

General Description

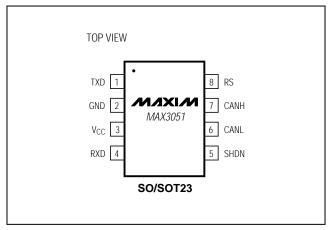
The MAX3051 interfaces between the CAN protocol controller and the physical wires of the bus lines in a controller area network (CAN). The MAX3051 provides differential transmit capability to the bus and differential receive capability to the CAN controller. The MAX3051 is primarily intended for +3.3V single-supply applications that do not require the stringent fault protection specified by the automotive industry (ISO 11898).

The MAX3051 features four different modes of operation: high-speed, slope-control, standby, and shutdown mode. High-speed mode allows data rates up to 1Mbps. The slope-control mode can be used to program the slew rate of the transmitter for data rates of up to 500kbps. This reduces the effects of EMI, thus allowing the use of unshielded twisted or parallel cable. In standby mode, the transmitter is shut off and the receiver is pulled high, placing the MAX3051 in lowcurrent mode. In shutdown mode, the transmitter and receiver are switched off.

The MAX3051 input common-mode range is from -7V to +12V, exceeding the ISO 11898 specification of -2V to +7V. These features, and the programmable slew-rate limiting, make the part ideal for nonautomotive, harsh environments. The MAX3051 is available in 8-pin SO and SOT23 packages and operates over the -40°C to +85°C extended temperature range.

Features

- ♦ Low +3.3V Single-Supply Operation
- ♦ Wide -7V to +12V Common-Mode Range
- ♦ Small SOT23 Package
- **♦ Four Operating Modes High-Speed Operation Up to 1Mbps** Slope-Control Mode to Reduce EMI (Up to 500kbps) Standby Mode **Low-Current Shutdown Mode**
- ♦ Thermal Shutdown
- **♦ Current Limiting**


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX3051ESA	-40°C to +85°C	8 SO	_
MAX3051EKA-T	-40°C to +85°C	8 SOT23-8	AEKF

Applications

Printers JetLink Industrial Control and Networks Telecom Backplane **Consumer Applications**

Pin Configuration

Typical Operating Circuit at end of data sheet.

MIXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +6V
TXD, RS, SHDN to GND	0.3V to +6V
RXD to GND	0.3V to +6V
CANH, CANL to GND	7.5V to +12.5V
Continuous Power Dissipation (T _A = +70°C)
8-Pin SO (derate 5.9mW/°C above +70°C	2)470mW
8-Pin SOT23 (derate 9.7mW/°C above +7	'0°C)774mW

Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature Range (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 5\%, R_L = 60\Omega, C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Dominant		35	70	mA
Supply Current	Is	Recessive		2	5	IIIA
		Standby		8	15	μΑ
Shutdown Current	ISHDN	$V_{SHDN} = V_{CC}$, $TXD = V_{CC}$ or floating			1	μΑ
Thermal-Shutdown Threshold	V _{TSH}			+160		°C
Thermal-Shutdown Hysteresis				25		°C
TXD INPUT LEVELS						
High-Level Input Voltage	VIH		2		V _{CC} + 0.3V	V
Low-Level Input Voltage	V _{IL}				0.8	V
Input Capacitance	CIN			5		pF
Pullup Resistor	RINTXD		50		100	kΩ
CANH, CANL TRANSMITTER						
		V _{TXD} = V _{CC} , no load	2	2.3	3	V
Recessive Bus Voltage	VCANH, VCANL	V _{TXD} = V _{CC} , no load, V _{RS} = V _{CC} (standby mode)	-100		+100	mV
Off-State Output Leakage		-2V < VCANH, VCANL < +7V, SHDN = HIGH	-250		+250	μΑ
Input Leakage Current		V _{CC} = 0V, V _{CANH} = V _{CANL} = 5V	-250		+250	μΑ
CANH Output Voltage	Vcanh	$V_{TXD} = 0V$	2.45			V
CANL Output Voltage	VCANL	$V_{TXD} = 0V$			1.25	V
Diff. 11.10.1.1		$V_{TXD} = 0V$	1.5		3.0	V
	(VCANH - VCANL)	$V_{TXD} = 0V$, $R_L = 45\Omega$	1.2		3.0	V
Differential Output		V _{TXD} = V _{CC} , no load	-500		+50	mV
		$V_{TXD} = V_{CC}$, $R_L = 60\Omega$	-120		+12	IIIV

