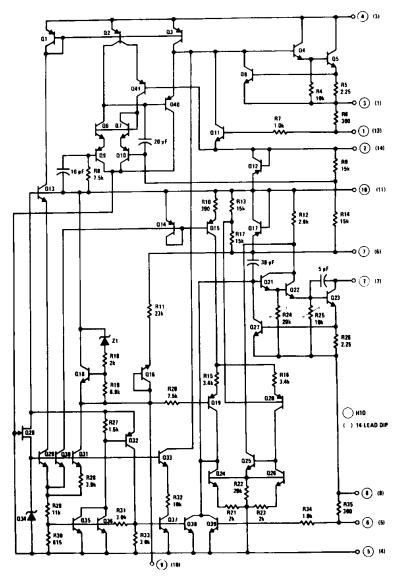
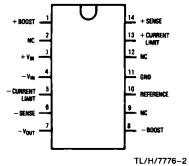


LM125/LM325/LM325A, LM126/LM326 Voltage Regulators

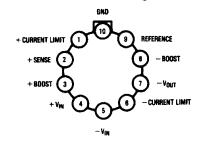

General Description

These are dual polarity tracking regulators designed to provide balanced positive and negative output voltages at current up to 100 mA, the devices are set for \pm 15V and \pm 12V outputs respectively. Input voltages up to \pm 30V can be used and there is provision for adjustable current limiting. These devices are available in two package types to accommodate various power requirements and temperature ranges.


Features

- ±15V and ±12V tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 1% (LM125, LM126, LM325A)
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams


Dual-In-Line Package

Top View

Order Number LM325AN, LM325N or LM326N See NS Package Number N14A

Metal Can Package

Case connected to -V_{IN}

TL/H/7776-3

Top View

Order Number LM125H, LM325H, LM126H or LM326H See NS Package Number H10C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

Operating Conditions

Operating Free Temperature Range
LM125 -55°C to +125°C
LM325, LM325A 0°C to +70°C
Storage Temperature Range -65°C to +150°C
Lead Temperature (Soldering, 10 sec.) 300°C

Electrical Characteristics LM125/LM325/LM325A (Note 2)

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	T _j = 25°C				
LM125/LM325A		14.8	15	15.2	V
LM325		14.5	15	15.5	V
Input-Output Differential		2.0			V
Line Regulation	$V_{IN} = 18V \text{ to } 30V, I_L = 20 \text{ mA},$ $T_j = 25^{\circ}\text{C}$		2.0	10	m∨
Line Regulation Over Temperature Range	$V_{IN} = 18V \text{ to } 30V, I_L = 20 \text{ mA},$		2.0	20	m∨
Load Regulation Vo+ Vo-	$I_L=0$ to 50 mA, $V_{IN}=\pm30V$, $T_j=25^{\circ}C$		3.0 5.0	10 10	mV mV
Load Regulation Over Temperature Range V_{O}^{+} V_{O}^{-}	$I_L = 0 \text{ to } 50 \text{ mA}, V_{IN} = \pm 30 \text{V}$		4.0 7.0	20 20	mV mV
Output Voltage Balance LM125, LM325A LM325	T _j = 25°C			± 150 ± 300	mV mV
Output Voltage Over Temperature Range LM125, LM325A LM325	$P \le P_{MAX}, 0 \le I_O \le 50 \text{ mA},$ $18V \le V_{IN} \le 30$	14.65 14.27		15.35 15.73	V V
Temperature Stability of V _O			±0.3		%
Short Circuit Current Limit	T _j = 25°C		260		mA
Output Noise Voltage	$T_j = 25^{\circ}C$, BW = 100 $-$ 10 kHz		150		μVrms
Positive Standby Current	T _i = 25°C		1.75	3.0	mA
Negative Standby Current	T _i = 25°C		3.1	5.0	mA
Long Term Stability			0.2		%/kHr
Thermal Resistance Junction to Case (Note 4) LM125H, LM325H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)		20 215 82		*C/W *C/W *C/W
Junction to Ambient LM325AN, LM325N	(Still Air)		90		°C/W

Note 1: That voltage to which the output may be forced without damage to the device.

