \mathrm{Hz}$ signal on the terminated cable.

A back-termination resistor (R_{BT}, also equal to the characteristic impedance of the cable) may be placed between the AD 848 output and the cable in order to damp any reflected signals caused by a mismatch between R_{T} and the cable's characteristic impedance. This will result in a "cleaner" signal, although it requires that the op amp supply $\pm 2 \mathrm{~V}$ to the output in order to achieve a $\pm 1 \mathrm{~V}$ swing at the line.

Figure 22. Video Line Driver

Figure 23. AD848 Driving a Capacitive Load

O ften termination is not used, either because signal integrity requirements are low or because too many high frequency signals returned to ground contaminate the ground plane. U nterminated cables appear as capacitive loads. Since the AD 848 and AD 849 are stable into any capacitive load, the op amp will not oscillate if the cable is not terminated; however pulse integrity will be degraded. Figure 23 shows the AD 848 driving both 100 pF and 1000 pF loads.

LOW NOISE PRE-AMP

The input voltage noise spectral densities of the AD 848 and the AD 849 are shown in Figure 24. The low wideband noise and high gain bandwidths of these devices makes them well suited as pre-amps for high frequency systems.

Figure 24. Input Voltage Noise Spectral Density Input voltage noise will be the dominant source of noise at the output in most applications. Other noise sources can be minimized by keeping resistor values as small as possible.

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