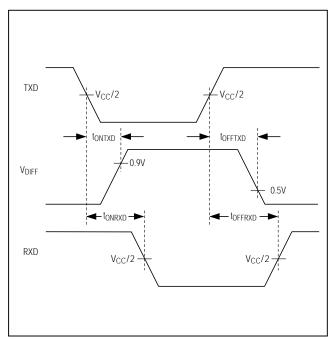
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.3V \pm 5\%, R_L = 60\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $V_{CC} = +3.3V$ and $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
CANILL Chart Circuit Comment		-7V ≤ V _{CANH} ≤ 0V	-200			^	
CANH Short-Circuit Current	ICANHSC	Minimum foldback current			-35	mA	
CANL Short-Circuit Current	ICANLSC	V _{CC} ≤ V _{CANL} ≤ 12V			200	mA	
RXD OUTPUT LEVELS							
RXD High Output-Voltage Level	Vон	I = -1mA	0.8 x V _{CC}		Vcc	V	
RXD Low Output-Voltage Level	Vol	I = 4mA			0.4	V	
DC BUS RECEIVER (VTXD = VCC;	CANH and C	ANL externally driven; -7V ≤ V _{CANH} , V	CANL≤ +12V, unl	ess othe	rwise spe	cified)	
Differential Input Voltage	\/p.:55	-7V ≤ V _{CM} ≤ +12V	0.5			V	
(Recessive)	VDIFF	V _{RS} = V _{CC} (standby mode)	0.5			V	
Differential Input Voltage	VDIFF	Dominant			0.9	V	
(Dominant)	VDIFF	V _{RS} = V _{CC} (standby mode)			1.1		
Differential Input Hysteresis	V _{DIFF} (HYST)			20		mV	
CANH and CANL Input Resistance	Rı		20		50	kΩ	
Differential Input Resistance	R _{DIFF}		40		100	kΩ	
MODE SELECTION (RS)							
Input Voltage for High Speed	V _{SLP}				0.3 x V _C C	V	
Input Voltage for Standby	V _{STBY}		0.75 x V _C C			V	
Slope-Control Mode Voltage	VSLOPE	$R_{RS} = 25k\Omega$ to $200k\Omega$	0.4 x VCC		0.6 x V _C C	V	
High-Speed Mode Current	I _{HS}	V _{RS} = 0			-500	μΑ	
SHUTDOWN (SHDN)			<u>.</u>				
SHDN Input Voltage High	VSHDNH		2			V	
SHDN Input Voltage Low	VSHDNL				0.8	V	
SHDN Pulldown Resistor	RINSHDN		50		100	kΩ	

TIMING CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 5\%, R_L = 60\Omega, C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		V _{RS} = 0V (≤1Mbps)			50		
Delay TXD to Bus Active (Figure 1)	tontxd	R _{RS} = 25kΩ (≤500kbps)		183		ns	
(Figure 1)		R _{RS} = 100kΩ (≤125kbps)	00kΩ (≤125kbps) 770]	
		V _{RS} = 0V (≤1Mbps)			70		
Delay TXD to Bus Inactive (Figure 1)	tofftxd	R _{RS} = 25k Ω (≤500kbps)		226		ns	
(Figure 1)		R _{RS} = 100kΩ (≤125kbps)		834			
		V _{RS} = 0V (≤1Mbps)			80		
Delay Bus to Receiver Active (Figure 1)	tonrxd	R _{RS} = 25k Ω (≤500kbps)		200		ns	
(rigure r)		R _{RS} = 100kΩ (≤125kbps)		730			
	toffrxd	V _{RS} = 0V (≤1Mbps)			100	ns	
Delay Bus to Receiver Inactive (Figure 1)		R _{RS} = 25kΩ (≤500kbps)		245			
(rigure r)		R _{RS} = 100kΩ (≤125kbps)		800			
		V _{RS} = 0V (≤1Mbps)		96			
Differential Quant Clay Data	CD	R _{RS} = 25kΩ (≤500kbps)		12.5		1 ,,,	
Differential-Output Slew Rate	SR	R _{RS} = 100kΩ (≤125kbps)		2.9		V/µs	
		R _{RS} = 200kΩ (≤62.5kbps)		1.6			
Bus Dominant to RXD Active	tDRXDL	V _{RS} > 0.8 x V _{CC} , standby, Figure 2			1	μs	
Standby to Receiver Active	tsbrxdl	BUS dominant, Figure 2			4	μs	
SHDN to Bus Inactive	toffshdn	TXD = GND, Figure 3 (Note 2)			1	μs	
SHDN to Receiver Active	tonshdn	BUS dominant, Figure 3 (Note 3)			4	μs	
SHDN to Standby	tshdnsb	Figure 4	20			μs	