Note 2: Unless otherwise specified these specifications apply for $T_j = 55^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ on LM125, $T_j = 0^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ on LM325A, $T_j = 0^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ on LM325, $V_{\text{IN}} = \pm 20\text{V}$, $I_{\text{L}} = 0$ mA, $I_{\text{MAX}} = 100$ mA, I

Note 4: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Note 5: Refer to RETS125X drawing for military specification of LM125.

Absolute Maximum Ratings

Output Short-Circuit Duration (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

 $\begin{array}{lll} \mbox{Input Voltage} & \pm 30 \mbox{V} \\ \mbox{Forced V}_{O}^{+} & \mbox{(Min) (Note 1)} & -0.5 \mbox{V} \\ \mbox{Forced V}_{O}^{-} & \mbox{(Max) (Note 1)} & +0.5 \mbox{V} \\ \mbox{Power Dissipation (Note 2)} & \mbox{Internally Limited} \end{array}$

Operating Conditions

Operating Free Temperature Range LM126

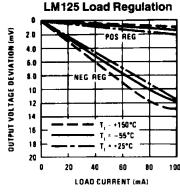
Storage Temperature Range -65°C to $+150^{\circ}\text{C}$ Lead Temperature (Soldering, 10 sec.) 300°C

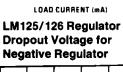
Electrical Characteristics LM126/LM326 (Note 2)

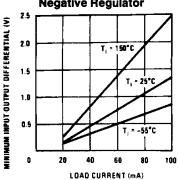
Continuous

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	T _j = 25°C	·			
LM126/LM326		11.8	12	12.2	V
		11.5		12.5	V
Input-Output Differential		2.0			V
Line Regulation	$V_{iN} = 15V \text{ to } 30V$ $I_L = 20 \text{ mA}, T_j = 25^{\circ}\text{C}$		2.0	10	m∨
Line Regulation Over Temperature Range	$V_{IN} = 15V \text{ to } 30V, I_L = 20 \text{ mA}$		2.0	20	mV
Load Regulation Vo+ Vo-	$I_L = 0 \text{ to } 50 \text{ mA}, V_{IN} = \pm 30V,$ $T_j = 25^{\circ}\text{C}$		3.0 5.0	10 10	m∨ m∨
Load Regulation Over Temperature Range V_{O}^{+} V_{O}^{-}	$I_L = 0 \text{ to } 50 \text{ mA}, V_{IN} = \pm 30 \text{V}$		4.0 7.0	20 20	mV mV
Output Voltage Balance LM126, LM326	T _i = 25°C			± 125 ± 250	mV mV
Output Voltage Over Temperature Range LM126 LM326	$P \le P_{MAX}, 0 \le I_{O} \le 50 \text{ mA},$ $15V \le V_{IN} \le 30$	11.68 11.32		12.32 12.68	> >
Temperature Stability of V _O			±0.3	•	%
Short Circuit Current Limit	T _i = 25°C		260		mA
Output Noise Voltage	T _j = 25°C, BW = 100 - 10 kHz		100		μVrms
Positive Standby Current	T _j = 25°C, I _L = 0	·	1.75	3.0	mA
Negative Standby Current	T _j = 25°C, I _L = 0		3.1	5.0	mA
Long Term Stability			0.2		%/kHr
Thermal Resistance Junction to Case (Note 4) LM126H, LM326H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)		20 155 62		*C/W *C/W *C/W
Junction to Ambient LM326N			150		°C/W

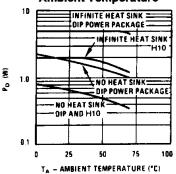
Note 1: That voltage to which the output may be forced without damage to the device.