Note 1: All currents into device are positive; all currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted.

Note 2: No other devices on the BUS.

Note 3: BUS externally driven.

Timing Diagrams

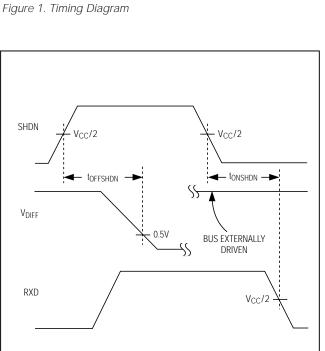


Figure 3. Timing Diagram for Shutdown Signal

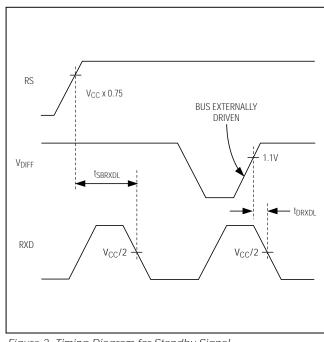
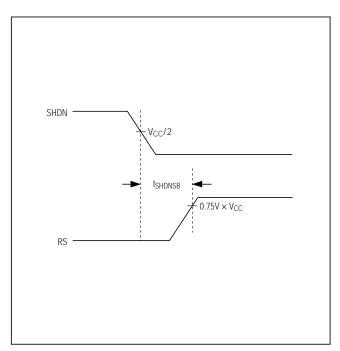
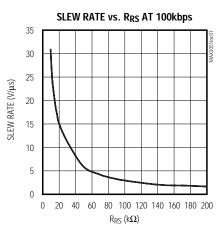
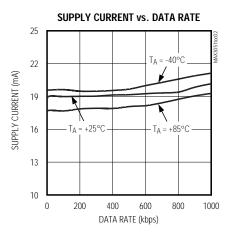
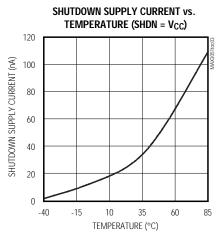
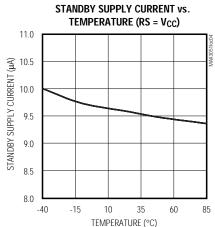


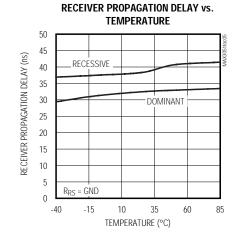
Figure 2. Timing Diagram for Standby Signal

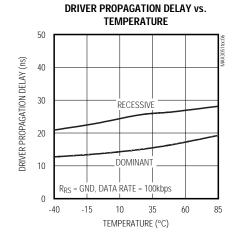



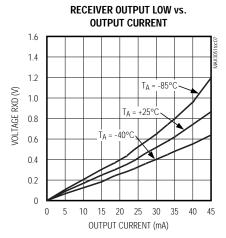

Figure 4. Timing Diagram for Shutdown-to-Standby Signal

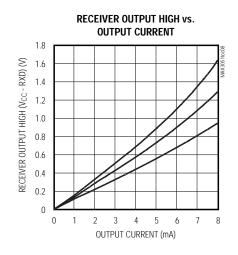


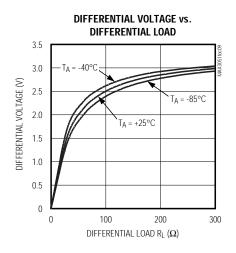

Typical Operating Characteristics

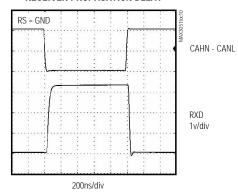

 $(V_{CC} = +3.3V, R_L = 60\Omega, C_L = 100pF, T_A = +25^{\circ}C, unless otherwise specified.)$



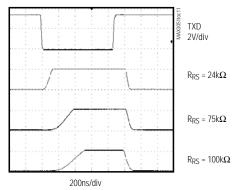


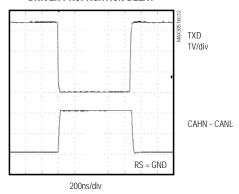


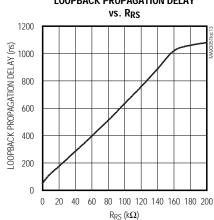



Typical Operating Characteristics (continued)

 $(V_{CC} = +3.3V, R_L = 60\Omega, C_L = 100pF, T_A = +25^{\circ}C, unless otherwise specified.)$




RECEIVER PROPAGATION DELAY



DRIVER PROPAGATION DELAY

LOOPBACK PROPAGATION DELAY

Detailed Description

PIN	NAME	FUNCTION			
1	TXD	Transmit Data Input. TXD is a CMOS/TTL-compatible input from a CAN controller. TXD has an internal 75k Ω pullup resistor.			
2	GND	Ground			
3	Vcc	Supply Voltage. Bypass V _{CC} to GND with a 0.1µF capacitor.			
4	RXD	Receive Data Output. RXD is a CMOS/TTL-compatible output.			
5	SHDN	Shutdown Input, CMOS/TTL-Compatible. Drive SHDN high to put the MAX3051 in shutdown. SHDN has an internal 75k Ω pulldown resistor to GND.			
6	CANL	CAN Bus Line Low			
7	CANH	CAN Bus Line High			
8	RS	Mode-Select Input. Drive RS low or connect to GND for high-speed operation. Connect a resistor between RS and GND to control output slope. Drive RS high to put into standby mode (see the <i>Mode Selection</i> section).			

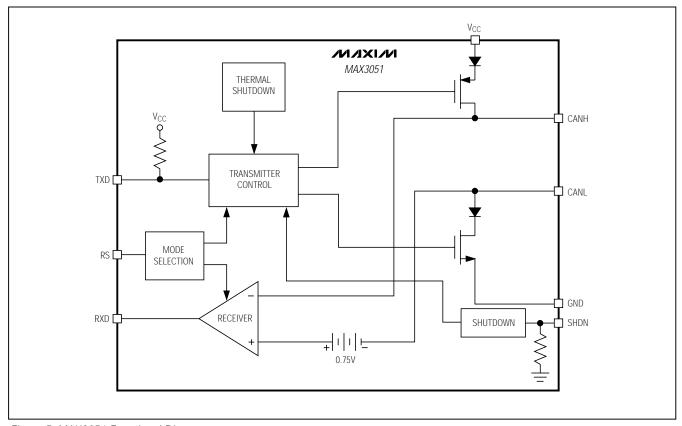


Figure 5. MAX3051 Functional Diagram

3 ______*NIXI/*M

cable to avoid EMI problems.

Detailed Description

The MAX3051 interfaces between the CAN protocol controller and the physical wires of the bus lines in a CAN. It provides differential transmit capability to the bus and differential receive capability to the CAN controller. It is primarily intended for +3.3V single-supply applications that do not require the stringent fault protection specified by the automotive industry (ISO 11898)

The MAX3051 features four different modes of operation: high-speed, slope-control, standby, and shutdown mode. High-speed mode allows data rates up to 1Mbps. The slope-control mode can be used to program the slew rate of the transmitter for data rates of up to 500kbps. This reduces the effects of EMI, thus allowing the use of unshielded twisted or parallel cable. In standby mode, the transmitter is shut off and the receiver is pulled high, placing the MAX3051 in low-current mode. In shutdown mode, the transmitter and receiver are switched off.

The MAX3051 input common-mode range is from -7V to +12V, exceeding the ISO 11898 specification of -2V to +7V. These features, and the programmable slew-rate limiting, make the part ideal for nonautomotive, harsh environments.