Note 2: Unless otherwise specified these specifications apply for $T_j = 55^{\circ}\text{C}$ to $+150^{\circ}\text{C}$ on LM126, $T_j = 0^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ on LM326, $V_{|N} = \pm 20V$, $V_{|L} = 0$ mA, $V_{|MAX} = 100$ mA, $V_$


Note 3: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.


Note 4: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Note 5: Refer to RETS126X drawing for military specification of LM126.


Typical Performance Characteristics

LM325/326 Maximum Average Power Dissipation vs Ambient Temperature

Standby Current Drain

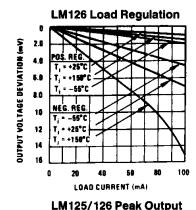
4.0

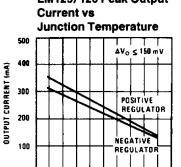
T_A = -55°C - SUPPLY

T_A = -55°C - SUPPLY

1.0

T_A = -55°C


T_A = -55°C

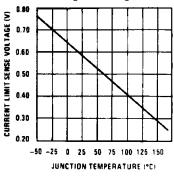

T_A = -25°C

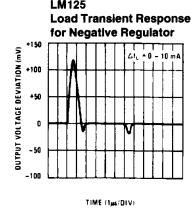
24 25 28

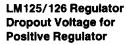
INPUT VOLTAGE ILV

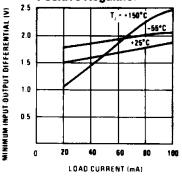
LM125/126

-50


0

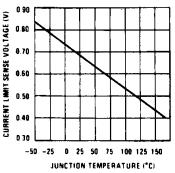

50

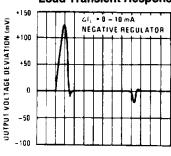

JUNCTION TEMPERATURE (*C)


LM125/126 Current Limit Sense Voltage vs Temperature for Negative Regulator

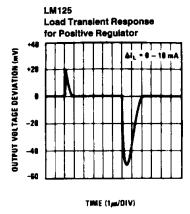
100 150

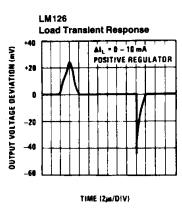


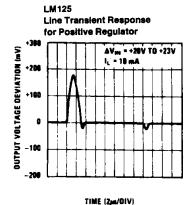


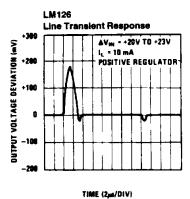

LM125/126 Maximum Average Power Dissipation vs Ambient Temperature

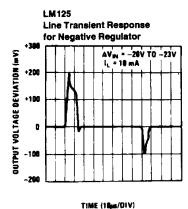
LM125/126 Current Limit Sense Voltage vs Temperature for Positive Regulator

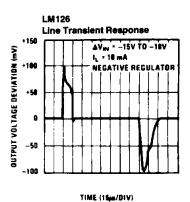


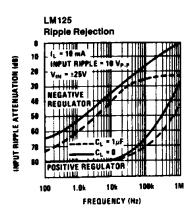


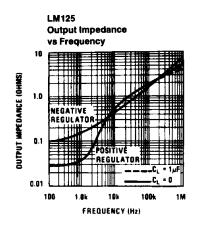


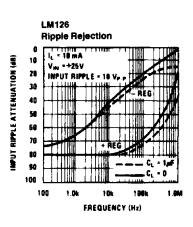

TIME (146/DIV)

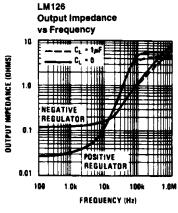

Typical Performance Characteristics (Continued)