The transceivers operate from a single +3.3V supply and draw $35\mu A$ of supply current in dominant state and $2\mu A$ in recessive state. In standby mode, supply current is reduced to $8\mu A$. In shutdown mode, supply current is less than $1\mu A$.

CANH and CANL are output short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry that places the driver outputs into a high-impedance state.

Transmitter

The transmitter converts a single-ended input (TXD) from the CAN controller to differential outputs for the bus lines (CANH, CANL). The truth table for the transmitter and receiver is given in Table 1.

Receiver

The receiver reads differential inputs from the bus lines (CANH, CANL) and transfers this data as a single-ended output (RXD) to the CAN controller. It consists of a comparator that senses the difference V_{DIFF} = (CANH - CANL) with respect to an internal threshold of +0.75V. If this V_{DIFF} is greater than 0.75, a logic-low is present at RXD. If V_{DIFF} is less than 0.75V, a logic-high is present. The receiver always echoes the CAN BUS data.

The CANH and CANL common-mode range is -7V to +12V. RXD is logic-high when CANH and CANL are shorted or terminated and undriven.

Mode Selection High-Speed Mode

Connect RS to ground to set the MAX3051 to high-speed mode. When operating in high-speed mode, the MAX3051 can achieve transmission rates of up to 1Mbps. In high-speed mode, use shielded twisted pair

Slope-Control Mode

Connect a resistor from RS to ground to select slope-control mode (Table 2). In slope-control mode, CANH and CANL slew rates are controlled by the resistor connected to the RS pin. Maximum transmission speeds are controlled by RRs and range from 40kbps to 500kbps. Controlling the rise and fall slopes reduces EMI and allows the use of an unshielded twisted pair or a parallel pair of wires as bus lines. The equation for selecting the resistor value is given by:

 R_{RS} (k Ω) \approx 12000 / (maximum speed in kbps)

See the Slew Rate vs. RRS graph in the *Typical Operating Characteristics*.

Standby Mode

If a logic-high is applied to RS, the MAX3051 enters a low-current standby mode. In this mode, the transmitter

Table 1. Transmitter and Receiver Truth Table When Not Connected to The Bus

TXD	RS	SHDN	CANH	CANL	BUS STATE	RXD
Low	V _{RS} < 0.75 x V _{CC}	Low	High	Low	Dominant	Low
High or float	V _{RS} < 0.75 x V _{CC}	Low	$5k\Omega$ to $25k\Omega$ to $V_{CC}/2$	$5k\Omega$ to $25k\Omega$ to $V_{CC}/2$	Recessive	High
Х	V _{RS} > 0.75 x V _{CC}	Low	$5k\Omega$ to $25k\Omega$ to GND	$5k\Omega$ to $25k\Omega$ to GND	Recessive	High
Х	Х	High	Floating	Floating	Floating	High

is switched off and the receiver is switched to a low-current/low-speed state. If dominant bits are detected, RXD switches to low level. The microcontroller should react to this condition by switching the transceiver back to normal operation.

When the MAX3051 enters standby mode, RXD goes high for $4\mu s$ (max) regardless of the BUS state. However, after $4\mu s$, RXD goes low only when the BUS is dominant, otherwise RXD remains high (when the BUS is recessive). For proper measurement of standby-to-receiver active time (tsbrxdl), the BUS should be in dominant state (see Figure 2).

Shutdown

Drive SHDN high to enter shutdown mode. Connect SHDN to ground or leave floating for normal operation.

Thermal Shutdown

If the junction temperature exceeds +160°C, the device is switched off. The hysteresis is approximately 25°C, disabling thermal shutdown once the temperature drops below 135°C. In thermal shutdown, CANH and CANL go recessive and all IC functions are disabled.

Applications Information

Reduced EMI and Reflections

In slope-control mode, the CANH and CANL outputs are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables.

In multidrop CAN applications, it is important to maintain a direct point-to-point wiring scheme. A single pair of wires should connect each element of the CAN bus, and the two ends of the bus should be terminated with 120Ω resistors (Figure 6). A star configuration should never be used.

Any deviation from the point-to-point wiring scheme creates a stub. The high-speed edge of the CAN data on a stub can create reflections back down the bus. These reflections can cause data errors by eroding the noise margin of the system.

Although stubs are unavoidable in a multidrop system, care should be taken to keep these stubs as small as possible, especially in high-speed mode. In slope-control mode, the requirements are not as rigorous, but stub length should still be minimized.

Power Supply and Bypassing

The MAX3051 requires no special layout considerations beyond common practices. Bypass V_{CC} to GND with a 0.1µF ceramic capacitor mounted close to the IC with short lead lengths and wide trace widths.

Table 2. Mode Selection Truth Table

CONDITION FORCED AT PIN RS	MODE	RESULTING CURRENT AT RS
V _{RS} < 0.3 x V _{CC}	High Speed	I _{RS} < 500µA
0.4 x V _{CC} <v<sub>RS < 0.6 x V_{CC}</v<sub>	Slope Control	10μA < I _{RS} < 200μA
V _{RS} > 0.75 x V _{CC}	Standby	I _{RS} < 10µA

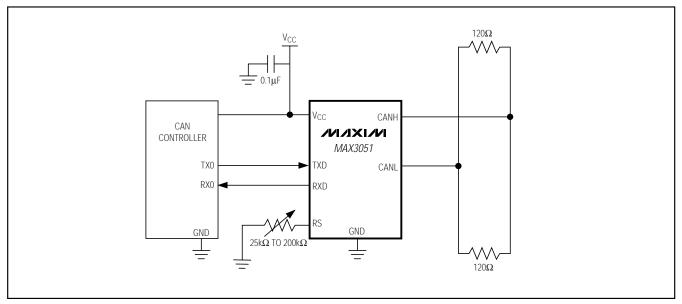
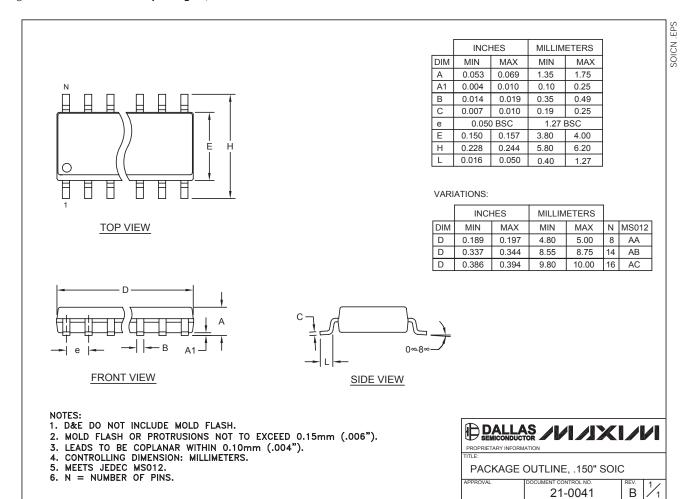



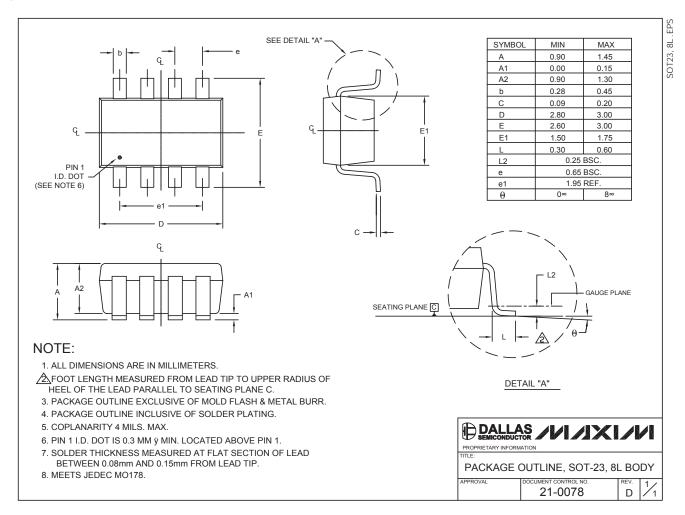
Figure 6. Multiple Receivers Connected to CAN Bus

Typical Operating Circuit


Chip Information

TRANSISTOR COUNT: 1024

PROCESS: BICMOS


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____

_ 13