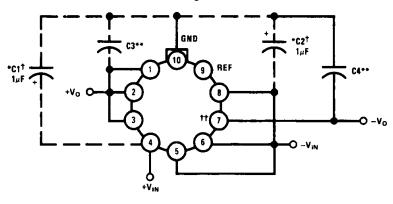


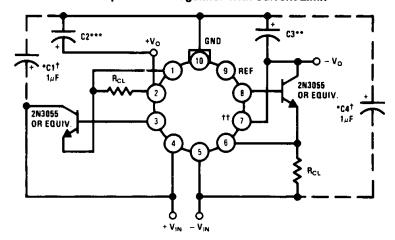










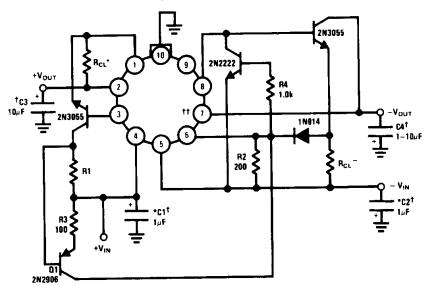

Typical Applications

Basic Regulator†††

2.0 Amp Boosted Regulator With Current Limit

TL/H/7776-6

TL/H/7776-7


Note: Metal can (H) packages shown.

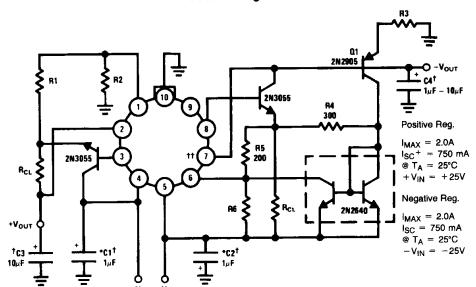
$$t_{CL} = \frac{\text{Current Limit Sense Voltage (See Curve)}}{R_{CL}}$$

- †Solid tantalum
- ††Short pins 6 and 7 on dip
- †††R_{CL} can be added to the basic regulator between pins 6 and 5, 1 and 2 to reduce current limit.
 - *Required if regulator is located an appreciable distance from power supply filter.
- **Although no capacitor is needed for stability, it does help transient response. (If needed use 1 μF electrolytic).
- ***Although no capacitor is needed for stability, it does help transient response. (If needed use 10 µF electrolytic).

Typical Applications (Continued)

Positive Current Dependent Simultaneous Current Limiting

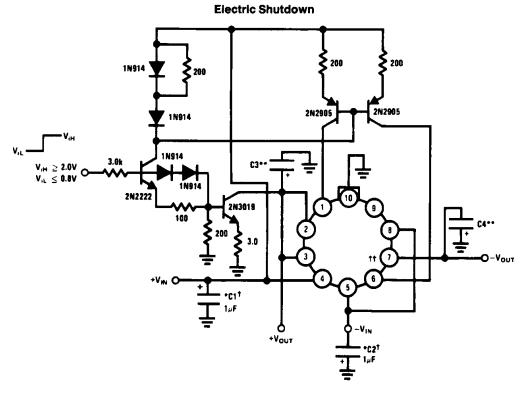
TL/H/7776-8


$$I_{CL}^{+} = \frac{\frac{V_{SENSE \, NEG}}{2} + V_{BEQ1}}{R1}$$

$$I_{CL}^{+} = \frac{V_{SENSE \, NEG} + V_{DIODE}}{R_{CL}^{-}}$$

$$R_{CL}^{+} = \frac{V_{SENSE}^{+}}{1.1 \, I_{CL}^{+}}$$

I_{CL}+ Controls Both Sides of the Regulator.


Boosted Regulator With Foldback Current Limit

Resistor Values

	125	126
R1	18	20
R2	310	180
R3	2.4k	1.35k
R6	300	290
R _{CL}	0.7	0.9

Typical Applications (Continued)

- †Solid tantalum
- ††Short pins 6 and 7 on dip
- *Required if regulator is located an appreciable distance from power supply filter.
- **Although no capacitor is needed for stability, it does help transient response. (if needed use 1 μF electrolytic).